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The IR stability of de Sitter QFT: Physical initial
conditions

Donald Marolf1 ∗ and Ian A. Morrison1 †

1Department of Physics, University of California, Santa Barbara, CA 93016

September 16, 2018

Abstract

This work uses Lorentz-signature in-in perturbation theory to analyze the late-time
behavior of correlators in time-dependent interacting massive scalar field theory in de
Sitter space. We study a scenario recently considered by Krotov and Polyakov in which
the coupling g turns on smoothly at finite time, starting from g = 0 in the far past
where the state is taken to be the (free) Bunch-Davies vacuum. Our main result is that
the resulting correlators (which we compute at the one-loop level) approach those of the
interacting Hartle-Hawking state at late times. We argue that similar results should
hold for other physically-motivated choices of initial conditions. This behavior is to be
expected from recent quantum “no hair” theorems for interacting massive scalar field
theory in de Sitter space which established similar results to all orders in perturbation
theory for a dense set of states in the Hilbert space. Our current work i) indicates
that physically motivated initial conditions lie in this dense set, ii) provides a Lorentz-
signature counter-part to the Euclidean techniques used to prove such theorems, and
iii) provides an explicit example of the relevant renormalization techniques.
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1 Introduction

Quantum field theories (QFTs) in de Sitter space are of interest for many reasons. Some
of these include the increasingly precise measurements of the cosmic microwave background
(CMB) [1] which have prompted many to study predictions of the CMB spectrum beyond
the Born approximation (see, e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10]). Others include a growing
interest in understanding local measurements in eternal inflation (e.g., [11, 12, 13]), as well
as a renewed interest in approaches to de Sitter quantum gravity [14, 15, 16, 17] inspired
by dS/CFT [18, 19]. In addition, the fact that de Sitter (dS) is a maximally symmetric
(and thus relatively simple) example of a spacetime where horizons limit the observations of
freely-falling observers makes QFTs on dS of interest in their own right.

One of the chief concerns with QFTs in de Sitter has been their infrared stability (see e.g.
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]). Two recent
papers [38, 39] have established that at least massive scalar field quantum field theories are
infra-red stable (at all orders of perturbation theory) in a particular sense. In order to state
their results precisely, we first introduce the (interacting) Hartle-Hawking state |HH〉 [41]
defined by analytically continuing all correlation functions from Euclidean signature. Next,
consider a normalized state constructed by the application of smeared field operators on
|HH〉:

|Ψ〉 =

∫
y1

· · ·
∫
yn

f(y1, . . . , yn)φ(y1) · · ·φ(yn) |HH〉 , (1.1)
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with f(y1, . . . , yn) a smooth smearing function of compact support. By the Reeh-Schlieder
theorem of curved spacetimes [42] the set of states of the form (1.1) is dense in the Hilbert
space. The works [38, 39] show that, at all orders of perturbation theory, the correlation func-
tions of |Ψ〉 reduce to those of the Hartle-Hawking state when evaluated in the asymptotic
future/past of de Sitter space:

〈φ(x1) · · ·φ(xn)〉Ψ → 〈φ(x1) · · ·φ(xn)〉HH . (1.2)

In particular, de Sitter invariance of |HH〉 means that all one-point functions approach
constants (whether the associated operators are elementary or composite). Ref [38] calls the
result (1.2) a ‘quantum cosmic no hair theorem,’ while in the language of [34] one says that
|HH〉 is an attractor state for local correlators.

Although stated as a result concerning QFTs in exact de Sitter space, the no-hair theorem
just described may also be usefully applied to more interesting scenarios. Since it relies only
on the asymptotic behavior, it should be valid in the asymptotic region of any asymptotically-
de Sitter spacetime, or within the causal patch of an observer who finds herself in a locally
de Sitter spacetime. One expects physically relevant states to take the form (1.1) within the
de Sitter region so that the theorem applies.

Our main purpose here is to provide evidence that this is indeed the case by studying
(at the one-loop level) a particular scenario recently discussed by Krotov and Polyakov [40].
In this scenario, the spacetime is again exact de Sitter but the theory is time dependent.
The particular model involves a cubic interaction g(x)φ3(x) with time-dependent coupling
g(x), taken to vanish in the far past and to approach some constant gf in the far future.
The state of the system is taken to be the free Bunch-Davies vacuum in the region where
g(x) = 0 and we take the coupling to turn on at some fixed time. We explicitly compute
the O(g2) (one-loop) corrections to the 2-point function in this model and verify that they
approach those of the de Sitter Hartle-Hawking state in the far future. We work entirely in
Lorentz signature, in part to counter concerns [26, 32, 40] about the Euclidean techniques
used in [38, 39]. In addition, we note that the current work provides an an explicit example
of the renormalization techniques used in [39] which combine Pauli-Villars regularization
with Mellin-Barnes representations. Our techniques also apply to other examples where the
coupling does not depend on time but in which the spacetime is de Sitter only after some
finite time.

Although [40] concluded that de Sitter QFT is “unstable,” it is useful to point out that
our technical results are completely consistent with those of [40]. As stated below their
equation (17), for fixed g(x) their approximations are not valid for correlators computed at
late times. Instead, [40] focused on correlators defined at some fixed time in the limit where
g(x) turns on at very early times. The divergence they find is in fact to be expected from
the results of [38, 39], which suggest that correlators in well-behaved states approach those
of |HH〉 in the far past. Using the free vacuum when g(x) = 0 and taking g(x) to turn on
very early ensures that correlators at such early times differ significantly from those in |HH〉.
As a result, one already expects from [38, 39] that the state is not well-behaved under the
limit taken in [40].
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We emphasize that the present work considers only perturbative effects in massive the-
ories. Non-perturbative effects can yield qualitatively different behavior (though see [43]),
and including massless fields (whether scalar or tensor1) would raise new issues. As a result,
our analysis does not directly address the much-discussed possibility of novel infrared effects
in de Sitter quantum gravity (e.g., [46, 47, 48, 49, 50, 51, 52, 53, 9, 10]). Nevertheless, a
detailed study of theories on a fixed de Sitter background helps to disambiguate those effects
which are truly quantum gravitational from those that are generic for quantum fields in de
Sitter.

We begin in §2 with a brief review of linear quantum field theory on de Sitter. We then
analyze time-dependant couplings in global de Sitter in §3. Section 3.1 studies a simple
theory with a time-dependant φ2(x) interaction (i.e., a time-dependant mass perturbation).
We study the more complicated model of a time-dependant φ3(x) interaction in §3.2, relying
at times upon the results derived in the φ2(x) model. Some further calculational details are
presented in appendices. We provide a concluding discussion in §4.

2 Preliminaries

We begin by reviewing some basic features of free quantum fields in de Sitter space. Recall
that global de Sitter may be described by the metric

ds2 = `2

[
− 1

1 + η2
dη2 + (1 + η2)dΩ2

D−1

]
, (2.1)

where ` is the de Sitter radius, η is a time coordinate with range −∞ < η < +∞, and dΩ2
D−1

is the metric of the unit sphere SD−1. The coordinate η is related to the more familiar global
de Sitter coordinate t (for which gtt = −1) via η = sinh(t/`). In these coordinates the
volume element is

√
−g(x)dDx = `D(1+η2)(D−2)/2dη dΩD−1(~x) with ~x a unit vector in RD−1

parameterizing SD−1. The Euclidean section of de Sitter is the Euclidean sphere SD with
radius `.

Free massive scalar field theories on de Sitter have been well-understood for decades (e.g.,
[54, 55]). Such theories may be described by the classical Lagrangian density

L =
1

2
∇µφ∇µφ+

M2

2
φ2, (2.2)

from which it follows that the classical equation of motion is the Klein-Gordon equation;
correspondingly, in the quantum theory the Schwinger-Dyson equations are

(2i −M2) 〈φ(x1) · · ·φ(xi) · · ·φ(xN)〉Ψ = 0. (2.3)

The free theory admits a unique Hadamard de Sitter-invariant state known as the Bunch-
Davies, Euclidean, or (free) Hartle-Hawking state, which we denote by |0〉. The latter two

1The 2-point functions of Maxwell fields in dS are known to behave like those of massive scalars [44, 45]
and so provide no new subtleties.
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names come from the fact that the correlation functions of this state may be defined by the
analytic continuation from the Euclidean section. We denote the time-ordered, anti-time-
ordered, and Wightman 2-point functions of this state by

Gσ(x1, x2) := 〈Tφσ(x1)φσ(x2)〉0 ,
G∗σ(x1, x2) :=

〈
Tφσ(x1)φσ(x2)

〉
0
,

Wσ(x1, x2) := 〈φσ(x1)φσ(x2)〉0 . (2.4)

In these expressions we have introduced a label σ to keep track of the bare mass M . We
define σ by

σ = −
(
D − 1

2

)
+

[
(D − 1)2

4
−M2`2

]1/2

, (2.5)

from which it follows that M2`2 = −σ(σ +D − 1).
At times it will be convenient to expand the scalar Green’s functions (2.4) in Klein-

Gordon modes φσ~L(x). These modes are orthonormal with respect to the Klein-Gordon
inner product:

(φσ~L, φσ ~M)
KG

:= −i`D−1(1 + η2)(D−1)/2

∫
dΩD−1(~x)nµ

[
φσ~L(η, ~x)

←→∇ µφ
∗
σ ~M

(η, ~x)
]

= δ~L ~M .

(2.6)
Here nµ is the future-directed normal vector (nµ = (1 + η2)1/2δµη /`) to an η = const. surface

and A
←→∇ µB := A∇µB −B∇µA. The Klein-Gordon modes may be written explicitly as

φσ~L(x) = `(2−D)/2uσL(η)Y~L(~x), (2.7)

with Y~L(~x) spherical harmonics on SD−1 and uσL(η) given by

uσL(η) = NσL(1 + η2)−(D−2)/4

[
1− iη
1 + iη

](L+(D−2)/2)/2

FσL(η), (2.8)

where FσL(η) is a Gauss hypergeometric function

FσL(η) = 2F1

[
σ +

D

2
, 1− σ − D

2
; L+

D

2
;

1− iη
2

]
, (2.9)

and the normalization coefficient is

NσL =
1

Γ
(
L+ D

2

) [Γ [L− σ, L+ σ +D − 1]

2

]1/2

. (2.10)

Using these modes we may expand, e.g., the Wightman function

Wσ(x1, x2) = `2−D
∑
~L

φσ~L(x1)φ∗
σ~L

(x2)

= `2−DΓ
(
D−2

2

)
4πD/2

∞∑
L=0

(2L+D − 2)uσL(η1)u∗σL(η2)C
(D−2)/2
L (~x1 · ~x2). (2.11)
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Here C
(D−2)/2
L (z) is a Gegenbauer polynomial and once again ~x1, ~x2 are unit vectors in RD−1

parameterizing the SD−1. To obtain the last equality we sum over angular momenta via the
useful identity∑

~j

Y~L(~x1)Y ∗~L (~x2) =
Γ
(
D−2

2

)
4πD/2

(2L+D − 2)C
(D−2)/2
L (~x1 · ~x2), ~L = (L,~j). (2.12)

It will be useful to note some qualitative features of the of the Klein-Gordon mode
function uσL(η). First, as one might expect from the fact that the volume of the SD−1 is
smallest at η = 0, the mode functions are bounded by their values at η = 0:

|uσL(η)|2 ≤ |uσL(0)|2 = 2−(2L+D−1)π
Γ [L− σ, L+ σ +D − 1](
Γ
[

1+L−σ
2

, 1+L+σ+D−1
2

])2

=
1

2L

(
1 +O(L−1)

)
, when L� 1, σ fixed , (2.13)

(see eq. (56) of [56]). From this we see that |uσL(η)| may be bounded by a function of L
that decreases as L→∞.

Second, the expansion of the universe and the ensuing growth of the physical wavelength
at fixed L suggest that at large |η| all modes behave like the L = 0 mode. Indeed, as derived
in detail in Appendix A, the following asymptotic expansion for uσL(η) is valid for large |η|
when σ, L, and D are held fixed:

uσL(η) =
NσL

2σ+(D−2)/2
Γ

[
L+ D

2
, 2σ +D − 1

L+ σ +D − 1, σ + D
2

]
exp

[
i
π

2
(L+ σ +D − 2)

]
(η)σ

[
1 +O

(
(L− σ)

η

)]
+(σ → −(σ +D − 1)), for |η| � 1, |η| � (L− σ). (2.14)

Now, while (2.14) gives the correct asymptotic behavior for a given mode at large |η|
(with all other parameters fixed), it does not correctly reproduce the behavior of the mode
function at some arbitrarily large-but-finite |η| as L → ∞. To understand the behavior of
the mode function in this regime, we instead use the WKB approximation valid when

f(η) :=
L(L+D − 2)

(1 + η2)
+M2`2 � 1. (2.15)

The WKB approximation is derived in appendix B and is given by

uσL(η) ≈ 1√
2

(1 + η2)(1−D)/4 [f(η)]−1/4 e±iΥ(η), (2.16)

with Υ(η) satisfying

d

dη
Υ(η) =

[
f(η)

(1 + η2)

]1/2

. (2.17)

The key feature of this expression is that Υ(η) is large in the regime of validity, so (2.16) is
a highly oscillatory function of η.
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Σ

R

x1 x2

(a)

σ1 σ2
x1 x2

(b)

σ1 σ3 σ2
x1 x2

x1 x2
σ1 σ2

σ3

σ4

1

Figure 1: The Penrose diagram of de Sitter. We consider the state |Ψ〉 defined by the Bunch-
Davies vacuum on a Cauchy surface Σ. The interaction turns on across the region R via a
smooth coupling function g(x) such that g(x) = gf in the causal future of R and g(x) = 0
in the causal past of R. We compute the time-ordered 2-point function 〈Tφ(x1)φ(x2)〉Ψ of
two points in the distant future.

Let us now turn the discussion to interacting theories. The Hartle-Hawking state |HH〉 is
constructed by analytically continuing all correlation functions from the Euclidean section.
We denote the Hartle-Hawking state constructed perturbatively in an interacting theory by
|HH〉, and reserve |0〉 to denote the Hartle-Hawking state of the free theory. The state |HH〉
has been studied in detail for massive scalar field theories in [30, 34, 38, 39, 57] by performing
the relevant analytic continuations. However, in the current work we perform all calculations
explicitly in Lorentz-signature using standard Schwinger-Keldysh (a.k.a “in-in”, “real-time”,
“closed time path”) perturbation theory (for original works see [58, 59]; for more tractable
introductions see [60, 61, 62] and the appendix of [2]).

3 Time-dependent couplings in de Sitter

Consider a massive scalar field on global de Sitter with a time-dependent self-interaction. In
particular, let the self-interaction vanish in the asymptotic past but turn on smoothly across
a spacetime region R. We require the coupling function g(x) to satisfy

g(x) =

{
0 for x ∈ J−(R)/R
gf for x ∈ J+(R)/R , (3.1)

where as usual J± denotes the causal past and future of a set and A/B denotes the set of
points in A that do not lie in B. We sketch the scenario in Fig. 1.

We wish to compute correlation functions with respect to the state |Ψ〉 which coincides
with the free Bunch-Davies vacuum |0〉 in the past region J+(R)/R. For infinitesimal
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(a)

σ1 σ2
x1 x2

(b)

σ1 σ3 σ2
x1 x2

x1 x2
σ1 σ2

σ3

σ4

1

Figure 2: Corrections to the time-ordered 2-point function 〈Tφ(x1)φ(x2)〉Ψ due to the in-
teraction −1

2
g(x)φ2(x). The O(g(x)) correction is depicted in Fig. (a) while the O(g2(x))

correction is depicted in Fig. (b). It is convenient for computation to label each leg of the
diagram by a distinct mass parameter σi.

coupling g(x) the time-ordered 2-point function with respect to |Ψ〉 can be expanded as

〈Tφ(x1)φ(x2)〉Ψ = 〈Tφ(x1)φ(x2)〉0 +
∞∑
n=1

〈Tφ(x1)φ(x2)〉(n)
Ψ , (3.2)

where 〈Tφ(x1)φ(x2)〉(n)
Ψ is of O(gn). We choose a surface Σ in the past of R as our initial

Cauchy surface – see Fig. 1. Given the above choice of state, the appropriate Green’s
functions to use in the Schwinger-Keldysh formalism are those of the Bunch-Davies vacuum
(2.4).

The main result of this section is to show that, when it is evaluated at x1, x2 in the far
future of R, the 2-point function (3.2) reduces to that of the Hartle-Hawking state of the
analogous theory with constant coupling gf . We consider both quadratic and cubic couplings
(g(x)φ2(x) and g(x)φ3(x)) below, showing in each case that the perturbative corrections

〈Tφ(x1)φ(x2)〉(n)
Ψ approach those of the Hartle-Hawking state at late times up to order n = 2.

Although it may be of less physical interest, the analysis of the quadratic coupling in section
2 will help to greatly simplify our 1-loop treatment of the cubic coupling in section 3.

3.1 Example: φ2(x) interaction

In our first example we consider the simple quadratic interaction term

Lint[φ] = −g(x)

2
φ2(x). (3.3)

Treating this term perturbatively yields only tree-level diagrams; no regularization or renor-
malization is needed. We compute both the O(g) and the O(g2) corrections to the two-point
function of this model below. As we will see in section 3.2, the O(g2) correction from (3.3) is
closely related to the 1-loop correction from a φ3 interaction. As a result, the results below
will greatly simplify the manipulations in section 3.2.
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3.1.1 The O(g) correction

The O(g) correction is depicted in the Feynman diagram shown in Fig. 2 (a) and is given by
the expression

〈Tφσ1(x1)φσ2(x2)〉(1)
Ψ = i

∫
y

g(y) [Gσ1(y, x1)Gσ2(y, x2)−Wσ1(y, x1)Wσ2(y, x2)] . (3.4)

We denote by
∫
y
. . . an integral over the future of Σ. For the moment it is convenient to let

each Green’s function have a distinct mass; we will take the limit of equal masses later.
Consider the first term in (3.4):

T1(x1, x2) := i

∫
y

g(y)Gσ1(y, x1)Gσ2(y, x2). (3.5)

Making use of the Green’s functions’ equations of motion

(2x −M2)Gσ(x, y) = (2y −M2)Gσ(x, y) = iδ(x, y),

(2x −M2)Wσ(x, y) = (2y −M2)Wσ(x, y) = 0, (3.6)

we may usefully re-write (3.5) as

T1(x1, x2) =
i

M2
1 −M2

2

∫
y

g(y)

[
(2yGσ1(y, x1))Gσ2(y, x2)

−Gσ1(y, x1)(2yGσ2(y, x2))− iδ(x1, y)Gσ2(y, x2) + iδ(x2, y)Gσ1(y, x1)

]
=

1

M2
1 −M2

2

[g(x1)Gσ2(x1, x2)− g(x2)Gσ1(x1, x2)]

+
i

M2
1 −M2

2

∫
y

g(y)

[
(2yGσ1(y, x1))Gσ2(y, x2)−Gσ1(y, x1)(2yGσ2(y, x2))

]
.

(3.7)

Making the simple re-arrangement

g(y)(2Gσ1(y, x1))Gσ2(y, x2) = ∇µ
[
g(y)(∇µGσ1(y, x1))Gσ2(y, x2)

]
−(∇µg(y))(∇µGσ1(y, x1))Gσ2(y, x2)

−g(y)(∇µGσ1(y, x1))(∇µGσ2(y, x2)), (3.8)

we obtain

T1(x1, x2) =
1

M2
1 −M2

2

[g(x1)Gσ2(x1, x2)− g(x2)Gσ1(x1, x2)]

− i

M2
1 −M2

2

∫
y

∇µ
[
g(y)Gσ1(y, x1)

←→∇ µGσ2(y, x2)
]

+
i

M2
1 −M2

2

∫
y

(∇µg(y))
[
Gσ1(y, x1)

←→∇ µGσ2(y, x2)
]
. (3.9)
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One can perform the same manipulations for the second term in (3.4). The only difference
is that the Wightman function satisfies the homogeneous equation of motion, so there are
no analogs of the terms on the top line of (3.9). All together we obtain the expression

〈Tφσ1(x1)φσ2(x2)〉(1)
Ψ =

1

M2
1 −M2

2

[g(x1)Gσ2(x1, x2)− g(x2)Gσ1(x1, x2)]

− i

M2
1 −M2

2

∫
y

∇µ
[
g(y)

(
Gσ1(y, x1)

←→∇ µGσ2(y, x2)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

)]
+

i

M2
1 −M2

2

∫
y

(∇µg(y))
[
Gσ1(y, x1)

←→∇ µGσ2(y, x2)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

]
. (3.10)

In the second line of (3.10) there is an integral of a total derivative. By Stokes’ theorem
this integral can be expressed as an integral over the boundary of the region to the future
of Σ. This boundary is simply the union of Σ and future infinity I+. Now, the combination
of Green’s functions in the integrand is such that the integrand has support only on the
union of the past light cones of x1 and x2, so the integral over I+ vanishes. Furthermore, the
coupling function g(y) vanishes on Σ, so the integral over Σ vanishes as well. We conclude
that the integral in the second line of (3.10) is identically zero:

〈Tφσ1(x1)φσ2(x2)〉(1)
Ψ =

1

M2
1 −M2

2

[g(x1)Gσ2(x1, x2)− g(x2)Gσ1(x1, x2)]

+
i

M2
1 −M2

2

∫
y

(∇µg(y))
[
Gσ1(y, x1)

←→∇ µGσ2(y, x2)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

]
.(3.11)

We are interested in x1, x2 in the future region J+(R)/R. Since the gradient ∇µg has
support only in R, we need not allow y in (3.11) to coincide with x1, x2 or to lie in the future
of either point. We may therefore replace Gσ1 , Gσ2 by appropriate Wightman functions in
the integral and write the second line of (3.11) in the form

T2σ1σ2(x1, x2) :=
i

M2
1 −M2

2

∫
y

(∇µg(y))
[
Wσ1(x1, y)

←→∇ µWσ2(x2, y)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

]
=

2

M2
1 −M2

2

Im

{∫
y

(∇µg(y))Wσ1(y, x1)
←→∇ µWσ2(y, x2)

}
. (3.12)

To keep the computation simple we choose g(y) to be a smooth function of the time coordi-
nate η alone, i.e.,

∇µg(y) = −`−2(1 + η2)g′(η)δµη . (3.13)

By expanding the Wightman functions in Klein-Gordon modes as in (2.11) we compute

T2σ1σ2(x1, x2) = − 2`D−2

M2
1 −M2

2

Im

{∫
dη (1 + η2)(D−1)/2g′(η)

∫
dΩD−1Wσ1(y, x1)

←→
∂nWσ2(y, x2)

}
= −`2−DΓ

(
D−2

2

)
2πD/2

Im
∞∑
L=0

{
(2L+D − 2)χσ1σ2(L)u∗σ1L(t1)u∗σ2L(t2)C

(D−2)/2
L (~x1 · ~x2)

}
,

(3.14)
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with

χσ1σ2(L) =
1

(M2
1 −M2

2 )

∫
dη (1 + η2)(D−1)/2g′(η)

[
uσ1L(η)

←→
∂nuσ2L(η)

]
, (3.15)

where ∂n denotes a derivative along the unit (future-pointing) timelike normal to the surface
η = const. The integral in (3.15) is guaranteed to be finite for any pair uσ1L(η), uσ2L(η) as
the harmonics are bounded and g′(η) is smooth with compact support. It is also finite in
the limit M2

2 →M2
1 , as can be seen by using l’Hopital’s rule.

It remains, however, to determine the convergence of the sum over L in (3.14). This is
governed by the behavior of χσ1σ2(L) at large L � 1. Since g′(η) has compact support it
must vanish for |η| greater than some |η|max, and for L(L−D + 2)� 1 + η2

max we may use
the WKB approximation (2.16). Since the phase Υ(η) in (2.16) is highly oscillatory at large
L, we expect χσ1σ2(L) to decrease rapidly with L. To verify that this is the case, suppose
that in fact L(L−D + 2)�M2`2(1 + η2

max) so that we may also expand the phases Υσ(η)
(where we have added the label σ to indicated the dependence on mass) as

Υσ =
∑
n≥0

(L(L−D + 2))(1−n)/2 Υn,σ. (3.16)

Noting that Υ0,σ is independent of σ, we now introduce a new time coordinate η̃ defined by i)
η̃ is a smooth strictly increasing function of η, ii) η̃ = Υ0,σ in the region where g′(η) 6= 0, and
iii) η̃ = η at large |η|. Then for large L (3.15) becomes (L−1 times) the Fourier transform of
a smooth L-independent function of η̃ and, as a result, decays faster than any power law in
L. (Here we use the fact that the sub-leading terms in the WKB expansion correct (2.16) by
multiplying (2.16) by functions which become essentially constant at large L for |η| < ηmax.)
For later use we note that for L� |ηmax|M` we have shown that |χσ1,σ2(L)| ≤ 1/Ln and, as
a result, that for all L and n we have a bound

|χσσ(L)| ≤ Cn

(
M`

L

)n
(3.17)

for appropriate Cn determined by only g(x) (and in particular, for which the Cn do not
depend on M,L).

It follows that the sum over L in (3.14) is absolutely convergent and yields a finite result,
even when x1 = x2. To see this, we bound the harmonics |u∗σL(x1)u∗σL(η2)| ≤ |uσL(0)|2 as in
(2.13), and we bound the Gegenbauer polynomial by it’s value at coincidence:

C
(D−2)/2
L (1) = Γ

[
L+D − 2
L+ 1, D − 2

]
, (3.18)

(see eq. (44) of [56]). For L� 1 this behaves like LD−3. From these bounds it follows that
the summand in (3.14) may be bounded at large L by LD−3χσ1σ2(L). Since χσ1σ2(L) decays
faster than any polynomial as L→∞, the sum is absolutely convergent.

Furthermore, we can show that when |η1|, |η2| � |η|2max the expression T2σσ(x1, x2) decays
like (η1η2)σ. For η1, η2 in this regime, let us choose some Lcut such that min(|η1|, |η2|) �
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4L2
cut � |η|2max. We then split the sum over L in (3.14) into two parts: One part T2,<(x1, x2)

is the finite series containing the terms below Lcut. The other part T2,>(x1, x2) is the infinite
series containing the terms with L ≥ Lcut. For each term in T2,<(x1, x2) we may approximate
u∗σL(η1) and u∗σL(η2) by the asymptotic expansion (2.14). It follows that each term in the
series T2,<(x1, x2) decays like (η1η2)σ, and so T2,<(x1, x2) does as well.

On the other hand, we can bound the contribution of the infinite series T2,>(x1, x2) by

T2>, (x1, x2) ≤ `2−DΓ
(
D−2

2

)
2πD/2

∞∑
L=Lcut

{
(2L+D − 2)|χσ1σ2(L)||uσL(0)|2C(D−2)/2

L (1)

}
.(3.19)

This series converges absolutely and (due to the rapid decay of χσ1σ2(L)) decreases faster
than any power law as Lcut is increased. Thus, as |η1,2| → ∞ we may increase Lcut (taking
Lcut to be, e.g., any geometric mean of |η|max and min(|η1|, |η2|)) and the contribution due
to T2,>(x1, x2) becomes negligible. We conclude that the full expression T2σ,σ(x1, x2) decays
like (η1η2)σ.

For later use, let us also consider T2σ,µ(x1, x2) for all Reµ < Reσ. Of course, the same
argument shows that each T2σ,µ(x1, x2) decays in the same way, and in particular that it is
bounded by C|(η1η2)σ|. Using (3.17) we see that one can choose the constant C to grow
with µ at most as some polynomial whose order depends on D through the power n in (3.17)
required to show convergence of the mode sums.

To summarize, the O(g) correction to the time-ordered 2-point function may be written

〈Tφσ(x1)φσ(x2)〉(1)
Ψ = −gf∂M2Gσ(x1, x2) + T2σ,σ(x1, x2). (3.20)

The first term is precisely theO(g) correction to the Hartle-Hawking state [34]. At sufficiently
late times |η1,2| � |η|2max the second term decays like |η1η2|σ; i.e., exponentially in the usual
global time coordinate t. Furthermore, the coefficient of the decay term grows at large σ no
faster than a power law in σ, and similarly for all T2σ,µ(x1, x2) with Reµ ≤ Reσ.

3.1.2 The O(g2) correction

Let us now compute the O(g2) correction to the time-ordered 2-point function. Although
it is somewhat tedious, the effort will be worthwhile as we will make use of this result in
studying the 1-loop φ3 correction in the next section. The O(g2) correction is depicted in
Fig. 3 (b) and is given by the expression

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ

= i2
∫
y

∫
y

g(y)g(y)

{
Gσ1(y, x1)Gσ2(y, x2)Gσ3(y, y)−Wσ1(y, x1)Gσ2(y, x2)Wσ3(y, y)

+Wσ1(y, x1)Wσ2(y, x2)G∗σ3(y, y)−Gσ1(y, x1)Wσ2(y, x2)Wσ3(y, y)

}
.

(3.21)
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This expression may be organized into two terms, each of which contains the O(g) corrections
to an appropriate 2-point function:

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ = i

∫
y

g(y)Gσ2(y, x2) 〈Tφσ1(x1)φσ3(y)〉(1)
Ψ

−i
∫
y

g(y)Wσ2(y, x2) 〈φσ3(y)φσ1(x1)〉(1)
Ψ . (3.22)

The O(g) correction to the time-ordered correlator (first line of (3.22)) was studied in
section 3.1.1 above, and the O(g) correction to the Wightman correlator (second line of
(3.22) can be analyzed similarly. In particular, using manipulations analogous to those that
led to (3.10), one obtains

〈φσ1(x1)φσ2(x2)〉(1)
Ψ = i

∫
y

g(y)
[
Wσ1(x1, y)Gσ2(x2, y)−G∗σ1(y, x1)Wσ2(y, x2)

]
=

1

M2
1 −M2

2

[g(x1)Wσ2(x1, x2)− g(x2)Wσ1(x1, x2)]

+
i

M2
1 −M2

2

∫
y

(∇µg(y))
[
Wσ1(x1, y)

←→∇ µGσ2(x2, y)−G∗σ1(y, x1)
←→∇ µWσ2(y, x2)

]
.(3.23)

After inserting (3.11) and (3.23) into (3.22) and rearranging terms one can again recognize
the O(g) corrections which we have already computed:

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ

=
1

M2
1 −M2

3

{
g(x1) 〈Tφσ3(x1)φσ2(x2)〉(1)

Ψ − 〈Tφσ1(x1)φσ2(x2)〉(1′)Ψ

}
+

i

M2
1 −M2

3

∫
y

(∇µg(y))

{
− 〈Tφσ3(y)φσ2(x2)〉(1)

Ψ

←→∇ µGσ1(y, x1)

+ 〈φσ3(y)φσ2(x2)〉(1)
Ψ

←→∇ µWσ1(y, x1)

}
. (3.24)

Here 〈Tφσ1(x1)φσ2(x2)〉(1′)Ψ denotes the same integral expression (3.4) as 〈Tφσ1(x1)φσ2(x2)〉(1)
Ψ

but with a g(y) replaced by g2(y). Once again we may use (3.11) and (3.23) to simplify this
expression. The result may be written

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ = g2

f

[
Gσ1(x1, x2)

(M2
1 −M2

2 )(M2
1 −M2

3 )
+

Gσ2(x1, x2)

(M2
2 −M2

1 )(M2
2 −M2

3 )

+
Gσ3(x1, x2)

(M2
3 −M2

1 )(M2
3 −M2

2 )

]
+ T3σ1σ2σ3(x1, x2), (3.25)

with T3σ1σ2σ3(x1, x2) the collection of integration terms

T3σ1σ2σ3(x1, x2) = (g∇g terms) + (∇g∇g terms), (3.26)
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where

(g∇g terms) :=
1

(M2
1 −M2

3 )
i

∫
y{

(∇µg(y))g(x1)

[
Gσ3(y, x1)

←→∇ µGσ2(y, x2)−Wσ3(y, x1)
←→∇ µWσ2(y, x2)

(M2
3 −M2

2 )

]

+ (∇µg2(y))

[
Gσ1(y, x1)

←→∇ µGσ2(y, x2)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

(M2
2 −M2

1 )

]

+ (∇µg(y))g(y)

[
Gσ1(y, x1)

←→∇ µGσ2(y, x2)−Wσ1(y, x1)
←→∇ µWσ2(y, x2)

(M2
3 −M2

2 )

]

+ (∇µg(y))g(x2)

[
Gσ1(y, x1)

←→∇ µGσ3(y, x2)−Wσ1(y, x1)
←→∇ µWσ3(y, x2)

(M2
2 −M2

3 )

]}
,

(3.27)

(∇g∇g terms) :=
1

(M2
1 −M2

3 )(M2
2 −M2

3 )

∫
y

∫
y

(∇µg(y))(∇νg(y)){
Wσ1(x1, y)

←→∇ µGσ3(y, y)
←→∇ νWσ2(x2, y)

−Wσ1(x1, y)
←→∇ µWσ3(y, y)

←→∇ νWσ2(y, x2)

−Wσ1(y, x1)
←→∇ µWσ3(y, y)

←→∇ νWσ2(x2, y)

+Wσ1(y, x1)
←→∇ µG

∗
σ3

(y, y)
←→∇ νWσ2(y, x2)

}
. (3.28)

Let us simplify the lengthy expressions (3.27) and (3.28). The terms in (3.27) are of the
same form as T2σ1σ2(x1, x2) above; indeed, after a few simple manipulations we may write
(3.27) as

(g∇g terms) =
gf

(M2
1 −M2

3 )
T2σ3,σ2(x1, x2) +

gf
(M2

2 −M2
3 )
T2σ1,σ3(x1, x2)

+
(M2

1 +M2
2 − 2M2

3 )

2(M2
3 −M2

2 )(M2
1 −M3

3 )
T2′ σ1σ2(x1, x2). (3.29)

Here T2′ σ1σ2(x1, x2) denotes the same integral expression (3.12) as T2σ1σ2(x1, x2) but with
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g2(y) in place of g(y). The (∇g∇g terms) may be decomposed into the sum of the two terms

TW σ1σ2,σ3(x1, x2) :=
−2

(M2
1 −M2

3 )(M2
2 −M2

3 )

Re

{∫
y

∫
y

(∇µg(y))(∇νg(y))Wσ1(x1, y)
←→∇ µWσ3(y, y)

←→∇ νWσ2(y, x2)

}
, (3.30)

TGσ1σ2,σ3(x1, x2) :=
2

(M2
1 −M2

3 )(M2
2 −M2

3 )

Re

{∫
y

∫
y

(∇µg(y))(∇νg(y))Wσ1(x1, y)
←→∇ µGσ3(y, y)

←→∇ νWσ2(x2, y)

}
. (3.31)

Expanding the Green’s functions in modes, one easily obtains

TW σ1σ2,σ3(x1, x2)

= `2−DΓ
(
D−2

2

)
2πD/2

Re

{
∞∑
L=0

(2L+D − 2)χ∗σ1σ3(L)χσ3σ2(L)uσ1L(η1)u∗σ2L(η2)C
(D−2)/2
L (~x1 · ~x2)

}
.

(3.32)

This leaves only TGσ1σ2σ3(x1, x2), which one may treat similarly using Gσ(ȳ, y) = θ(η̄ −
η)Wσ(ȳ, y) + θ(η̄ − η)W ∗

σ (ȳ, y) and the mode sum (2.11). One finds

TGσ1σ2,σ3(x1, x2)

= `2−D Γ
(
D−2

2

)
2πD/2(M2

2 −M2
3 )

Re

{
∞∑
L=0

C
(D−2)/2
L (~x1 · ~x2)uσ1L(η1)uσ2L(η2)

× 1

L2

(∫
dη̄(1 + η̄2)(D−1)/2g′(η̄)[u∗σ3L(η̄)

←→
∂nu

∗
σ2L

(η̄)]ζLσ1σ3(η̄) + (σ1 ↔ σ2)

)}
,

(3.33)

where

ζLσ1σ3(η̄) =
L2

(M2
1 −M2

3 )

∫ ∞
η̄

dη (1 + η2)(D−1)/2g′(η)
[
u∗σ1L(η)

←→
∂nuσ3L(η)

]
. (3.34)

Note that the integral in (3.34) converges since the integrand is smooth and g′(η) has compact
support. Using (2.16), we see that the large L limit of (3.34) is a smooth function of η̄ which
is in fact independent of L,M1,M3. As a result, the η̄ integral in (3.33) once again gives a
function of L which decreases faster than any power of L. In particular, as with χσ1σ2(L),
for any p > 0 it may be bounded by Cp(σ1, σ3)L−p where Cp(σ1, σ3) is a polynomial in σ1, σ3

whose order and coefficients are determined by p.
It is clear that (3.32) and (3.33) are similar in form to (3.12). As a result, TW σ1σ2σ3(x1, x2)

and TGσ1σ2σ3(x1, x2) can be shown to decay like ησ11 η
σ2
1 via arguments analogous to those used

for T2σ1σ2(x1, x2). Furthermore, just as with T2σ1σ2(x1, x2), we find that these functions are
in fact bounded by C|(η1)σ1 (η1)σ2 | for some polynomial function C(σ1, σ2).
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(a)

σ1 σ2
x1 x2

(b)

σ1 σ3 σ2
x1 x2

x1 x2
σ1 σ2

σ3

σ4

1

Figure 3: The O(g2(x)) correction to the time-ordered 2-point function 〈Tφ(x1)φ(x2)〉Ψ in
a theory with an g(x)φ3(x) interaction. Once again we label each leg of the diagram by a
distinct mass parameter σi.

Collecting our results, we conclude that the O(g2) correction to the time-ordered 2-point
function is

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ

= g2
f

[
Gσ1(x1, x2)

(M2
1 −M2

2 )(M2
1 −M2

3 )
+

Gσ2(x1, x2)

(M2
2 −M2

1 )(M2
2 −M2

3 )
+

Gσ3(x1, x2)

(M2
3 −M2

1 )(M2
3 −M2

2 )

]
+

gf
(M2

1 −M2
3 )
T2σ3,σ2(x1, x2) +

gf
(M2

2 −M2
3 )
T2σ1,σ3(x1, x2)

+
(M2

1 +M2
2 − 2M2

3 )

2(M2
3 −M2

2 )(M2
1 −M3

3 )
T2′ σ1σ2(x1, x2) + TW σ1σ2,σ3(x1, x2) + TGσ1σ2,σ3(x1, x2).

(3.35)

We remind the reader that T2σ1σ2(x1, x2) is defined in (3.12), T2′ σ1σ2(x1, x2) is (3.12) with
g2(y) in place of g(y), TW σ1σ2,σ3(x1, x2) is defined in (3.30), and TGσ1σ2,σ3(x1, x2) is defined in
(3.31). In (3.35), the term in square brackets is the O(g2) correction to the Hartle-Hawking
state. The remaining terms are bounded for all x1, x2 ∈ J+(R)/R and in particular are finite
at coincidence (x1 = x2). In addition, these terms all decay like ησ11 η

σ2
2 when |η1,2| > |η|max.

One may readily verify that the full expression (3.35) is regular in the limit of coincident
masses. In this limit, and at late times, we obtain

〈Tφσ(x1)φσ(x2)〉(2)
Ψ =

1

2
g2
f∂

2
M2Gσ(x1, x2) +O ((η1η2)σ) . (3.36)

3.2 Example: φ3(x) interaction

In this section we consider a cubic self-interaction

Lint[φ] = −g(x)

3!
φ3(x), (3.37)

and compute the O(g2) correction to the time-ordered 2-point function. The relevant Feyn-
man diagram is shown in Fig. 3. In spacetime dimension D ≥ 4 this correction contains
ultraviolet divergences, so we will need to regulate our computation and renormalize the
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theory. We restrict attention to D ≤ 6 for which φ3-theory is power-counting normalizable;
for these dimensions, and to O(g2) the counterterms needed for renormalization are

Lct[φ] = −(Zφ(x)− 1)

2
∇µφ(x)∇µφ(x)− (ZM(x)− 1)M2

2
φ2(x), (3.38)

with Zφ(x) and ZM(x) given by Zi = 1+O(g2). The renormalization coefficients are position-
dependant as a result of our position-dependant coupling g(x). However, no renormalization
is required for D = 2, 3.

To regulate our computation of the diagram (Fig. 3) we replace the internal Green’s
functions with Pauli-Villars regulated Green’s functions. Thus the full O(g2) correction is
given schematically by

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ = (diag) + (c.t.), (3.39)

where (diag) is the regulated Feynman diagram given by the expression

(diag) = i2
∫
y1

∫
y2

g(y1)g(y2)

{
Gσ1(y1, x1)Gσ2(y2, x2)Greg

σ3
(y1, y2)Greg

σ4
(y1, y2)

−Wσ1(y1, x1)Gσ2(y2, x2)W reg
σ3

(y1, y2)W reg
σ4

(y1, y2)

+Wσ1(y1, x1)Wσ2(y2, x2)Greg ∗
σ3

(y1, y2)Greg ∗
σ4

(y1, y2)

−Gσ1(y1, x1)Wσ2(y2, x2)W reg
σ3

(y2, y1)W reg
σ4

(y2, y1)

}
,(3.40)

and (c.t.) are the counterterms generated by (3.38):

(c.t.) = −(Zφ(x2)− 1)Gσ1(x1, x2)

+iM2
2

∫
y

(Zφ(y) + ZM(y)− 2) [Gσ1(y, x1)Gσ2(y, x2)−Wσ1(y, x1)Wσ2(y, x2)] .(3.41)

At the end of our computation we will set the masses to be equal.
A useful way to proceed is to make use of the linearization formulae for Bunch-Davies

Green’s functions:

Hreg
σ1

(x, y)Hreg
σ2

(x, y) =

∫
µ

f(µ)Hµ(x, y). (3.42)

Here Hσ(x, y) and Hreg
σ (x, y) may be taken to be any Bunch-Davies Green’s function (e.g.,

time-ordered, Wightman, etc.). In addition to µ, the function f(µ) implicitly depends upon
σ1, σ2, and the spacetime dimension, as well as the collection of Pauli-Villars masses for
the two Green’s functions. To derive an expression for the function f(µ) it is sufficient
to construct the linearization formula for the Euclidean Green’s function ∆σ(x, y). Since
the Bunch-Davies Green’s functions are given by the Euclidean Green’s function with an
appropriately chosen prescription for avoiding the cut in the complex Z plane, the extension
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of the linearization formula to these Green’s functions follows immediately. We derive the
linearization formulae in Appendix C following [39]; here we will simply state the results.
For the time-ordered Green’s function we have

Greg
σ1

(x, y)Greg
σ2

(x, y) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))Gµ(x, y), (D = 2, 3)

Greg
σ1

(x, y)Greg
σ2

(x, y) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))Gµ(x, y)− i`4−Dc0δ(x, y), (D = 4, 5)

Greg
σ1

(x, y)Greg
σ2

(x, y) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))Gµ(x, y)

−i`4−Dc0δ(x, y)− i`6−Dc12δ(x, y), (D = 6, 7). (3.43)

where fσ1σ2(µ) depends only on σ1, σ2 and is independent of the regulator masses. In the
complex µ plane the function (fσ1σ2(µ) + fvan(µ)) decays exponentially away from the real
axis and is analytic in the strip Re (σ1 + σ2) < Reµ. The contours of integration (3.43) and
(3.44) lie within the strip Re (σ1 + σ2) < Reµ < 0.

The coefficients c0 and c1 in (3.43) are real functions of the Pauli-Villars masses but do
not depend on x, y or the integration variable µ. These expressions have been organized to
make it easy to take the limit of large Pauli-Villars regulator masses. As discussed in the
Appendix, in this limit the function fσ1σ2(µ) remains, fvan(µ) vanishes, and c0 and c1 diverge.
The explicit expressions for fσ1σ2(µ), fvan(µ), c0 and c1 can be found in the Appendix, but
we will not need them here. For the Wightman Green’s function we have

W reg
σ1

(x, y)W reg
σ2

(x, y) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))Wµ(x, y), (all D). (3.44)

This expression is finite when the Pauli-Villars masses are taken to infinity. This reflects that
fact that the product of such Wightman functions Wσ1(x, y) · · ·Wσn(x, y) is positive/negative
frequency with respect to x/y.

Let us start with the simple D = 2, 3 where there are no ultraviolet divergences at this
order. In this case we may set ZM = Zφ = 1 + O(g4) and immediately take the limit of
large regulator masses2 (which sends fvan(µ) to zero) in the linearization formulae (3.43) and
(3.44). The full correction to the 2-point function (3.39) then becomes

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ = `2−D

∫
µ

fσ3σ4(µ)

{
i2
∫
y1

∫
y2

g(y1)g(y2)

[
Gσ1(y1, x1)Gσ2(y2, x2)Gµ(y1, y2)−Wσ1(y1, x1)Gσ2(y2, x2)Wµ(y1, y2)

+Wσ1(y1, x1)Wσ2(y2, x2)G∗µ(y1, y2)−Gσ1(y1, x1)Wσ2(y2, x2)Wµ(y2, y1)

]}
.

(3.45)

2We could also have done the full computation without ever involving regulators. The unregulated Green’s
functions for D = 2, 3 satisfy the analogues of (3.43), (3.44) with fvan = 0.
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The astute reader will recognize the term in braces as the expression for the O(g2) correction
to the 2-point function in the φ2-theory discussed in §3.1. Inserting our final expression (3.35)
for that correction we obtain

〈Tφσ1(x1)φσ2(x2)〉(2)
Ψ =

`2−D
∫
µ

fσ3σ4(µ)

{
g2
f

[
Gσ1(x1, x2)

(M2
1 −M2

2 )(M2
1 −M2

µ)
+

Gσ2(x1, x2)

(M2
2 −M2

1 )(M2
2 −M2

µ)
+

Gµ(x1, x2)

(M2
µ −M2

1 )(M2
µ −M2

2 )

]
+ T3σ1σ2µ(x1, x2)

}
(3.46)

= `2−D
∫
µ

fσ3σ4(µ)

{
g2
f

Gµ(x1, x2)

(M2
µ −M2

1 )(M2
µ −M2

2 )
+ gf

T2µσ2(x1, x2)

(M2
1 −M2

µ)
+ gf

T2σ1µ(x1, x2)

(M2
2 −M2

µ)

+ TW σ1σ2µ(x1, x2) + TGσ1σ2µ(x1, x2)

}
, (3.47)

for x, y ∈ J+(R)/R. To obtain the second line we have inserted the definition of
T3σ1σ2µ(x1, x2) and noted that terms in the integrand of (3.46) whose only dependence upon
µ is a factor of 1/(M2

i −M2
µ) make no contribution to the integral over µ. This is because

1/(M2
i −M2

µ) contributes only poles to the left of the integration contour. For these terms
the integration contour may be closed to the right. But there are no poles contained in the
right half-plane, so these integrals vanish.

In higher dimensions the only additional complication is that we must take care to cancel
the ultraviolet divergences contained in (3.40) with our available counterterms. Our use of
Pauli-Villars regularization as well as our linearization formulae make this procedure quite
transparent. Consider first the case of D = 4, 5. After utilizing our linearization formulae
(3.43) and (3.44) the divergent terms in 〈Tφσ1(x1)φσ2(x2)〉(2)

Ψ are

+ c0`
4−Di

∫
y

g2(y) [Gσ1(y, x1)Gσ2(y, x2)−Wσ1(y, x1)Wσ2(y, x2)] . (3.48)

Comparing this expression to our counterterms (3.41) we see that these terms are cancelled
by setting

ZM(x) = 1− c0`
4−D

M2
2

g2(x) +O(g4), Zφ(x) = 1 +O(g4), (D = 4, 5). (3.49)

In D = 6 dimensions the divergent terms are

− c1g
2
fGσ1(x1, x2) +

(
c0`
−2 + c1M

2
2

)
i

∫
y

g2(y) [Gσ1(y, x1)Gσ2(y, x2)−Wσ1(y, x1)Wσ2(y, x2)] ,

(3.50)
which may be canceled by setting

ZM(x) = 1−
(

c0

M2
2 `

2
+ c1

)
g2(x) +O(g4), Zφ(x) = 1− c1g

2
f +O(g4), (D = 6). (3.51)
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With all divergent terms cancelled by the counterterms we may take the Pauli-Villars masses
to infinity, so that fvan(µ)→ 0, and then proceed as for D = 2, 3 above. For all 2 ≤ D ≤ 6
we find

〈Tφσ(x1)φσ(x2)〉(2)
Ψ = `2−D

∫
µ

fσσ(µ)

{
g2
f

Gµ(x1, x2)

(M2
µ −M2

σ)2
+ gf

T2µσ(x1, x2)

(M2
σ −M2

µ)
+ gf

T2σµ(x1, x2)

(M2
σ −M2

µ)

+ TW σσ,µ(x1, x2) + TGσσ,µ(x1, x2)

}
, (3.52)

where we have now taken the limit in which all masses become equal. Note that the
units are correct: mass2 has units `−2, g2(x) has units `D−6, and Gσ(x1, x2), T2σ1σ2(x1, x2)
TW σ1σ2µ(x1, x2), TGσ1σ2µ(x1, x2) each has units `2−D.

The first term in (3.52) gives precisely 〈Tφσ(x1)φσ(x2)〉(2)
HH,gf

, the associated correction to
the correlator in the Hartle-Hawking vacuum of the theory with g = gf = const. for all time.
Each of the remaining terms inside the braces was analyzed in detail in section 3.1. Choosing
the µ contour to satisfy Reµ ≤ Reσ, we see that each such term is bounded by C(µ)|η1η2|σ.
Recalling that C depends at most polynomially on µ while fσσ decays exponentially at large
imaginary µ we see that the integral of these terms over µ is bounded by C̃|η1η2|σ for some
constant C̃; i.e.,

〈Tφσ(x1)φσ(x2)〉(2)
Ψ = g2

f`
2−D

∫
µ

fσσ(µ)
Gµ(x1, x2)

(M2
µ −M2

σ)2
+O ((η1η2)σ) , (3.53)

where the first term is precisely the one-loop correction [39] 〈Tφσ(x1)φσ(x2)〉(2)
HH,gf

to the
Hartle-Hawking vacuum of the theory with constant g = gf .

We emphasize that the O ((η1η2)σ) term is finite at coincidence (x1 = x2). It follows
immediately that the one point function of the composite operator φ2(x1) in our state can
again be written as the sum of two terms, the first being its (finite) value in the Hartle-
Hawking state for constant g and the other decaying like η2σ

1 . In particular, defining φ2(x1)
via any de Sitter-invariant regulator gives a result of the form〈

φ2
σ(x1)

〉(2)

Ψ
= const.+O((η1)2σ). (3.54)

4 Discussion

We have shown that, in the time-dependent model of section 3, the two-point function at
one-loop level approaches that of the constant coupling Hartle-Hawking state in the limit
where its arguments are evaluated at late times η1, η2. A key feature of this model is a
time-dependent cubic coupling g(x)φ3 which vanishes before some fixed initial (global) time
which we may call η0. We also chose g(x) to be a constant (gf ) to the future some Cauchy
surface. The state was taken to coincide with the (free) Bunch-Davies vacuum in the region
where g(x) = 0, so that the state in the region with g = gf is determined by the particular
way in which the coupling turns on. Since we required only that g(x) be smooth in this
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transition region, this scenario describes a wide range of possible states. Our results were
established by working entirely in Lorentz signature and in global coordinates.

Our main result is that the difference between our two-point function and that of the
g = gf Hartle-Hawking state is negligible for η1, η2 � |η0|. In other words, while the
discrepancy may be significant (and perhaps even large!) for some period of time, it decreases
rapidly once the universe enters its expanding phase and the size of the spheres becomes
significantly larger than they were when the coupling turned on. This is precisely what one
would expect based on the free theory in which perturbations rapidly disperse as, after this
time, their effect on local correlators decays rapidly. This behavior was shown in [38, 39] to
hold to all orders in perturbation theory for a dense set of states; our results here indicate
that this dense domain allows for physically interesting initial conditions.

The above model was recently considered by Krotov and Polyakov [40]. While they
characterized the model as “unstable,” we remind the reader that their technical results
are completely consistent with ours. As stated in their paper (below their equation (17)),
their analysis applies in the regime η0 � −|η1|,−|η2| (our notation); i.e., in precisely the
complimentary regime to that studied here. As noted in the introduction, the divergence
they find as η0 → −∞ is not only consistent with, but in fact is naturally expected from,
the results found here and in [38, 39].

Despite various technical features of our analysis, we see that the approach to the Hartle-
Hawking state at late times followed from a few simple ingredients. First, for quadratic
perturbations g(x)φ2, one can write the full two-point function at each order as a sum of
the Hartle-Hawking two-point function and a ‘boundary term’ associated with the transition
region (see (3.9), (3.24)). These manipulations involve only integrations by parts and will
clearly hold in a general spacetime which is asymptotically de Sitter to the future. The rapid
expansion of the universe at late times then i) causes any given mode to decay as a power
law in η and ii) implies that the modes which have not yet decayed at some late time η
correspond to very high L. As a result, at the early time η0 when g(x) was time dependent,
these high L modes were very high frequency. Since quadratic perturbations do not lead to
loops, the Green’s functions that appear in this boundary term are all positive frequency, at
least at the key step (see the discussion of TGσ1σ2,σ3(x1, x2) surrounding (3.33)). As a result,
in the boundary term these modes appear with coefficients involving what is effectively the
Fourier transform of g(x) at large momentum, which vanishes rapidly since g(x) is smooth.
Thus the effect of the boundary term decays with time, leaving only the Hartle-Hawking
term in the two-point function.

For the cubic perturbation g(x)φ3, we used the linearization formulae (3.42) to make
renormalization straightforward and to reduce the one-loop calculation to the quadratic-
perturbation calculation described above. It is clear that analogous results follow immedi-
ately in any context where similar linearization formulae hold for the associated free Green’s
functions. While such formulae are not obvious for general fields in general spacetimes, they
must hold for conformally coupled free fields in general spherically symmetric spacetimes
(which are necessarily conformal to dS), at least after inserting powers of the appropriate
conformal factor Ω(x). Note that this argument requires conformal invariance only for the
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free theory about which we perturb3 and that there is no restriction on the interaction. The
only impact of these extra factors of Ω(x) is to provide what is in effect an extra time-
dependence in the coupling. Thus, to the extent that one can study a theory of general
spacetime-dependent mass m2(x) by perturbing the free conformally coupled theory by a
quadratic perturbation g(x)φ(x)2, our cubic results extend for all M2 > 0 to any spherically
symmetric spacetime which is asymptotically de Sitter in the far future.

It is useful to comment on the special case where the spacetime is taken to be the Einstein
Static Universe (ESU) S3 ×R to the past of some S3. Since the ESU is static and spatially
compact, we can take a limit where the coupling g(x) is turned on adiabatically slowly (after
which it is g = gf = const.) and in the distant past. We are then guaranteed that, in
the ESU region, the state is given by the interacting ESU vacuum. As a result, subject to
the same qualifiers as above we may consider the theory with g = gf = const. for all time.
Taking the state to be the (interacting) ESU vacuum at early times, we see that at late times
correlators again approach those of the de Sitter Hartle-Hawking vacuum. This result can
then be further generalized to either n−particle or thermal states in the ESU, all of which
approach the same de Sitter Hartle-Hawking vacuum at late times.

In summary, we have shown at the one-loop level that a wide class of physically-motivated
initial conditions lead to two-point functions which approach that of the Hartle-Hawking
state at late times. This suggests that states defined by general physical initial conditions
lie in the dense set of states where the cosmic quantum no hair theorems of [38, 39] apply.
We expect that this can be explicitly checked by extending the calculations reported here
to all orders in perturbation theory. After all, the techniques used above were essentially
Lorentz-signature versions of the Euclidean methods applied in [34, 39]. So by adapting
further such techniques to Lorentz signature we expect to obtain all-orders results analogous
to those found in [38, 39].

Some readers may feel a lingering uneasiness with these results due to the well-established
infrared divergences (see e.g. [63, 26, 32, 30]) associated with in-out perturbation theory in
global de Sitter. In particular, as noted in e.g. [34], at sufficient loop orders such divergences
occur in the future expanding region even for very large masses. This certainly indicates
that some quantity is becoming large in the infrared. However, the key point to realize is
that the quantity need not be local. In particular, we suggest that it is merely the operator
relating the (free) Bunch-Davies vacuum |0〉 to the interacting Hartle-Hawking state |HH〉
which becomes large at late times. This operator involves integrals over an entire S3 at each
time and can become large as the S3 grows in size. In Minkowski space, a corresponding
IR divergence is forbidden due to the exponential decay of massive propagators at large
spacelike separations. But since the volume element also grows exponentially in dS, such
IR divergences can occur. Indeed, the operator relating |0〉 and |HH〉 is closely related to
the vacuum to n-particle amplitudes of in-out perturbation theory noted to diverge above.
This stands in sharp contrast to the good IR behavior of (unintegrated) n-point functions
as established here and in [34, 38, 39].

3Recall that conformally coupled free fields correspond to σ = −(D − 2)/2 in de Sitter.



23

Acknowledgements: It is a pleasure to thank Atsushi Higuchi, Viatcheslav Mukhanov,
Alexander Polyakov, Albert Roura, and Richard Woodard for useful discussions. DM and
IM are supported in part by the US National Science Foundation under NSF grant PHY08-
55415 and by funds from the University of California.

A Asymptotic expansion of Klein-Gordon modes

One way to derive (2.14) is to use a standard Laurent expansion for the Gauss hypergeometric
function. Recall that FσL(η) is a Gauss hypergeometric function

FσL(η) = 2F1

[
σ +

D

2
, 1− σ − D

2
; L+

D

2
;

1− iη
2

]
. (A.1)

For |(1− iη)/2| < 1 this hypergeometric function has the power series expansion:

FσL(η) = Γ

[
L+ D

2

σ + D
2
, 1− σ − D

2

] ∞∑
n=0

Γ

[
σ + D

2
+ n, 1− σ − D

2
+ n

1 + n, L+ D
2

+ n

](
1− iη

2

)n
,

for

∣∣∣∣1− iη2

∣∣∣∣ < 1, (A.2)

while for |(1− iη)/2| > 1 it has the Laurent expansion:

FσL(η) = Γ

[
L+ D

2
, 2σ +D − 1

σ + D
2
, L+ σ +D − 1

]
Γ

[
2−D − 2σ
1− σ − D

2
, 2− L− σ −D

]
×
(
iη − 1

2

)σ+(D−2)/2 ∞∑
n=0

Γ

[
1− σ − D

2
+ n, 2− L− σ −D + n

1 + n, 2−D − 2σ + n

](
2

1− iη

)n
+ (σ → −(σ +D − 1)) , for

∣∣∣∣1− iη2

∣∣∣∣ > 1. (A.3)

The asymptotic expansion of FσL(η) for large |η| � 1 with σ, D, and L fixed is given by
(A.3); the leading terms are

FσL(η) = Γ

[
L+ D

2
, 2σ +D − 1

σ + D
2
, L+ σ +D − 1

]
exp

[
i
π

2

(
σ +

D − 2

2

)](η
2

)σ+(D−2)/2

+ (σ → −(σ +D − 1)) + . . . . (A.4)

Sub-leading terms in the Laurant expansion (those with n > 0 in (A.3)) are negligible when
|η| � 1 and |η| � (L− σ). In this limit

(1 + η2)−(D−2)/4 = η−(D−2)/2 +O(η−1),[
1− iη
1 + iη

](L+(D−2)/2)/2

= exp

[
i
π

2

(
L+

D − 2

2

)]
, (A.5)
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and so the full mode functions have the asymptotic expansion

uσL(η) =
NσL

2σ+(D−2)/2
Γ

[
L+ D

2
, 2σ +D − 1

L+ σ +D − 1, σ + D
2

]
exp

[
i
π

2
(L+ σ +D − 2)

]
(η)σ

[
1 +O

(
(L− σ)

η

)]
+(σ → −(σ +D − 1)), for |η| � 1, |η| � L− σ. (A.6)

B WKB approximation of Klein-Gordon modes

In this appendix we derive the WKB approximations to the Klein-Gordon modes (2.16).
The d’Alembertian in the coordinates (2.1) is

`22 = −(1 + η2)∂2
η −Dη∂η +

1

(1 + η2)
∇2
SD−1 , (B.1)

where∇2
SD−1 is the scalar Laplacian on SD−1 with unit radius. Expanding the mode functions

as φσ~L(x) = `(2−D)/2uσL(η)Y~L(~x) gives

(1 + η2)u′′σL(η) +Dηu′σL(η) + f(η)uσL(η) = 0, (B.2)

where primes denote derivatives with respect to η and

f(η) =
L(L+D − 2)

(1 + η2)
+M2`2. (B.3)

We now insert the ansatz
uσL(η) = KeA(η), (B.4)

and anticipate that A(η) = A0(η) +A1(η) + . . . , with successive terms suppressed by a large
parameter. Inserting (B.4) into (B.2) we obtain

(1 + η2)
[
A′′(η) + (A′(η))2

]
+DηA′(η) + f(η) = 0. (B.5)

At lowest order in the WKB approximation we keep only the term (A′0(η))2; this yields

A′0(η) = ±i
[

f(η)

(1 + η2)

]1/2

. (B.6)

We see that the large parameter in this WKB expansion is
√
f(η), and that we have just

solved for the O(f(η)) part of (B.2). To obtain the sub-leading term A1(η) we solve the
O(
√
f(η)) part of (B.2):

(1 + η2) [A′′0(η) + 2A′0(η)A′1(η)] +DηA′0(η) = 0, (B.7)

from which we obtain

A′1(η) = −1

2

[
Dη

1 + η2
+
A′′0(η)

A′0(η)

]
=

d

dη
log
[
(1 + η)−D/4(A′0(η))−1/2

]
. (B.8)
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We note that ∣∣∣A′1(η)

A′0(η)

∣∣∣ ≤ A10(η)√
f(η)

, (B.9)

where4,

A10(η) =
D

2

η√
1 + η2

(B.10)

is independent of L,M . This (and similar results at higher order) shows that our WKB
expansion is uniformly valid at large f(η).

Collecting our results we have

uσL(η) ≈ 1√
2

(1 + η2)(1−D)/4 [f(η)]−1/4 e±iΥ(η), (B.11)

with Υ(η) the anti-derivative of [f(η)/(1 + η2)]
1/2

. The normalization is easily obtained by
computing the Klein-Gordon norm (2.6) of (B.11). The higher order terms give corrections
to (B.11) that are much smaller than (B.11) in the limit of large f .

C Linearization formulae

In this appendix we construct linearization formulae for the Bunch-Davies 2-point functions;
these formulae follow immediately from the linearization formula of the Euclidean Green’s
function. To construct the linearization formula for Euclidean Green’s function we must
recall some facts about the Euclidean Green’s function ∆σ(x, y) = ∆σ(Z), where Z :=
Z(x, y) is the SO(D+ 1)-invariant distance between x and y. This information is presented
in more detail in [39]. Recall that ∆σ(Z) may be written as a Mellin-Barnes integral

∆σ(Z) = `2−D
∫
ν

ψσ(ν)Γ(−ν)

(
1− Z

2

)ν
, (C.1)

with

ψσ(ν) :=
1

(4π)α+1/2
Γ

[
−σ + ν, σ + 2α + ν, 1

2
− α− ν

1
2

+ α + σ, 1
2
− α− σ

]
. (C.2)

Here
∫
ν
. . . denotes a contour integral in the complex ν plane traversed from −i∞ to +i∞

within the strip σ < Re ν < 0. The measure dν/(2πi) is assumed. Because the sphere radius
` enters only as a multiplicative constant we will set ` = 1 for now and restore it at the
end of the appendix. It is convenient to use α := (D − 1)/2 to keep track of the spacetime
dimension. In Pauli-Villars regularization we subtract from the unregulated Green’s function
a linear combination of Green’s functions organized such that all UV divergences cancel. We
may write the regulated Green’s function as

∆reg
σ (Z) = ∆σ(Z) +

[D/2]∑
i=1

Ci∆ρi(Z) =

∫
ν

ψreg
σ (ν)Γ(−ν)

(
1− Z

2

)ν
, (C.3)

4Here we used |F + f ′

2f | ≤ |F |+ |
f ′

2f | ≤ |F |+
|f ′|

2L(L−D+2) (1 + η2) for F (η) = Dη
1+η2 .
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with

ψreg
σ (ν) := ψσ(ν) +

[D/2]∑
i=1

Ciψρi(ν). (C.4)

Here the ρi are mass parameters corresponding to the PV masses M2
i . The values of the

coefficients Ci are not unique, though their values are constrained such that the desired
cancellations occur, and they are bounded in the limit M2

i →∞ [64]. For finite PV masses
the function ψreg

σ (ν) is analytic in ν in the strip Reσ < Re ν < 1
2

in all dimensions. At large
M2 � 1 the function ψσ(ν) has the asymptotic behavior

ψσ(ν) =
M2α−1+2ν

(4π)α+1/2
Γ

(
1

2
− α− ν

)(
1 +O(M−2)

)
; (C.5)

it follows that in the limitM2
i →∞ the regulated Green’s function reduces to the unregulated

Green’s function at finite separations. Further details may be found in §3.1-2 of [39].
The product of two regulated Euclidean Green’s functions is given by

∆reg
σ1

(Z)∆reg
σ2

(Z) =

∫
ν1

∫
ν1

ψreg
σ1

(ν1)ψreg
σ2

(ν2) Γ [−ν1,−ν2]

(
1− Z

2

)ν1+ν2

. (C.6)

One can easily invert (C.1) to find(
1− Z

2

)ν
= 2(4π)α+1/2

∫
µ

Γ

[
1
2

+ α + ν, µ− ν
1 + 2α + µ+ ν,−ν

]
(µ+ α)∆µ(Z). (C.7)

Combining (C.6) and (C.7) we immediately obtain the expression

∆reg
σ1

(Z)∆reg
σ2

(Z) =

∫
µ

f(µ)∆µ(Z) (C.8)

with f(µ) given by

f(µ) := 2(4π)α+1/2(µ+α)

∫
ν1

∫
ν2

ψreg
σ1

(ν1)ψreg
σ2

(ν2) Γ

[
−ν1,−ν2,

1
2

+ α + ν1 + ν2, µ− ν1 − ν2

−ν1 − ν2, 1 + 2α + µ+ ν1 + ν2

]
.

(C.9)
In the complex µ plane the function f(µ) decays exponentially away from the real axis, and
is analytic in the strip Re (σ1 + σ2) < Reµ. The contour of integration in (C.8) lies within
the strip Re (σ1 + σ2) < Reµ < 0.

Next we perform some simple manipulations, the utility of which will become clear later.
Let us denote the Pauli-Villars parameters associated with ∆reg

σ1
(Z) by C1i, M

2
1i, and ρ1i

respectively, and likewise those parameters associated with ∆reg
σ2

(Z) by C2j, M
2
2j, and ρ2j.

Let us further define

fβ1β2(µ) := 2(4π)α+1/2(µ+α)

∫
ν1

∫
ν2

ψβ1(ν1)ψβ2(ν2) Γ

[
−ν1,−ν2,

1
2

+ α + ν1 + ν2, µ− ν1 − ν2

−ν1 − ν2, 1 + 2α + µ+ ν1 + ν2

]
(C.10)
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(this is just (C.9) with unregulated ψσ(ν) functions). By expanding the ψreg
σi

(νi) as in (C.4)
we may write

f(µ) = fσ1σ2(µ) +

[D/2]∑
i=1

C1ifρ1iσ2(µ) +

[D/2]∑
j=1

C2jfσ1ρ2i(µ) +

[D/2]∑
i=1

[D/2]∑
j=1

C1iC2jfρ1iρ2j(µ). (C.11)

Consider the terms fρ1iρ2j(µ) in the last sum of this equation. In these terms we would like
to move the contours of integration into the region Re ν1 <

1
2
−α, Re ν2 <

1
2
−α. For D ≥ 4

we can only do so at the cost of encountering poles. Performing this manipulation yields

fρ1iρ2i(µ) = hρ1iρ2j(µ) +

[(D−4)/2]∑
n=0

cnρ1iρ2j Γ

[
1
2

+ α + µ+ n
1
2

+ α + n, 1
2

+ α + µ− n

]
2(µ+ α). (C.12)

Here hρ1iρ2j(µ) is just fρ1iρ2j(µ) with the contours satisfying Re ν1 <
1
2
− α, Re ν2 <

1
2
− α as

desired, and the sum is due to the residues of the poles encountered for D ≥ 4. The cnρ1iρ2j
are coefficients that do not depend upon µ:

cnρ1iρ2j := (4π)α+1/2

∫
ν

ψρ1i(ν)ψρ2j

(
−1

2
− α− ν − n

)
Γ

[
−ν, 1

2
+ α + ν + n

]
. (C.13)

Defining yet another quantity,

fvan(µ) :=

[D/2]∑
i=1

C1ifρ1iσ2(µ) +

[D/2]∑
j=1

C2jfσ1ρ2i(µ) +

[D/2]∑
i=1

[D/2]∑
j=1

C1iC2jhρ1iρ2j(µ), (C.14)

we may write f(µ) as

f(µ) = fσ1σ2(µ) + fvan(µ)

+

[(D−4)/2]∑
n=0

[D/2]∑
i=1

[D/2]∑
j=1

C1iC2jc
n
ρ1iρ2j

 Γ

[
1
2

+ α + µ+ n
1
2

+ α + n, 1
2

+ α + µ− n

]
2(µ+ α).

(C.15)

None of these manipulations have altered any of the salient features of f(µ).
The purpose of these manipulations has been to isolate the part of f(µ) which diverges

in the limit where the Pauli-Villars regulator masses M2
ij →∞. In this limit:

1. the function fσ1σ2(µ), which is independent of the regulator masses, survives unaltered,

2. every term in fvan(µ) decays like a negative power of at least one regulator mass, and
so it vanishes in the limit,

3. the terms in the sum on the last line of (C.15) diverge like positive power of a regulator
mass.
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In particular, for the spacetime dimensions of interest for our computation we may write
these divergences explicitly:

f(µ) = fσ1σ2(µ) + fvan(µ), (D = 2, 3)

f(µ) = fσ1σ2(µ) + fvan(µ) + c02(µ+ α), (D = 4, 5)

f(µ) = fσ1σ2(µ) + fvan(µ) + c02(µ+ α) + c12(µ+ α)[−µ(µ+ 2α)], (D = 6). (C.16)

Here c0 and c1 are coefficients that diverge with a Pauli-Villars mass like c0 ∼ logM in
D = 4, c0 ∼ M in D = 5, and c0 ∼ M2 logM and c1 ∼ logM in D = 6. We have not yet
taken the M2

ij →∞ limit, but we have organized f(µ) so that this limit will be quite easy.
We are almost done. Noting the relations∫

µ

2(µ+ α)∆µ(Z) =
δ(Z − 1)

(1− Z2)α−1/2
, (C.17)∫

µ

2(µ+ α)[−µ(µ+ 2α)]∆µ(Z) = 2

[
δ(Z − 1)

(1− Z2)α−1/2

]
, (C.18)

and restoring the radius `, we may finally record the linearization formulas for the dimensions
of interest:

∆reg
σ1

(Z)∆reg
σ2

(Z) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))∆µ(Z), (D = 2, 3)

∆reg
σ1

(Z)∆reg
σ2

(Z) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))∆µ(Z) + `2D−4c0
δ(Z − 1)

(1− Z2)α−1/2
, (D = 4, 5)

∆reg
σ1

(Z)∆reg
σ2

(Z) = `2−D
∫
µ

(fσ1σ2(µ) + fvan(µ))∆µ(Z)

+`2D−4c0
δ(Z − 1)

(1− Z2)α−1/2
+ `2D−2c12

[
δ(Z − 1)

(1− Z2)α−1/2

]
, (D = 6). (C.19)

The linearization formulae for Lorentzian Green’s functions may be found by the usual
analytic continuation. For the time-ordered Green’s functions we analytically continue
Z → Z + iε. The resulting linearization formulae are given in (3.43). To obtain the lin-
earization formulae for the Wightman Green’s function we analytically continue with the cut
prescription Z → Z + s(x1, x2)iε, where s(x1, x2) = +(−) if x1 is in the future (past) of x2.
This cut prescription removes contact terms, so the result is the simple expression (3.44).
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