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Simulation of synthetic gecko arrays
shearing on rough surfaces

Andrew G. Gillies1 and Ronald S. Fearing2

1Department of Mechanical Engineering, and 2Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, USA

To better understand the role of surface roughness and tip geometry in the

adhesion of gecko synthetic adhesives, a model is developed that attempts

to uncover the relationship between surface feature size and the adhesive term-

inal feature shape. This model is the first to predict the adhesive behaviour of a

plurality of hairs acting in shear on simulated rough surfaces using analytically

derived contact models. The models showed that the nanoscale geometry of

the tip shape alters the macroscale adhesion of the array of fibres by nearly

an order of magnitude, and that on sinusoidal surfaces with amplitudes

much larger than the nanoscale features, spatula-shaped features can increase

adhesive forces by 2.5 times on smooth surfaces and 10 times on rough sur-

faces. Interestingly, the summation of the fibres acting in concert shows

behaviour much more complex that what could be predicted with the pull-

off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall

peel models can explain the experimentally observed frictional adhesion

effect previously described in the literature. Similar to experimental results

recently reported on the macroscale features of the gecko adhesive system,

adhesion drops dramatically when surface roughness exceeds the size and

spacing of the adhesive fibrillar features.
1. Introduction
The variety of surfaces found in nature pose a formidable challenge to any

adhesive system. Often, these surfaces have roughnesses at a variety of length

scales, ranging from nanometres to large undulations on the centimetre scale.

These roughnesses can be critical, as it has been shown that just a few nanometres

in roughness is enough to disrupt the adhesion between clean elastically hard sur-

faces [1], and that a root mean square roughness of only 1 mm is enough to

completely remove the adhesion between a soft rubber with a Young’s modulus

of 1 MPa and a hard flat substrate [2].

The majority of recent studies on the gecko adhesive system and work on

gecko synthetic adhesives (GSAs) have focused on nanoscale roughness or on

smooth surfaces, with several notable exceptions [2–9]. However, an integrated

approach should consider the relationship between the surface roughness, the

size of the adhesive structures and their ability to conform at a variety of

length scales [10,11]. Understanding the abilities and limitations of these struc-

tures on varying length scales of roughness is necessary to create an adhesive

that is able to adhere to naturally rough surfaces.

Below, we develop a model that examines the shear and normal adhesive

properties of an array of microfibres while being dragged across surfaces of

varying roughness. We consider two fibre tip geometries: those with hemi-

spherical-tipped terminal features and those with spatula-shaped terminal

features. To the best of the authors’ knowledge, this model is the first to predict

the adhesive behaviour of a plurality of hairs acting in shear on simulated

rough surfaces using analytically derived contact models.

There are many examples in the literature of gecko fibre models that

describe the adhesive properties of an individual fibre through varying fibre

tip shape [12–15], fibre dimensions [16], contribution of capillary forces [17]

or robustness to roughness [18,19], most of which model the fibres as elastic

beams [10,20–23]. There are fewer examples of models that describe how an
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Figure 1. (a) Modelled approximation of the fibre and the relevant parameters indicated. The fibre is modelled with an axial spring and a torsional spring at its
base that approximates fibre bending with a pseudo-rigid body model [34]. (b) Hemispherical tips approximated by the JKR contact model and (c) spatula tips
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array of fibres work together in concert to give rise to adhesive

forces across the total array, which on rough surfaces will be

different than just a scaled version of the adhesive forces gen-

erated by a single fibre [24,25]. Some of these models

consider several hierarchical levels [4,7,26,27], and some con-

sider shear on smooth or spherical indenters with a frictional

adhesion cantilever or curved beam model [20,28]. Another

study examines a logarithmic fit to experimental data to

explain how the uncorrelated stick–slip behaviour of fibres

sliding on a surface gives rise to velocity dependence [29,30].

However, there have been no examples of models that include

shearing of the array and attempt to capture the coupling

between the shear adhesion and normal adhesion on rough

surfaces across an array of fibres. The model below descri-

bes the load–drag–pull (LDP) style of GSA testing that is

becoming widely accepted in the literature [31–33].
2. Fibre model assumptions
As in many examples cited above, the fibres are modelled as

spring elements approximated by a rotational spring at the

base and a linear spring along the length of the fibre (figure 1).

These spring elements approximate the bending of the fibre by

rotational stiffness, Kt, and axial stiffness of the fibre, Ka, which

constitutes a pseudo-rigid body model of the fibre and simplifies

the numerical calculation, as carried out by Schubert et al. [20]

and Tian et al. [35]. Howell [34] describes that the bending of a

thin elastic beam can be approximated for large deflections as

a torsional spring with stiffness

Kt ¼
pfEfibreI

Lo
, (2:1)

where f is a characteristic radius factor (f � 0.82 for this case),

Efibre is the Young’s modulus of the fibre material, Lo is the initial

fibre length and I is the second moment of inertia of the fibre,

which in the case of a circular fibre cross section is pr4
f /4,

where rf is the fibre radius. The axial stiffness of the fibre is

Ka ¼
pr2

f Efibre

Lo
: (2:2)
The assumption for both the axial stiffness and the

bending stiffness is made that the change in fibre length

does not significantly affect the stiffness of the structure.

As shown in figure 1, the fibre is prescribed an initial

angle, uof, and the angle at each simulation step is calculated

as ucurrent ¼ tan �1((ytip � yroot)/(xtip � xroot)). Forces acting

on the fibre at the tip in the shear direction and normal

direction are Fx and Fy, respectively. Forces are calculated

by first determining the displacement of the fibre tip from

its initial rest configuration, and then calculating the axial

force FA ¼ Ka � (Lcurrent � Lo) and the torsional force

Ftor ¼ Kt � (ucurrent � uof)/Lcurrent. These are then used to

calculate Fx and Fy via a rotation:

Fx ¼ FA cos (ucurrent)þ Ftor sin (ucurrent)
Fy ¼ FA sin (ucurrent)� Ftor cos (ucurrent):

�
(2:3)

The backing connecting the fibres is assumed to be rigid,

and supports the fibres spaced at a constant pitch. The total

shear and normal adhesive forces for the array are taken as

the sum of the individual fibre shear and normal forces.

Dimensions and material properties of the fibres are

chosen based on the stiff thermoplastic fibres used in Schu-

bert et al. [20], Lee et al. [8] and Gillies et al. [36] and

outlined in table 1. Uncorrelated stick slip behaviour was

achieved numerically by randomly assigning each hair an

initial inclination angle and length that were commensurate

with observations of the aforementioned fabricated arrays.

Based on fibre measurements, the fibre length is 18.5+
1.5 mm (uniform distribution) and the angle varies by +58
(uniform distribution). Furthermore, interfibre collision and

adhesion is neglected. Although interfibre compaction likely

becomes significant under high loads in the natural gecko

[11,36], a previous simulation of a GSA which neglected

interfibre collision showed reasonable agreement with exper-

iment [20]. The simulation was run with an array of 250 hairs,

because this number was large enough to make an indivi-

dual hair contribution significantly small if all hairs were in

contact (less than 1%).



Table 1. Fibre properties used for simulation.

property dimension

Young’s modulus 1 GPa

fibre radius 300 nm

length 18.5 mm

pitch 3 mm

adhesion energy 30 mJ m22

tip radius 150 nm

spatula width 200 nm

spatula thickness 10 nm
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3. Surface characterization and load – drag – pull
path

For the model, two contact surface types are considered: a

spherical probe with a radius of 2 cm and a sinusoidal surface

with amplitude A and wavelength l. For each surface, the

profile is discretized into an array of xsurface and ysurface coor-

dinates, with a spacing of e ¼ 5 � 1029 m. The spherical

indenter size is chosen so that, at full indentation, the array

spans beyond the width of the indenter, as would be the

case for a macroscopic adhesion measurement. For the sinu-

soidal surface, amplitudes and wavelengths are chosen to

be of the same size order as the fibre length and spacing.

Sinusoidal surfaces are chosen so that the effect of varying

‘asperity’ sizes can be studied in a systematic way by isolat-

ing feature sizes through amplitude and wavelength. This

type of isolation would not be possible with a randomly

generated rough surface.

Owing to the coupling of normal and tangential adhesive

forces exhibited in the gecko adhesive system, it is important

that any testing methodology selected is able to capture this

interplay by allowing measurement in more than a single

axis. In the past several years, the LDP testing methodology

has emerged as a repeatable methodology that is useful for

both natural and synthetic systems [31–33]. LDP testing

involves moving the sample through a displacement-

controlled path which brings the sample into contact with a

counter-surface, whereas reaction forces are measured in

each axis. Owing to the controllability and repeatability of

this displacement-controlled methodology, and its adoption

by many other GSA investigators, the LDP test was used

for this study. However, important considerations must be

taken when interpreting the results of the LDP test. Owing

to the displacement-controlled nature of the LDP test, it is

not directly relevant to map the results to systems and appli-

cations that have different boundary conditions. For example,

in the case of a robot climbing a wall, the path of the robot

body is dictated by the forces acting on the system, and it

can be considered a force-controlled system. In a force-

controlled system, a load will be applied to the adhesive, and

if this load does not exceed the adhesive limit, contact will be

maintained. This is in contrast to the displacement-controlled

LDP system, where the adhesive will be driven past this failure

point, but the path will still be followed, allowing the adhesive

to possibly re-engage. We therefore generally report either the

maximum adhesive forces during an LDP trial, or the mean

forces during the drag phase of a trial, because this could
approximately be considered the adhesion limits of the

system that one might expect during applications with differ-

ent boundary conditions.

LDP path generation consists of three phases: a loading

phase where the surface approaches the array on a fixed path

at an angle of 458 to the surface, for a distance of 25 mm;

immediately following loading, the surface is dragged parallel

to the fibre array for a distance of 10 mm; and finally during the

unloading phase the surface moves away from the array at

an angle of 458 for a distance of 25 mm (figure 2). For each

LDP path, the surface indents into the fibre array a fixed

displacement, D.
4. Fibre tip contact
To better understand the influence of tip geometry on the

adhesion of an array of microfibres, we model the fibre tip

using two different geometries. First, we model the fibre tips

as elastic hemispheres using the well-known Johnson–

Kendall–Roberts (JKR) contact model, and second, we model

the fibre tips as plates (similar to the gecko’s terminal spatula)

that peel as a thin tape following the Kendall peel model.
4.1. Johnson – Kendall – Roberts contact model
Hemispherical-tipped fibre modelled using the JKR theory of

contact adhesion has been effective for predicting adhesive

forces between elastic bodies [16,20,26,37–39]. The fabrica-

tion of stiff thermoplastic arrays of microfibres has been

largely limited to hemispherical-tipped fibres, and therefore

we use the JKR model to estimate the adhesive properties

of this design. According to the JKR theory, an elastic

sphere, when pressed against a rigid substrate with a force

Fn will develop a true contact area with the surface governed

by the following equation [40]:

At(Fn) ¼ p

�
3(1� y2)

4E

�
�Fn þ 3pWadRt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�6pFnWadRt þ (3pWadRt)

2
q � �2=3

, (4:1)

where Rt is the tip radius, y is Poisson’s ratio and Wad is the

work of adhesion (approx. 30 mJ m22 for a hard thermoplas-

tic such as polypropylene on glass [41]). Equation (4.1) is

linearized about Fn ¼ 0, and the tangential force Ft is

expressed as a function of the normal force as carried out

by Schubert et al. [20]:

Ft ¼+ tAt(Fn)

� t At(Fn ¼ 0)þ dAt(Fn ¼ 0)

dFn
Fn

� �

� m(Fo þ Fn), (4:2)

where t is the interfacial shear strength, Fo ¼ (9/2)pRtWad is

the assumed adhesive component of the contact and

m ¼ t(d/dFn)At(Fn ¼ 0) � 0:2. As the fibre reaches this Ft

limit, we assume that the fibre remains in contact with the

surface, but that the fibre slides in shear opposite to the direc-

tion of the shear force. In addition, a maximum pull-off force

can be calculated, using the same sphere-on-flat assumption,

and is given as FJKR ¼ (3/2)pRtWad. This is the maximum

normal load a fibre can sustain before detaching completely

from the surface [40]. These equations constitute the adhesion
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limit for a hemispherical shape tip, beyond which the fibre

will either slide or detach as discussed.
4.2. Kendall peel model
It has been hypothesized by many investigators studying the

gecko adhesive system, and other biological adhesive systems

such as tree frogs [42] that the terminal spatula plates can be

modelled as a continuum adhesive surface on a flexible strip

that follows Kendall peeling mechanics and is governed by

the peeling force [43] as formulated by [31,32]:

F ¼ bdE cosa� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2a� 2cosaþ 1þ 2R=dE

q� �
, (4:3)

where b is the width of the strip, d is the thickness of the

strip, E is the Young’s modulus of the strip material, R is

the adhesion energy per area and a ¼ usf is the peel angle,

which in this case is the angle between the fibre shaft and

the surface: the difference between the current fibre angle

and the local surface angle where the fibre is making contact,

usf ¼ ucurrent2 ulocal. Maximum and minimum peeling forces

can be predicted at the limits of the peel angle, with the maxi-

mum peel force occurring at a ¼ 08, being Fmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rb2dE
p

.

These equations approximate an adhesion limit beyond

which the contacting terminal will either slide if normal

forces are compressive or detach from the surface via peeling

if normal forces are tensile. Although digital hyperextension

exhibited by the gecko during detachment could be explained

by detachment via a Kendall peel model, whole array forces

do not represent Kendall peel behaviour [31,32]. However, it

is still unclear whether or not such a model applied to the

individual elements would sum to the observed macroscopic

behaviour. Our model attempts to predict the cumulative

effect of an array of fibres each acting independently.

Adhesion limits are shown in figure 3. A fibre undergoing

axial strain and bending will fall within this force space as a
function of the shear and normal load on the fibre, Fx and Fy,

as well as the local surface angle, usf. Fibres will remain in

contact as long as the forces are within the adhesion envelope.
5. Numerical simulation
The numerical simulation runs as a displacement-controlled

system in which the surface is moved along the LDP path

in increments of i ¼ 1028 m, in a quasi-static manner. As

the system evolves, each fibre can switch between five poss-

ible contact modes: no contact (mode 0), stable tip contact

(mode 1), sliding contact (mode 2), detaching contact

(mode 3) and side contact (mode 4). A snapshot of the simu-

lation being run on a sinusoidal surface is shown in figure 4.

For a fibre in no contact (mode 0), at each step, it is possible

for the fibre to switch into stable tip contact (mode 1), or side

contact (mode 4). At each step, a contact detection algorithm

is used to determine if each fibre is in contact. Contact can

either occur along the length of the fibre (side contact) or at

the tip. A linear approximation of the fibre deformation

between the fibre root and the fibre tip is used to determine

whether any portion of the surface interferes with the fibre

through the following equation:

a ¼
ytips � yroots

xtips � xroots

b ¼ ytips � a � xtips

d ¼ (a � xsurface þ b)� ysurface:

9>>>=
>>>;

(5:1)

The resulting array, d, is the vertical distance between the

fibre and the surface at each point of the surface array xsurface.

For the elements of d, tip contact occurs when the first element

is found to be negative, and side contact occurs when elements

between the second and last are found to be negative.

For a fibre in stable tip contact (mode 1), the fibre tip is

stable in its adhered position on the surface at an index n,
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which identifies its location in space by the previously

defined surface: xtip ¼ xsurface(n) and ytip ¼ ysurface(n). The

force on the base of each fibre is then calculated as described

in equations (2.1) and (2.2) using the torsional stiffness, Kt,

axial stiffness, Ka, and the transformation described in

equation (2.3). These forces are then used in conjunction

with the adhesion limit models discussed in §§4.1 and 4.2

to determine whether the fibre will remain in stable tip con-

tact (mode 1), or if it will cross the adhesion limit by

sliding (mode 2) or detachment (mode 3). Furthermore,

axial compressive loads are limited by Euler buckling,

where FAmax � p2EI/(kL)2, where k is a characteristic factor

determined by the beam boundary conditions, in this case

assumed to be k ¼ 0.69 for a pinned–clamped beam. As

well, contact detection is once again used to determine

whether the fibre will enter into side contact (mode 4).

For a fibre entering into sliding contact (mode 2), the fibre is

assumed to remain in contact with the surface, and translate in

the direction opposite of the shear force on the fibre, xtip ¼
xsurface(n� 1� sgn(Fx)) and ytip ¼ ysurface(n� 1� sgn(Fx)),

until a position is reached where the adhesion limit is no

longer violated, or the fibre detaches (mode 3) or switches into

side contact (mode 4).

For a fibre undergoing detachment (mode 3), the fibre is

assumed to first retract from its extended position on the sur-

face to a point in space defined by its current incline angle,

ucurrent:

xtip¼ xroot � cos (ucurrent)Lo
ytip ¼ yroot � sin (ucurrent)Lo:

�
(5:2)

Once retracted, the fibre is assumed to immediately swing

back to its initial angle uof. As the fibre swings back to its

initial angle, the contact detection algorithm is once again

run to determine whether the fibre will return to no contact

(mode 0) at its initial rest configuration, or if there is an inter-

mediate angle in which the fibre regains tip contact (mode 1),

or side contact (mode 4).

During side contact (mode 4), the assumption is made

that the bending moments at the tangential point of contact

are exceptionally small compared with the bending owing

to adhesive and axial forces during contact, and are therefore

neglected. The fibre will follow the surface making tangential

contact until tip contact is regained (mode 1) or the surface

pulls away and the fibre returns to its rest configuration

(mode 0).

At the end of each simulation step i, the normal and shear

forces from each fibre are summed to find the total array

shear, Fx total ¼
P

Fx, and normal forces, Fy total ¼
P

Fy. The

simulation was implemented and run in Matlab (MathWorks,

Natick, MA).
6. Comparison of Johnson – Kendall – Roberts
and Kendall peel contact models

The simulation was run for inclination angles, uof ¼ 352858,
and indentation depths, D ¼ 225 mm, and with the fibre

properties outlined in table 1. Figure 5 shows two example

LDP traces for uof ¼ 518 and D ¼ 2 mm in force space (figure

5a,c) and time space (figure 5b,d) with the spherical indenter

of radius ¼ 2 cm. As can be seen in both traces, contact forces

begin in compression as the fibre array is loaded, and then

switch into tensile loading as the drag begins. Forces

remain largely the same during the drag phase for both the

spherical- and spatula-shaped tips. For the spatula tips

(figure 5a,b), there is greater variation in the force signal

owing to the uncorrelated detachment and re-attachment of

the fibres as they peel and re-attach to the surface. During

unloading, the forces gradually decrease to zero as the

fibres are pulled from the surface. The maximum tensile

force occurs during the drag phase of the trace (green star).

For the hemispherical-shaped tips (figure 5c,d), as the array

is pulled from the surface the tensile force increases to its

maximum (green star) before detaching.

For the hemispherical tips using the JKR contact model,

we wish to compare the effect of fibre angle inclination and

indenter depth on adhesive forces of the system. Figure 6a
shows the maximum and figure 6b the mean forces on the

fibre array for the parameters tested. Maximum tensile

forces are plotted as absolute values, mean forces are plotted

as tensile being negative. Fibre inclination angle uof can be

seen to have a large effect on both the maximum and mean

tensile loads, with nearly vertical fibres showing the lowest

tensile loads, confirming experimental results [44]. Indenta-

tion depth affects only the mean tensile forces, having little

effect on the maximum tensile load. This confirms other

studies that have pointed to zero preload being a feature of

the fibrillar adhesive system [8]. However, indentation

depth does have an effect on the mean forces during the

drag. Only an indentation depth of D ¼ 2 mm shows tensile

loads during drag, an exhibition of the frictional adhesion

effect common in fibrillar adhesives [31,32]. Beyond this,

forces become monotonically more compressive with

indentation depth, and as well, friction forces increase.

For the spatula-shaped tips using the Kendall peel model,

we plot the forces using the same parameters as above.

Figure 7a shows the maximum and figure 7b the mean

forces on the fibre array. For both the mean and maximum

normal forces, indentation depth is not a significant factor.

However, there is an increasing shear load with increasing

indentation depth, likely because at a higher indentation

depth, fibres become more inclined and this reduces the

peel angle. Initial fibre angle has less of an effect on the
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maximal normal adhesion; however, for mean adhesion,

forces become compressive at angles near vertical similar to

the JKR-modelled fibres. For fibres inclined above 608,
forces go from tensile during the drag motion to compressive.

Figure 8 shows a direct comparison of the hemispherical

tips and spatula tips for maximal (figure 8a) and mean

(figure 8b) forces at an indentation depth of D ¼ 3 mm. For

the maximal forces, the spatula-tipped fibres show more than

2.5 times the adhesion across all fibre angles, and about five

times the shear, with the largest difference being for nearly ver-

tical fibres. For mean forces during drag, the spatula tips show

tensile normal forces, whereas the hemispherical tips remain

compressive. Spatula-tipped fibres also show much larger

shear loads during the drag for lower-angled fibres. However,
for fibres near vertical, both contact models result in fibres that

give compressive loads during the drag. Figure 8c shows the

maximum point of detachment in force space, and the a

angle for the JKR and Kendall cases, which represents

the maximal force angle at detachment. Red dots represent

Kendall data points, whereas blue squares represent JKR data

points. The a angle was calculated via the tangent of the

corresponding maximum normal and shear forces at pull-off.

Hemispherical-tipped fibres show a maximal a of 25–378,
whereas spatula-tipped fibres have an a of 15–258. Both these

values are approximately the same as the 258 reported for

naturally isolated gecko arrays [31,32]. The plot also shows

the much larger magnitude of the maximal pull-off force of

the spatula-tipped Kendall peel model fibres.
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The analysis above indicates that on smooth surfaces

there is a distinct advantage to spatula terminated fibres in

an array. As well, the model shows for the first time that

the simple JKR and Kendall contact models, when applied

to an array of angled fibres, show very similar behaviour to

experimental results on isolated gecko arrays [31,32] and syn-

thetic fibrillar arrays [20]. The cumulative effect of individual

fibres acting as Kendall peel is to exhibit behaviour similar to

the phenomenological frictional adhesion model presented

by Autumn et al. [31].
7. Arrays on sinusoidal surfaces
The simulation was run on sinusoidal surfaces of varying

amplitudes of 1–5 mm and wavelengths of 1–30 mm, where

ysurface ¼ (A/2) sin ((2p/l)xsurface). Figure 9 shows simulation

results for mean forces during drag and maximal adhesion

during the trial. As anticipated, at the roughest of surfaces

(A ¼ 5 mm, l ¼ 1 mm), forces drop to near zero, and grow

as the wavelength is increased. Above wavelengths of

20 mm, forces level off as the surface is nearly smooth at

this point. Mean forces during drag were compressive for
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all surfaces tested, and show that the JKR model does not result

in frictional adhesion on the sinusoidal surfaces tested. Interest-

ingly, maximum adhesion shows a higher peak on rougher

surfaces (high amplitudes and short wavelengths). This could

be due to the local angle of contact, where fibres may actually

show a greater resultant force at the surface owing to the favour-

able angling of the surface. As amplitudes increase, forces begin

to fall as the amplitude is large enough to push a significant

number of fibres out of contact.

The same surfaces were used to test spatula-tipped Kendall

peel model fibres, and a comparison of the spatula-shaped Ken-

dall-modelled tips and hemispherical-shaped JKR-modelled

tips is made in figure 10. Spatula-tipped fibres show an order

of magnitude larger forces for both mean adhesion and maximal

adhesion. As well, mean forces become tensile during the drag

phase, and for some amplitudes show larger tensile forces

than for the same fibre array on a smooth surface (marked

with star for spatula and circle for hemispherical). Interestingly,

each amplitude shows a large peak in adhesion at smaller wave-

lengths. This could be again owing to local surface angle

reducing the effective peel angle of the fibre. It has been verified

experimentally that local orientation of the seta has a large

impact on the adhesive forces [44]. As the surface amplitude

increases, so does the wavelength at which this spike in adhesion

occurs. As the wavelength of the surface increases, forces

converge to the adhesion found on a flat surface.

At the rougher end of the spectrum (high amplitudes and

short wavelengths), adhesion drops to nearly zero for wave-

lengths less than 5 mm at amplitudes of 5 mm. This indicates
the critical level of roughness beyond which adhesion is

not possible.
8. Discussion
Although many studies have clearly shown the benefit of a spa-

tula terminal feature for adhesion on surfaces with nanoscale

roughness, our model shows the efficacy of spatula tips on

larger microscale fibre-level roughness. The spatula feature

aids in adhesion on surfaces with asperities much larger than

the spatula itself (200 nm spatula plate on 5 mm surface ampli-

tude), and exhibits adhesive forces 10 times larger than

hemispherical-tipped fibres. However, there is a roughness

limit beyond which the spatula no longer aids in adhesion,

showing the need for a hierarchical system that would enable

conformation to larger asperities. This is similar to experimen-

tal results from testing live Tokay geckos on macroscopic

sinusoidal surfaces, which showed a loss of adhesion once sur-

face amplitude exceeded gecko toe size [11].

It appears that spatula tips modelled using the Kendall

peel equation, when acting in concert through an array of

fibres, show the frictional adhesion effect previously

described in the literature [31,32]. Important to note is that

the spatula-tipped fibres are able to generate tensile loads

during the drag phase of the cycle. This is in contrast to the
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compressive loads seen in the hemispherical-tipped fibres,

and could explain a self-engaging property by which adhered

fibres are able to pull more of the array in contact—an effect

seen with spatula-shaped natural gecko arrays, but not seen

for arrays of synthetic fibres with hemispherical-shaped

tips. The analysis shows that even a single hierarchical-level

array of fibres could also show this effect on rough surfaces

if spatula tips were a feature.
ing.org
J.R.Soc.Interface

11:20140021
9. Concluding remarks
We sought to understand the impact of surface roughness on

the adhesion of two types of GSA arrays: those with hemi-

spherical-shaped tips and those with spatula-shaped tips.

Our model showed that the nanoscale geometry of the tip

shape alters the macroscale adhesion of the array of fibres

by an order of magnitude. On sinusoidal surfaces with ampli-

tudes much larger than the nanoscale features, there is a clear

benefit to having spatula-shaped features. Interestingly, fibres

acting in concert show behaviour much more complex than
what could be predicted with the pull-off model of a single

fibre, and both the JKR and Kendall peel models can

explain the frictional adhesion effect previously described

in the literature when applied to each individual element

[31,32]. Similar to experimental results found with the macro-

scale features of the gecko adhesive system, adhesion

drops dramatically when roughness approaches the size

and spacing of the fibre features.

This has clear implications for the design of future GSAs

that may be used in environments with varying rough sur-

faces. An integrated approach must be taken that considers

the relationship between the surface roughness, the size of

the adhesive structures and their ability to conform at a var-

iety of length scales. Understanding the abilities and

limitations of these structures on varying length scales of

roughness is necessary to create an adhesive that will be

effective in a target application.
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