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Mode Excitation From Sources in Two-Dimensional
EBG Waveguides Using the Array Scanning Method

F. Capolino, Senior Member, IEEE, D. R. Jackson, Fellow, IEEE, and D. R. Wilton, Fellow, IEEE

Abstract—An efficient semianalytical algorithm for the eval-
uation of the field and modal excitation by a line source in a
two-dimensional electromagnetic bandgap (EBG) waveguide is
presented. The method allows for an accurate and efficient calcu-
lation of the near field from the source inside the EBG waveguide,
as well as the amplitude of the EBG waveguide mode that is
excited. The same method can be applied to a wide variety of
structures, as well as other types of sources and discontinuities.

Index Terms—Electromagnetic bandgap (EBG) materials,
Green’s function, periodic structures, waveguides.

I. INTRODUCTION

THE DESIRE to achieve low-loss propagation in the mil-
limeter-wave and optical ranges has recently motivated

research into new ways of guiding electromagnetic waves. An
electromagnetic bandgap (EBG) material with a row of defects
(missing elements) constitutes a waveguiding structure that pro-
vides an attractive alternative to conventional waveguides [1],
[2].

Here, we demonstrate a new method of moments (MoM)-
based semianalytical method to efficiently model the fields and
the mode excitation inside a two-dimensional (2-D) EBG wave-
guide. To the knowledge of the authors, this is the first time
that an algorithm specifically tailored to the efficient calcula-
tion of the fields and mode excitation from a source inside of
an EBG waveguide has been presented. The method also al-
lows for physical insight into the physics of the field excited
by the source and the modal excitation from the source. The
method is explained for 2-D EBG waveguides, though the al-
gorithm can easily be generalized to other EBG structures. The
EBG waveguide under study consists of a periodic array of ei-
ther metallic or dielectric posts, or holes in a dielectric slab, pe-
riodically spaced in the – plane. (For simplicity, the case of
metallic posts is considered here.) The method uses the one-di-
mensional (1-D) periodicity properties of the waveguide along
the direction in order to calculate the field of the line source
by means of an array scanning method (ASM) [3], [4]. To im-
prove the computational efficiency of the method, a 2-D Ewald
acceleration scheme [5], [6] is used to improve the convergence
of the periodic free-space Green’s function that is used in the
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Fig. 1. (a) Geometry of the EBG waveguide and its excitation. The waveguide
is an infinite periodic structure with period a along z, and truncated along x.
In the figure, the periodic supercell n = 2 is shown. The line source is located
in the n = 0 supercell. S denotes the surfaces of all conductors in the nth
supercell. The volumetric region of the nth supercell is denoted by V . (b) An
infinite array of line sources located in the waveguide. The original source is
that in the n = 0 supercell. In the ASM, the infinite periodic array is used to
synthesize the field due to the single impressed source.

unit-supercell analysis. The near field from the source, as well
as the amplitudes of the guided modes that are launched by the
source, can be directly determined.

II. EXCITATION OF THE EBG WAVEGUIDE

The geometry of the EBG waveguide is shown in Fig. 1. It is a
periodic structure with period along , and is truncated along

with a finite number of rows of metallic posts of radius on
either side of the channel, embedded in a homogeneous back-
ground material. A periodic “supercell,” defined by the dashed
line, consists of a single column of posts along with a missing
central element. The region of the nth supercell is denoted by

, while the surface of the posts in this supercell is denoted
by . We assume that the electric field is polarized along the

axis, and since there is no variation along the axis in this
2-D problem, propagation is both and . We denote by

and the surface current and electric field, respec-
tively, directed along . An impressed electric line source
is located in the supercell at , and the
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electric field is evaluated at an observation point lo-
cated in the waveguide. In the following, the fields of a single
line source (and its modal excitation) in the waveguide are de-
termined by using the ASM discussed below.

A. Array Scanning Method (ASM)

A convenient calculation of the aperiodic excitation of a pe-
riodic structure can be obtained using the ASM, as the method
was called in [3], though it had seen previous use, e.g., in [4].
The first step is to note the following relation between an in-
finite periodic array of impressed linearly phased line sources

with currents directed along , see Fig. 1(b), and a
single line source :

(1)

where is an impressed wavenumber along . The single line
source is thus synthesized from the phased array of line
sources along the axis by integrating in the phase-shift vari-
able over the Brillouin zone. The electric field at any point ,
produced by the periodic array of line sources in free space is de-
noted as . The field produced by the periodic array
of line sources in the EBG waveguide environment is denoted
by . By the same weighted superposition used
in (1), the electric field produced by the single source in
the waveguide is then given by

(2)

Calculation of is discussed in the next section.

B. MoM Solution Using the ASM

The method of moments (MoM) is used to solve the electric
field integral equation (EFIE)

(3)
in order to obtain the surface current (periodic
along with period , except for a progressive phase shift)
on the various metallic posts within the supercell, excited by
the impressed periodic line-source array current .
The EFIE equation(3) implies that the field produced by

plus the incident field produced by the
array of sources , must vanish on the surface of
the posts within the supercell . Note that in (3) the numer-
ical integration is carried out only on the posts in the supercell

(see Fig. 1) since we use the periodic Green’s func-
tion for the field produced by a periodic array of
line sources in free space successively phased as .
The EFIE (3) is then discretized according to the MoM proce-
dure. The mutual coupling between the various basis-function

elements (to construct the MoM matrix) is then evaluated effi-
ciently using the periodic Green’s function , whose series
representation is accelerated using the Ewald method modified
for 2-D geometries [5], [6]. Typically only two or three terms in
each of the Ewald sums are sufficient to achieve good accuracy.

The periodic electric field at any point , produced by the
periodic current on the posts comprising the EBG structure, is
evaluated by integrating over the post currents comprising the
single supercell , as

(4)

(On the posts, this field must cancel the field due
to the periodic array of line sources in free space.) The periodic
Green’s function for the array of phased line sources in the EBG
environment is given as

(5)

Equation (2) is then used to obtain the field of the single line
source inside the EBG waveguide. The post current and the elec-
tric field in an arbitrary th cell, induced by the single impressed
line source in the supercell , are evaluated using ASM as

(6)

with for the post currents and for the
field. Note that the total electric field can
also be obtained by applying the integration (6) to the scattered
field , and then adding the cylindrical field radiated
by the line source at .

C. Mode Excitation

Assuming a mode with a propagation wavenumber
exists in the EBG waveguide, the terms and

have a pole at . (The poles corre-
sponding to the mode are periodically spaced in the plane,
and it is assumed here that is the pole that lies within the
Brillouin zone of integration, with a positive real part.) For
a lossless dielectric background material, the pole is still
slightly below the real axis for a propagating waveguide
mode, corresponding to leakage loss through the finite number
of rows of posts. The pole for such a mode is on the
lower sheet of the branch point at , where is the
free space wavenumber, when the guided mode is a fast wave

. The mode is therefore an improper mode (the
modal fields exponentially increase in the air region beyond
the confines of the EBG structure). The residue evaluation at

or , for or , respectively,
furnishes the modal current and electric field in the waveguide.
(The residue of the pole at is the negative of the residue
of the pole at .) The modal field at any point in the EBG
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Fig. 2. Real and imaginary parts of the electric field E . The numerically
determined full-wave field (dots) and the extracted field of a single dominant
waveguide mode (crosses) are calculated at the center of each supercell. Dashed
curves connect the data points for convenience.

waveguide may be written in terms of the modal field at the
corresponding shifted observation point within zeroth supercell

(7)

where and . (Note that
the sgn function is always positive for 0, and always nega-
tive for 0.) In this expression, the residue is calculated nu-
merically as

where we note
that the field in (5) has no pole. Similar concepts
apply to post currents .

The calculation of the modal amplitude in this manner is
very efficient because it involves only a periodic MoM solution,
which in turn requires an analysis of only a single unit supercell
(and this is made even more efficient by using the Ewald method
to accelerate the periodic Green’s function [6]). For example,
in the specific structure considered in Section II-D, a supercell
consists of eight posts. Using 16-pulse basis functions on each
post gives a total of 128 basis functions. Such a calculation is
therefore much more efficient than discretizing the entire EBG
waveguide structure.

D. Numerical Results

As a simple example we analyze a waveguide as in Fig. 1(a)
(with metallic rods of radius a in free space, where

is the period. The zeroth bandgap for the EBG structure that
surrounds the channel (the first complete stop band for the
polarization) exists when 0.48 ( is the free-space
wavelength), while the first bandgap exists for 0.72
0.83 [7]. Since we would have multimode propagation in the
waveguide (i.e., higher order waveguide modes) for frequencies
in the first bandgap, we analyze here the field propagation in the
zeroth bandgap. The waveguide is modeled as in Section II-B,
assuming four rows of posts parallel to the axis on each side
of the defect-channel. An electric line current is placed within
the waveguide at with normalized frequency

0.3.
Fig. 2 plots the real and imaginary parts of the electric field
on the axis of the waveguide, sampled at locations ,

the center of the nth supercell (see Fig. 1). The field is evaluated
using (6) with (4) and (5) and also by using the modal solu-
tion (7), corresponding to a single dominant waveguide mode.
It is clear that the field is essentially that of a single propagating
mode, with guided wavelength a . The two solutions
are superimposed on the plot, showing that for this particular
case the higher order waveguide modes are negligible even at

Fig. 3. Real and imaginary parts of the electric field E versus the continuous
coordinate z=a, evaluated at two distinct locations: x = 0 (along the center
of the waveguide, continuous lines) and x = 0:65a (dashed lines). Off the
waveguide center, higher order Floquet waves result in oscillations in the field.

the 1 supercell. Hence, the variation from cell to cell is
with . The field variation plotted

versus within a unit cell would not be a pure sinusoid, in gen-
eral, since higher order Floquet waves would be present.

Fig. 3 shows the field plotted versus , where now
changes continuously from near zero to a distance of 4.5 cells
away from the source . The field is plotted along
the center of the waveguide at 0 (continuous line) and closer
to one of the walls of the waveguide, at a (dashed line).
The imaginary part of the field at 0 exhibits an expected sin-
gularity near the source, whereas at a the field, which
is still mainly that of a single waveguide mode, is more oscilla-
tory with changing due to the higher order Floquet waves that
comprise the mode.

III. CONCLUSION

The results of this letter can be extended to numerically model
and evaluate the reflected and transmitted modes when discon-
tinuities are present in an EBG waveguide, and this will be the
subject of future studies. In the present summary, the algorithm
is specialized to a 2-D EBG waveguide made of metallic posts in
order to simplify the discussion and the formulation, but the al-
gorithm can also be applied to 2-D and three-dimensional EBG
waveguides made of dielectric material.
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