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ABSTRACT OF THE DISSERTATION 

 

Decoding Bacterial Metabolism: surface enhanced Raman scattering and deep learning 

by 

Hong Wei 

Doctor of Philosophy in Material Science and Engineering 

University of California, Irvine, 2023 

Professor Regina Ragan, Chair 

 

 

Self-assembly utilizes thermodynamic driving forces in order to achieve molecular scale 

control with less waste and lower costs than lithographic methods. Thus the ability to understand 

reactivity between functional groups on molecular structures in confined geometries provides 

knowledge on how to organize building blocks such as molecules and nanoparticles (NPs) into 

supramolecular structures and metasurfaces using scalable methods. The overall objective of my 

work in understanding driving forces for forming plasmonic nanostructures on surfaces from 

colloidal solutions was to design plasmonic nanostructures with molecular scale control for 

sensor applications. I show that the resulting plasmonic nanostructures can produce unique light 

matter interactions, controlling localized interactions with plasmons and phonons for molecular 

sensors with detection limits at single molecule and single cell levels.  

Colloidal NPs are typically stabilized via electrostatic repulsion, and thus, chemical 

crosslinking in solution can lead to uncontrolled aggregation. Here, I developed a robust 

fabrication method using long range electrokinetic forces, oscillation field electrohydrodynamic 

(AC-EHD) flow, to drive chemical reactions between suspended NPs on working electrode 

surfaces. This process forms "nanogaps" between the NPs and enables manufacturing of surface 
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enhanced Raman scattering (SERS) sensors with record performance. By varying field 

frequency, isolated NPs can be deposited onto the surface at 100 Hz. At higher frequencies, e.g., 

500-1500 Hz, AC-EHD flow plays a more important role to form 2D Au nanostructures with 

controlled nanogap spacing. In order to fabricate plasmonic nanostructures with high density 

over large areas, a two step deposition was utilized to first deposit isolated NPs as seeds then 

apply higher frequencies to grow to clusters. The resulting SERS sensor is highly sensitive to 

bacterial metabolites, many which have aromatic rings. Thus the bacterial metabolic responses to 

environmental stimuli is robustly differentiable when using machine learning (ML) algorithms to 

analyze the spectral data. Studies on nutrient deprivation are performed to understand general 

stress response, which can be useful for process monitoring in biotechnology industries. 

Changing nutrient source of E. coli cultures from glucose to the less preferred xylose and 

sucrose, provides insight on metabolic network response. The metabolite profile of bacteria in 

response to antibiotic treatment differentiates resistance and susceptibility as soon as 5 min to 

produce a new platform for rapid antimicrobial susceptibility testing. Similarly, bacterial stress 

responses to toxic heavy metals were used to monitor water quality. We show that detection of 

arsenic ions (As3+) and chromium ions (Cr6+) is possible at the single cell level. ML analysis of 

the vibrational spectra of metabolites released in response to As3+ and Cr6+ exposure detects 

concentrations 108 times lower than those leading to cell death. Transfer learning of trained 

algorithms to test contaminants in tap water and wastewater were able to achieve 92% accuracy. 
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Chapter 1  

Introduction 

1.1 The history and development of colloidal self-assembly 

 The observation of colloidal suspensions dates back to the 19th Century. In 1857, Michael 

Faraday (1791-1867) delivered an exciting lecture to the Royal Society in London about the 

suspensions of  “Ruby” Au and its properties, which are completely different from bulk 

material.1 The term colloidal was introduced in 1861 by Graham.2 Faraday’s pioneer work marks 

the initiation of the modern colloidal science research field, which has been recognized as an 

essential part of nanotechnology.3 Colloids are defined to have particles as solute in solution with 

diameter in the range of 1 to 1000 nm, where unique properties compared with bulk material 

may be observed. When the particle diameter is in the range of 1-100 nm, they are called 

nanoparticles (NPs). NPs with high valence electron density, including metals such as Au, Ag, 

and Al, semiconductors such as InAs,4 and metal oxides such as ITO,5 may exhibit plasmonic 

effects in result from the interaction between electromagnetic wave and excitation of valence 

electrons at metallic-dielectric interfaces. The excitation of plasmons can improve the 

performance of photovoltaics, optoelectronic devices, photocatalysis, and chemical and 

biological sensors;6 My work involves the use of Au NPs in biosensors and environmental 

sensors. Both Au and Ag NPs are easily fabricated with control of size and shape, and surfaces 

can be readily functionalized with chemical and biomolecular ligands.7 In addition, Au NPs are 

more stable and compatible with living systems for biomedical applications, including imaging 

agents and drug delivery.8,9 Taken together, colloidal Au NP systems have been demonstrated to 
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have broad impact on physics, chemical, and biological applications and are of great interest for 

further exploration.  

1.2 Colloidal self-assembly  

Colloidal self-assembly is a process in which colloidal particles are assembled into 

ordered structures through various methodologies, including chemical approaches, interparticle 

forces, external forces, and their combinations. Chemical reactions between surface ligands of 

two NPs can form chemical bonds, linking Au NPs together.10 Besides chemical ligands, 

biomolecules such as DNA,5 protein linkers,11,12 and antibodies13 can also be used to conjugate 

with Au NPs. For example, the DNA origami technique has been used as templates for assembly 

of NPs into three dimensional structures.14 Au NP's interaction with protein denaturation can 

lead to a compact-packed assembly and retention of protein structure can lead to an assembly 

with larger interparticle spacings.15 Moreover, antibody–antigen recognition can also self-

assemble Au NPs into macroscopic materials.16 The combination of chemical reactions with 

interparticle forces, such as capillary forces and electrostatic forces, can achieve controllable 

assembly. For example, DNA functionalized Au NPs can assemble through base pair interaction 

or electrostatic attraction. Selective functionalization can be performed using templates 

fabricated from lithography methods to confine the deposition of colloidal building blocks onto 

selected regions and achieve large area ordering based on electrostatic or 

hydrophobic/hydrophilic interactions.17,18  

External forces, such as optical, electric, and magnetic fields, offer a powerful means of 

driving colloidal self-assembly with increased control and diversity of assembled structures. For 

example, optical plasmonic tweezers can manipulate NPs by concentrating an incident laser into 

a nanoscale region to enhance the electric field, strengthening the optical force to trap NPs;19 
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magnetic fields can direct NP organization by magnetic dipole-dipole interactions, which can 

switch between attractive and repulsive interactions by controlling the angle between the 

magnetic field and the direction connecting the dipoles;20 Furthermore, electrokinetic 

phenomena, such as electrophoresis, dielectrophoresis, and electrohydrodynamic flow, can be 

used to direct lateral assembly of NPs on electrode surfaces to form two dimensional NP clusters 

or thin films.21 Section 2.2 will discuss electrohydrodynamic flow in more detail.   

1.3 Colloidal dissipative assembly   

Self-assembly processes can occur far from equilibrium, known as dissipative assembly, 

which generates dynamic and adaptive systems that consume energy to maintain their state. 

Dissipative assembly is crucial for life, as exemplified by the self-replication of DNA, the 

construction of cell walls, and immune function.22 Synthetic self-assembly may utilize similar 

principles as organic systems, and the availability of finely tuned external controls and materials 

in synthetic systems may unlock additional functionalities and unique structures not commonly 

encountered in nature. For example, dissipative assembly in materials such as gels23 can lead to 

self-healing materials. In addition, dissipative assembly in colloidal NPs solutions can produce 

systems with spatio-temporal control of tunable optical properties.24  

In the case of NPs in colloid systems, various external stimuli such as temperature, 

magnetic fields, light, electric fields25,26 and their combinations have been explored as driving 

forces for dissipative assembly.27,28 For example, temperature can trigger the dissipative 

assembly of NPs with functionalized thermosensitive molecules or polymers;29,30 a magnetic 

field can direct the anisotropic assembly of patchy NPs;31 additionally, NPs functionalized with 

photoswitchable moieties can undergo aggregation and disassembly in response to light.32 

Chemically driven dissipative assembly is a process that utilizes the addition of chemical fuel to 
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introduce interactions between NPs, where the consumption of the fuel may bring the system 

back to equilibrium for disassembly.33 Grötsch et al. have demonstrated the use of 1-Ethyl-3-(3-

(dimethylamino)propyl)carbodiimide (EDC) as a fuel to drive the dissipative assembly of 5 nm 

Au NPs. Specifically, the addition of EDC fuel induced the assembly of the NPs after 30 min, 

and subsequently, the consumption of the fuel resulted in disassembly after 24 hours.34 Electric 

stimuli have been reported for the dissipative assembly of microparticles; however, their 

potential in the dissipative assembly of NPs remains relatively unexplored.27 Recent research has 

demonstrated the use of direct current bias to achieve dissipative assembly of NPs via 

electrostatic effects. Specifically, a bias of 0.7 V was employed for assembly and 0.1 V was used 

for disassembly.35,36 Electrohydrodynamic (EHD) flow is an electrokinetic phenomenon that can 

achieve lateral assembly of NPs. The reversibility of the EHD flow,37 which allows for the 

disassembly of assemblies if the bias is not maintained, is hindered by the kinetic trapping of 

resulting structures on surfaces due to electrostatic interactions, making it difficult to 

experimentally monitor and thereby understand the disassembly behavior of NPs at the 

electrode-liquid interface. Moreover, the dynamic optical responses of the assembled structures 

under oscillatory electric fields have not been extensively explored, limiting the further 

development of electrically tunable optical materials.  

1.4 Optical properties of Au colloids   

1.4.1 Localized surface plasmon resonance  

When the incident laser impinges at a metallic-dielectric interface, it can drive the 

collective oscillation of delocalized conduction electrons at the dielectric-metal interfaces when 

the frequency of the incident light matches the resonance frequency of free electrons in the 

plasmonic materials. This phenomenon is called surface plasmon resonance (SPR).38 For the 
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metallic-dielectric interface, the complex reflection coefficient 𝑟! for p-polarized incident laser 

electric field can be described by the Maxwell equations,39 

𝑟! =
"!
""
= #𝑟!#𝑒#$ = %%&'	(*+,)

%&'	(*.,)
% 𝑒#$                                                                   Equation 1.1 

In conductive nanostructures, the SPR can be highly localized to a specific position, 

which is referred to as localized SPR (LSPR). NPs of interest that can generate a strong LSPR 

effect are called plasmonic NPs, which are typically metals such as Au, Ag and Al, 

semiconductors such as InAs, and metal oxide such as ITO, because they show strong SPR in 

UV and near-infrared regions. LSPR will lead to the resonant absorption or scattering of the 

incident light.40 The frequency depends on NP’s size, shape, and surrounding dielectric 

environment.   

 

Figure 1.1 Illustration of LSPR effect.41 

1.4.2 Surface enhanced Raman scattering  

Raman scattering is an analytical technique that provides vibrational fingerprint of 

molecules via non-linear inelastic scattering events. However, Raman is an intrinsically very 

weak phenomenon due to the small Raman cross section.42 In 1974, Fleischmann et al. observed 

an unusual enhancement of Raman signal from pyridine adsorbed on a roughened silver 
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surface.43 In 1977, Richard P. Van Duyne et al. first termed this phenomenon as surface 

enhanced Raman scattering (SERS). Two enhancement mechanisms contribute to the amplified 

Raman signal, electromagnetic and chemical mechanisms. The electromagnetic mechanism 

originates from the interaction of incident light to the valence electrons at the metallic-dielectric 

interface, which can result in 106 fold intensity enhancement of the Raman scattering.44 

Chemical enhancement arises from a modification of the polarizability of a molecule. The 

contribution of Raman signal enhancement from the chemical enhancement is usually considered 

much smaller than the electromagnetic mechanism; its magnitude may reach 102-104.45 In 

Chapter 2.1, I provide a detailed explanation of the electromagnetic mechanism in SERS.  

SERS is a highly sensitive analytical technique that results from the LSPR of metal NPs 

when illuminated with laser light at the plasmon resonance frequency. The LSPR induces a 

strong electromagnetic field within the confined nanogap between the metal NPs, which interacts 

with molecules located in close proximity, resulting in an amplified Raman signal.46 SERS 

surfaces can be used to investigate biochemical processes in cells47 and tissues48 and integrated 

into microfluidic devices to detect pathogens.49 The high enhancement factor enabled by SERS 

has opened up the possibility of detecting very few molecules, even at a single molecule level.50 

However, a long standing challenge in SERS is the fabrication of sensors with highly 

reproducible responses. I developed a novel synthesis protocol for the formation of two- 

dimensional Au NP clusters using AC-EHD flow. The protocol involves the growth of Au NP 

clusters from isolated single Au NPs on the surface, serving as seeds, with controllable uniform 

gap spacing and high reproducibility. A comprehensive description of the experimental 

procedure can be found in Chapter 3. 

1.5 Machine learning for analytical technologies 
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Machine learning (ML), especially deep learning, is emerging as a powerful tool to 

interpret data obtained from analytical technologies such as Raman scattering. The combination 

of Raman scattering and deep learning has shown promise for antimicrobial susceptibility 

testing, and recent reports suggest that analysis can benefit from enhancements in SERS.51 Since 

the use of principal component analysis to demonstrate single-molecule detection by Le Ru et 

al.,52 great progress has been made in applying sophisticated machine learning techniques to 

analyze SERS spectra. These include fully connected artificial neural networks for analyte 

concentration regression,53 DNA classification,54 cancer detection,55 convolutional neural 

networks for the classification of metabolite signals,56 support vector machines for the 

classification of drug use from urine,57 and genetic algorithms for cancer diagnoses.58    

1.6 Thesis outline 

In this remainder thesis, Chapter 2 offers scientific explanations of key concepts that are 

essential for understanding the research question. Specifically, the chapter provides an overview 

of SERS and the underlying electromagnetic and chemical mechanisms that contribute to its 

ultimate sensitivity. The chapter delves deeper into the influence of nanogap size and geometry 

on electromagnetic mechanism of SERS, which is critical for optimizing the sensitivity of SERS-

based sensing platforms. Additionally, the chapter discusses the mechanism of 

electrohydrodynamic (EHD) flow and its relevance to the assembly of plasmonic NPs for the 

fabrication of SERS sensors. Oscillatory electric field frequency can affect EHD flow, which is 

an important consideration for ensuring the stability and reproducibility of SERS signals. 

Furthermore, the chapter explores the application of machine learning in analytical chemistry, a 

field that has gained popularity in recent years. The chapter outlines the basics of machine 

learning algorithms and how they can be used to analyze large and complex datasets generated 
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by analytical techniques like SERS. Overall, by offering a comprehensive overview of SERS 

mechanisms, EHD flow, and ML in analytical chemistry, Chapter 2 highlights the importance of 

interdisciplinary approaches to developing more sensitive analytical techniques. 

Chapter 3 describes a novel methodology for regulating the interaction between surface 

ligands on Au NPs assisted by EHD flow. This chapter studies the effect of frequency under an 

applied AC potential in influencing the lateral arrangement of clusters of Au NP formed as a 

result of EHD flow and time scales for assembly and disassembly. The resultant electromagnetic 

field enhancements associated with excitation of the LSPR of NP as they are assembled into 

clusters, provides a means of tracking assembly in situ using optical methods. Dissipative 

assembly is monitored using in situ fluorescence microscopy and SERS. Previous studies have 

reported that metal enhanced fluorescence is maximum when the emission spectra of the 

fluorophore is tuned to the LSPR frequency of metal nanostructures. Lateral assembly of Au NP 

can shift the LSPR from approximately 520 nm toward the emission line of Nile Red, 561 nm. 

We show that increases and decreases in fluorescence intensity are correlated with turning on 

and off external electric stimuli and thus able to report dissipative assembly of Au NP in real 

time. Furthermore, SERS spectra measured in situ during EHD assembly of Au NP 

functionalized with 4-mercaptobenzoic (4-MBA) as reporter molecules shows signal saturates as 

early as 20 s. To the best of our knowledge, this study presents the first demonstration of in situ 

monitoring of the dissipative assembly of NPs under AC-EHD flow using confocal fluorescence 

spectroscopy.  

 Chapter 4 demonstrates the SERS + deep learning approach is a promising candidate for 

use in clinical samples for rapid antimicrobial susceptibility testing (AST) and bacteria nutrient 

metabolism identification. The response of P. aeruginosa and E. coli bacterial communities to 
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antibiotics is rapidly detected in SERS spectral data when using sensor surfaces with controlled 

nanogap spacing and chemistry. Deep learning analysis of SERS data is able to differentiate the 

response of untreated cells from those exposed to antibiotics in 10 min post exposure with 

greater than 99% accuracy and temporally follow the evolution with 5 min resolution with 

greater than 99% accuracy. The bacterial response to varying antibiotic doses is differentiated 

with greater than 96% accuracy from untreated bacteria, even when treated with antibiotic 

dosages up to 10-fold lower than the minimum inhibitory concentration observed in conventional 

growth assays. We also found that the metabolism features captured by the unsupervised PCA 

model can correlate with energy nucleotides and metabolic pathways involved in nutrient uptake, 

suggesting that changes in nucleotide concentrations are consistent with the nutrient-dependent 

metabolic signatures observed. The SVM classification model achieved high accuracy on 

differentiating different nutrient metabolism profile with the false prediction rate of control 

spectra being classified as nutrient conditions was less than 0.6%. The phenomenon of carbon 

catabolite repression in bacteria refers to the preference of utilizing one nutrient source over 

another when multiple sources are available. Section 4.3 in this chapter investigated the impact 

of glucose and xylose as nutrient sources on the growth of E.coli. Using tSNE analysis, we 

observed that the control and xylose clusters were more similar since they didn’t exhibit growth, 

whereas the glucose and the mixture containing glucose and xylose clusters were more alike 

since they both consumed glucose to support growth.  

Chapter 5 describes a work that uses the sensitivity of the Escherichia coli (E. coli) stress 

response to transduce the signal of Cr6+ and As3+ ions into chemical signals that are detected with 

chemically assembled SERS surfaces. A support vector machine (SVM) model achieves higher 

than 97% classification accuracy for decoding E. coli stress response to different concentrations 
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of metal ions for concentrations as low as 68 pM for Cr6+ and 5 pM for As3+. Due to their distinct 

mechanisms of toxicity in bacteria, this sensing platform also distinguishes the metabolic 

response of As3+ and Cr6+ with high accuracy when analyzed with SVM models. In addition, 

convolutional neural networks (CNN) show sensitive and quantitative determination of 

concentrations across a dynamic range of 0.68 pM - 68 µM for Cr6+ and 5 fM - 5 mM for As3+. 

At the lowest concentrations investigated, the metabolic response is detectable when the ratio of 

metal ions to bacterium in solution is 0.6 for As3+ and 8.2 for Cr6+. Finally, by using a pretrained 

model for analysis of previously unseen tap water and wastewater samples spiked with As3+, 

SERS detection and ML analysis requires only 80 spectra per class (40 sec total acquisition time) 

to achieve greater than 96.5% accuracy for classifying concentrations above or below the WHO 

recommended limit.  
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Chapter 2 

Background 

2.1 Surface enhanced Raman scattering  

Raman scattering is a phenomenon that involves the inelastic scattering of photons when 

they interact with matter, leading to the generation of two types of scattered photons: Stokes 

scattering and Anti-Stokes scattering. In Stokes scattering, photons lose energy when molecules 

are promoted from the ground state to the excited vibrational state and subsequently relax back 

to an energy state higher than their original state. In contrast, Anti-Stokes scattering involves the 

opposite process where photons gain energy from molecular phonon modes. Consequently, 

inelastically scattered photons contain information about the vibrational modes of molecules. 

However, Raman signal is usually low due to a small scattering cross section, which is quantified 

as the area of the incident beam over which incident photons are effectively converted into 

emitted Raman photons (10-11 – 10-15 nm2).1 Surface enhanced Raman scattering (SERS) 

provides highly sensitive vibrational fingerprinting information of analytes through the 

enhancement of electromagnetic fields generated by the excitation of localized surface plasmon 

resonance.2 The chemical mechanism of SERS involves the transfer of electrons between 

adsorbed molecules and NPs in direct contact. Electrons from the Fermi level of the plasmonic 

NP transfer to the lowest unoccupied molecular orbital of the molecule, results in the formation 

of charge transfer intermediates with larger Raman cross section than that of the free molecule.3 

Section 2.2.1 discusses the electromagnetic enhancement mechanism in detail, as the 

enhancement resulting from this mechanism can be up to 104 – 106 times stronger than the 

chemical mechanism. Sections 2.1.2 and 2.1.3 focus on the influence of the gaps between NPs on 
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SERS enhancement. The nanogap spacing and the 2D arrangement of NPs are crucial factors that 

affect SERS enhancement.  

2.1.1 Electromagnetic enhancement 

The collective oscillations of conduction electrons in NP when excited optically at the 

material’s plasmon resonance frequency results in surface plasmons, which exhibit an enhanced 

local electromagnetic field surrounding the plasmonic NP. The excitation of surface plasmons 

induces a strong spatial localization and hence amplification of the laser light in small spatial 

regions, called hotspots.4 Therefore, the electromagnetic field experienced by the molecules 

residing in hotspots is much stronger than the field they would experience without the plasmonic 

NP, which is known as the local field enhancement. The presence of the plasmonic NP nearby 

the molecule can significantly enhance the Raman signal.  

 

𝐺 = 𝐺/(𝜔0)𝐺1(𝜔2) =
|"#$%(4&)|'|"#$%(4()|'

|"&(4&)|'|"&(4()|'
≈ |"#$%(4&)|)

|"&(4&)|)
                                Equation 2.14 

 

Equation 2.1 elucidate a two step enhancement process of the electromagnetic 

mechanism. 𝐺/(𝜔0) and 𝐺1(𝜔2) represents the enhancement factor of the local electromagnetic 

field occurs at the metallic-dielectric interface at the incident laser frequency 𝜔0 and the Raman 

polarizability at resonance frequency 𝜔2, respectively. For the first step, when the LSPR is 

excited  inelastic light scattering of the incident electric field 𝐸0(𝜔0) on the plasmonic NP leads 

to an increased local electric field 𝐸567(𝜔0) in the vicinity of the plasmonic NP. For the second 

step, plasmonic NPs serve as optical antennae to transfer Raman signal from the near field to the 
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far field. Raman signal from molecules in hotspots NP can be enhanced when experiencing the 

local electric field 𝐸567(𝜔2). When the wavelengths of the incident laser and Stokes scattered 

signal are close to each other, the SERS enhancement factor is approximately proportional to the 

fourth power of the enhancement of the local electric field. 

2.1.2 SERS in nanoclusters 

It is well known that the electromagnetic mechanism and resulting SERS enhancement of 

hotspots strongly depend on its size,5 making it a critical aspect of SERS-based sensing 

platforms. For instance, reducing the gap size of an Au NP dimer from 10 to 2 nm increases the 

SERS enhancement factor from 105 to 109.5 This is because the intensity of the electromagnetic 

field within the gap is inversely proportional to the distance between the NPs. Therefore, smaller 

nanogap spacing results in a stronger electromagnetic field and higher SERS enhancement. 

However, decreasing the gap size to the sub-nanometer scale introduces electron tunneling 

effects between the coupled NPs,6 limiting the ability to further increase the local 

electromagnetic field and the SERS enhancement factor.  

 

Figure 2.1 Theoretical electric field enhancement |Ecl/E0| computed in dimers (left), linear trimers 

(middle), and linear quadrumers (right) versus illumination wavelength. E0 is the plane wave 

field without clusters and Ecl is the field with clusters.7  
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Finite element method simulations of electromagnetic coupling can provide guidance for 

advanced nanostructure fabrication to tune optical properties.8–10 By using electromagnetic full-

wave simulations, the Ragan Lab investigates the effect of changing interparticle gap spacing on 

SERS enhancement. Figure 2.1 shows calculated electric field enhancement as a function of gap 

spacings between NPs ranging from 1 - 4 nm in dimers, linear trimers and linear quadrumers. 

The result shows that a slight increase in the gap size can significantly decrease the local electric 

field enhancement. When the gap size is 1 nm for the linear quadrumer , the enhancement is 

approximately 365, 130 when the gap is 2 nm, and less than 45 when the gap is 4 nm. Also there 

is a resonance blue shift for increasing gap size for all three cases. Calculation of the local 

electric field enhancement can estimate the theoretical SERS enhancement by computing as the 

fourth power of the field enhancement, which would range from about 1010 for the linear 

quadrumer case with 1 nm gap to about 3 x 108 when the gap is 2 nm and less than 4 x 106 when 

the gap is 4 nm.  

2.1.3 SERS geometry dependence 

 The SERS activity observed in metal NP clusters is often modeled as a dipole-dipole 

interaction between two neighboring NPs.5 Clusters with more NPs in variant arrangements 

should also be considered to investigate the interaction of the LSPR between NPs. Understanding 

how SERS geometry governing field enhancement of electromagnetic fields confined in hotspots 

is a topic of great significance to designing SERS sensing platforms.11 The Ragan Lab correlated 

UV-vis spectroscopy data from optical response of a surface with a variety of geometries (blue 

dotted line), and overlaid absorption spectra simulated with the full-wave finite element to exam 

how different geometries contribute to the measured attenuation spectrum. Four distinct peaks 

are observed. Simulations identify these peaks to be associated with monomers at 536 nm, 
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dimers at 686 nm (black dotted line), trimers at 740 nm (orange dotted line) and quadrumers at 

782 nm (green dotted line) with 0.9 nm gap spacing. These results indicate that the optical 

response is dominated by clusters with 0.9 nm gap spacing. Consider that the absorption 

maximum of a 2 nm gap dimer geometry, calculated in simulations and plotted with a dashed 

line in Figure 2.2, the dimer adsorption peak is shifted by approximately 50 nm for the 0.9 nm 

dimer case. From this analysis, it is clear that the influence of gap spacing is greater than the 

cluster size when one considers both lead to spectra shifts but the SERS signal may vary by 

orders of magnitude when the gap spacing changes on the order of a nanometer.12  

 

Figure 2.2 Normalized attenuation spectra. The spectrum is overlaid with the calculated 

absorption cross section of observed oligomers with various geometries with a color-coded 

schematic.12 

2.2 Electrohydrodynamic flow 

Electrohydrodynamic (EHD) flow is the motion of electrically charged fluids resulting 

from the application of electric fields.13 One of the applications of EHD is the generation of flow 

around charged NPs near an electrode. The earliest modern report of electrically induced 2D 

crystallization of colloidal particles dates back to 1984, when Richetti et al. applied an 

oscillatory electric field between two parallel-plate electrodes and observed the formation of 
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hexagonal arrays of micro-sized particles on the electrode surface.14 When the electric field was 

removed, the arrays disassembled due to Brownian motion. In 1997,  Trau et al. attributed the 

ordered monolayer particle assembly to the electrodynamic (EHD) flow and proposed an EHD 

mechanism in which the distortions of the electric field alter the body force distribution in the 

electrode’s charge polarization layer.15 The action of the applied field on this charge produces 

flow, and the flow scales with the square of the field strength since the induced charge and the 

electrical body force are each proportional to the applied voltage.16 This section focuses on 

studying EHD flow under oscillatory electric field. 

2.2.1 Origin of EHD flow 

AC-induced charge electroosmosis is a phenomenon that occurs when an oscillatory 

electric field is applied to a charged surface, causing fluid flow to be generated. This flow arises 

from the movement of charged ions in response to the electric field. 

 

Figure 2.3 Schematic depicting a spherical particle near an electrode (left).16 (a) represents the 

plan view depicting flow towards the test particle. (b) An elevation view showing a particle 



 

21 
 

located at 𝑋! outside the polarization layer, and 𝑋8 is a location in the polarization layer near the 

electrode. Streamline representing EHD flow fields (right).17 

The equations that govern AC-induced charge electroosmosis are the Navier-Stokes 

equations for fluid motion (Equation 2.2)18 and the Poisson equation for electric potential 

(Equation 2.3).19 The Navier-Stokes equations describe the conservation of momentum for a 

fluid. 𝜌 9:;⃗
9=

 is the force on each fluid particle. −∇𝑝 represents the volumetric stress tensor, which 

prevents motion due to normal stresses; ∇ ∙ 𝑇 known as the stress deviator tensor, causing motion 

due to horizontal friction and shear stresses; 𝑓 is the force term acting on every single fluid 

particle. The Poisson equation describes the relationship between the electric potential and the 

charge distribution in the system, where 𝜌 is the electric charge, Φ is electric potential and 𝜖0 is 

permittivity.  

𝜌 9:;⃗
9=
= −∇𝑝 + ∇ ∙ 𝑇 + 𝑓                   Equation 2.2 

∇1Φ = −𝜌/𝜖0                                   Equation 2.3 

In addition to these fundamental equations governing fluid motion, there exist additional 

equations that are essential in characterizing the electrical properties of charged surfaces, 

including the surface charge density and surface conductivity. These equations are typically 

derived from models of the electrical double layer, which forms at the interface between the 

charged surface and the fluid. The specific equations used to describe AC-induced charge 

electroosmosis are dependent on the specific system being investigated, taking into consideration 

factors such as the geometry of the charged surface and the properties of the fluid. Nevertheless, 
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these equations are useful for predicting the behavior of the system and optimizing experimental 

parameters to achieve desired fluid flow patterns in Figure 2.3.  

2.2.2 EHD flow frequency dependence 

EHD flow can exist only at specific frequency range, which refers to the characteristic 

frequency of the EHD flow. At frequencies higher than the characteristic frequency, ions in the 

electrolyte do not have time to respond fast enough to establish the induced electronic double 

layer. In this way, the EHD flow cannot be generated.20 At frequencies lower than the 

characteristic frequency, the induced electronic double layer screens the powered electrode and 

with it also the ability of the electric field to penetrate the microfluidic chamber, the ions in the 

suspension have enough time to form the electrical double layer. In this situation, the applied 

electric field drops almost entirely across the electrical double layer, resulting in a near-zero 

electric field in the suspension and again ceasing EHD flow.20 

2.3 Machine learning 

2.3.1 The development of machine learning 

 Machine learning (ML) has undergone significant advancements in the past two decades, 

evolving into a practical technology with extensive commercial applications.21 ML can be 

categorized into three types, namely supervised learning, unsupervised learning, and 

reinforcement learning. In supervised learning, the training data comprises a set of (x,y) pairs, 

and the objective is to generate a prediction y’ for a given query x’ through a learned mapping 

f(x). The input data x can take diverse forms, such as images, protein sequences,  DNA 

sequences, protein 3D structure, molecular structure, mass spectrometry, and Raman 

spectrometry.22 The output generated can either be a single value y for each input x or a 
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probability distribution over y given x. The mapping function f  can take various forms, such as 

decision trees, logistic regression, support vector machines, and neural networks.   

In recent years, supervised learning has witnessed a significant advancement in the field 

of deep learning, which utilizes multilayer networks of threshold units, with each unit computing 

a parameterized activation function of its inputs. These networks are commonly referred to as 

deep networks. To adjust the parameters of the network based on errors at the output, gradient-

based optimization algorithms are employed. The internal layers of deep networks can be seen as 

providing learned representations of the input data, which facilitates the extraction of features 

that are essential in solving complex problems.  

 Unsupervised learning is a type of machine learning that does not require labeled training 

data. Dimension reduction methods, such as principal component analysis, factor analysis, and 

autoencoders, have been developed to reduce the dimensionality of the input data. Clustering is 

another unsupervised learning technique that involves finding a partition of the observed data 

and predicting future data, without explicit labels indicating a desired partition.  

 Unlike supervised learning, where training examples indicate the correct output for a 

given input, or unsupervised learning, where labeled data is not available, reinforcement learning 

relies on training data that only provides an indication of whether an action is correct or not. In 

reinforcement learning, an agent learns to interact with its environment by taking actions and 

receiving rewards or penalties based on its performance. Through trial-and-error, the agent seeks 

to maximize its cumulative rewards by learning a policy that maps states to actions.  

2.3.2 Machine learning in SERS 
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SERS is a powerful analytical technique for identifying and characterizing materials 

based on their molecular vibrations. However, the interpretation of SERS spectra can be 

challenging, especially for chemically similar compounds that exhibit subtle spectral differences 

and mixtures with complex backgrounds.23 The integration of machine learning algorithms with 

SERS can overcome this challenge and improve the accuracy of chemical identification and trace 

chemical detection.  

Material identification is one of the most common applications of SERS spectroscopy. 

For example, machine learning algorithms can be utilized to classify Raman spectra of bacteria 

strains24 and different types of cancer cells.25 Besides material identification, Raman 

spectroscopy is also suitable for quantitative analysis such as the characterization of 

metabolisms.26,27 In addition, the application of machine learning to SERS spectra of complex 

organic molecules has assisted researchers to gain a better understanding of their structural 

characteristics and potential reactivity.28 Machine learning algorithms can predict the 

optoelectronic properties of plasmonic nanostructures, with the aim of guiding the design and 

modeling of the next generation of catalysts, sensors, and photothermal devices.29  
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Chapter 3 

Nanoantennas as Reporters of Dissipative Assembly in Oscillatory 

Electric Fields 

3.1 Introduction  

Self-assembly of optically active materials from nanoparticle building blocks in colloidal 

solution relies on the ability of directed interactions. For example, dynamic assembly of 

plasmonic nanoparticles (NP) with resonances at optical frequencies has been used to change 

absorbance and reflectance on surfaces using electrostatic forces.1,2 Electrotunable systems using 

functionalized Au NP have used small voltage pulses to tune between window and mirror states.3 

Optical forces on colloidal solutions of Ag NP in combination of electrostatic interactions have 

initiated dissipative assembly of chains of NP along the polarization axis of an optical beam.4 

Rich 2D phase behavior with varying electric field strength is observed when NP are confined 

between electrodes separated by distances a few orders of magnitude larger than the 

nanoparticle’s diameter.5 Thus understanding electric stimuli as a driving forces for dissipative 

assembly of NP with resonances at optical frequencies can produce reconfigurable metasurfaces.  

Electrohydrodynamic (EHD) flow resulting from an applied AC potential, also called 

AC-induced charge electroosmosis, is an electrokinetic phenomenon that can drive lateral 

assembly of nanoparticles in response to a perturbation that produces an electric field gradient on 

an electrode-liquid interface.6–10 EHD flow is a dissipative driving force;8,11,12 assemblies may 

disassemble if the electrical stimuli is not maintained. Dissipative assembly of micron scale 

particles using EHD flow has been studied extensively but electrical stimuli for dissipative 

assembly of NP remains relatively unexplored.5,8,10,13,14 As colloidal NP are typically stabilized 
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via electrostatic repulsion, chemical crosslinking in solution will normally lead to aggregation. 

EHD flow is confined to the working electrode surface and thus mitigates uncontrolled 

aggregation in bulk solution. Though assemblies are transient in principle, NPs may be 

kinetically trapped on surfaces due to electrostatic interactions, making it difficult to 

experimentally observe and thereby monitor time scales of disassembly of NP at electrode-liquid 

interfaces. 

Here we investigate the effect of frequency under an applied AC potential in influencing 

the lateral arrangement of clusters of Au NP formed as a result of EHD flow and time scales for 

assembly and disassembly. The resultant electromagnetic field enhancements, associated with 

excitation of the local surface plasmon resonance (LSPR) of NP as they are assembled into 

clusters, provides a means of tracking assembly in situ using optical methods. Dissipative 

assembly is monitored using in situ fluorescence microscopy and surface enhanced Raman 

scattering (SERS). Previous studies have reported that metal enhanced fluorescence is maximum 

when the emission spectra of the fluorophore is tuned to the LSPR frequency of metal 

nanostructures.15 Lateral assembly of Au NP will shift the LSPR from approximately 520 nm 

toward the emission line of Nile red, 561 nm. We show that increases and decreases in 

fluorescence intensity are correlated with turning on and off external electric stimuli and thus 

able to report dissipative assembly of Au NP in real time. Furthermore, SERS spectra measured 

in situ during EHD assembly of Au NP functionalized with 4-mercaptobenzoic acid (4-MBA) as 

reporter molecules shows signal saturates as early as 20 s.   

3.2 Materials and Methods 

3.2.1 Electrode Materials 
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The working electrode is composed of P-type, boron doped, (100) silicon wafers 

(University Wafer, USA) with resistivity of 0.001-0.005 ohm-cm. Silicon wafers are cleaned for 

5 min by 20% v/v hydrofluoric acid (HF, Fisher Scientific, USA) in deionized (DI) water with 

resistivity of 18.2 MΩ cm-1, obtained from a Milli-Q Millipore System and then immersed in DI 

water to regrow a thin silicon dioxide layer. The potential of HF to cause severe injury mandates 

extreme caution during usage.  After cleaning, silicon wafers are spin coated with 1 wt% random 

copolymer Poly(styrene-co-methyl methacrylate)-α-Hydroxyl-ω-Tempo moiety (PS-r-PMMA) 

(Mn =7400, Mw =11800, Mw /Mn =1.60, Polystyrene content: 59.6 mol%, Polymer Source, 

Inc., Canada)  in toluene (Fisher Scientific, USA) at 3000 rpm for 45 s, annealed under vacuum 

at 170 °C for 48 hr, and then rinsed with toluene to leave a brush layer. Diblock copolymer 

poly(styrene-b-methyl methacrylate) (PS-b-PMMA) (Mn S-b-MMA 170000-b-145000 g mol-1) 

(Polymer Source, Inc., Canada) is spin coated at 5000 rpm for 45 s and then annealed for 72 hr at 

170 °C.  

In the case of fluorescence imaging, Si wafers are first immersed in 3:1 H2SO4 : H2O2 

(piranha solution) at room temperature for 30 s in order to hydroxylate the surface, and 

functionalized with amine group by soaking in a solution of 2% 3-(aminopropyl)triethoxysilane 

(APTES) in toluene and baked on a hotplate at 110 °C for 30 min. The potential of piranha 

solution to cause severe injury mandates extreme caution during usage. ITO coated glass slides, 

with sheet resistance of 70-100 ohm cm-1  (Delta Technologies, USA), are used as the counter 

electrode. ITO slides are cleaned by rinsing with ethanol, isopropyl alcohol (IPA), and DI water 

and then dried by N2 .  Indium wire (Chip Quik, Canada) is used for electrical contact by 

soldering to surfaces. APTES, DMSO, ethanol, and IPA were purchased from Sigma Aldrich 

(USA).  
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3.2.2 Experimental Setup 

 

 

Figure 3.1 Schematic of microfluidic cell with oscillatory electric field between a silicon 

substrate (top) and ITO coated glass slide (bottom) for driving assembly of Au NP. The 

transparent ITO allows for in situ fluorescence imaging and SERS measurements.   

 

A schematic of the experimental setup for in situ monitoring of Au NP EHD driven 

assembly is shown in Figure 1a. A Si substrate, serving as a working electrode, and an indium tin 

oxide (ITO) coated glass slide, serving as a counter electrode, are assembled in a capacitor 

architecture using a 90 µm spacer layer (9816L, 3M, USA). Before assembly, PMMA domains 

on PS-b-PMMA/Si are immersed in dimethyl sulfoxide (DMSO) for 5 min and then 5 vol % 

ethylenediamine in DMSO for 5 min in order to functionalize the PMMA regions with amine 

groups for coupling to Au NP. In the microfluidic cell, 20 µL of the following freshly prepared 

solution is used:  equal parts of 20 mM N-hydroxysulfosuccinimide (s-NHS), and 8 mM 1-Ethyl-

3-(3-dimethyl aminopropyl) carbodiimide (EDC) in a 0.1 M  2-[N-morpholino]ethanesulfonic 

acid (MES) buffer, 4 µL in total, is added to 0.25 mL of 2.6 nM lipoic acid functionalized Au NP 
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solution (Nanocomposix, USA). EDC, ethylenediamine, and s-NHS, MES buffer were purchased 

from Sigma Aldrich (USA).  

After assembling the cell, EHD assembly is conducted using an oscillatory electric field 

as the assembly stimuli. A potential with an amplitude of 5 V is applied across electrodes for 2 

min and the frequency is varied as follows: 100 Hz, 500 Hz, 1000 Hz and 1500 Hz.  In the case 

of two-step deposition, an AC potential with amplitude of 5 V and frequency of 100 Hz is 

applied for 2 min. This is followed by a second deposition step that is conducted with the same 

AC potential and the frequency is varied between 500 and 1500 Hz.  After deposition, the 

microfluidic cell is dismantled and the silicon surface is thoroughly rinsed with DI water and 

IPA and then dried with N2 for further characterization. The samples were rinsed with water and 

IPA to mitigate clusters from forming due to capillary forces on the surface upon drying.  

3.2.3 Characterization 

SEM is performed on a Magellan 400 XHR SEM (FEI, USA) to examine the morphology 

of Au NP after EHD assembly. The SEM images have a surface area of approximately 30 µm2 

and a minimum of  5 images are acquired for each frequency condition used during deposition. 

In order to determine how frequency affects the number of Au NP in each cluster, Wolfram 

Mathematica(™) is utilized for image analysis to determine the number of clusters of a particular 

size on the surface, N.  The distance differentiating clusters is defined as 100 nm. The surface 

coverage as a function of cluster size is determined by calculating the surface area covered of a 

particular cluster size, where n is the number of NP in the cluster, as a percentage of the total 

surface area (A) of the SEM images, N ✕ nπr2/A.  
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For confocal fluorescence microscopy, Si was functionalized with APTES and Au NP 

functionalized with lipoic acid ligands were deposited on the surface with AC potential 

amplitude of 5 V and frequency of 100 Hz for 2 min with EDC and s-NHS, the same conditions 

as on the PS-b-PMMA surface.  The Si electrode and Au NP seeds were coated with amorphous 

carbon with a thickness of 5 nm using a EM ACE 600 high vacuum sputter coater (Leica 

Microsystems, Germany). Then the Si and ITO electrodes were assembled into microfluidic cells 

in a capacitor architecture using a 20 µm spacer layer (3M 9816L). The confocal fluorescence 

microscopy is performed using a Zeiss LSM 780 confocal microscope (Zeiss, Germany) with LD 

C-Apochromat 63x/1.15 W Korr M27 lens, which has a free working distance of 600 µm. Nile 

red was used as the fluorophore.  In the microfluidic channel, the solution was composed of 8 µL 

of an aqueous solution of 0.5 mM Nile red and 150 µL of 1.3 nM Au NP. An applied AC 

potential with amplitude of 5 V and a frequency of 500 Hz was held on for 20 s and off for 20 s 

for 12 cycles in total, while exciting the sample with a 561 nm laser throughout.  

In situ SERS spectral imaging was performed by a i-Raman Plus Portable Raman 

Spectrometer (BWTEK, USA). The cell was mounted with the ITO electrode on the bottom and 

the Si electrode on top, allowing for in situ SERS monitoring in an inverted geometry. 

3.3 Results and Discussion 

3.3.1 EHD flow frequency dependence on cluster size 

An oscillatory electric field is applied across the Si and ITO electrodes with Au NP in 

solution, having resistance of 8-9 MΩ, in the channel between electrodes.  The interaction of NP 

with the electrodes with an applied AC potential can include electrophoretic deposition, EHD 

flow  leading to lateral assembly, and assembly on defects.16 The Si working electrode is coated 

with a PS-b-PMMA diblock copolymer thin film.  Au NP are functionalized with lipoic acid for 
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carbodiimide crosslinking to amine terminated PMMA regions in order to lock-in assemblies for 

SEM imaging after the cell is disassembled. 

In order to investigate how the frequency of the oscillatory field affects the assembly of 

NP, scanning electron microscopy (SEM) images were acquired on the Si working electrode 

after deposition with an AC potential having an amplitude of 5 V and with the frequency varied 

between 100 and 1500 Hz.  Figure 3.2 a-d shows representative SEM images when the 

deposition is performed at this potential with frequencies of 100 Hz, 500 Hz, 1000 Hz and 1500 

Hz, respectively. Examination of the images shows that the cluster size increases as the 

frequency of the AC potential increases. In order to obtain statistics on how cluster size varies 

with frequency, analysis of the surface coverage for different cluster sizes was performed over at 

least five SEM images, each with an area of 30µm2. The corresponding statistical analysis of 

observed cluster sizes is performed by first identifying the number of clusters with a specific 

number (n) of NP via image analysis by Wolfram Mathematica(™) and dividing the area 

covered by a particular cluster size with the total surface area. The percent area is shown in 

Figure 3.2 e., 3.2 f., 3.2 g. and 3.2 h., for deposition at frequency of 100 Hz, 500 Hz, 1000 Hz, 

and 1500 Hz, respectively.  

From this analysis, deposition at a frequency of 100 Hz leads to primarily isolated NP as 

observed in Figure 3.2 e. This is consistent with prior observations showing that electrophoresis 

is the main driving force for assembly at low frequencies.17 When deposition is performed at 500 

Hz, there is a preference for clusters with three NP (Figure 3.2 f); at this frequency EHD flow 

forces influence assembly more than electrophoresis.  As the deposition frequency increases to 

1000 Hz and 1500 Hz, shown in Figure 3.2 g and 3.2 h, respectively, one can observe that larger 
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clusters, size greater than 10, begin to form at appreciable levels and there is no preference for a 

particular size when deposition occurs at 1500 Hz.    

 

 
 
Figure 3.2 Representative SEM images of surfaces with a field of view of 2 µm x 2 µm after 

EHD assembly for 2 min with an AC potential having an amplitude of 5 V at frequency of  a. 

100 Hz, b. 500 Hz, c. 1000 Hz, and d. 1500 Hz. The occurrence of a particular cluster size is 

represented as a percent in terms of the fractional area covered with respect to the total surface 

area.  

A 2-step deposition process was performed to investigate the ability to seed EHD flow by 

placing Au NP on the surface to serve as perturbations of the electrode potential.  Based on the 

above analysis of Figure 3.3, a frequency of 100 Hz and potential amplitude of 5 V leads to 

primarily isolated NP.  Thus these conditions were used for deposition for 2 min on a Si working 

electrode with a diblock copolymer thin film that has PMMA lamellar domains with approximate 

width of 80 nm and ITO as the counter electrode.  The presence of the PS-b-PMMA diblock 

copolymer template aids in dispersing Au seeds on the surface as NP selectively attach to 

PMMA and not PS using EDC crosslinking chemistry.18 After the first deposition, the 

microfluidic cell is dismantled and a freshly prepared solution of Au NP with EDC and s-NHS in 

MES buffer is added and the cell is reassembled.  Then the potential of 5 V is applied with 
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variable frequency.  Representative SEM images are shown in Figure 3.3 a, 3.3 b, and 3.3 c with 

frequency of 500 Hz, 1000 Hz, and 1500 Hz in the second step. The 2-step deposition process 

leads to increased surface coverage of NP in all cases.  The seeded assembly also appears to 

nucleate the growth of more clusters and there is a higher number of clusters on the surface of 

smaller size.  Even at frequencies of 1000 Hz and 1500 Hz few clusters are observed of size 

greater than 10.   

 

 
Figure 3.3 Representative SEM images of surfaces with a field of view of 2 µm x 2 µm after 

EHD assembly for 2 min with an AC potential having amplitude of 5 V and frequency of 100 
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Hz, followed by a second deposition for 2 min at a. 500 Hz, b. 1000 Hz, and c. 1500 Hz with 

corresponding statistical analysis of occurrence of cluster size shown in d., e., f., respectively. 

 

Figure 3.4 Oligomer to monomer ratio for a. single-step deposition and b. two step deposition.  

The teal closed circles represent deposition at 100 Hz, open blue squares represent deposition at 

500 Hz, inverted triangles represent deposition at 1000 Hz, and triangles represent deposition at 

1500 Hz.  The AC potential amplitude was 5 V in all cases.   

 

Figure 3.4 summarizes how the AC frequency affects oligomerization, i.e., the formation 

of NP clusters during single-step (Figure 3.2) and two-step deposition (Figure 3.3).  In order to 

do so, the number of isolated NP observed on the Si working electrode after deposition is 

normalized to 1 and the occurrence of larger clusters, in terms of oligomer to monomer ratio,  is 

plotted as a function of cluster size and frequency. Oligomer to monomer ratio for 100 Hz is 

represented by solid cyan circles, hollow blue squares represent 500 Hz, solid pink inverted 

triangle represents 1000 Hz and solid purple triangle represent 1500 Hz. Dashed lines are 

polynomial fits provided as a guide for the eye. Figure 3.4 a clearly conveys that at 100 Hz 

produces primarily monomers and at higher frequencies, EHD flow is the primary mechanism 

for deposition. Oligomerization shows different trends after the two-step deposition process.  In 

Figure 3.4 b, deposition at 500 Hz has a higher degree of oligomerization than the single-stop 
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process due to the presence of the Au seeds on the surface tipping the balance toward deposition 

by EHD flow over electrophoresis. That is this observation is consistent that the Au NP are the 

source of the electrode perturbation driving EHD flow on these surfaces. Deposition at 1000 and 

1500 Hz appears less influenced by the presence of Au seeds, thus we interpret that EHD flow  is 

already a stronger driving force than electrophoresis at these frequencies.  It appears Au seeds 

are deposited simultaneous with cluster growth.  This would also explain the lack of preference 

for a particular cluster size when performing the two-step deposition process.  

3.3.2 In situ optical imaging 

Before fluorescence imaging, Au seeds are deposited on Si substrates using the same 

conditions of Figure 2a, VAC = 5 V and f = 100 Hz, to generate EHD flow.  Si was coated with 

APTES to adhere NP to the surface via electrostatic interactions. (The diblock copolymer is not 

used in this case due to a high fluorescence signal.)  A thin carbon layer is then sputter coated on 

the Si electrode to mitigate further electrostatic interactions between the NP in solution and the 

surface. The microfluidic channel is filled with an aqueous solution of Au NP, 1.3 nM, and Nile 

red, 25 µM. EHD flow is introduced by applying an AC potential with an amplitude of 5 V and 

frequency of 500 Hz between the working and counter electrode. In order to measure the 

temporal response of dissipative assembly of Au NP in response to EHD flow, surfaces are 

imaged with confocal fluorescence spectroscopy in situ.  The laser beam, with a wavelength of 

561 nm, is focused with an objective through the ITO slide onto the Si electrode surface.  Nile 

red has an absorption maximum at 552 nm and emission maximum at 633 nm. The emission 

wavelength is near the localized surface plasmon resonance (LSPR) of a Au NP dimer with inter-

particle distance of approximately 2 nm in aqueous solution as measured previously for this 

system.7,19 In the experimental setup we expect the inter-particle spacing will be larger as the 
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carbon layer is approximately 5 nm in thickness.  This will redshift the LSPR such that larger 

clusters will be resonant with Nile red emission.  Thus when Nile red fluorophores are in the 

vicinity of Au NP clusters, the fluorescence emission has been reported to be enhanced by more 

than an order of magnitude.15 The observed enhancements to the fluorescence signal when the 

AC field is on are consistent with dye molecules in NP gaps of distance of approximately 5-10 

nm.20   

        

Figure 3.5 Fluorescence intensity variation of Nile red in Au NP solution when the oscillatory 

electric field is cycled on for 20 s and off for 20 s.  The laser is on for the duration of the 

experiment. The inset above is a schematic illustrating assembly and disassembly in response to 

the external stimuli. 
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Figure 3.6 SERS in situ imaging of EHD driven deposition of 4-MBA functionalized Au NP on 

surfaces with lipoic acid functionalized Au seeds on a PS-b-PMMA coated Si electrode.  

           In addition to fluorescence imaging, SERS imaging is performed in situ to monitor the 

dissipative assembly of Au NPs in response to EHD flow. Au seeds functionalized with lipoic 

acid are assembled on a diblock copolymer Si electrode similarly as those for fluorescence 

imaging, except a diblock copolymer thin film is used instead of APTES for chemically 

crosslinking Au seeds on the surface as SERS is less sensitive to a fluorescence background.  A 

liquid cell was formed by sandwiching a 1.3 nM solution of Au NP functionalized with 4-

mercaptobenzoic acid (4MBA), a Raman reporter molecule, between the seeded Si electrode and 

an ITO-coated glass slide. EHD flow was introduced by applying an AC bias with an amplitude 

of 5 V at 500 Hz to grow NP clusters between the seeds and the 4MBA-AuNP. A laser beam 

with a wavelength of 785 nm is focused on the Si electrode and the SERS signal of 4MBA at 

1080 cm-1 and 1590 cm-1 is used to measure the assembly dynamics in real time.  



 

40 
 

3.4 Conclusion 

In conclusion, we provide direct evidence for the role of the EHD flow in the dissipative 

self-assembly process of 40 nm Au NPs. Owing to unique LSPR properties of metal NPs, 

profound organic dye molecules and Au NPs interactions result in significant modulation in 

fluorescence intensity of dye molecules, aggregated metal NPs can give rise to a giant local 

electric field at the gap region and thus expected to display much larger fluorescence 

enhancement compared to isolated Au NPs. We demonstrate the direct visualization and real-

time monitoring of dissipative self-assembly by using NPs as building blocks. Fluorescence 

represents a refined approach to monitor the dissipative kinetics with high sensitivity and 

reliability. It offers excellent contrast ratio and is attractive for developing platforms for highly 

sensitive sensing and imaging applications. This simple method can be easily extend for 

detection of many other analytes which can induce the aggregation of metal NPs through various 

assembly methods. Further surface modification of metal NPs with proper recognition moiety 

and with targeting groups is critical for selective interactions and effect assembly based on 

aggregation of metal NP’s strong plasmon coupling interactions and large fluorescence 

enhancement.  

3.5 Supplemental Information 
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Figure 3.7 SEM image of the substrate for confocal measurement of plasmonic nanoparticle 

dissipative assembly.  

 
 

 
 
Figure 3.8 Reversible fluorescence intensity of Nile red at 561 nm for Au NP dissipative self-

assembly. The dye molecules settle on the carbon surface and exhibit higher fluorescence 

intensity before the application of the electric field. The initial 3 cycles facilitate the purging of 

the dye molecules back into the solution. The fluorescence signal of Nile red is plotted against 

time, with the first 10 s capturing the initial fluorescence intensity using the 561 nm laser only. 

Subsequently, the laser was turned on continuously, and an oscillatory electric field was applied 

for 20 s to monitor the assembly of gold nanoparticles, followed by 20 s with the electric field 

turned off to monitor their disassembly, constituting one cycle. The experiment consisted of 12 

cycles. 
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Table 3.1 Coverage, clusters/monomer ratio for single step deposition 
 

Cluster distribution 5 V 100 Hz 5 V 500 Hz 5 V 1000 Hz 5 V 1500 Hz 

NP coverage (#/µm2) 28 37 31 27 

Percentage coverage 3.52% 4.68% 5.82% 4.93% 

2/1 ratio 
(cluster) 

0.47 
(0.24) 

1.25 
(0.62) 

0.86 
(0.43) 

0.89 
(0.44) 

3/1 ratio  0.30 
(0.10) 

1.43 
(0.48) 

0.86 
(0.29) 

1.07 
(0.36) 

4/1 ratio  0.12 
(0.03) 

1.01 
(0.25) 

0.70 
(0.17) 

1.15 
(0.29) 

5/1 ratio 0.08 
(0.02) 

1.09 
(0.22) 

0.69 
(0.14) 

1.02 
(0.20) 

6/1 ratio 0.06 
(0.01) 

0.96 
(0.16) 

0.61 
(0.10) 

0.93 
(0.15) 

7/1 ratio 0.02 
(0.00) 

0.56 
(0.08) 

0.48 
(0.07) 

0.69 
(0.10) 

8/1 ratio 0.02 
(0.00) 

0.55 
(0.07) 

0.49 
(0.06) 

0.51 
(0.06) 

9/1 ratio 0.00 
(0.00) 

0.35 
(0.04) 

0.34 
(0.04) 

0.47 
(0.05) 

10/1 ratio 0.02 
(0.00) 

0.28 
(0.03) 

0.30 
(0.03) 

0.39 
(0.04) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

43 
 

Table 3.2 Coverage, clusters/monomer ratio two step deposition 
Cluster distribution 5 V 100 Hz 5 V 100 Hz + 

5 V 500 Hz 
5 V 100 Hz + 
5 V 1000 Hz 

5 V 100 Hz + 
5 V 1000 Hz 

NP coverage (#/µm2) 18 36 46 39 

Percentage coverage 2.27% 4.57% 5.82% 4.93% 

2/1 ratio(cluster) 0.63 
(0.32) 

1.45 
(0.73) 

0.86 
(0.43) 

0.89 
(0.44) 

3/1 ratio  0.3789 
(0.1263) 

2.04 
(0.68) 

0.86 
(0.29) 

1.07 
(0.36) 

4/1 ratio  0.18 
(0.0455) 

2.17 
(0.54) 

0.70 
(0.17) 

1.15 
(0.29) 

5/1 ratio 0.08 
(0.02) 

2.06 
(0.41) 

0.69 
(0.14) 

1.02 
(0.20) 

6/1 ratio 0.04 
(0.01) 

1.82 
(0.30) 

0.61 
(0.10) 

0.93 
(0.15) 

7/1 ratio 0.04 
(0.01) 

1.49 
(0.21) 

0.48 
(0.07) 

0.69 
(0.10) 

8/1 ratio 0.01 
(0.00) 

1.29 
(0.16) 

0.49 
(0.06) 

0.51 
(0.06) 

9/1 ratio 0.00 
(0.00) 

1.05 
(0.12) 

0.34 
(0.04) 

0.47 
(0.05) 

10/1 ratio 0.00 
(0.00) 

0.75 
(0.0751) 

0.30 
(0.03) 

0.39 
(0.04) 
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Figure 3.9 Representative SEM images and statistical analysis for structures assembled via a 

two-step deposition process. The first step is performed with a bias of 5 V and frequency of 100 

Hz to have isolated NPs on the surface prior to second step depositions. The second step 

depositions are investigated at 5 V with different frequencies: a. 500 Hz, b. 1000 Hz, c. 1500 Hz 

and their corresponding statistical analysis are shown in d., e., f., respectively. The deposition 

time for the second step is 4 mins.  
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Figure 3.10 Cluster size ratio analysis plot. The x axis in ratio indicates the number of NPs inside 

a cluster, and y axis represents the ratio between different numbers of NPs inside a cluster to 

isolated NPs. 
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Table 3.3 Coverage, clusters/monomer ratio for two step deposition (4 mins deposition time for 
the second step) 
 
Cluster distribution 5 Vp 100 Hz + 

5 Vp 500 Hz 
5 Vp 100 Hz + 
5 Vp 1000 Hz 

5 Vp 100 Hz + 
5 Vp 1500 Hz 

NP coverage (#/µm2) 81 48 89 

Percentage coverage 10.24% 6.00% 11.17% 

2/1 ratio(cluster) 1.02 
(0.51) 

0.91 
(0.45) 

0.73 
(0.37) 

3/1 ratio  1.48 
(0.49) 

1.07 
(0.36) 

1.01 
(0.34) 

4/1 ratio  1.89 
(0.47) 

1.18 
(0.29) 

1.04 
(0.26) 

5/1 ratio 1.93 
(0.39) 

1.12 
(0.22) 

1.22 
(0.24) 

6/1 ratio 1.87 
(0.31) 

1.07 
(0.18) 

1.02 
(0.17) 

7/1 ratio 1.68 
(0.24) 

1.04 
(0.15) 

1.06 
(0.15) 

8/1 ratio 1.66 
(0.21) 

1.03 
(0.13) 

0.82 
(0.10) 

9/1 ratio 1.62 
(0.18) 

1.00 
(0.11) 

0.95 
(0.11) 

10/1 ratio 1.48 
(0.15) 

0.94 
(0.09) 

0.84 
(0.08) 

 
 
 
 
 
 
 
 
 
 



 

47 
 

References 
 
(1) Ma, Y.; Zagar, C.; Klemme, D. J.; Sikdar, D.; Velleman, L.; Montelongo, Y.; 

Oh, S.-H.; Kucernak, A. R.; Edel, J. B.; Kornyshev, A. A. A Tunable 
Nanoplasmonic Mirror at an Electrochemical Interface. ACS Photonics 2018, 
5 (11), 4604–4616. https://doi.org/10.1021/acsphotonics.8b01105. 

(2) Ma, Y.; Sikdar, D.; Fedosyuk, A.; Velleman, L.; Klemme, D. J.; Oh, S.-H.; 
Kucernak, A. R. J.; Kornyshev, A. A.; Edel, J. B. Electrotunable 
Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. ACS 
Nano 2020, 14 (1), 328–336. https://doi.org/10.1021/acsnano.9b05257. 

(3) Montelongo, Y.; Sikdar, D.; Ma, Y.; McIntosh, A. J. S.; Velleman, L.; 
Kucernak, A. R.; Edel, J. B.; Kornyshev, A. A. Electrotunable Nanoplasmonic 
Liquid Mirror. Nat. Mater. 2017, 16 (11), 1127–1135. 
https://doi.org/10.1038/nmat4969. 

(4) Nan, F.; Han, F.; Scherer, N. F.; Yan, Z. Dissipative Self-Assembly of 
Anisotropic Nanoparticle Chains with Combined Electrodynamic and 
Electrostatic Interactions. Adv. Mater. 2018, 30 (45), 1803238. 
https://doi.org/10.1002/adma.201803238. 

(5) Maestas, J. R.; Ma, F.; Wu, N.; Wu, D. T. Electric-Field-Driven Assembly of 
Dipolar Spheres Asymmetrically Confined between Two Electrodes. ACS 
Nano 2021, 15 (2), 2399–2412. https://doi.org/10.1021/acsnano.0c04939. 

(6) Adams, S. M.; Campione, S.; Capolino, F.; Ragan, R. Directing Cluster 
Formation of Au Nanoparticles from Colloidal Solution. Langmuir 2013, 29 
(13), 4242–4251. https://doi.org/10.1021/la3051719. 

(7) Thrift, W. J.; Nguyen, C. Q.; Darvishzadeh-Varcheie, M.; Zare, S.; Sharac, N.; 
Sanderson, R. N.; Dupper, T. J.; Hochbaum, A. I.; Capolino, F.; Abdolhosseini 
Qomi, M. J.; Ragan, R. Driving Chemical Reactions in Plasmonic Nanogaps 
with Electrohydrodynamic Flow. ACS Nano 2017, 11 (11), 11317–11329. 
https://doi.org/10.1021/acsnano.7b05815. 

(8) Trau, M.; Saville, D. A.; Aksay, I. A. Assembly of Colloidal Crystals at 
Electrode Interfaces. Langmuir 1997, 13 (24), 6375–6381. 
https://doi.org/10.1021/la970568u. 

(9) Goel, M.; Singh, A.; Bhola, A.; Gupta, S. Size-Tunable Assembly of Gold 
Nanoparticles Using Competitive AC Electrokinetics. Langmuir 2019, 35 
(24), 8015–8024. https://doi.org/10.1021/acs.langmuir.8b03963. 

(10) Ristenpart, W. D.; Aksay, I. A.; Saville, D. A. Assembly of Colloidal 
Aggregates by Electrohydrodynamic Flow: Kinetic Experiments and Scaling 
Analysis. Phys. Rev. E 2004, 69 (2), 021405. 
https://doi.org/10.1103/PhysRevE.69.021405. 



 

48 
 

(11) Harraq, A. A.; Choudhury, B. D.; Bharti, B. Field-Induced Assembly and 
Propulsion of Colloids. Langmuir 2022, 38 (10), 3001–3016. 
https://doi.org/10.1021/acs.langmuir.1c02581. 

(12) Dutcher, C. S.; Woehl, T. J.; Talken, N. H.; Ristenpart, W. D. Hexatic-to-
Disorder Transition in Colloidal Crystals Near Electrodes: Rapid Annealing of 
Polycrystalline Domains. Phys. Rev. Lett. 2013, 111 (12), 128302. 
https://doi.org/10.1103/PhysRevLett.111.128302. 

(13) Ristenpart, W. D.; Aksay, I. A.; Saville, D. A. Electrohydrodynamic Flow 
around a Colloidal Particle near an Electrode with an Oscillating Potential. J. 
Fluid Mech. 2007, 575, 83–109. https://doi.org/10.1017/S0022112006004368. 

(14) Grzelczak, M.; Liz-Marzán, L. M.; Klajn, R. Stimuli-Responsive Self-
Assembly of Nanoparticles. Chem. Soc. Rev. 2019, 48 (5), 1342–1361. 
https://doi.org/10.1039/C8CS00787J. 

(15) Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic Enhancement 
of Molecular Fluorescence. Nano Lett. 2007, 7 (2), 496–501. 
https://doi.org/10.1021/nl062901x. 

(16) Ristenpart, W. D.; Jiang, P.; Slowik, M. A.; Punckt, C.; Saville, D. A.; Aksay, 
I. A. Electrohydrodynamic Flow and Colloidal Patterning near 
Inhomogeneities on Electrodes. Langmuir 2008, 24 (21), 12172–12180. 
https://doi.org/10.1021/la801419k. 

(17) Ferrick, A.; Wang, M.; Woehl, T. J. Direct Visualization of Planar Assembly 
of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric 
Fields. Langmuir 2018, 34 (21), 6237–6248. 
https://doi.org/10.1021/acs.langmuir.8b00992. 

(18) Choi, J. H.; Adams, S. M.; Ragan, R. Design of a Versatile Chemical 
Assembly Method for Patterning Colloidal Nanoparticles. Nanotechnology 
2009, 20 (6), 065301. https://doi.org/10.1088/0957-4484/20/6/065301. 

(19) Nguyen, C. Q.; Thrift, W. J.; Bhattacharjee, A.; Ranjbar, S.; Gallagher, T.; 
Darvishzadeh-Varcheie, M.; Sanderson, R. N.; Capolino, F.; Whiteson, K.; 
Baldi, P.; Hochbaum, A. I.; Ragan, R. Longitudinal Monitoring of Biofilm 
Formation via Robust Surface-Enhanced Raman Scattering Quantification of 
Pseudomonas Aeruginosa-Produced Metabolites. ACS Appl. Mater. Interfaces 
2018, 10 (15), 12364–12373. https://doi.org/10.1021/acsami.7b18592. 

(20) Lu, D.; Hou, S.; Liu, S.; Xiong, Q.; Chen, Y.; Duan, H. Amphiphilic Janus 
Magnetoplasmonic Nanoparticles: PH-Triggered Self-Assembly and 
Fluorescence Modulation. J. Phys. Chem. C 2022, 126 (35), 14967–14975. 
https://doi.org/10.1021/acs.jpcc.2c03753. 

 



 

49 
 

Chapter 4 

Illuminating Bacterial Metabolism with Plasmonic Structures 

4.1 Introduction  

Like all living organisms, bacteria are equipped with biochemical machinery to survive 

and adapt in diverse and changing environments all over the world. These responses to dynamic 

conditions elicit changes in bacteria metabolic networks, and their metabolite profiles can shift 

on timescales as short as minutes.1 Many of these environmental changes constitute stresses, 

which trigger physiological responses within the cell. Stresses, ranging from nutrient restriction2 

to exposure to antibiotics,3 elicit profound metabolic consequences in bacteria. The resulting 

changes in metabolite profiles can be detected by conventional3 and next-generation4 

metabolomic techniques. Consequently, we hypothesize and demonstrate that bacterial cultures 

can be used as whole-cell sensors of antibiotics and nutrient stressors by the detection and 

decoding of their metabolic responses to these stressors. Specifically, the bacterial metabolic 

response transduces stresses into chemical (metabolite) signals that are amplified with surface 

enhanced Raman scattering (SERS) surfaces. When decoding the spectral signals using machine 

learning (ML) algorithms, a sensitive and accurate sensing platform for rapid antimicrobial 

testing and nutrient source detection. In this Chapter, we employ SERS+ML to investigate the 

metabolism of glucose, sucrose, and the joint regulation of glucose and xylose metabolic 

pathways for E.coli.  

4.2 Deep neural network models for antimicrobial susceptibility testing 

Physicians often prescribe antibiotics to treat clinical infections based on insufficient 

information; an informed response is delayed since the culturing of a patient's sample requires 
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24-72 hours.5 As a result, a full third of prescribed antibiotics would qualify as either overuse or 

misuse.6 As shown in Figure 4.1, bacterial infections exhibiting antimicrobial resistance (AMR) 

cause 700,000 deaths per year globally,7 and by 2050 it is expected to increase to 10 million 

deaths per year.8 A rapid diagnostics method is required urgently to reduce the inappropriate use 

of antimicrobials contributing to this severe global AMR issue, and rapid antimicrobial 

susceptibility testing (AST) is a promising method to tackle this problem by assisting physicians 

to select proper antibiotic treatment in the time span of a typical doctor visit.9   

 

Figure 4.1 Deaths attributable to AMR every year by 2050 

 

Phenotypic AST has been considered the gold standard10 to provide direct metrics of 

antibiotic susceptibility from patient samples, yet the time to culture cells for phenotypic AST 

delays an informed diagnosis and treatment plan. On the other hand, examination of bacterial 

response to antibiotics using mass spectroscopy has shown the dysregulation of core metabolic 
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cellular functions is correlated to lethality.11–14 The metabolite profiles exhibit changes as soon as 

30 minutes after exposure when bacteria are exposed to effective antibiotics. However, there is 

no real time device solution to detect the dynamic change of metabolites as mass spectroscopy 

requires sophisticated sample preparation.15 The focus of this section is sensors able to detect this 

rapid metabolic response and characterize their performance as a rapid phenotypic AST 

diagnostic device.  

A combination of SERS spectra and machine learning data analysis is a promising new 

approach that has the potential to enable rapid AST. However, in order to build a robust ML 

model for rapid AST, SERS data reflecting AMR states need to be acquired for model training. 

Proper association between AMR states and SERS data sets requires validation by traditional 

AST method which takes 24-72 hours for growth assays.25 Thus we need to minimize the amount 

of SERS data needed from growth assays which reflects phenotypic bacterial response to 

antibiotics, referred to as labeled data. SERS+ML will be a highly competitive method to achieve 

time efficient rapid AST.26 

In order to more accurately determine the dosage and time point at which differentiating 

the SERS spectra becomes possible, we use a deep neural network (DNN) model, a supervised 

learning approach, to classify the spectra from E. coli and P. aeruginosa lysate with respect to 

their temporal and gentamicin dosage treatment conditions. The DNN is trained directly on the 

raw spectral data and we develop multiple two-class DNN models with groupings of consecutive 

treatment conditions. For example, one experiment for the temporal datasets would classify the 0 

and 5 min treatment conditions (first class) against the 10, 20, and 40 min treatment conditions 

(second class). The resultant classification accuracy of these experiments are 99% ± 0.1% for 

both E. coli and P. aeruginosa. Thus, we are able to detect bacterial response to antibiotics after 
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10 min with greater than 99% accuracy. Examining all two-class model results, as shown in 

Table 4.1, we can see that the two-class feed-forward DNN models are able to distinguish 

between all possible groupings of temporal conditions with near-perfect mean 10-fold cross 

validation accuracy greater than 99% even when grouping the 0 min temporal response alone in 

a class. Thus, after only 5 min, bacterial response to antibiotics is clearly evident in the SERS 

spectra. The DNN performed equally well on all possible groupings in the two class analysis of 

dosage-variant datasets, also shown in Table 4.1. Because the two-class models performed so 

well, we explored five-class models in order to analyze the performance of the DNN model for 

differentiating each individual condition. 

 

Table 4.1 2-Class DNN model performance metrics. 
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The five-class models achieved comparable accuracy as can be seen from the confusion 

matrices for each of the models (Figure 4.2). For the P. aeruginosa time variant dataset, we were 

able to achieve a mean 10-fold cross validation classification accuracy of 99 ± 0.2%. For the 

dosage variant dataset, the model had a mean 10-fold cross validation classification accuracy of 

98 ± 1.0%. The E. coli temporal and dosage datasets performed similarly well, with mean 10-

fold cross validation classification accuracies of 99 ± 0.3% and 95 ± 1% respectively. Looking at 

the confusion matrices in Figure 4.2 b,d for both temporal datasets, we can clearly see early 

differentiation with the model showing a strong ability to differentiate classes as early as 5 min. 

For both models trained on the dosage datasets, we see clear differentiation with dosages as low 

as 0.1 μg/mL. It is important to note that the majority of misclassification results are for similar 

dosages or time points and thus SERS data is able to measure bacterial response below the MIC 

and track the temporal evolution of the bacterial response on a time scale of 5 min with high 

accuracy. Classification accuracy, equal to sensitivity, is considered the primary metric in this 

work since the goal of rapid AST is accurate antibiotic treatment. 
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Figure 4.2 Five-class DNN model confusion matrices (values are listed as percentages). The 

datasets used are E. coli (a) gentamicin dose and (b) temporal response dataset, and P. 

aeruginosa (c) gentamicin dose and (d) temporal response dataset. 

 

4.3 Classifying type of nutrient source by support vector machine 

 Nutrients are essential for bacteria survival, with carbon and nitrogen sources playing a 

crucial role in their metabolism. While some nutrients can be readily metabolized, others are not, 

and there may be a preference for one nutrient over others when multiple sources are available. 

The complex and multifaceted nature of nutrient utilization in bacteria underscores the 

importance of understanding their nutrient source metabolism. This knowledge is critical for 

predicting their competitive success in natural environments. In natural environments, bacteria 



 

55 
 

may need to compete for limited resources, including nutrients. Therefore, selection of preferred 

nutrient sources can greatly influence bacterial growth rates and competitive success with other 

microorganisms. Escherichia coli (E.coli), an industrial biotechnology workhorse,18 can uptake a 

variety of carbon source and induce distinct metabolic pathways to survive.19 Among all nutrient 

source, glucose is a crucial source of energy for E.coli, as it serves as the primary metabolic fuel 

for this organism, and is a major precursor for the biosynthesis of various carbohydrates 

including glycogen, ribose, deoxyribose, galactose, glycolipids, glycoproteins and proteoglycans. 

Sucrose is an attractive industrial carbon source due to its abundance. However, wild-type E.coli 

is unable to metabolize sucrose, which can lead to starvation stress when no other consumable 

sugar source is available.20  

SERS spectra of E. coli lysate were obtained after growth in different nutrient sources, 

including glucose, sucrose, and a control without a carbon source. Representative SERS spectra 

in shown in Fig. 4.3 and the most significant peak intensity change is highlighted by the grey 

bands. Principal component analysis (PCA) was used to reduce the dimensionality of the SERS 

spectra highlight nutrient-dependent spectral features. The PC loadings as shown in Fig. 4.4 were 

then used for revealing differential metabolic signatures in response to nutrient exposure. The 

largest loading features at 734 cm-1 (adenosine25) and 1030 cm-1 (phenylalanine24 or adenine23) 

were found to correlate with energy nucleotides and metabolic pathways involved in nutrient 

uptake, suggesting that changes in nucleotide concentrations are consistent with the nutrient-

dependent metabolic signatures observed.  
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Figure 4.3 Representative SERS spectra (vertically offset) acquired from E. coli lysate after 

culturing in different nutrient sources, including glucose (orange line), sucrose (green line), and a 

control without a carbon source (blue line).  

 

Figure 4.4 PC1, 2 and 3 heat map of the dataset containing SERS spectra of E. coli lysate after 

culturing in different nutrient sources, glucose, sucrose, and a control without a carbon source.  

 

A support vector machine (SVM) discriminative ML model was trained to access the 

accuracy of discriminating between different nutrient sources and evaluate metabolism features. 

Each nutrient source was designated as a class in the SVM model, which was trained using 80% 

of the spectral data. The resulting 20% of the data, which were not seen during the SVM model 
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training, were used as a holdout set to determine the classification accuracy of the algorithm 

predictions. The resulting classification accuracy was depicted in the confusion matrices 

presented in Fig. 4.5. Notably, the false predictions rate of control spectra being classified as 

nutrient conditions was less than 0.6%.  

 

Figure 4.5 SVM confusion matrix for classification between SERS spectra of E. coli lysate after 

culturing in glucose, sucrose, and a control without a carbon source, respectively. 

 

4.4 Visualizing carbon catabolite repression in E.coli lysate spectra using t-

distributed stochastic neighbor embedding 

When there are multiple sugar sources available, the simultaneous utilization of multiple 

sugar sources can be hindered in E.coli. For example, wild type E.coli consumes glucose during 

the first exponential growth phase, followed by a diauxic lag phase before consuming xylose.21 

This regulatory phenomenon by which the expression of functions for the use of secondary 
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carbon sources and the activities of the corresponding enzymes are reduced in the presence of a 

preferred carbon source is known as carbon catabolite repression (CCR).22  

The unsupervised ML algorithm t-distributed stochastic neighbor embedding (tSNE) was 

employed to compare similar data points in lower dimensional space. The resulting tSNE plots 

demonstrated clear differences in spectral data that correlated with nutrient exposure 

concentration, providing preliminary validation of our hypothesis that the observed differences in 

metabolic responses in the cell lysate are reflected in spectral data, rather than a result of 

algorithm training. Specifically, at 0.5 h, E.coli cells grown in media containing 0.1% glucose 

consumed glucose to support growth, while cells cultured in media containing 0.05% glucose 

and 0.05% xylose also consumed glucose to grow. When the only nutrient source was xylose, 

cell didn’t exhibit growth. The tSNE plot revealed that the control and xylose clusters were more 

similar since they didn’t exhibit growth, whereas the glucose and the mixture containing glucose 

and xylose clusters were more alike since they both consumed glucose to support growth.  

 

Figure 4.6 tSNE clustering analysis for SERS spectra of E. coli lysate after culturing in different 

nutrient sources, glucose, xylose, a mixture containing glucose and xylose, and a control without 

a carbon source, respectively.  
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4.5 Methods 

4.5.1 SERS Sensor fabrication 

SERS surfaces are fabricated in microfluidic channels with a capacitor architecture to 

apply an AC potential across electrodes. Fabrication is performed silicon substrates (NOVA 

Electronic Materials, P-type, boron doped <100> with resistivity of 0.001-0.005 ohm-cm) with 

dimensions of 15 mm × 15 mm that are spin coated with poly(styrene-b-methyl methacrylate) 

(PS-b-PMMA, Mn S-b-MMA 170000-b-145000 g mol-1) thin films of approximate thickness of 

25 nm; Si substrates serve as the working electrode. Indium tin oxide (ITO) coated glass slides 

(Delta Technologies) serve as the counter electrode.  

Silicon substrates were cleaned by 20% v/v hydrofluoric acid (HF, Fisher Scientific, 

48%) / deionized (DI) water (Milli-Q Millipore System, 18.2 MΩ cm-1) for 5 minutes to remove 

the native oxide layer and then immersed in DI water to regrow a thin oxide layer. The potential 

of HF to cause severe injury mandates extreme caution during usage. Random copolymer 

poly(styrene-co-methyl-methacrylate)-ɑ-hydroxyl- ω-Tempo moiety (PS-r-PMMA, Polymer 

Source, Mn =7400, Mw =11800, Mw /Mn =1.60, 59.6 mol% Polystyrene content) random 

copolymer dissolved in toluene (Fisher Scientific), 1 wt%, was spin-coated at 3000 rpm for 45 

seconds on silicon substrates. PS-r-PMMA films were annealed under vacuum at 170 °C for 48 

hours followed by a rinse with toluene to leave a brush layer. PS-b-PMMA is spin coated at 5000 

rpm for 45 seconds and then annealed for 72 hours at 170 °C. In order to selectively 

functionalize PMMA domains on PS-b-PMMA diblock copolymer films with amine functional 

groups for crosslinking with Au NPs, PS-b-PMMA/Si were immersed in dimethyl sulfoxide 

(DMSO, Sigma Aldrich) for 5 min and then 5 % vol ethylenediamine (ED, Sigma Aldrich) in 

DMSO for another 5 min. ITO counter electrodes were cleaned by ethanol (Sigma Aldrich), 
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isopropyl alcohol, and DI water and then dried by N2 before attaching a platinum wire and silver 

paste (Epoxy Technology) to make electrical contact.   

A microfluidic cell was formed between electrodes using a 90 µm spacer layer composed 

of 3M 9816L. A solution of 2 µL N-hydroxysulfosuccinimide (s-NHS, Sigma Aldrich), 20mM, 

and 2 µL 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC, Sigma Aldrich), 8 mM, in a 

2-(Nmorpholino) ethane sulfonic acid buffer (MES, Sigma Aldrich, 0.1 M, pH=4.7) added to a 

0.25 mL solution of 2.6 nM lipoic acid functionalized Au NP solution. 20 µL of the solution 

containing Au NP, s-NHS, and EDC is added to the microfluidic cell. An AC electrical stimuli 

with potential of 5 Vp and frequency of 100 Hz is applied for 2 min to deposit a seed layer to 

induce EHD flow. The second deposition step was conducted at a potential of 5 Vp and 

frequency of 1000 Hz for 2 min to grow Au NP clusters. After deposition, the electrode cell was 

dismantled and the sensor surface was thoroughly rinsed with DI water and isopropyl alcohol 

(IPA, Sigma Aldrich) and then dried with N2.   

4.5.2 SERS spectroscopy 

All SERS spectroscopy measurements are conducted using a confocal Renishaw InVia 

micro Raman system with a 785 nm diode laser, a laser power of 14 μW, an exposure time of 0.5 

s, and a 60× water immersion objective with a 1.2 numerical aperture. Bacteria cell lysate is used 

as the immersion media. After soaking the SERS substrate in the sample for 15 min, Raman 

maps are collected with a spacing of 4 μm spacing between points. For each sample one 20 × 20 

pixel Raman map is acquired. 

4.5.3 Bacterial culture preparation 
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Pseudomonas aeruginosa (strain PA14 wild type) and Escherichia coli (strain MC4100, 

K-12) cultures were revived by streaking from a frozen culture stock onto LB Lennox agar (IBI 

Scientific) plates and incubated at 37 °C for 24 h. Individual colonies from these plates were 

used to inoculate solutions of 100 mL of LB in triplicate, which were subsequently grown for 18 

h at 37 °C and shaking at 230 rpm. The 18 h cultures were centrifuged at 5000 rpm for 5 min, 

then re-suspended in fresh LB at an optical density at 600 nm (OD600) of 0.50 as measured by a 

BioChrom Colourwave CO7500 colorimeter. 

After subculturing the bacteria, they were washed twice with PBS. For carbon starvation 

experiments, the washed cells were resuspended in 5 mL of M63 medium supplemented with 1% 

glucose (w/v), 1% sucrose (w/v), or deionized water to reach an OD of 0.5. These cultures were 

then incubated in a shaking incubator at 300 rpm and 37℃ for 2 hours. For carbon catabolite 

repression experiments, the washed cells were resuspended in 5 mL of M63 medium 

supplemented with 0.1% glucose, 0.1% xylose, or 0.05% of glucose/xylose mixture to reach an 

OD of 0.2. Each carbon source profile included three test tubes per colony. These cultures were 

also incubated in a shaking incubator at 300 rpm and 37℃. Samples were collected at 0.5 h after 

the start of growth. All the samples collected came from their individual tubes, ensuring that 

there was no reduction in cell culture volume that could affect the cells. After 0.5 h, the cells 

were washed twice with PBS and centrifuged at 5000 rpm for 5 minutes. The resulting pellet was 

resuspended in 100 uL of deionized water and heated at 97℃ for 30 minutes to lyse the cells and 

release their contents into the water. After 30 minutes, the culture was centrifuged at 12000 rpm 

for 10 minutes, and 75 𝜇L of supernatant were collected into three separate centrifuge tubes, 

each containing 25 𝜇L of supernatant. The samples were then stored at -20 ℃ for further 

analysis. 
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4.5.4 Pre-processing of SERS spectra data 

For data preprocessing, asymmetric least square correction is utilized for baseline 

correction, and a Savitzky–Golay filter is used for data smoothing. In order to normalize the data, 

the vibrational band of silicon at 520 cm-1 is used as an internal standard and set to 1. Principal 

component analysis (PCA) was performed for dimensional reduction. We determined that 17 

PCA components captured 90% of variant of the dataset. t-distributed stochastic neighbor 

embedding (tSNE) was also performed to visualize the concentration data in lower dimensional 

space and show there are spectral differences in the data observed without labeling data for 

algorithms.    

4.5.5 Antimicrobial susceptibility test feed-forward deep neural network 

The four datasets used in these experiments (E. coli temporal, E. coli dose, P. aeruginosa 

temporal, and P. aeruginosa dose) were all pre-processed using the spectra pre-processing 

method. 800 spectra from each condition are used to train the model. The DNNs were trained 

using 10-fold cross validation. For each cross fold the data was divided into a training, 

validation, and test set. As a supervised machine learning method, training data is used to fit the 

parameters of the DNN; knowledge of the class that each point of training data belongs to is 

necessary. The validation set for each cross fold is unique and is a random 20% subset of the 

training set of that cross fold. The DNNs used in this study are feed-forward layered networks 

with fully connected layers and a logistic output for the two-class models or a softmax output for 

the five-class models. We used the python hyperparameter optimization library SHERPA in 

combination with 10-fold cross validation to select the best hyperparameters and architecture 

based on mean cross validation accuracy.16 All of the models utilize the Adam optimizer with a 

learning rate of 0.001 and a batch size of 20. The DNN architectures used have 1−3 hidden 
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layers with 10−500 neurons per layer, and rectified linear unit (ReLU) activation functions. The 

loss function used for the two-class models was binary cross entropy and the loss function used 

for the five-class models was categorical cross entropy. Due to the relatively small number of 

samples compared to the very large number of features, we use Scikit-learn to perform principal 

component analysis (PCA) with an explained variance of 90% for dimensionality reduction. In 

order to avoid overfitting, we used early stopping in combination with data augmentation. Early 

stopping is a technique used to halt model training when the loss of the validation set starts to 

increase compared to the training loss, indicating overfitting. For our experiments, we used a 

patience of 10. Additionally, in some of the networks we utilized dropout and L2 regularization 

to combat overfitting. For data augmentation we used the Synthetic Minority Oversampling 

Technique (SMOTE) to combat the problem of class imbalance.17 Although the original dataset 

does not have significant class imbalance between the five classes, when we split the data into 

two groups for our two-class models we introduced class imbalance. For example, one of the 

two-class models is 0 min, 5 min, 10 min, 20 min as one class (3200 data points) and 40 min as 

one class (800 data points). SMOTE augments the data by synthesizing training examples in the 

minority class. Specifically, SMOTE chooses a random data point from the minority class and a 

random neighbor from its five nearest neighbors, and then a synthetic example is created at a 

randomly selected point between the two examples in feature space. Data augmentation was only 

performed on the training set; the test set was not augmented. To measure the performance of 

each of the models, we used 10-fold mean cross validation accuracy. 

4.5.6 Support vector machine classification model  

A support vector machine (SVM) discriminative model was trained on SERS spectra of 

E. coli lysate after culturing in different nutrient sources, glucose, sucrose, and a control without 
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a carbon source. The SVM models are trained using 17 PCA components. A holdout set is 

composed of 20% of the data that is used for final validation and not seen at all during training. 

The model is trained with the remaining 80% of the spectral data labeled with their appropriate 

class to define a hyperplane separating data into the correct classes. SVM models are trained 

with Scikit-learn using default parameters, with radial basis function (RBF) kernel, Margin 

parameter (C) =1, and 𝞬=scale.   

4.6 Conclusion  

We have demonstrated that the response of P. aeruginosa and E. coli bacterial 

communities to antibiotics is rapidly detected in SERS spectral data when using sensor surfaces 

with controlled nanogap spacing and chemistry. Deep learning analysis of SERS data is able to 

differentiate the response of untreated cells from those exposed to antibiotics in 10 min post 

exposure with greater than 99% accuracy and temporally follow the evolution with 5 min 

resolution with greater than 99% accuracy, significantly faster and more accurate than current 

SERS AST methods.26–28 The bacterial response to varying antibiotic doses is differentiated with 

greater than 96% accuracy from untreated bacteria, even when treated with antibiotic dosages up 

to 10-fold lower than the minimum inhibitory concentration observed in conventional growth 

assays. The high classification accuracy/sensitivity and specificity in following temporal 

response of monocultures and differentiating susceptibility and resistance demonstrates the 

SERS + deep learning approach described here making this method a promising candidate for 

use in clinical samples for rapid AST. We also found that the metabolism features captured by 

the unsupervised PCA model can correlate with energy nucleotides and metabolic pathways 

involved in nutrient uptake, suggesting that changes in nucleotide concentrations are consistent 

with the nutrient-dependent metabolic signatures observed. The SVM classification model 
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achieved high accuracy on differentiating different nutrient metabolism profile with the false 

prediction rate of control spectra being classified as nutrient conditions was less than 0.6%. For 

CCR, the tSNE plot revealed that the control and xylose clusters were more similar since they 

didn’t exhibit growth, whereas the glucose and the mixture containing glucose and xylose 

clusters were more alike since they both consumed glucose to support growth.  
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Chapter 5 

Decoding the metabolic response of Escherichia coli for sensing 

trace heavy metals in water  

5.1 Introduction 

Heavy metal contamination from natural and anthropogenic sources is a serious threat to 

human and ecosystem health, and heavy metal use in a wide variety of industrial and agricultural 

processes is growing exponentially.1,2 Contaminated water is a major source of exposure leading 

to toxic heavy metal accumulation in humans, plants, and livestock. The development of portable 

and low-cost sensors which can be broadly deployed to locally and frequently monitor the 

quality of drinking and irrigation water, agricultural and industrial runoff is needed to safeguard 

sensitive ecosystems and human health. Arsenic, cadmium, chromium, copper, lead, and 

mercury rank among the priority metals of public health significance.1 Currently, monitoring 

water quality typically requires samples to be sent to specifically certified laboratories for 

inductively coupled plasma-mass spectrometry (ICP-MS) analysis for quantification3 to 

determine if contaminants are below safety guidelines set by the World Health Organization 

(WHO)4 or regulatory agencies. Other laboratory methods with the necessary limit of detection 

(LOD) and dynamic range rely on similarly sophisticated and centralized analytical instruments, 

such as atomic absorption, X-ray fluorescence, or atomic emission spectrometries.3 

Alternatively, biosensors, using physicochemical signal transduction, such as optical, 

electrochemical, piezoelectric, and thermal signal outputs, represent low-cost solutions that are 

compatible for integration in portable systems to detect heavy metal ions. Molecular recognition 
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labels include enzymes,5 antibodies,6 whole cells,7 aptamers,8 molecularly imprinted 

polymers,9,10 and DNA.11 Encapsulation of enzymes in hydrogels yields sensors with a LOD 

needed for monitoring water quality, but they have limited shelf life.5 Aptamers, on the other 

hand, exhibit high specificity and stability but are not easily engineered to detect a variety of 

analytes. Antibodies, relying on the formation of metal–chelated complexes, are versatile sensing 

elements, yet cross reactivity with other ions lead to lack of specificity.12 Whole cell-based 

biosensors rely on mature cell culturing technology and can be incorporated in a range of 

physicochemical sensor platforms for multiple assays. Whole cell biosensors have received 

increasing attention as an ultra-sensitive means of detecting hazardous contaminants as they can 

be engineered to be responsive to different toxins.13  

Many cellular metabolites have high Raman cross-sections,14 which can be detected in 

surface enhanced Raman scattering (SERS) measurements.15,16 SERS is a highly sensitive, and 

label free detection scheme,17 which offers single molecule LOD when using carefully designed 

nanoarchitectures.18–20 Indeed, SERS signals from Au decorated nanofiber probes inserted into 

breast cancer cells have been shown to detect toxic metal exposure at a LOD of 5 nM for 

mercury and 100 nM for silver.21 Obtaining reproducible response in biosensors is a 

longstanding challenge.22 In particular, the reproducibility of SERS surfaces depends on 

nanoparticle morphology, nanogap distance and surface chemistry.23 Our previously 

demonstrated chemically assembled SERS surfaces composed of spherical nanoparticles with 

controlled nanogap spacing of 0.9 nm and chemistry exhibit reproducible billion-fold signal 

enhancements over areas of 1 cm2; surfaces are able to detect metabolites from bacterial 

communities on a time scales of minutes15,24 and accurately quantify analyte concentrations 

down to 10 fM when using machine learning analysis of spectral data.18 In this work, the 
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sensitivity of the Escherichia coli (E. coli) stress response is used to transduce the signal of Cr6+ 

and As3+ ions into chemical signals that are detected with chemically assembled SERS surfaces. 

Arsenite is one of the most common toxic valence states (III) of As and high arsenite 

concentrations are indicators of phytoplankton bloom, high microbial populations, and pollution 

from mining activity.25 Cr pollution is largely related to industrial applications in the field of 

energy production, manufacturing of metals and chemicals, and subsequent waste and 

wastewater management.26 Cr6+ is much more toxic than Cr3+.4 A support vector machine (SVM) 

model achieves higher than 97% classification accuracy for decoding E. coli stress response to 

different concentrations of metal ions for concentrations as low as 68 pM for Cr6+ and 5 pM for 

As3+. Due to their distinct mechanisms of toxicity in bacteria, this sensing platform also 

distinguishes the metabolic response of As3+ and Cr6+ with high accuracy when analyzed with 

SVM models. In addition, convolutional neural networks (CNN) show sensitive and quantitative 

determination of concentrations across a dynamic range of 0.68 pM - 68 µM for Cr6+ and 5 fM - 

5 mM for As3+, well below WHO recommended limits of 10 µg/L for As3+ and 50 µg/L for Cr6+, 

respectively.4 At the lowest concentrations investigated, the metabolic response is detectable 

when the ratio of metal ions to bacterium in solution is 0.6 for As3+ and 8.2 for Cr6+. Finally, by 

using a pretrained model for analysis of previously unseen tap water and wastewater samples 

spiked with As3+, SERS detection and ML analysis requires only 80 spectra per class (40 sec 

total acquisition time) to achieve greater than 96.5% accuracy for classifying concentrations 

above or below the WHO recommended limit.    

5.2 Biochemical signal transduction of metal ions into vibrational spectra  

The inherent metabolic stress response of E. coli cultures is used to transduce the 

presence of heavy metal ions in water into metabolites. We then fingerprint the metabolic 
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response with a combination of SERS detection and ML analysis (SERS +ML). E. coli cultures 

were exposed to Cr6+ or As3+ ions (K2Cr2O7 or NaAsO2) in minimal media for 2 hr (Fig. 1a). 

Metabolites from the cells were extracted by thermal lysis, and the lysate was deposited on SERS 

surfaces composed of Au nanoparticle (NP) clusters for spectral data acquisition (Fig. 1b-c). 

SERS surfaces were fabricated in microfluidic channels with electrodes in a capacitor 

architecture to achieve reproducible billion-fold signal enhancements (Fig. 5.1e-f).27 SERS 

spectra of control samples prepared under the same conditions without Cr6+ or As3+ in the 

exposure medium were used to determine the limit of blank (LOB).28 The full concentration 

range of samples was collected over the course of several experiments. Each subset of 

concentrations was collected with a control group included which was not exposed to any metal. 

To avoid training the algorithm to classify based on background fluctuations, inherent biological 

variation, or manufacturing variations of SERS surfaces, control samples were measured in 

biological duplicate and on multiple SERS surfaces (see Methods for more details).  

The exposure of bacterial cultures to toxic metal ions is expected to result in significant 

changes in metabolite concentrations. Such metabolic shifts resulting from stress responses often 

involve differential regulation of nucleotides central to biosynthetic processes within the cell. 

Metabolic changes in response to antibiotic stress have been reported to be detectable within 30 

minutes of exposure by mass spectrometry.29 Some metabolic stress responses are general, for 

example those triggered by the sigma factor regulon, RpoS, which can be regulated by proteins 

dependent on concentrations of the nucleotide adenosine triphosphate (ATP).30 ATP accumulates 

in E. coli as part of its stress response to antibiotics31 and ATP-coupled pumps are associated 

with As3+ transport out of cells in response to toxic exposure.32 Uracil, another nucleotide, is a 

building block of RNA and thus related to protein translation, and its concentration is closely 
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correlated with oxidative stress responses in bacteria.29,33 Another nucleotide, adenine, regulates 

the cell cycle in bacteria, including cell division and DNA repair, processes modulated in stress 

conditions.34 To verify that SERS surfaces are sensitive to these and similarly Raman active 

metabolites associated with bacterial stress response, SERS spectra of 1 mM aqueous solutions 

of key nucleotides ATP, uracil and adenine were acquired and representative spectra are shown 

in Fig. 5.1d.  

 

 

Figure 5.1 Heavy metal detection scheme and SERS spectra of key metabolites. a E. coli is 

cultured in growth media supplemented with Cr6+ or As3+ salts. b Cells are thermally lysed, and c 
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lysate supernatant is deposited on SERS surfaces. d Representative SERS spectra of key 

nucleotides involved in bacterial stress responses, ATP, uracil and adenine. e Schematic of 

fabrication of SERS surfaces: a microfluidic cell with AC electric fields across electrodes 

induces EHD flow to drive lateral assembly and subsequent cross linking reactions between Au 

NP. f Scanning electron microscopy image shows Au NP form close-packed clusters of various 

sizes. Field of view is 2 μm ✕ 2 μm. 

 

5.3 Training data acquisition for fingerprinting bacterial stress response   

SERS spectra were acquired from lysate from E. coli cells exposed to heavy metal ion 

solutions at various concentrations untreated (control). The concentration range investigated with 

SERS + ML for NaAsO2 was 0.65 pg/L to 650 mg/L (13 concentrations) and for K2Cr2O7 was 

0.1 ng/L to 10 mg/L (9 concentrations). The corresponding molarities are 5 fM to 5 mM for As3+ 

and 0.68 pM to 68 µM for Cr6+. The concentration range was chosen to span the WHO 

recommended limit for these metals in drinking water, which are 10 µg/L (0.13 µM) and 50 µg/L 

(0.96 µM) for As3+ and Cr6+, respectively. SERS spectra acquired from pure solutions of Cr6+ 

(6.8 pM) and As3+ (0.5 pM) without E. coli cells show that the vibrational peaks observed from 

lysate samples are due to the cellular metabolites instead of heavy metal ions itself (Fig. 5.2). 
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Figure 5.2 Surface enhanced Raman scattering spectra from Cr6+ (dotted blue) and As3+ (dotted 

orange) salts dissolved in deionized water at concentrations of 6.8 pM and 0.5 pM, respectively. 

Spectra from bacteria cultures exposed to metals at the same concentration in deionized water are 

plotted above for Cr6+ (blue) and As3+ (orange). All spectra are background subtracted.  

 

Average SERS spectra of E. coli lysate after metal ion exposure show spectral feature 

differences to the eye (Fig. 5.3 a, b). Principal component analysis (PCA), used for dimensional 

reduction of SERS spectra, more clearly highlights some spectral feature changes unique to 

samples exposed to each metal or common to exposure to either metal. Before PCA, SERS 

spectra undergo baseline correction, data smoothing and normalization (see Methods). We found 

that 22 PCA components, shown in Fig. 5.4, capture 93.3% and 94.8% of variances for Cr6+ and 

As3+ concentration data, respectively. In Fig. 5.3 c, d, the first three principal component (PC) 

loadings, which account for greater than 75% of spectral variance used for sample classification, 

are shown in a heat map. The scores are plotted in Fig. 5.5. Metabolite vibrational mode 
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assignments are shown in Table 5.1. The stress response to metal toxins involves differential 

regulation of nucleotides related to biosynthetic processes within the cell. The largest loading 

features in PC1, PC2, and PC3 correlate with energy nucleotides, which are associated with 

energy metabolism pathways involved in toxic metal stress response in bacteria,35–37 suggesting 

that changes in nucleotide concentrations in response to metal exposure are consistent with the 

features upon which the algorithm is classifying the different exposure conditions. Thus, this 

platform is promising to identify biochemical networks involved in toxin stress response when 

combined with network models as performed by Yang  et al. to identify metabolic mechanisms 

of antibiotic lethality.38   

Table 5.1 PC1, 2 and 3 loading peak relationship to metabolites for Cr6+ and As3+. 

 Cr6+ Features Metabolite(s) As3+ Features Metabolite(s) 

PC1 734 cm-1 adenine44–47 734 cm-1 adenine44–47 

1030 cm-1 phenylalanine48–50 

adenosine45 

724 cm-1 hypoxanthine51 

1036 cm-1 dAMP45 1030 cm-1 phenylalanine48,50 

adenosine45 

1040 cm-1 uracil52, ATP53, 
thymine44 

1036 cm-1 dAMP45 

1017 cm-1 phenylalanine54 1000 cm-1 phenylalanine55,56 

PC2 1030 cm-1 phenylalanine48,50 

adenosine45 

734 cm-1 adenine44–47 

724 cm-1 hypoxanthine51 1269 cm-1 lipid57 
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1003 cm-1 phenylalanine58 607 cm-1 indole59 

1010 cm-1 indole60 1000 cm-1 phenylalanine55 

671 cm-1 cysteine57,61,62 1506 cm-1 indole59 

PC3 734 cm-1 adenine44–47 1030 cm-1 phenylalanine48,50 

adenosine45 

1030 cm-1 phenylalanine48,50 

adenosine45 

734 cm-1 adenine44–47 

1040 cm-1 uracil52, ATP53, 
thymine44 

652 cm-1 guanine63,64 

671 cm-1 cysteine57,61,62 671 cm-1 cysteine57,61,62 

641 cm-1 tyrosine58 1269 cm-1 lipid57 
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Figure 5.3 Concentration dependent averaged SERS spectra (vertically offset with standard 

deviation shaded above and below each spectrum) acquired from E. coli cultured in media with 

indicated a K2Cr2O7 and b NaAsO2 concentrations. PC1, 2 and 3 heat map of c the Cr6+ dataset 

and d the As3+ dataset containing spectra of lysate from control and the full range of metal 

concentration exposure.  
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Figure 5.4 PC loadings from a. Cr6+ and b. As3+; bottom to top is PC1 to PC 22. 
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Figure 5.5 Boxplot showing principal component 1, 2 and 3 scores for Cr6+ (a, b, c) and As3+ (d, 

e, f), respectively. Isolation forest was used for 1% outlier removal before plotting the data. 

 

 
5.4 Classifying Lysate Spectral concentrations by Support Vector Machine 

We hypothesized that, while differences in lysate spectra associated with heavy metal 

exposure might be difficult to identify by eye, ML algorithms could accurately classify these 
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differences as a function of metal concentration. An unsupervised ML algorithm, t-distributed 

stochastic neighbor embedding (tSNE), is used for comparing similar data points in lower 

dimensional space. The tSNE plots show clear differences in the spectral data that correlate with 

exposure concentration (Fig. 5.6). These plots represent preliminary validation of our hypothesis 

that the differences in metabolic responses observed in the cell lysate are evident in spectral data 

and not a result of algorithm training. These components are used as inputs for training two 

independent support vector machine (SVM) discriminative ML models, one for Cr6+ and one for 

As3+, in order to demonstrate the ability to accurately distinguish different heavy metal exposure 

concentrations as a means to evaluate water safety. The classes in each discriminative model are 

the concentrations of metal ions: the model for Cr6+ has 10 classes (for 9 metal concentrations + 

control) and for As3+ there are 14 classes (for 13 metal concentrations + control). 

 

Figure 5.6 t-distributed stochastic neighbor embedding cluster plot of Cr6+ (left) and As3+ (right) 

showing different metal exposure concentrations exhibit differential features when using 

unsupervised algorithms.  

 

The training datasets are imbalanced since the size of the control class (measured in 

biological duplicate) dataset (9600 spectra) is 8 times larger than the classes corresponding to a 
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single concentration (1200 spectra). The synthetic minority over-sampling technique (SMOTE) 

is a standard method to manage imbalanced data sets by performing data augmentation (see 

Methods).39 SMOTE is performed after dataset division to prevent data leakage. The model is 

trained with 80% of the spectral data and the resulting classification accuracy is determined by 

algorithm predictions on a holdout set (not seen by the SVM model during training) composed of 

the remaining 20% of the data. The classification accuracy of the holdout set is plotted in the 

confusion matrices for Cr6+ (Fig. 5.7a) and As3+ (Fig. 5.7b). The concentration label of Cr6+ and 

As3+ datasets is transformed to logarithmic scale. The LOD was determined to be at the value 

when the prediction accuracy was higher than 98% in distinguishing from the control sample. At 

concentrations of 6.8 pM for Cr6+ and 0.5 pM for As3+, there are less than 0.3% false predictions 

of control rather than the true concentration (Fig. 5.7a, b). Thus SERS + ML yields a LOD of 6.8 

pM for Cr6+and 0.5 pM for As3+. The SVM classification model was also evaluated by traditional 

sensor performance metrics of sensitivity, specificity and accuracy (Table 5.2). Overall, above 

the LOD, the sensitivity, specificity and accuracy are all higher than 97% for both As3+ and Cr6+. 

In order to put these metrics in perspective, we compare the analysis from SVM models to 

analysis of the culture optical density (OD) data (Fig. 5.7c, f) used for assessing cell growth and 

inhibition by stressors. There is no significant difference in culture OD 2 hr after exposure to 

Cr6+ even at concentrations of 340 µM, and there is a significant difference in OD for As3+ 

compared to control only at concentrations greater than 100 µM. At an OD of 0.5, the LOD 

determined from the SVM model corresponds to approximately 0.6 As3+ ions per bacterium in 

solution and 8.2 Cr6+ ions per bacterium in solution. This correlates well with the recommended 

safe concentration of Cr6+ being ten times higher than As3+. Thus, SERS + ML achieves 6 orders 

of magnitude lower concentration detection versus methods based on growth inhibition. 
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Figure 5.7 Classifying Lysate Spectral concentrations. a SVM confusion matrices showing 

accuracy of classifying of different concentrations of Cr6+ (label scale bar is on a log scale in 

units of 6.8 pM) and b As3+ (label scale bar is on a log scale in units of 0.5 pM) in the correct 

concentration class. Growth curve for c Cr6+ and d As3+ at different exposure concentrations. 

Corresponding OD from the growth curves at 2 hr for different concentrations of e Cr6+ and f 
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As3+, where ns = no significant difference between the experimental groups and control, ∗= p ≤ 

0.05, ∗∗= p ≤ 0.01 and ∗∗∗= p ≤ 0.001. Experiments were done in biological duplicate. 

 

Table 5.2 Calculated metrics of sensor performance from SVM confusion matrices in Figure 
5.7.  

Cr6+ Sensitivity (%) Specificity (%) Accuracy (%) 

0.68 pM 85.8 99.86 98.1 

6.8 pM 100 100 100 

68 pM 98 99.9 99.7 

0.68 nM 97.2 99.9 99.6 

6.8 nM 99.6 99.8 99.8 

68 nM 99.2 99.9 99.8 

0.68 μM 99.2 99.99 99.9 

 

As3+ Sensitivity (%) Specificity (%) Accuracy (%) 

5 fM 93.9 99.5 98.8 

50 fM 87.4 99.1 97.6 

0.5 pM 99.1 99.9 99.8 

5 pM 97.5 99.9 99.6 

50 pM 97.6 100 99.7 

0.5 nM 100 100 100 
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5 nM 100 100 100 

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	 >?@8	A6BC=C:8
>?@8	A6BC=C:8B	.	DE5B8	F8GE=C:8B

     (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	 >?@8	F8GE=C:8B
>?@8	F8GE=C:8B	.	DE5B8	A6BC=C:8B

     (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 >?@8	A6BC=C:8	.	>?@8	F8GE=C:8B
>?@8	A6BC=C:8B	.	>?@8	F8GE=C:8B	.	DE5B8	A6BC=C:8B	.	DE5B8	F8GE=C:8B

 (3) 

 

5.5 Classification of Type of Heavy Metal Ion Contaminants 

We hypothesized that the metabolic consequences of As3+ and Cr6+ exposure should be 

differentiable by SERS + ML of cell lysate due to differences in the mechanism of toxicity of 

these two metals. A SVM binary classification model was trained on lysate from cells exposed to 

Cr6+ at concentrations in the range of 0.68 pM - 0.68 µM and As3+ at concentrations 0.5 pM - 0.5 

µM, at 10-fold concentration increments. These ranges span the LOD achieved with SERS + ML 

for each of the two metals. The algorithm training process follows an analogous flow (baseline 

correction, smoothing, normalization, data reduction) as described for the classification of 

concentration in the prior section (see Methods). Using this approach, Cr6+ and As3+ 

contamination can be distinguished with a high classification accuracy of 98.8% (Fig. 5.8a). The 

ability to distinguish between different types of heavy metal ions in water is of great importance 

for determining pollution source and water treatment process. Analysis of the two metal data sets 

with tSNE show there are clear differences in spectral data even when the data is not labeled 

during training (Fig. 5.8b).    
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Figure 5.8 Investigation of different types of heavy metal ion contamination. a SVM confusion 

matrix for classification between Cr6+  and As3+ for concentration range 0.68 pM to 0.68 µM and 

0.5 pM to 0.5 µM, respectively. b tSNE clustering analysis for different concentrations of Cr6+ 

and As3+ in red and blue, respectively.  

5.6 Convolutional neural network regression for sensitive quantification heavy 

metal concentrations 

In addition to evaluating how SERS + ML is able to assign a concentration to a particular 

class (Fig. 5.7), we also demonstrate that algorithms can predict the actual concentration of 

heavy metal ions in water. Monitoring concentration changes below EPA regulatory and WHO 

recommended limits is important for early detection of contaminants entering water supplies 

before adverse effects occur. CNN was used for regression analysis as it outperforms SVM in 

terms of throughput and regression error.40 Two independent 1-dimensional (1D) CNN 

regression models are trained on Cr6+ and As3+ concentration-dependent cell lysate spectral data. 

The same 10 and 14 metal concentration classes for Cr6+ and As3+, respectively, were used as 

before (Fig. 5.7). The CNN model architecture (Fig. 5.9a) contains four 1D convolutional layers 

with inputs of 22 PCA components representing the Cr6+ and As3+ concentration data. The first 

convolutional layer has the same padding and a stride of 1 to preserve the spatial dimensions of 
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the input data. Each convolutional layer uses a rectified linear (ReLU) activation function, and is 

followed with batch normalization and dropout with 20% random dropout rate to avoid 

overfitting (see Methods). As before, the spectral data is baseline corrected, smoothed, 

normalized, and dimensionally reduced using PCA before input into the model. The holdout set 

for validation is composed of 20% of the data and the remainder is used for training.  

First, we use 10-fold cross validation for hyperparameter tuning and model performance 

evaluation. The number of epochs (training cycles) in the 1D CNN was determined by 

monitoring the convergence of the training and validation loss. The loss function is calculated to 

determine the mean square error (MSE) error between the predicted values and the true values. 

As one can see in the Fig. 5.10 the algorithm converges to a loss value of approximately 0.1 at an 

epoch of 35. In order to utilize SERS + ML for a variety of contaminants in practice, it is 

important to evaluate required data set size achieving accurate results. A randomly chosen subset 

of the data composed of 100 spectra per class is first analyzed. The coefficient of determination 

(R2) of linear regression was also calculated as a complementary metric to MSE to evaluate 

model performance.41 MSE and R2 score were calculated as a function of training data size and 

plotted in Fig. 5.9b-c. As one can see the MSE (R2 score) values are high (low) for this smaller 

dataset and exhibit high fluctuations. The training dataset includes 960 spectra per class per 

exposure condition, this requires 10 min for acquisition. The control dataset contains 7680 

spectra. As before SMOTE is used for data augmentation for the concentration classes to balance 

with control data. When the training dataset has 1000 spectra per class, which contains only 40 

generated spectra, the model achieved a MSE value of 0.17 (0.23) for As3+ (Cr6+) and R2 score of 

0.98 (0.97) for As3+ (Cr6+). If further augmentation is performed using SMOTE to produce 7680 

spectra per class to balance with control, the MSE reduces to 0.09 (0.11) for As3+ (Cr6+) and R2 
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score increases to 0.99 for both As3+ and Cr6+. Thus we can achieve robust model performance 

using SERS spectra which can be acquired rapidly.   

   The 1D CNN regression model performance on the balanced data set is plotted in Fig. 

5.9d-e. The results are presented as box plots where the data in the boxes contains 50% of the 

predicted values of the holdout data, vertical lines extend to include up to 99% of predicted 

values, and the remaining outliers are represented individually by blue dots. The narrow height 

of the box plots show that SERS + ML provides concentration quantification with high precision. 

The gray shaded region at the bottom of figures highlights the LOB. The resulting LOD is 

highlighted with a vertical dashed line and is defined as having less than 0.5% overlap with 

control data. The values are in agreement with that determined by the SVM model (Fig. 5.7a-b) 

demonstrating robust performance of SERS + ML regardless of algorithm type. The 1D CNN 

regression model also allows for determining a limit of quantification (LOQ), highlighted with a 

vertical dashed line, where the overlap between neighboring concentrations is less than 0.5%. 

The values of LOQ are 68 pM for Cr6+ and 5 pM for As3+. The dynamic range spans from the 

LOQ to 68 µM for Cr6+ and LOQ to 5 mM for As3+. Chronic exposure at doses of 50 µg/L of 

arsenic in drinking water is correlated with disease, such as cancer.42 In addition to regulatory 

limits, the U.S. Environmental Protection Agency (EPA) defines a maximum contaminant level 

goal in drinking water that is known to have no adverse effects on the health of people. For 

arsenic, this value is zero. The EPA regulatory limit (10 μg/L for As3+ and 100 μg/L for Cr6+) is 

the value that is enforceable and provides a buffer for health safety. There is value, therefore, in 

detection at concentrations lower than the regulatory limit.  
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Figure 5.9 1D CNN regression model for quantitative concentration determination. a Schematic 

of process flow in training 1D CNN architectures using 22 PC from Cr6+ and As3+ concentration 

data. The 1D CNN model is 4 layers deep. The flatten layer is used to convert the data into a 1D 

array for inputting it to the fully connected dense layer. The output layer has one node with linear 

activation function to produce a predicted value. The MSE and R2 variance as a function of 

training class size for b Cr6+, and c As3+. The training data size from each class is 100, 1000, 

3000 and 7680. Each training algorithm runs 10 times to generate a mean value and standard 
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deviation for MSE and R2. CNN regression boxplots for d Cr6+ and e As3+. Boxes contain 50% 

of predicted concentration values, and vertical lines indicate the range containing 99% of 

predicted concentration values. Blue dots show the remaining 1% outliers.  

 

Figure 5.10 Overlaid learning curve from 1D CNN regression model for a Cr6+ and b As3+. The 

blue (orange) line is training (validation) mean loss, and the blue (orange) shading is training 

(validation) mean loss with standard deviation. The epoch size used in 1D CNN algorithm is 35. 

The blue dots represent training loss and the orange dots represents validation loss for c Cr6+ and 

d As3+ as a function of the training data size. 

 

5.7 Determination of Contaminant Levels in Tap Water and Wastewater Samples   

Water samples from different sources unseen by the trained algorithm are analyzed to 

demonstrate that SERS+ML is generalizable. Drinking water, water used in agriculture, and 

wastewater will contain different types of impurities which may perturb the stress response of E. 
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coli. It is not feasible to fully train a new model for every different water sample. Transfer 

learning is an effective method to analyze similar systems with small datasets while still 

achieving high prediction accuracy. During transfer learning, the weights and bias of the first and 

second convolutional layers are adjusted and other layers are fixed. In practice, this method 

could be applied by spiking contaminants in water samples for fine tuning the model for the 

water sample of interest. In order to demonstrate this principle, a 1D CNN model was pretrained 

with spectra from DI water samples spiked with As3+ at 0.05, 0.5, and 5 nM (below WHO 

recommended level) and 5, 50, and 500 µM (above WHO recommended level). Then unseen tap 

water samples are spiked with As3+ at concentrations of 1.3 nM, 13 nM and 1.3 µM. A binary 

model is assembled to predict if tap samples contain As3+ above or below WHO recommended 

levels. The number of spectra per class needed to fine tune the model is 80, which takes only 2 

min of acquisition time for the entire training dataset. The results are shown in Fig. 5.11b where 

the model was able to categorize tap water samples as above or below regulatory limits with 99% 

accuracy. It is worth noting that the different As3+ concentrations in the tap water samples is not 

the same as in the DI water samples. This is important to determining accuracy of evaluating 

unknown samples.  

 

Figure 5.11 Performance of SERS + ML on unseen tap water samples. a E. coli is cultured in 

growth media and added to tap water supplemented with As3+ salts at concentrations of 1.3 nM, 
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13 nM and 1.3 µM for 2 hr. b CNN confusion matrix of binary classification of spectral lysate 

data exposed to tap water at concentrations above and below WHO standard for drinking water 

for As3+.  

 

In order to analyze more complex samples, As3+ was also spiked in secondary treated 

wastewater from a local wastewater treatment plant. These samples are more complex as they 

contain heavy metal contaminants in the background. Table 5.3 shows the primary pollutant 

analysis summary from the sanitation district where the As concentration in the background is 

approximately 19.4 nM. The process of determining if the concentration in the unspiked sample 

is above or below WHO level for As is shown in Fig. 5.12. Wastewater samples are spiked with 

concentrations of 1.3 nM, 13 nM, 1.3 µM and 13 µM. Again spanning above and below WHO 

recommended levels, 130 nM, for model fine tuning of the above pretrained DI model used for 

tap water. Fig. 5.12 shows classification accuracy of differentiating the different classes used for 

training.  When applying the model to the unspiked sample the model predicts that the As3+ 

concentration is below WHO level with 92% accuracy. The total data acquisition time is 8 min; 

thus, acquiring samples in the field to fine tune a model in a short amount of time produces high 

accuracy.   

 

Figure 5.12 Performance of SERS + ML on unseen wastewater samples. a The model is 

pretrained on DI water b is fine tuned with waste water samples spiked with (I) 1.3 nM, (II) 13 

nM, (III) 1.3 µM, and (IV) 13 µM As3+. c The accuracy of differentiating the different As3+ 
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concentrations in spiked wastewater samples after pretraining. d The fine tuned model is able to 

determine that the concentration of As3+ in the original wastewater sample is below WHO 

recommended level with 92% accuracy.  

 

 

Table 5.3 Priority pollutants analysis summary from 2019-20 Orange County Sanitation District 

resource protection division, pretreatment program annual report.23 (As concentration of 2.52 

µg/L is equivalent to 19.4 nM)  

Monitoring 

location 

Analysis Total Average 
Concentration 

UNIT Flow  

(MGD) 

Mass  

(lbs / day) 

EFF-001 As 2.52 µg/L 101 2.12 

EFF-001 Cd 0.02 µg/L 101 0.017 

EFF-001 Cr 1.07 µg/L 101 0.898 

EFF-001 Cu 4.92 µg/L 101 4.13 

EFF-001 Hg 5.14 ng/L 101 0.004 

EFF-001 Ni 7.75 µg/L 101 6.51 

EFF-001 Pb 0.464 µg/L 101 0.39 

EFF-001 Sb 1.32 µg/L 101 1.11 

EFF-001 Se 5.81 µg/L 101 4.88 

EFF-001 Zn 24.5 µg/L 101 20.6 
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5.8 Conclusion 

The E. coli whole cell sensors are shown to transduce metal ions into chemical signals 

using the inherent metabolic stress response. Robust and sensitive SERS surfaces with high 

enhancement factors18,24,27 are able to gather large, reproducible datasets needed for ML analysis. 

The dataset size per class for training and validation is composed of 1200 spectra, which requires 

10 min when using the SERS surfaces developed by the authors. Thus we can achieve robust 

model performance using SERS spectra which can be acquired rapidly. Changes in the 

metabolite profile in E. coli cell lysate associated with a stress response to heavy metal toxins in 

water are observable in SERS spectra even when using unsupervised feature extraction methods 

such as t-SNE, which computes similarity of data in lower dimensional space. There are clear 

differences in the spectral response across the entire range of concentrations to which cells were 

exposed (Fig. 5.6). These plots represent validation of our hypothesis that the differences in 

metabolic responses observed in the cell lysate are evident in spectral data and not a result of 

algorithm training.  

When using SVM, a supervised algorithm, for data analysis, the resulting changes in 

metabolite concentrations in E. coli cell lysate are observable in SERS spectra and differentiable 

across exposure concentrations with a dynamic range of 105 (Fig. 5.7). The spectral changes are 

distinct from control samples (unexposed) down to concentrations at which the number of As3+ 

in solution per cell is approximately 1. For Cr6+ exposure this number is approximately 10 ions 

per cell. These values correlate well with the fact that the EPA regulatory limit of Cr6+ is ten 

times higher than As3+. Overall, the limit of detection of SERS + ML is 100,000 lower than the 

WHO recommended and US EPA regulatory levels (Fig. 5.7). Detection well below regulatory 

limits is beneficial because the EPA maximum contaminant level goal for As3+ is zero. 
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Consequently, this platform is promising for monitoring changes in water quality below 

regulatory limits to provide early warning of water contamination and accurate longitudinal 

tracking of contaminant concentrations. The metabolite changes detected by this system can also 

distinguish between Cr6+ and As3+ induced responses in water with a classification accuracy of 

99% (Fig. 5.8). Identifying the type of metal contamination is critical to locating the source and 

determining necessary treatment.43 When using 1D CNN regression algorithms, the LOQ is 68 

pM for Cr6+ and 5 pM for As3+ with a dynamic range of 6 orders of magnitude (Fig. 5.9). The 1D 

CNN regression model yields the same LOD as SVM (Fig. 5.7 a-b) demonstrating robust 

performance of SERS + ML regardless of algorithm type.   

Monitoring quality of tap water and water discharged from water treatment facilities will 

require analysis of samples with a distribution of impurities, which may perturb the stress 

response of E. coli. It is not feasible to fully train a new model for every type of water sample in 

the field. Transfer learning is shown to be an effective method to analyze similar systems with 

smaller training datasets while still achieving high prediction accuracy. By obtaining water 

samples and spiking with known concentrations of contaminants, a new model can be quickly 

fine-tuned with a smaller data set. Transfer learning using data obtained in several seconds is 

sufficient to determine if drinking water or wastewater is unsafe (Fig. 5.12), i.e., above or below 

WHO recommended limits with greater than 96% accuracy. For more complex samples, 

secondary treated wastewater, the fine-tuned models can determine if the unspiked waste water 

sample is above or below recommended safety limits with 92% accuracy.  While here we 

demonstrated that transfer learning is an effective way to evaluate one type of metal contaminant 

in an ‘unknown’ samples with multiple background contaminants, we envision an assay 

approach could be used to examine water samples for the presence of other toxins. Overall, we 
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demonstrate that trained algorithms are rapidly generalizable across different water samples. The 

whole cell SERS + ML platform is promising for application to other water sources, such as 

recycled water, and to other metals of concern such as lead, mercury and cadmium. 

5.9 Methods 

5.9.1 Sensor Fabrication 

SERS surfaces are fabricated in microfluidic channels with a capacitor architecture to 

apply an AC potential across electrodes (Fig. 5.1) to induce electrohydrodynamic (EHD) flow.  

Fabrication is performed silicon substrates (NOVA Electronic Materials, P-type, boron doped 

<100> with resistivity of 0.001-0.005 ohm-cm) with dimensions of 15 mm × 15 mm that are spin 

coated with poly(styrene-b-methyl methacrylate) (PS-b-PMMA, Mn S-b-MMA 170000-b-

145000 g mol-1) thin films of approximate thickness of 25 nm; Si substrates serve as the working 

electrode. Indium tin oxide (ITO) coated glass slides (Delta Technologies) serve as the counter 

electrode. EHD, which results as Au NPs attach to the working electrode and locally perturb the 

surface potential, is used as an external driving force for crosslinking reactions between 40 nm 

lipoic acid functionalized Au NPs (Nanocomposix, 0.13 nM) to form anhydride linking group, 

which define nanogap spacings. Chemical cross linking reactions between NP leads to Au NP 

clusters with reproducible SERS signal over a large area.28   

Silicon substrates were cleaned by 20% v/v hydrofluoric acid (HF, Fisher Scientific, 

48%) / deionized (DI) water (Milli-Q Millipore System, 18.2 MΩ cm-1) for 5 minutes to remove 

the native oxide layer and then immersed in DI water to regrow a thin oxide layer. The potential 

of HF to cause severe injury mandates extreme caution during usage. Random copolymer 

poly(styrene-co-methyl-methacrylate)-ɑ-hydroxyl- ω-Tempo moiety (PS-r-PMMA, Polymer 
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Source, Mn =7400, Mw =11800, Mw /Mn =1.60, 59.6 mol% Polystyrene content) random 

copolymer dissolved in toluene (Fisher Scientific), 1 wt%, was spin-coated at 3000 rpm for 45 

seconds on silicon substrates. PS-r-PMMA films were annealed under vacuum at 170 °C for 48 

hours followed by a rinse with toluene to leave a brush layer. PS-b-PMMA is spin coated at 5000 

rpm for 45 seconds and then annealed for 72 hours at 170 °C. In order to selectively 

functionalize PMMA domains on PS-b-PMMA diblock copolymer films with amine functional 

groups for crosslinking with Au NPs, PS-b-PMMA/Si were immersed in dimethyl sulfoxide 

(DMSO, Sigma Aldrich) for 5 min and then 5 % vol ethylenediamine (ED, Sigma Aldrich) in 

DMSO for another 5 min. ITO counter electrodes were cleaned by ethanol (Sigma Aldrich), 

isopropyl alcohol, and DI water and then dried by N2 before attaching a platinum wire and silver 

paste (Epoxy Technology) to make electrical contact.   

A microfluidic cell was formed between electrodes using a 90 µm spacer layer composed 

of 3M 9816L. A solution of 2 µL N-hydroxysulfosuccinimide (s-NHS, Sigma Aldrich), 20mM, 

and 2 µL 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC, Sigma Aldrich), 8 mM, in a 

2-(Nmorpholino) ethane sulfonic acid buffer (MES, Sigma Aldrich, 0.1 M, pH=4.7) added to a 

0.25 mL solution of 2.6 nM lipoic acid functionalized Au NP solution. 20 µL of the solution 

containing Au NP, s-NHS, and EDC is added to the microfluidic cell. An AC electrical stimuli 

with potential of 5 Vp and frequency of 100 Hz is applied for 2 min to deposit a seed layer to 

induce EHD flow. The second deposition step was conducted at a potential of 5 Vp and 

frequency of 1000 Hz for 2 min to grow Au NP clusters. After deposition, the electrode cell was 

dismantled and the sensor surface was thoroughly rinsed with DI water and isopropyl alcohol 

(IPA, Sigma Aldrich) and then dried with N2.  Supplementary Fig. S5.4 show reproducible 

intensity across the SERS surface and Supplementary Fig. S5.5 compares to intensity from a 
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benzenethiol monolayer obtained from samples fabricated using EHD and drop casting, where 

the latter has lower signal and highly variable intensity.   

5.9.2 Media, Heavy Metal and Carbon Source Supplement 

M63 media (VWR Life Science) solution was made by first diluting 1 liter of pre-

sterilized M63 5x (BioWORLD, GeneLinx International Inc.) stock solution using autoclaved 

Millipore water. Filter-sterilized magnesium sulfate anhydrous (MgSO4, Fisher Scientific) water 

solution, of volume 1 mL and molarity of 1 M, was added to the diluted media solution 

following standard protocol. Sodium arsenate stock solution (RICCA, 100 mM), was first filter-

sterilized and then diluted with sterilized DI water to reach concentrations of 0.1 mM and 0.1 

µM and stored under 4 ℃. Potassium dichromate (Fisher Scientific) solution was made by first 

dissolving sodium dichromate crystal into sterilized DI water to reach concentrations of 17 mM, 

and then the solution was filter-sterilized and diluted with sterilized DI water again to reach 

concentrations of 0.34 mM and 0.34 µM and stored at 4 °C. Prior to exposure to bacterial 

cultures, working solutions were placed at room temperature for 30 min to equilibrate to ambient 

temperature, and then titrated to the culture to target exposure concentration. Anhydrous 

Dextrose (glucose, Fisher Scientific), 1 g, was dissolved in 10 mL DI water and filter-sterilized 

to form 10% (w/v) glucose stock solution, which was added into the media solution later to 

provide energy source for bacteria. 

5.9.3 Growth and Subculture Condition 

A sterilized wooden applicator was used to streak Escherichia coli K12 strain MG1655 

(Yale Stock Center via the Goulian Lab) frozen stock onto an lysogeny broth (LB, IBI scientific) 

agar plate. The plate was then placed into an incubator and incubated stationarily for 18 hr. A 
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single colony was picked from the plate after incubation and used to inoculate 5 mL sterile LB 

solution in a test tube. The inoculated culture tube was then placed in the shaking incubator (I 

series 24R, New Brunswick) set at 37 ℃ and speed of 250 rpm for 18 hours. After incubation, 

the final optical density (OD) was approximately 1.5 as measured with a colorimeter (WPA 

CO7500 colorimeter, Biochrom Ltd., Cambridge, UK). From the shaking culture,  3 mL was 

transferred to a 50 mL conical centrifuge tube and centrifuged at the speed of 5000 rpm for 5 min 

(Sorvall Legend X1R centrifuge, Fisher Scientific). Then the supernatant was disposed and the 

pellets were resuspended in 1 mL of 1✕ phosphate-buffered saline (PBS, Fisher Scientific, 10✕ 

solution) solution. The pellet-PBS mixture was transferred to 1 mL centrifuge tubes, centrifuged 

at 5000 g for 5 minutes (accuSpin Micro 17, Fisher Scientific) and the supernatant was disposed. 

The washing step was repeated. After, the pellet was resuspended in 1 mL M63 defined media, 

resulting in a milky M63-pellet mixture with very high OD. M63 media supplemented with 1% 

(w/v) glucose was pipetted into sterilized test tubes and the pellet-M63 mixture was titrated into 

the test tubes to reach the final OD of 0.5. The total volume of liquid in the tube was 5 mL. Three 

tubes, having a 15 mL culture, were prepared for a single colony. These tubes were then moved 

to the shaking incubator for subculturing with the shaking speed set at 250 rpm and temperature 

at 37℃ for 6 hr. Then, the 15 mL subculture was transferred to 50 mL centrifuge tubes, 

centrifuged twice at a speed of 5000 rpm for 5 min and washed with 1 mL of PBS twice. The 

subculture was resuspended in 1 mL M63 defined media before being exposed to heavy metals. 

5.9.4 Bacterial Exposure to Heavy Metal and Growth Curve Measurement  

E. coli (K12 MG1655 strain) is cultured in defined media M63 to achieve an optical 

density of 0.5 and supplemented with 1% (w/v) glucose to mitigate conflating stress from heavy 

metal stress ions with nutrition limitation. The subcultures prepared as described in the prior 
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section were washed with 1 mL PBS twice and resuspended in M63 defined media. M63 media 

supplemented with 1% glucose (w/v) was pipetted into wells of white-opaque 96-well 

microplates. Different concentrations of heavy metal (NaAsO2 or K2Cr2O7) was added to the 

wells. Specifically, 0, 1, 10, 100, 1000 µM of NaAsO2 and 0, 0.34, 3.4, 34, 170 µM of K2Cr2O7 

were exposed to cultures for 2 hr. The resuspended culture was pipetted into the wells to make 

the OD of the culture 0.5. Each condition was done in biological duplicate. After pipetting, the 

microplate was placed in the SkanIt Microplate Reader (Thermo Scientific) at 37 ℃ and shaken 

at a speed 300 rpm and high force. The OD of the culture in each well was measured every 5 min 

for 6 hours to generate growth curves. 

Preparation of cultures exposed to tap water and wastewater from Orange County 

Sanitation District (OCSD) involves similar steps as those exposed to DI water spiked with As3+, 

except after washing with PBS, the subculture was resuspended in tap water or wastewater 

supplemented with 1% (w/v) glucose at a OD of 0.5, and the heavy metal salts were dissolved in 

tap water or wastewater instead of the defined media. The secondary treated wastewater was 

treated by primary sedimentation followed by activated sludge process with nitrification and 

denitrification at OCSD. Before spiking with As3+, the secondary treated wastewater was filtered 

with 0.45 µm MCE Membrane (MF-Millipore).  

5.9.5 Lysate Sample Preparation 

After two hr exposure, the washing steps used to prepare subculture was performed again 

to eliminate residual media and heavy metals from the pellet and avoid mixing of these with 

metabolites released during lysing. The pellet was then resuspended in 100 µL Millipore water 

and heated to a temperature of 97ºC for 30 min to lyse the cells. Then the pellet-water mixture 
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was centrifuged at 12000 g for 10 min. Then 100 µL supernatant in each tube was evenly divided 

into 4 parts by pipetting into 4 different 1 mL sterile centrifuge tubes, 25 μL each transfer. These 

supernatant samples were placed in the -20 ℃ freezer to store for further analysis.  

5.9.6 Data Acquisition 

Spectral data is acquired by placing a droplet of with volume of 25 µL of lysate from 

E.coli cells untreated (control) or exposed to heavy metal ion solutions at various concentrations 

on SERS surfaces. The measured concentration range for NaAsO2 was 0.65 pg/L to 650 mg/L 

(13 concentrations) and for K2Cr2O7 was 0.1 ng/L to 10 mg/L (9 concentrations) spaced by one 

order of magnitude as shown in Table 1. The corresponding concentrations in molarity of As3+ 

and Cr6+ are shown in Table 5.4.   

Table 5.4 Cr6+ (10 classes) and As3+ (14 classes) for machine learning models.  C is the control 

class.  Superscripts indicate SERS data acquired on the same SERS surface.   

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Cr6+  C 0.68 
pM* 

6.8 
pM* 

68 
pM* 

680 
pM† 

6.8 
nM† 

68 
nM† 

680 
nM‡ 

6.8 
µM‡ 

68 
µM‡ 

X X X X 

As3+ C 5 
fM§ 

50 
fM§ 

500 
fM¶ 

5 
pM¶ 

50 
pM¶ 

500 
pM¶ 

5 
nM¶ 

50 
nM¶ 

500 
nM# 

5 
µM|| 

50 
µM|| 

500 
µM|| 

5 
mM|| 

 

For each exposure concentration, a dataset of 1200 SERS spectra is acquired using a Renishaw 

InVia micro Raman system with an integration time of 0.5 s, 146 µW laser power at 785 nm 

excitation wavelength and a 60X water immersion lens with 1.2 NA. Raman maps were acquired 

in an array of 20 x 20 with 3 µm steps between measurement points, resulting in 400 spectra per 

map. Three maps were acquired over different regions of the sample surface resulting in a total 

of 1200 spectra per concentration for each metal ion defining a class for initial training of 

machine learning algorithms. The dataset acquisition takes 10 min and the droplet does not 
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evaporate during this period of time. In order to ensure the algorithm is not being trained to 

detect batch-to-batch variations of SERS surfaces, between two and six concentration classes, 

including control samples, were acquired on different regions of the same SERS surface 

(droplets exposed to isolated regions), indicated by superscripts in Table 1.  Furthermore, the 

control group, prepared under the same conditions in the absence of Cr6+ or As3+ exposure, were 

measured in from lysate samples prepared in biological duplicate on different days, from the 

eight different SERS surfaces, also fabricated on different days, used for the other metal 

concentrations exposure conditions to train algorithms to not identify differences based on 

normal variability of experimental conditions such as culture growth, device fabrication, and 

processing steps. 

5.9.7 Pre-processing of SERS Spectra Data 

For data preprocessing, asymmetric least square correction is utilized for baseline 

correction, and a Savitzky–Golay filter is used for data smoothing. In order to normalize the data, 

the vibrational band of silicon at 520 cm-1 is used as an internal standard and set to 1. The 

diblock copolymer layer, between Si and NP clusters, is 25 nm thick and thus Si surfaces is not 

affected by the signal enhancement of Au NP clusters. The metal ion concentration unit was 

labeled with a log scale since concentrations investigated span several orders of magnitude. 

Principal component analysis (PCA) was performed for dimensional reduction. We determined  

that 22 PCA components captured 93.3% and 94.9% of variances for Cr6+ and As3+ concentration 

data, respectively. t-distributed stochastic neighbor embedding (tSNE) was also performed to 

visualize the concentration data in lower dimensional space and show there are spectral 

differences in the data observed without labeling data for algorithms.    
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5.9.8 Support Vector Machine Classification Model  

Two independent support vector machine (SVM) discriminative models are trained on 

Cr6+ and As3+ exposed lysate spectra data for the classes shown in Table 1. The training datasets 

are imbalanced since the size of the control class dataset (9600 spectra) is 8 times larger than the 

classes corresponding to a single concentration (1200 spectra). The synthetic minority over-

sampling technique (SMOTE) is used to oversample skewed classes in the dataset and achieve a 

balanced dataset. SMOTE works by selecting a random example from the minority class, then k 

of the nearest neighbors for that example are found. A randomly selected neighbor is chosen and 

a synthetic example is created at a randomly selected point between the two examples in feature 

space. SMOTE can alleviate overfitting by increasing stability with respect to random 

fluctuations and thereby increase the generalization capability of the classifier.35 SMOTE is 

performed after data split within each cross-validation fold to prevent data leakage.  

The SVM models are trained using 22 PCA components. A holdout set is composed of 

20% of the data that is used for final validation and not seen at all during training. The model is 

trained with the remaining 80% of the spectral data labeled with their appropriate class to define 

a hyperplane separating data into the correct classes. SVM models are trained with Scikit-learn 

using default parameters, with radial basis function (RBF) kernel, Margin parameter (C) =1, and 

𝞬=scale. In order to evaluate SVM model performance, sampling cross validation is performed 

using 10-fold stratified sampling on the training  dataset for initial evaluation of model 

performance. Here, each fold is shuffled and used as validation data to estimate prediction 

accuracy. The cross-validation results are in the Supplementary Fig. S6 and Fig.S7. The final 

model is trained with 80% training data and tested with 20% holdout set.  
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5.9.9 Statistical Analysis 

The statistical significance between the OD when exposed for 2 hours to different heavy 

metal concentrations (Fig. 3e and f) was calculated using a two-tailed Student’s t-test. All growth 

experiments were done with biological duplicates (n=2) in 96-well plates. The OD after 2 hours 

of exposure was calculated as the average of three replicate wells and the error bars represent the 

standard deviation of the OD of the three wells. The degrees of freedom for all statistical 

calculations in the two plots are 2. The t values and p values are shown in Table 5.5.  

Table 5.5 t value and p values of final OD after 2-hour exposure to heavy metals.  

[As3+] (μM) 0 0.68 6.8 68 340 

t value N/A 0.1677 0.3912 30.5232 5.8938 

p value N/A 0.8822 0.7334 0.0011 0.0276 

[Cr6+] (μM) 0 1 10 100 1000 

t value N/A 0.4158 0.3767 1.0135 1.1834 

p value N/A 0.7179 0.7426 0.4175 0.3583 

 

5.9.10 Convolutional Neural Network Regression Model 

The 1D CNN model architecture utilizes Keras framework with Tensorflow backend. 22 

PCA components are used as input for both Cr6+ (0.68 pM - 68 µM) and As3+ (5 fM - 5 mM) 

exposed lysate spectra datasets, respectively. The first convolutional layer is the data input layer, 

which has 22 kernels with size 7 and 1 stride to preserve the spatial size with the same padding. 

The second convolutional layer also has 22 kernels with size 7. The third and fourth 
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convolutional layers are identical, with 44 kernels with size 7. Each convolutional layer followed 

by a batch normalization layer and a dropout layer with 20% random dropout rate. Batch 

normalization mitigates changes in the distribution of network activations due to the change in 

network parameters during training. Dropout layers are used to prevent overfitting. Followed 

with convolutional layers, a flatten layer is added to reshape the 2D extracted feature into a 1D 

vector followed by a dropout layer. Fully connected layers with 22 nodes with a L2 norm 

regularization (0.001) and ReLU activation function are applied to process the 1D vector. 

Finally, using the linear function, the weighted sum of the flatten layer is condensed into a one-

unit neuron containing the prediction result between 0 and 9 (Cr6+) or 13 (As3+), where the 

continuous score supplies predicted concentrations. 

Hyperparameters of the 1D CNN regression model including number of hidden layers 

and units, activation function, dropout rate, batch size, kernel size and number of epochs are 

optimized by monitoring training and validation loss during 10-fold cross validation. To be 

specific, EarlyStopping was used by monitoring the increase in validation loss to determine the 

number of epochs. Early termination was determined when the validation loss was increasing for 

10 consecutive epochs, indicating that the 1D CNN had reached maximum convergence. During 

10-fold cross validation, they all reach the convergence at approximately 35 epochs, which was 

thus chosen for the final model. During 10-fold cross validation, the loss function is calculated to 

determine the average of the squared differences between the predicted and true values. The 

overlaid learning curve from 10-fold cross validation shows no obvious gap between training 

loss and validation loss, which show the absence of overfitting.  

Due to the large size of control dataset acquired to capture variability of experimental 

conditions, including biological culture conditions and device fabrication, the data classes are 
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imbalanced. Again SMOTE is used to balance the training dataset and here the training dataset 

size is varied to contain 100, 1000, 3000 and 7680 randomly selected spectra from each class to 

determine the size of needed training data for accurate predictions. As before 20% of the spectral 

data is set aside as a holdout set, i.e., not used in training. The performance of the 1D CNN 

regression model is evaluated by calculating mean square error (MSE) and coefficient of 

determination (R2) scores for four different dataset sizes. The R2 metric is the ratio of explained 

sum of squares and the total sum of squares and is sensitive in the order of predicted and actual 

targets. MSE and R2 score mean values and standard deviation (std) are calculated by running the 

calculations ten times. 

The final CNN model is trained with tuned hyperparameters on 80% of the spectral data 

(training set) and the model performance is evaluated on the remaining 20% of the spectral data 

(hold out set), with batch size 44, number of epoch 35, and using Adam for gradient descent 

optimization. The holdout set in the classes are unbalanced where the control class has 1920 

spectra and other classes have 240 spectra. We thus use random downsampling of the control to 

include 240 spectra to balance the data and represent in the box plot on Fig. 5d-e. 

5.9.11 Transfer Learning 

 The transferred convolutional neural network is built by Tensorflow 1.8 in Python 3.6. 

The 1D CNN binary classification model is pre-trained to identify the heavy metal concentration 

in DI water. The classes contain spectra from DI water samples spiked with concentrations of 

As3+ of 0.05 nM, 0.5 nM, and 5 nM (below WHO recommended level) and 5 µM, 50 µM, and 

500 µM (above WHO recommended level). The pre-trained model is then transferred to identify 

if the As3+ concentration in tap water samples is above or below WHO recommended level.  The 
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concentrations tested are 1.3 nM, 13 nM, (below) and 1.3 µM (above). For wastewater, the four 

classes tested contain 1.3 nM, 13 nM, (below) 1.3 µM, and 13 µM (above) concentration of As3+. 

The fully connected layer and output layer of the pretrained model is replaced with an output 

layer which has 1 node with sigmoid activation function. The weights of the third and forth 

convolutional layers are frozen throughout fine tuning, and the weight of the first and second 

layer are set to be trainable. Before fine tuning, the model is compiled with binary cross-entropy 

as loss function, accuracy as metric, and Adam optimizer with a 0.001 learning rate is used. 80 

examples from each class from the new water type are used to fine tune the compiled the 

transferred model. The performance of the transferred model is tested by 1040 tap water samples. 
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5.10 Supplemental Information  

 

Figure S5.1 a. Scanning electron microscopy image of sensor surface with field of view of 

approximately 30 μm2. The scale bar is 4 µm. Background subtracted Raman spectra from b. the 

BW Tek i-Raman Plus (Model: BWS465-785S) portable Raman system and c. the Renishaw 

Invia micro Raman system. No modes observed in the ranges of 800 - 900 cm-1 and 1200 - 1450 

cm-1 from gas phase benzenethiol Raman spectra. These featureless regions are highlighted by 

dotted squares and used for signal to noise ratio calculation. The inset of b. and c. shows the 

intensity of the SERS signal from featureless regions for ease of visualization. The peak intensity 

used for signal to noise ratio calculation at 1075 cm-1 represent C−C symmetric stretching and 

C−S stretching vibrational modes.1 
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Figure S5.2 Confusion matrices from 10-fold cross validation of SVM classification models for 

Cr6+ obtained from the training dataset. 
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Figure S5.3 Confusion matrices from 10-fold cross validation of SVM classification models for 

As3+ obtained from the training dataset. 
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Figure S5.4 Waterfall plots of 20 randomly chosen spectra at concentrations of a. 10x and b. 

1000x LOD from Cr6+ (6.8 pM) and c. 10x and d. 1000x LOD from As3+ (0.5 pM) showing 

uniform signals across sensor surfaces. 
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Figure S5.5 Randomly selected spectra from SERS surfaces fabricated by a. Drop-casting Au 

nanoparticles and b. with EHD flow. Per convention, the silicon peak at 520 cm-1 (not shown) is 

used as an internal standard and normalized to 1 for all spectra. The total SERS intensity is 

different in Fig. a and b due to different enhancement factors from the two types of surfaces. 
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