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Abstract

The paradigm of large research communities collectively working on a small number of model
bacteria such as  Escherichia coli and Bacillus subtilis is changing. While these classic model
bacteria  will  continue  to  be  important  for  advanced  systems  biology  and  new  technology
development, we envision that increasingly small research teams will be deeply investigating
their  own  favorite  strains,  for  example  as  new  hosts  for  metabolic  engineering  or  as  key
members of a complex microbiome. Given the lack of a research community and the sheer
number of possible bacteria to interrogate, the development and application of technologies to
rapidly  and  inexpensively  advance  these  unstudied  strains  to  ‘“model-organism’” status  is
imperative. Here, we discuss the minimal information and tools necessary to develop a new
model bacterium and how existing approaches can bring this power into the hands of a single
investigator.

Introduction

Microbiology-based solutions have been proposed for  many of  our most  pressing planetary
challenges  including  human  health,  sustainable  agriculture,  biomanufacturing,  and
environmental  stewardship  [1].  Meeting  these  challenges will  require  the  molecular  genetic
investigation of a significant number of bacteria for which no literature exists, for example the
newly isolated members of a complex microbiome  [2] or the development a new autotrophic
host for metabolic engineering of advanced chemicals [3]. The investigation of a new bacterium
poses  unique  challenges,  the  most  obvious  being  the  lack  of  a  research  community  with
available genetic tools,  strain collections,  and a wealth of accumulated knowledge,  such as
those that have been developed in E. coli and B. subtilis. Therefore, translating the potential of
these molecularly unstudied bacteria into applications will be hindered unless we accelerate the
development of new model bacteria. 

In  this  short  review,  we  present  some  of  the  minimum criteria  necessary  to  move  a  new
bacterium  to  ‘“model-organism’” status:  (1)  An  accurate  parts-list  of  genes,  proteins,  and
promoters,  (2)  a  genetic  toolbox,  (3)  accurate,  data-driven  gene  annotations,  and  (4)
computational  platforms  for  data  integration  and  systems-level  analyses  (Figure  1).  We
describe existing technologies and resources available to meet each of these four criteria with a
focus on approaches that can be applied by a single investigator rapidly and at a relatively low
cost.  
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An accurate genomic parts-list

A complete and accurately assembled genome, with precise annotation of the structure and
function of its features, is a crucial foundation for the study of any bacterium. The development
of  next-generation  sequencing (NGS) technologies has made bacterial  genome sequencing
routine. Though these assemblies are often unclosed draft  genomes, due to the short  read
lengths of the Illumina sequencing platform and repeat elements in bacterial genomes, third-
generation  sequencing technologies  that  produce  longer  read  lengths,  such  as PacBio  [4],
should help to seal the gaps and generate complete genome sequences. This hybrid strategy
combining both  short-read  and long-read sequencing  has shown its  power  for  high  quality
genome assembly  [5].  Despite  its  higher  error  rate  relative  to  Illumina  sequencing,  PacBio
sequencing data has improved to the point that complete bacterial genome assemblies can be
achieved using this platform alone [6], although the cost is still significantly higher than Illumina
sequencing.  An added benefit  of  the  PacBio  platform is the utility  of  these data  to  identify
methylated bases and thus define all methylated motifs (the methylome) in the genome [7]. In a
recent  study,  the  methylome  of  230  bacteria  and  archaea  was  determined  using  PacBio
sequencing data, and revealed 834 different methylated motifs  [8]. As described below, there
are  downstream  benefits  to  both  a  complete  genome  sequence  (e.g.for  example,  for
normalization of transposon site sequencing data) and identification of methylated motifs (for
designing strategies to increase transformation efficiency), therefore we recommend generating
PacBio data for any bacteria being advanced to model-organism status.  

There are a number of annotation pipelines for calling genes and assigning putative functions
including the Integrated Microbial Genome (IMG) [9] and the Rapid Annotation using Subsystem
Technology (RAST) systems [10]. Nevertheless, the accuracy of the gene calls and the protein
function  predictions  are  less  than  ideal,  in  particular  for  a  strain  under  more  in-depth
investigation. Furthermore, these annotation servers do not typically identify gene structures
beyond the coding sequence, leaving critical information such as promoters, transcriptional start
sites (TSSs) antisense transcription, and small regulatory RNAs (sRNA) unknown. Now well-
established transcriptomic  and proteomic approaches can be applied  at  low cost  to  rapidly
define the genomic parts-list of an organism. Differential RNA-seq (dRNA-seq) has become the
preferred approach for precise mapping of 5’ TSSs in bacterial genomes as this approach can
differentiate between primary and degraded/processed transcripts [11]. dRNA-seq requires the
preparation and sequencing of two libraries, one treated with terminator exonuclease and one
without,  and  has been  used  to  identify  thousands of  TSSs in  E.  coli including over  5,000
antisense transcripts  [12]. Putative sRNAs can  be  also be readily mapped using RNA-seq as
illustrated in Synechocystis sp. PCC 6803 [13] and Acinetobacter baumannii [14]. 

Another  established  approach,  termed  proteogenomics,  uses  mass  spectrometry-based
proteomic  data,  to  search  against  pre-existing  protein  databases,  to  identify  novel  proteins
missed by the primary annotation and to modify gene models [15]. Application of this approach
to  Mycobacterium smegmatis validated hundreds of predicted gene models and identified 63
new proteins  [16].  Proteogenomics can be coupled to transcriptomics to further refine gene
models. For example, in the sulfate-reducing bacterium Desulfovibrio vulgaris, a combination of
proteomics, tiling microarrays, and RNA-seq was used to identify over 1,000 transcriptional start
sites and revise 505 protein annotations including 127 proteins that had been missed by the
original genome annotation [17].  



Genetic tools and strain collections 

The ability to modify the genome is essential for hypothesis testing and for the development of
any new bacterial model system. Numerous such approaches have been developed over the
years using random strategies (i.e.  transposon mutagenesis)  or targeted strategies such as
gene deletions, CRISPR-based genome editing, and recombineering. In recombineering, linear
DNA  substrates  are  introduced  into  the  host  cell,  which  expresses  a  bacteriophage
recombination system [18]. Only very short homology regions are needed for the recombination
event.  Recombineering is very efficient for site-specific mutagenesis, in-frame gene deletions,
and gene replacements  [19]. By mining for species-specific phage recombination proteins, a
number  of  groups  have  adapted  recombineering  to  new  systems  including  Photorhabdus
luminescens [20] and Vibrio natriegens [21].   

The CRISPR-Cas9 system has attracted a lot of attention as a tool for precise and sequence-
specific genome editing in eukaryotes, but its application as a genome editing tool in bacteria
has  been  limited  due  to  toxicity  issues  of  Cas9  and/or  the  relative  inefficiency  of  the
nonhomologous end joining pathway in bacteria. Nevertheless, there are a number of recent
advances in using CRISPR technology to engineer bacterial genomes and interrogate bacterial
physiology {Selle:2015dj}[22]. Here, we just highlight two such approaches, and how they have
been applied to multiple, genetically diverse bacteria. The first is coupling recombineering with
the  use  of  the  endonuclease  Cpf1  as  an  alternative  to  Cas9.  Cpf1  is  an  RNA-guided
endonuclease that is both smaller and simpler compared to Cas9, only requiring a single guide
RNA for genome targeting.  This hybrid approach coupling Cpf1-CRISPR and recombineering
has recently been used to edit the genomes of a phylogenetically diverse range of bacteria
[23,24][22,23].  The  second  is  the  use  of  a  catalytically  inactive  Cas9  to  regulate  gene
expression of target gene(s), typically for repression using CRISPR interference (CRISPRi) [25-
27][24-26]. In a recent example, CRISPRi was applied to the cyanobacterium Synechococcus
sp. PCC 7002 to redirect central carbon metabolic flux to increased production of lactate  [28]
[27]. 

For  any  new bacterium,  the  rapid  establishment  of  genetic  systems  and  genetic  parts  for
engineering  is  crucial,  and  recent  advances  will  aid  in  the  streamlining  of  genetic  tool
development. One potential roadblock is bacterial restriction modification (RM) systems that can
degrade foreign DNA, thereby reducing transformation efficiency. To overcome RM systems,
multiple  groups have  expressed  methyltransferases  from the  target  bacterium in  E.  coli to
‘“mimic’” the host methylation pattern, thereby increasing the transformation efficiency by orders
of  magnitude  [29,30][28,29].  A second  challenge  is  that  given  the  myriad  of  DNA delivery
methods,  genetic  parts,  and genetic  systems available for  strain  engineering,  the individual
testing  of  all  of  these parameters can be tedious,  time-consuming,  and prohibitively  costly.
Therefore, methods to parallelize the development and testing of genetic parts and methods is
crucial to accelerate the development of new model bacteria. To streamline the optimization of
DNA  delivery  by  electroporation,  a  microfluidic-based  approach  was  used  to  optimize
electroporation parameters in  three3 diverse bacteria  [31][30]. A number of synthetic biology
efforts have described high-throughput approaches for characterizing new genetic parts.  For
example, in the commensal human gut bacterium Bacteroides thetaiotaomicron, multiple groups
have taken a systematic and high-throughput approach to develop a collection of characterized
genetic parts including inducible and constitutive promoters, RBSs, and reporter genes. These
tools have been used to modulate the behavior of B. thetaiotaomicron in the mouse gut [32][31],
image the spatial distribution of several species of Bacteroides in the gut [33][32], and regulate
the  activity  of  bacterial  sialidase  expression  using  a  small  molecule  inducer  introduced  in



drinking water [34][33]. Lastly, a  ‘“magic pool’” strategy has recently been developed enabling
the parallel  testing  of  hundreds of  transposon  vector  constructs  in  parallel  against  a  target
bacterium [35][34]. This approach involves the use of DNA barcodes to mark each transposon
vector design,  which can then be read-out using next  generation sequencing to identify the
optimal  genetic  system.  Using  this  magic  pool  method,  whole  genome transposon  mutant
libraries were rapidly constructed in five5 different genera of bacteria. 

Part of the attraction of established model bacteria is the availability of comprehensive strain
collections for genome-wide screening or targeted hypothesis testing,  for example the gene
deletion collections in  E. coli [36][35] and B. subtilis [37][36]. While the resources required for
generating such collections are typically outside the capacity of a single researcher, there are
alternative  approaches  including  the  archiving  of  transposon  mutant  collections  [38][37].
Traditionally,  the bottleneck in creating a large transposon mutant library has been the cost
associated  with  mapping all  of  the  insertion  locations  for  each  strain.  One solution  to  this
problem  is  the  large-scale  rearraying  of  transposon  mutant  strains  in  a  microplate  format
followed by  a  ‘“smart-pooling’” strategy to  map the identity  of  all  of  the  strains using next-
generation  sequencing.  This  strategy  has  been  applied  to  a  number  of  bacteria  using  B.
thetaiotaomicron [39][38] and S. oneidensis [40][39]. While this workflow is greatly facilitated by
liquid  handling  automation,  we  find  that  these  machines  are  often  available  to  individual
researchers, for example in shared core facilities. 

Accurate gene function annotation with functional genomics

Many computational-based gene annotations are incorrect or misleading, particularly when the
protein of interest lacks close homology to an experimentally studied relative [41][40]. While we
currently cannot achieve the knowledge of a single model bacterium investigated for years by
an entire research community,  it  is possible to make substantial  progress on gene function
annotation  using  functional  genomics  for  an  entirely  unstudied  isolate  bacterium.  While  a
number  of  approaches  have  been  developed  to  tackle  the  challenge  of  gene  function
determination  including  high-throughput  enzymology  coupled  to  metabolomics  [42][41],  the
currently most scalable approaches are those based on high-throughput genetics, in particular
the large-scale phenotyping of comprehensive mutant libraries, either as archived single strains
[43][42] or in parallel using competitive pooled fitness assays [44][43]. Currently, transposon site
sequencing (TnSeq) [45][44] and its many variants [46,47][45,46] are the most commonly used
approaches  for  measuring  the  phenotypes  of  thousands  of  genes  in  parallel  using  next-
generation sequencing. TnSeq has been applied to a wide range of bacteria and for a number
of purposes including the identification of essential genes in cyanobacteria [48][47] and phage
sensitivity determinants in Caulobacter crescentus [49][48]. 

Inherent in the above genetics strategies is that the phenotype of a mutation provides insight
into the function of the gene. If one measures the phenotypes of genes across a wide range of
conditions,  then  the  functions  of  unknown  genes  can  be  inferred  by  the  similarity  of  their
phenotypes to genes of known function  [43,44][42,43]. To accelerate the assaying of mutant
phenotypes, a recent alteration to transposon site sequencing was developed, random barcode
TnSeq or RB-TnSeq [47][46], which simplifies the relative measurement of mutant abundance
using DNA barcode sequencing. To demonstrate the scalability of this approach, RB-TnSeq was
applied to 25 bacteria and thousands of genome-wide fitness assays were performed [50][49].
Using these data, phenotypes for thousands of previously hypothetical proteins were identified,
many of which had phenotype profiles that matched those of a gene with a known function.  



CRISPR-Cas9 based approaches for large-scale genetics offer some advantages over TnSeq-
like approaches including user-guided sequence specificity and the ability to interrogate the
phenotypes  of  essential  genes in  more  depth.  In  a  recent  study,  CRISPRi  was  performed
against all essential genes in  B. subtilis and the impact of transcriptional repression of each
essential gene was individually assessed by measuring cellular morphology and growth in the
presence of different small molecule inhibitors [51][50]. Using these data, the mode-of-action of
previously  uncharacterized  antibiotics  could  be  inferred  and  new  linkages  between  cell
morphology and fitness could be uncovered. CRISPRi also has potential as a high-throughput
tool for interrogating the impact of transcriptional repression in bacteria, as recently illustrated in
a pooled, competitive growth format in E. coli [52][51]. 

As genetics are applied to an ever increasing number of bacteria, the ability to phenotype these
mutants (either as single strains or pooled libraries) will become the bottleneck. While platforms
such as phenotype microarrays are powerful for interrogating the fitness of single strains against
many growth conditions [53][52], this approach has not been currently scaled genome-wide. In
addition, relatively simple growth phenotypes do not capture the environmental complexity of
bacteria in their native ecosystems, for example in a plant-bacterium interaction. To illustrate the
importance of  assaying  ‘“natural’” conditions,  Barczak and colleagues used  high-throughput
microscopy and automated image analysis to assay the survival of ~26,000 individually arrayed
transposon mutants of the human pathogen  Mycobacterium tuberculosis within macrophages
[54][53].  Using these  data,  they  were  able  to  predict  and  validate  a  functional  relationship
between two pathogenicity genes, as well as identify two previously uncharacterized genes who
role in infection whose precise roles remain to be elucidated. To extend image analysis of strain
libraries  to  additional  bacteria,  a  new fully  automated  platform,  the  Strain  Library  Imaging
Protocol (SLIP), was recently developed for high-throughput single-cell microscopy with arrayed
mutant libraries [55][54]. Lastly, microfluidic approaches to encapsulate millions of single cells
for high-throughput phenotypic analysis hold great promise, in particular for ‘“trans acting’” traits
that are masked in pooled assays with thousands of mutants, such as metabolite exchange in a
small microbial community [56][55].  

Data management, analysis, and systems biology

Bacterium-specific databases such as those developed for  E. coli [57][56],  C. crescentus [58]
[57], and B. subtilis [59][58] are powerful resources for sharing knowledge and interpreting new
datasets, however other strategies must be employed for a new bacterium under investigation.
Thankfully, a number of established and developing systems are available for any bacterium
that incorporate both genome sequences and functional data for systems-level analyses. The
Pathway  Tools  software  package  within  the  Biocyc  databases  can  be  used  to  construct
metabolic  models  overlaid  with  gene  expression  and  metabolomics  data  [60][59]. The
Department of Energy’s Systems Biology Knowledgebase (KBase) can also generate metabolic
models  from  a  bacterial  genome  sequence  using  Model  SEED  [61][60],  with  the  added
functionality of reconciling the draft metabolic models with growth and genetics data  [62][61].
Lastly,  functional  data  including transcriptomics and proteomics can be analyzed within  the
Integrated Microbial Genomes (IMG) system [9]. 

Given the increasing scale of DNA sequence and functional genomic data, we envision that
most individual researchers without access to large compute power will analyze their own data
using cloud computing-based systems such as KBase or Galaxy  [63][62]. Beyond computing
power, there are a number of added benefits of integrated, sharable platforms for computational



data analyses including archived code for reproducible research  [62,64][61,63], integration of
diverse datatypes for systems biology, and the ability to perform comparative analyses across
multiple bacteria. Therefore, while comprehensive single organism databases are probably not
within reach to the single investigator,  ultimately  it  will  not  be crucial  to  have these for the
multitude of new bacteria under molecular investigation.

Outlook

In this short review, we highlight some of the key attributes that define a ‘“model bacterium’” and
how current approaches can be rapidly applied to advance new bacteria to this status. For the
methods discussed here, we view the rapid and streamlined development of genetic systems to
virtually any new bacterium as a significant obstacle to be overcome. In addition, we envision
that additional technological advances, including metabolomics, high-throughput biochemistry,
non-growth  phenotyping,  and  interaction  mapping  (genetic  and  protein)  will  ultimately  be
expended to a wider range of bacteria, especially if some of these approaches can be coupled
to next-generation DNA sequencing. We predict that most of the approaches described in this
review will be applied as routinely to a new bacterium as genome sequencing is today and that
the  data  and  experimental  tools  derived  from  such  a  concerted  effort  by  the  microbiology
community will accelerate the usage of bacteria for a number of societal benefits.
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number  of  prokaryotes.  The  authors  performed  PacBio  DNA sequencing  on  230  diverse
bacteria  and  archaea  and  identified  834  different  methylated  motifs  among  the  studied
microorganisms.

* Reference #20. In this study, the authors mined the genome of Photorhabdus to identify three3
proteins comprising a lambda Red-like system. They then adapted these proteins for use in an
efficient recombineering system in  Photorhabdus luminescens to express a large endogenous
secondary metabolite gene cluster.

* Reference #298. Describes the construction of a set of E. coli strains that mimic the adenine
methylation pattern of Staphylococcus aureus, thus enabling high efficiency DNA transformation
into multiple lineages of this pathogen.



**  Reference #310.  This study describes a microfluidic  devise for  optimizing electroporation
parameters and demonstrates its utility for both Gram positive and Gram negative bacteria.

** Reference #332. In this work, the authors use a high-throughput cloning and characterization
strategy to create an expression toolbox in Bacteroides that spans multiple orders of magnitude.
They subsequently use these expression tools to  image different  Bacteroides strains in  the
mouse gut. 

** Reference #343. The authors describe the development of a tetracycline-regulated system for
inducible gene expression in Bacteroides. They use this system to monitor the in situ activity of
an enzymatic activity within mice. 

* Reference #421. In this study, a high-throughput pipeline of protein purification and untargeted
metabolomics was used to screen the enzymatic activity of over 1,000 poorly annotated E. coli
proteins. The authors were able to experimentally validate the previously unknown enzymatic
activities of 12 enzymes. 

**  Reference #5049. This work represents the largest  effort  to  date to functionally annotate
bacterial proteins using high-throughput genetics.

** Reference #510. This study is a large-scale phenotypic characterization of all essential genes
in  Bacillus  subtilis using  CRISPRi.  In  addition  to  identifying  the  mode-of-action  of  an
uncharacterized antibiotic, they also used high-throughput imaging to discover new associations
between cell growth and morphology. 

**  Reference  #543.  In  this  study,  thousands  of  Mycobacterium  tuberculosis mutants  were
screened for their growth and survival in macrophages using high-content imaging. From these
data, the authors identified a link between protein secretion and lipid production in mediating
pathogenesis. 

* Reference #621. Presents the U.S. Department of Energy’s System Biology Knowledgebase,
an  open-source  computational  platform  for  systems-level  analyses  of  genomics  data  for
microorganisms, metagenomes, and plants. 

Figure legend

Figure 1. Developing new model bacteria.  High-throughput tools can be rapidly applied to
transition diverse bacteria to new model systems. In the panels at the bottom, we highlight the
criteria for a new model bacterium and provide example approaches that can be applied to meet
each of these criteria.
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