
UC Irvine
ICS Technical Reports

Title
Specification, verification, and enforcement of semantic integrity using behavioral
abstraction

Permalink
https://escholarship.org/uc/item/1kn3h4nn

Authors
Leveson, Nancy G.
Wasserman, Anthony I.

Publication Date
1980

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1kn3h4nn
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

Specification, Verification, and Enforcement
of Semantic Integrity

Using Behavioral Abstraction

Nancy G. Leveson
Information and Computer Science

University of California. Irvine
Irvine. CA 92717
(714) 833-5233

and

Anthony I. Wasserman
Medical Information Science

University of California. San Francisco
San Francisco. CA 94143

(415) 666-2951

Technical Report 157

This work was supported in part by an IBM Dissertation Fellowship to Nancy
Leveson at UCLA and by National Science Foundation grant MCS78-26287 to
UCSF.

Abstract

Riis paper presents a method for the specification, verification, and
enforcement of semantic integrity using behavioral abstraction. The
a^ecification contains both the abstract invariant of the abstract object (the
vtatic characteristics of the data) and the legal operatios on the objects as
defined by pre and post conditions (the behavioral characteristics) which
prese^ this invariant. The integrity specifications can be verified by proving
ttot the abstract operations preserve this invariant. A practical means for
enforcing integrity leads naturally from this integrity specification technique.

Key Wor^ and Phrases: semantic integrity, data abstraction, formal
apecmcahon, program verification, information system, views, abstract data

behavioral abstraction, database systems

CR categories: 4.0, 5.24. 4.33, 4.6

1. latroductioii

Oata integrity involves ensuring that the data in a data base is accurate,
t^nrently there is no satisfactory method for ensuring that data integrity is not
violated. Most methods which have been proposed are either incomplete or
bo^ractical in terms of overhead.

Data may become inaccurate due to hardware or system failure, illegal
•Iteration or destruction of data (violations of security), improperly controlled
eoncurrent access to shared data, and invalid alteration or destruction of data.
Semantic integrity deals primarily with the latter, Le., invalid operations on the
data base. A data base is not just a collection of values, but should be a
^rmbolic representation of the knowledge (a model) of some real world system.
M every point in time, the contents of the data base represents some
eonfiguration of the apphcation domain. The semantic integrity of data is
violated when the data base no longer represents a legal configuration of the
l^rstem it is intended to modeL

Semantic integrity
A real wortd system has an intrinsic logic, Le., a set of rules that determine

which of its configurations are valid. These rules or assertions are called
integrity constraints. As an example, a constraint in a university data base
might be that no student can be enrolled in two different classes that meet at

same time. It seems reasonable that to test integrity, it is necessary to
have a well-documented description of these logical rules upon which the data
base is being modelled. Most systems in current use, however, scatter this
InfiarmatiQn In three places:

1) the conceptual schema, presents some semantic integrity information on
mdividual data items, e.g., the number of classes in which a student is enrolled
ie represented by an integer, a student id (key) uniquely identifies a student, a
mme is a string of characters.

2) Other semantic information is often embedded in the structures used in
^le data model upon which the system is built. For example, in the hierarchical
ixmdeL semantic integrity information in the form of ane-to-many relationships
fetween data is express^ in the basic tree structure of the data base. In the
network model, many-to-many relationships within the data base are expressed
by appropriately constructing network structures. The basic structure of
relations normally includes the specification of functional dependencies between
^ta items. In an attempt to incorporate even more semantic integrity
is^rmatian In the data modeL so-called higher data models have been devised.
A proliferation of data models has resulted from this attempt, each purporting
to incorporate more semantic information than the others, hi general, however,
the type of information wMch can be specified is severely limited by the modeL

a) Finally, some semantic information may be incorporated into the
procedures which implement operations on the data.

Thus most of the semantic integrity Information which can be included is
imiilicit, Le., it is never e:^slicitiy stated in the conceptual schema. The
disadvantages of such an appz*aach to integrity are:

1) Because the conceptual schema and the data models do not enforce
Kufificient integrity, there is no guarantee that integrity cannot be compromised
hy some iqidate to the data base.

8} Because the integrity information is scattered throughout the model and

Yerifigsaljpm, aiaaEnforeeaien& SamianlleLffitegrily 3

the operations, there may be inconsistencies and redundancies which are very
difficult to detect and locate. Also, modiScation of integrity information is
ffifficult.

3} Semantic integrity information which is embedded in the structure of the
data model is not easily modified, and a change in the real world system being
modelled may necessitate a large amount of reprogramming.

4) It is difficult to optimize the integrity checking process.
Because of these disadvantages, a complete specification of the semantic

integrity information in the conceptual schema seems appropriate. There are
two major approaches to specifying semantic integrity: specifying the data base
states which are permissible, called static integrity constraints, or. specifying
the legal manipulations or changes allowed on the data base, called dynamic
integrity constraints.

In a system using static integrity constraint specification, the user specifies
the constraints and leaves it to the system to enforce them. Since updates may
consist of several steps, it may actually be necessary for the data base to be
temporarily in an invalid state. Specification of constraints on relational data
bases has been investigated by Hammer and McLeod [5,9] and Brodie [2].

A formal specification of the static constraints, edthough necessary, is not
sufficient in itself to guarantee integrity. There must be some way to enforce
the constraints. This enforcement can be accomplished in three ways:

1) Make periodic checks of all of the stored data by means of some kind of
"audit" program. The audit routines, however, are usually complex, low-level,
and in order to improve performance, closely tied to the physical representation
of the data in storage. Thus it becomes extremely difficult to modify the
programs or to change the physical storage structure. Further, when an audit
fails, it is difficult for an audit program to identify the exact error and the
process which caused it, other processes can be exposed to the error before the
audit occurs, and possibly enormous recovery problems can ensue when
Integrity errors are found.

2) After every update to the data base, check to make sure that no static
Integrity constraints have been violated.. This is the approach of System R [l], a
relational data base system developed by the IBM Research Division. For this
approach to work, it must be possible to undo the effects of an illegal operation
(some kind of backout). The transaction need not necessarily be completely
backed out; System R allows the specification of special "integrity points" where
the user specifies that integrity is to be checked. In the event of a subsequent
integrity fsdlure, the transaction can be backed out to the last integrity point.
Further, with multi-step updates where several changes must be made to the
data base in response to a single input transaction, intermediate states may
occur in which some static integrity constraints are violated. Therefore, there
must be some means of delaying the checking of integrity until after some
specified series of updates. System R handles this problem by checking and
enforcing integrity assertions at the end of each transaction unless the
assertion is specified as "immediate." The integrity checking system proposed
by Hammer and McLeod works similarly.

8) check every update to see if it would violate integrity and to see if the
system should take some consequential action (e.g., automatically modify the
data or signal an error). This approach prevents the execution of operations
that violate constraints instead of allowing any operation to take place, checking
afterwards, and then, if necessary, undoing the effect of any illegal operation.

^ Lsveaon and Wasserman

This is the approach taken in Query-by-Example [18] and INGRES [13]. Both of
Uiese systems handle only relational data bases and are limited in the kinds of
constraints that may be specified and checked. It is not clear whether all
possible static integrity constraints can be handled in this fashion.

Ite biggest drawback to enforcing static integrity as described above is the
problem of excessive overhead. Stonebraker [13] states that although simple
assertions have a negUgible cost in INGRES, others are considerably more costly
in terms of complexity, overhead, and execution time. Present data base
systems in the market place perform only limited types of integrity checking, if
any, and the developmental systems mentioned above which have actually been
implemented have performance problems. It may be that the overhead
necessary to verify static integrity constraints at runtime is simply too
excessive to be practical in most environments.

Other problems with systems using static constraints include; l) most
proposed systems are based on the relationEil model and focus primarily on
relation constraints, thereby dealing only with a subset of semantic integrity
problems, 2) they are inflexible with respect to when assertions are checked,
and 3) the possible specification of the actions to be taken upon detection of an
integrity violation are limited.

The alternative to static integrity constraints is the specification of
dynamic integrity constraints, Le., specification of the permitted manipulations
on the data base. If the initial state of the data base satisfies the static integrity
constraints and the only manipulations allowed on the data base have been
shown to maintain intepity, then the present state of the data base must also
satisfy the static integrity constradnts.

One way of specifying dynamic integrity is to use abstract data tjrpes. The
abstract data type has been a central concept in the use of behavioral
abstraction in programming languages. Essentially, a data abstraction hides
(abstracts from) the data representation of a data object and characterizes
objects by operational (behavioral) attributes. Thus it is possible to distinguish
between the "what" specification and the "how" implementation of a data type.
Generally, all information about the type is hidden from the user except the
name of the type itself, the names of the operations defined on the data type,
and the specifications of the defining operations of the type. The access of the
user to objects of the data type is restricted to the defined operations of the
type; the internal representation and structure of the objects of the type is
unknown to the user and cannot be directly manipulated. Therefore the
representation and implementation of the data type may be modified, provided
only that the behavior of the operations defined on the type is preserved.

As an example, the data abstraction "stack" can be defined in terms of
operations such as "push." "pop." "top," and "test-empty." The user can
manipulate objects of type stack by these stack operations without having to
know how the stack is actually implemented, e.g., as an array, a list, or another
data structure. Note that the implementation of the data type is given in terms
of already defined types, e.g., a stack might actually be implemented as a list.
The operations on the objects of the abstract data type are programmed in
terms of operations on the already defined underlying types. In turn, these
underlying types may also be user-defined data types and so on until some
lowest-level or "primitive" types are reached which have been defined by the
hardware or by the implementation of some programming language.

When applying absti-act data type methodology to dynamic integrity, the
data base is essentially specified as an abstract data type with predefined
Operations. Since these predefined operations are guaranteed to preserve the

^p^slScaftoB, ¥erjficffltfcin, md EBsft^eemeoi of Seraantic Integrity

Integrity of the data base, and no other operations are allowed, much of the
overhead of checking static constraints at run time is, in theory, eliminated. Of
course, not all runtime checking can be eliminated, Le., runtime data must be
checked to make sure it does not violate any integrity constraints. However,
since the integrity checks can be tied to particular operations, no imnecessary
checking need be done, and Uius the enforcement overhead is minimized.
Further, the abstract data type allows local exceptions to integrity constraints,
Le., integrity can be violated during the execution of an operation as long as its
truth is restored before the operation is concluded. Thus problems are
eliminated, as in System R, where the programmer has to specify not to check
Integrity between certain points.

Two approaches to abstract data type specification have been applied to
data bases — operational specification and axiomatic specification. In
operational specifications, an operation is described by giving an algorithm or
program which computes the intended operational behavior on an abstract
model of the type. This program differs from an implementation because
simplicity is important while efficiency is not. It is not even necessary to have
an implementation for the specification language, although it must have a
precisely defined meaning. Weber [14,15] uses an operational approach to define
a data base as a graph structure where the nodes are abstract data types and
the arcs represent an "is part" relationship between abstract objects.

Several problems exist with the operational approach. One is that there is
no explicit description of the integrity specifications of the operations. This
leads to problems in checking for accuracy, consistency, and completeness, and
difiEiculty in modification of integrity rules. Further, since constraints are not
specified explicitly, severe restrictions must be made on the sharing of data
structures between views since there is no way to guarantee that one view will
not change an invariant of another view. Finally, hiding the integrity
specifications in the operations causes problems for the user since the invariant
properties of the data base objects provide information that the user needs to
know in order to use the operators correctly and to guarantee that integrity is
not inadvertently comprorrused.

Many researchers have attempted to described a data base or data base
model axiomatically. In the axiomatic approach to abstract data type
specification, the data type is defined by giving axioms relating the operations.

Melkanoff and Zamfir [lO] have described the hierarchical, network, and
relational models as abstract data types. Maibaum [8] and Colombetti. Paolini,
and Pelagatti [3] have applied many-sorted algebras to data base modelling.
Also, Ehrig, Kreowski, and Weber [4] and Lockemann, Mayr, Weil, and Wohlleber
m have applied the axiomatic method to data bases eind have defined integrity
constraints as pre-conditions, coincidence conditions, and post-conditions using
axioms for the operators defined on the type.

There are still many outstanding problems with the axiomatic approach.
For example, eixiomatic and algebraic specifications are difiicult to construct
and read and may not be realistic in a commercial environment. Further,
attempts to axiomatically specify a data base have in general not dealt with the
problems of the sharing of abstract objects with axiomatic type definitions.
Obviously shared data is an important and integral part of a data base system,
and therefore must be dealt with before the eixiomatic approach to data base
design can be considered practiced.

The specification of the behavioral abstraction in this research is done
using I/O specifications in the style of Alphard [17]. In this approach, inveiriants
are specified for the abstract type while preconditions and postconditions on

6 IiSTesoii and Wasserman

each operation relate the state of the representation of the type before
execution of the operation to the state after execution of the operation. I/O
specifications were chosen because they are comparatively easy to construct
and understand, they provide for a complete static specification of integrity
constr^ts while also tying specific constraints to operations (thus limiting the
amount of constraint checki^ necessary in enforcement), and they provide a
solution for the difficult problems of shared data.

S. Requirements of an Information System

. . Considering the current state-of-the-art of information system design andmtegrity and the remaining problems as discussed above, what is needed is a
methodology which has the following characteristics:

1) The methodology should be data model independent. Most of the
proposed systems for specifying integrity are based on the relational model.
The scope of the system should be general enough to include any data model,
and should allow for subsequent changes of modeL

2) The methodology should provide for a complete, formal specification of
mtegrity constraints. Having a concentrated collection of integrity
specifications will impose structure and discipline on the integrity specification
process. Further the specification should be high-level and abstract, i.e., in a
turner which is relevant to the problem domain. Both the static constraints
and the legal mampulations compatible with these constraints should be part of
Uie specification. Finally, the specification should be complete. Completeness
imphes that the structural constraints, i.e., those usually included as part of the
^ta model, are expressed expUcitly. In this way, data model independence will
be possible. If the underlying data model uponwhich the implementation of the
data base is based is changed at some future time, for example from a
hierarchical to a relational data base structure, it shoidd not be necessary to
start again from scratch. In fact, the integrity specification should need to be
modified only if something in the real world system being modelledis altered.

3) Different users of the data base may need different abstract views of the
data base with very different sets of semantically meaningful operations. It
must be possible to ensure the consistency of these operations, e.g., to ensure
that one user does not change a data value in a waywhich conflicts with another
user's constraint for that data value.

4) It is not enough to just specify the integrity constraints. The system
must provide an efficient means to enforce them. To achieve this efficiency, it
mustbe possible to prevalidate the operations when possible to ensure that they
preserve the constraints. Sometimes this prevalidation is not possible, for
exarnple, when the integrity constraint involves runtime input data or when the
legality of a particular operation depends on the state of the data base at the
time that the operation is performed (opl may be legal if the data base is in
state Si but not leg^ if the data base is in state S2). Inorder to reduce the run
time overhead for integrity checking, it must be possible to associate the
Integrity constraints with operations in such a way as to carry out only the
absolute minimum number of checks in conjunction with particular updating
operations. Further, it should be possible to preventthe execution of operations
mat violate the integrity of the data base instead of allowing illegal operations to
take place ^d then dealing with recovery problems. The system should also
provide flexibility as to when the assertions are checked. In the middle of a

update, the assertions may not hold, and checking must be deferred
until after a group of data base changes has been completed. To provide
complete flexibility the writer of the operation should be able to specify when

^gecfflcHti«m, VeriflcHtiffin. andBafittcegnent at S^mamtin Tn»«.grf«y 7

the checking is to be done. Finally, the system should provide freedom in the
^ecihcation of the violation action that is to occur when em integrity violation is
detected.

5) The uses of a data base are not fixed, but evolve over time. Real world
systems also change over time. Therefore, there must be some way for the
user 8 abstract view of the data base to evolve over time. It rnust be possible for
constraints and operations to be added, modified, or dropped.

6) Ihe system should provide control over the operations performed on the
data and the context in which they can occur. Privacy protection in data base
systems has traditionally been thought of as control over what information a
user can obtain from a data base. Minsky [ll] has defined another type of
privacy called intentional resolution" or control over what the user is allowed to
do with a piece of information supplied to him. In today's data base systems,
there is no way to condition the supply of information on its intended use, and
the choice is to release either too much information or too little. Some
information retrieved from the data base is needed by the program, but not the
programmer. In order to get some information that the user needs, the user's
program may need to obtain information which should not be released to the
user.

4. Applying Behavioral Abstraction to Information Systems '' '
An abstract data type defines data objects that can be manipulated by

using predefined operations without needing to know the details of how the data
is represented or how the operations are implemented. A data base
management system also makes it possible to manipulate data without having to
worry about storage details. Thus it appears that the abstract data type of the
programming language field and the abstraction involved in data base
management systems are both used to accomplish the same goals. In general,
data abstraction is most important when the data has a complex structure,
when the data might get into an inconsistent state, and when the data needs to
be protected for reasons of privacy or security [6].

Abstraction in the data base field has been used to achieve data
independence by letting the apphcation programs relate to the data in terms of
a logical representation rather than a physical representation. In most data
base systems available today, this logical representation, then, is an abstraction
of the actual physical representation and structure of the data in storage. The
structure is abstracted in terms of some data model, for exaimple, a hierarchy,
network, or set of relations. These data models all have the common feature of
being representational— although they provide conceptual data structures,
rather than physical ones, these models still describe the structure of the data
at some level, and the operators provided are tied to these structures. The
usual abstract operators of GET, PUT, DELETE, and MODIFY are defined for the
data base user in terms of these structures and thus are tied to the underlying
data model For example, the user of a network structured data base must
navigate the^ data base' by following chains of pointers in order to manipulate

the information in the data base. The amount of data independence will
therefore depend on how independent the logical structure is from the physical
representation. In most commercially available data base management
systems, actual data independence is very limited. Further the ability to
express properties of objects varies from one data model to another. Some data
models are too restrictive, e.g., a many-to-many relationship is difficult to
represent in both the hier^chical and network models, while other models are
too general e.g.. the relational algebra operations in the relational data model

8 Xteveson and Wasserman

do not necessarily produce meaningful results.
Instead, what is proposed is an abstraction concentrating on the operations

associated with the data objects, instead of the operations associated with the
data structures. Data base objects are defined using the mathematical
viewpoint which defines a data type by the definition of the operations that are
applicable to objects of that t3rpe. It is argued that since the user of the data
base is interested only in the behavioral characteristics of certain objects, then
the abstraction of the data presented to the user should involve only these
behavioral characteristics. The introduction of other properties can serve only
to confuse the user. For example, a user or application program of a library
data base may deal with the abstraction "book" and operations defined on this
abstraction such as checkout, reserve, etc. These abstractions are relevant to
the user, but information about how the books are stored, e.g., as a set of
relations, is not. This information is important only to the person who actually
implements the operations defined on the object "book." This implementation
may perhaps be done using a data management system and one of the standard
data models. However, the interactions of the users with the data base will be in
terms of the abstract operations defined on the abstract objects, and will
therefore be on a semantically high-level.

Views can be provided to different classes of users by creating behavioral
abstractions which specify the operations which can be performed by those
users. For example, a telephone operator might be able to access information
about phone niimbers, but an operation to make changes in the directory might
not be provided in the operator's view.

The methodology being presented in this research does not imply any
redefinition of accepted data base concepts. Instead it provides a conceptual
framework for the precise definition and understanding of these basic concepts.
Abstraction is a powerful tool for understanding and coping with complexity, and
this paper presents a method of behavioral abstraction which will be of benefit in
dealing with complex application and data base systems. The methodology does
not define a new data model- in fact, the term information model might be used
to stress the fact that semantic rather than representational aspects are being
emphasized. Any of the conventional data models might be used in the
implementation of the behavioral abstraction. Because behavioral abstraction
involves not only the design of the data base, but also the programs which use it,
the term information system will be used to denote this more general context.

The methodology being proposed involves a closed system. i.e., one in which
the update operations on the data base are predefined. All possible update
operations need not be predefined, but only a characterizing or minimal set.
This characterizing set must be such that any other operations on the data may
be achieved by a combination of operations from the set. Integrity problems in
information systems arise from the fact that users have complete control over
the operations on the data. It is instead proposed that behavioral abstractions
provide control over the operations performed and the context in which they
can occur. The alternatives are l) to let the user have complete freedom by
providing him with traditional update operations like add, delete, and modify
and somehow have the information system catch his errors, or 2) to provide the
data semantics as part of the data structure model so that integrity errors
cannot be introduced. Neither of these approaches is satisfactory or realistic.

^msky fllj has demonstrated that the traditional update and retrieval
operations used for files (such as add, delete, sind modify) are not satisfactory
as primitives for interaction between a user and the data base. He argues that
there are fundamental differences between files and data bases besides size and
complexity. Whereas a file is essentially a meaningless collection of bits whose

Ygrfftr.iifiinn. and Bufoieemertt of SCTmm««. T^K.grWy g

toe^retation is completely determined by the user, a data base has an
intrinsic meaning which is independent of its interaction with users - it is a
representation of knowledge about some real life application system. With files,
the programmer is working within an isolated, closed system and has complete
control and complete knowledge. But the data base user operates with
incomplete knowledge about the environment. In other words, the user sees
only an abstract image of the data base, and therefore needs special abstract
^erations -s^ch are appropriate for his specific abstract image of the data.
That is. the interaction between the user and the data base must be controlled
^ the data base, or the intrinsic structure of the data might be violated.
Access control is not enough; the data base must be able to "control" the users
program.

One way ofproviding this controlis to specify integrity constraints, i.e., the
legal states of the data base. Whenever an update occurs, the data base
management system can check to make sure that no integrity constraint is
vii^ted. But if every update is considered as a primiUve operation and is
checked for legafity, updating maynot be possible at all. Le.. in the process of a
multi-step update, the data base may be temporarily in an Ulegal state.
Rierefore. updating individual objects cannot be the only primitive operation
available. The user must be able to group primitive operations into logical
operations, or "transactions." More important, since the integrity rules must be
Checked every time any change is made to the data base, enforcement can be so
taiefficient as to be unrealistic in most cases.

Another option is to build the semantics of the data base into the data
inodeL Existing data models support only a limited number of abstractions and
•mnantic specifications. Attempts are being made to build more complex data
models, but it is not clear that a universal data model exists. Just as there is no
universally accepted programming language which is adequate for all situations,
universal acceptance of a data model may not be possible. The other alternative
is to provide users with a vast number of data models from which to choose one
uhich suits their particular situation. Currently, the data model solution to the
preblem is not realistic.

So we are left with pre-specified and pre-verified operations. This is not
really so terribly unrealistic - for most systems the operations on a data base
CM be predetermined. Furthermore, such pre-specification is an advantage
fifom a design standpoint. Several database design methodologies rely, at least
to some extent, upon such an approach [12,16]. In addition, ' current
pMosophies for software system design, e.g.. top-down design, recommend that
the operations on logical data structures be specified prior to the actual
physical design of the structures. It is necessary, however, that our system
somehow provide for "unpredicted" or new operations to be added to the
specification. Le.. the specifications must be modifiable.

S. A Beb.avioral Abstraction Model
A data base is not just a collection of values stored on some computer

storage device. Rather it is also a symbolic representation of knowledge about
some world system. But this representation is accurate only if there is some
detailed correspondence between the contents of the data base and the world
system. Thus the data solely within the computer cannot be said to be accurate
(to have mtegrity) or inaccurate. Stored data takes on the attribute of
accuracy only when considered with respect to some world state. At any given
time, if the stored data describes a permitted state of the world system being
represented, then the data base has integrity. But if some feature of the world

10 Iteveson and Wasserman

•ystem is misrepresented, then the data base is inconsistent with respect to the
^rstem being modelled.

Consistency then implies that a correspondence exists between the
application system being modelled and the contents of the data base. Instead of
trying to make a direct mapping between the world state and the data base, an
abstraction should first be made of the relevant properties of the world system.
Then both the stored data and the world state at any time are taken to be
models of this same abstraction. This abstraction is a formal statement of the
properties which are shared by the real world system and by its representation
inmde a computer. Snce an application system is governed by a set of rules
that determine which of its configurations are reasonable, every correct version
of the data base must preserve these rules. Furthermore, the operations
defined on the data base must also preserve these rules so that the results of
these operations can be successfully applied back to the real world.

Thus the first step in data base design using this model is to produce an
abstract specification. This abstract specification is essentially a logical
statement of the relevant properties which the real world and the information
l^rstem must have in common. The users who interact with this abstraction
would theoretically be unable to tell whether they were dealing with the real
world system or the computerized system. Once the abstract specification is
developed, then the mapping (implementation) of this abstraction into
computer terms, or the concrete specification, can be done. Note that no
matter what changes are made to the concrete specification, the abstract
q>eciflcation remains valid. The only circumstance in which the abstract
apecification must be altered is if the real world system which it models is
changed.

OiagrammaticaUy this model looks like:

Abstract
specification

Iteai World Concrete
System Specification

Information
System

Data Base

Using this approach, the data base and the world system are allowed to
di&r ais long as they reflect the same logical rules. A loss of integrity occurs
when the data base reaches a state where it is not an accurate interpretation of
the logical rules, or in other words, the abstraction.

SipecificatlcBa, VefifieaHon,and.Enforcement of Semantic Integrity 11

6. The Abstract SpecificaUon
Hie user of the information system is not really interested in the storage or

representation of information, but is instead concerned •with data objects and
the things that cein be done to these objects, i.e., how they can be manipulated.
For example, the teller in a bank, when dealing with the object "bank account,"
is imconcemed about -whether the bank accounts are stored hierarchically or as
a set of relations. Instead, the teller (or application program writer) has a need
to interact with the 'Tiank account" object using certain operations such as
withdrawal, deposit, or change-address. These operations in turn are abstract
operations in that they may actually have quite complex, multi-step
implementations -which contain elaborate provisions to make sure that the
integrity of the data base is maintained. However, the way the operation is
carried out is irrelevant to the user who needs only to know the types of the
objects available, and the "meaning" or behavioral semantics of the operations.

Thus the abstract specification must contain the behavioral semantics of
the operations. The users of the abstract objects -will be unaware of how the
operations are actually carried out, but wiU. be guaranteed that the
implementation will obey these behavioral semantics. The implementor of the
operations -will have complete freedom in how the objects euid operations are
Actually implemented -with the restriction that the implementation must
conform to the behavioral semantics defined for the operation.

As an example, in a library data base, the abstract object "book" might
have the operations "checkout," "checkin," "renew," and "is-checked-out?"
defined on it. Each of these operations might also have parameters:

(dieckout(book, cardholder, checkout-date, due-date)
checkin(book)
renew(book)
is-checked-out(book) returns boolean

Since a data base is initially empty, all data objects must be brought into
existence through the execution of a "create" operation. This create operation
can be thought erf as a generator for instances of the abstract object.

In order to provide control over the use of an abstract object, it is
convenient to ^ecify the operations one object may perform on einother object.
Pot example, the operation "checkout" may import separate rights for each
parameter of the operettion, e.g.,

checkout (book. cardholder<verify>, checkout-date, due-date)
which states that checkout may invoke the verify operation defined on the
abstract object cardholder.

The abstract specification must also contain the iogical rules or invariants
of the real world system. For example, in a library data base, certain rules or
constraints are eiq>ected to be followed: books are checked out only to
cardholders, no book can be checked out to two different people at the same
time, no cardholder can have more than the maximum number of books
checked out at any given time, etc. It is necessary that the behavioral semantics
of the operations defined on an abstract object preserve the invariants of the
abstract object.

The data base system should allow the specification of any consistency and
validity constraint. Further, the specification should be in the terms used by
the application specialists. Specification of constraints in "computerese," such
as In terms of relations, means that the people who understemd the application

12 Leveson and Wasserman

system best and are best prepen-ed to judge the validity and completeness of the
constraint specification, are the least likely to understand the specification.

A complete specification must include the relevaint properties which are
shared by the application system, the abstract specification, and the concrete
specification (implementation). When a data base is defined using behavioral
abstraction, this specification includes both the static characteristics (semantic
invariants) of the abstract object, aind the behavioral characteristics
(operations) which are compatible with (preserve) these invariants. Thus,
instead of defining integrity using either a static specification or a dynamic
specification, as in previous approaches to the problem, it is proposed that the
semantics of a data base be defined as both the semantic invariants and the
changes allowed.

In order to completely specify a change, without giving an algorithm, input-
output specifications for the operations will be used. That is, the operations will
be specified in terms of the conditions under which the operation is allowed (the
preconditions) and the changes that will result (the postconditions). Input-
output specifications were chosen instead of an algorithmic specification in
order to make the specifications less implementation-oriented, and thus to
specify "what" without "how." Using this approach, the problem of static
constraints not holding during multi-step updates is eliminated since an
abstract data type allows for local exceptions to the invariants as long as their
truth is restored before control leaves the operation. In summary, specifying
the semantics of a data base which has been defined using behavioral
abstraction involves specifying the legal initial states of the abstract objects, an
aJbstract invariant, and input and output constraints for each abstract
operation. In order to do this, it is necessary to first define an abstract image
for each abstract obJecL

6.1 Abstract Image
The question now arises as to how the semantics of operations will be

specified. We are restricted by the fact that we do not want to describe the
behavior of an operation by the effect it has on an implementation or storage
representation. Instead, the semantics of the operations will be defined in
terms of the effect of the operation on an abstract image of the object. It is
convenient to define the abstract image in terms of abstractions from
mathematics, such as sets, sequences, and tuples, which have well-defined
properties. Using the university example, the abstract image of class might be
defined as the tuple

<id:class-id, cname:name, profiprofessor, loc:room,
ctime:time, max#stud:integer, students:set of student>

and the abstract image of the object "schedule" might be a set of classes.
Note that although an abstract image is defined in the abstract

specification, the implementation is not constrained by the abstract image. The
implementation must only have the same behavior as the abstract specification.
That is, to describe the properties of an abstract specification, it is convenient
to imagine a specific image, but this image is only hypothetical and does not
describe any real implementation.

6.2 Abstract Invariant

The abstract invariant, la. specifies the properties that the real world
application system and the data base system must share. These inveiriants limit
the allowable states in the system being modelled and are of two types— value

%eeilSaatiasi. Yei5ficati<aa, andEnfiBrcemeiit ofSemantic Integrity 13

constraints and inter-object constraints. The value constraints are the set of
legal values of inst^ces of the data abstraction. For example, an associate
professor's salary might have legal values from $20,000 to $25,000, or the legal
values of a student's year-in-school might be the integers from 1 to 5. The data
object "null" or "undefined" may be present in the description of the legal values
an object may assume. There may also be inter-object constraints, or
constraints on the relationships sJlowed between objects. The inter-object
constraints of a particular abstract object would consist of assertions which
completely specify the possible relationships among the objects in the abstract
mage of the object being defined. An example of an inter-object constraint is
that the number of students enrolled in a class is less than the maximum
number of students allowed for that class.

It is possible to write abstract specifications without an abstract invariant.
The abstract invariant is ehmmated by including the constraints specified by the
abstract invariant in the mput and output constraints for the abstract
operations of the type. This is analogous to saying that a static specification of
integrity ^can be^ replaced by a dynamic specification. However, the
specifications required to do so become quite compEcated, and therefore it is
recommended that an abstract invariant be used.

@.3 Abstract Operations and Pre and Post Conditions
The abstract operations are defined, in this methodology, by the input and

output constraints which characterize the effects of the operations. In Hoare's
notation, this is written

Srsj Sost^
^post- input and output constraints respectively for

I J
operation j, and Sj is the code for operation j.

These pre and post constraints specify the legal manipulations on the
abstract object. The integrity ofthe data can be violated in two ways: 1) Ulegal
changes in values, and 2) legal changes which are made in an illegal order. The
pre and post conditions on the operations of the type must prevent these two
events from happening. As as exai^Ie of ensuring that illegal values are not
introduced, suppose that the maximum number of students in a particular
class, in the above example, is 30. Then a pre-condition for the operation
"enroll-studenty would be "number of students < maximum number of students"
and a postcondition is "number of students ^ maximum number of students."

Specifying the legal sequence of operations is important when the set of
legal operations depends on the characteristics of the data base state such as
the occurrence or non-occurrence of certain operations in the past, at the same
time, or in the future [7j. As an example, a precondition for dropping a class is
that toe value of "enrolled?" is true (and toe postcondition is that "enrolled?" is
false). To sj^cify that certain actions must take place at the same time, for
example adding a student to a class means that the number of students enrolled
is incremented by one, a postcondition can be used —e.g., the postcondition for
toe operation enroU-student" is "number of students equals previous number
of students + 1."

Every abstract object must have a create operation defined for it. In
certain cases, as abstract object may be created only when certain conditions

14 Le^eson. and Wasserman

are satisfied by the environment in which it is created. Information about the
environment is passed to the tj^e in parameters, and thus the initial
preconditions are constraints on the values of the parameters used to create an
object. If there are no preconditions, then the specification of the initial
preconditions is merely "true." The postcondition in this case specifies
assertions about the value of the instance returned by the create operation.

An example of a complete abstract specification for the type course can
now be given. Although for purposes of example one particular method of
formally writing assertions has been selected, any other method could be used.

class

abstract specifications
abstract image

class=<id:class--id, cname:name, prof:professor,
loc:room, ctime:time, maXjiS^stud: integer,
atudents:{student^

abstract invariant
[number of students enrolled is less than or
equal to the maximum allowed]
OScar(iina£ifi/(students^max#stud

aerations
create—class (id: class—id, luname, p:professor,

Kraom, trtime, maxiinteger) returns ciclass
pre 10<maLX^100
post c=s<id:id, cname:n, profip, locir,

etimert, max#stud:niax, students:]]>
assign—professor (c:class, p:professor)

fore true
post c.prof=p

add—student (c:ciELss, sistudent)
pre 0^carc£ma£i£2/(c.students) < c.max#stud &

enroIIed?(c,s) = false
post c.students = c.students* U]s]

delete—student (c:class,s:student}
pre enroIled?(c,s) = true
post c.students = c.students' -]s|

eiiroIled?(c:cIass.s:student) returns b;boolean
pre true
post(b= s c.students)

change—room(c:cIass, nroom)
pre true
post c.room=r

change—time(c:class, t:time)
pre true
postc.time=t

Ihe specification of the pre and post constraints for the operations is
inqpoitant for three reasons: 1) the checking of particular constraints is tied to
particular operations, 2) the pre and post constraints for the operations act as a
guide for the implementor, and 3) the pre and post constraints will be used to
prove that the implementation is correcL

15

V. ¥erification

Verification of integrity will be defined as proving that the abstract
operations preserve the abstract invariant. Thus verifying the integrity of the
data base ipvolves induction - first prove that the abstract objects have the
l^^cscified properties (satisfy the abstract invariant) when they 0u"e first created,
and then show that all operations which change the object preserve these
pn^rties.

Formally, prove that:
1) Kie create operation establishes the abstract invariant

^^post|̂ ^^ ==> Ia(a)
wliere and are the pre and post conditions

respectively on the cseate operation, and a is an abstract object.
S) Show that each operation j preserves the abstract invariant.

®pre,<«'> " !=<»•) "Sost.W ==>
where a is the abstract objectprior to the execution ofthe operation.

Using the class e:Kunple specified above, the proof would consist of the
faUoaring steps:

1) Prove that the ^stract invariant. la, holds after the creation of the
abstract object class:

®lOw: 0<max^l00 & c=<cid:id, cnamern,
IWo£p.Ioc:r.ctimB:t.max#stud:max.students:n>

0«CffirEEmafif2/(c.students)5c.max#stud
Prooh 0<max#stud^l00

ar«> 0=cartl^ii£y(j j)<c.max#stud^100
e=> OScarrfma?if^{c.students)^c.max#stud

^ Prove that the abstract invariant holds after each abstract operation. The
ei^ two operations for which the proof is not trivial are add-student and
^lete-student.

a) for add—student
i^ow: 0^cttrrfma!if2/(c-students')<c.max#stud &

. eisro!Ied?(c'.s}=:false &c.students= c.students* U{s} &
OSear(£maii£|^c.students')^c.max#stud
=ss> 0;Scar(fOTaiifj/(c.students)^c.maXj5tstud

Peoof: cardmaliiyic.stxidents' Ujs| = cardmalif7/{c.students') + 1
^ce OSc(irdinaiifi/(c.students')<c.max#stud,
tiffin Ogca7tii7iaZi<2/(c.students)^c.max#stud

b) for delete—student
Slow: enrQllBd?(c',s) = true &

Q£cardindlity(c.sludents')<c.max§stud
& c.studei!its=c.students' - jsj
«==> 0^C(mii7iaZiiy(c.students)^c.max#stud

Proof: 0^cardi7ia£ify(c.students)gc.niax#stud
carcb7uiZ'ifj/(c.students')= carcZi7iaZ'ify(c.students) - 1
Since cardinaZify(c.students')Sc.inax#stud,
then cardinaZif2/{c,students)^c.max#stud
iUso since enrolled?(c'.s)=true. then 0<cardinality{c.students')
and therefore 0^cardiThality^c..students).

Lpveson and Wassennan

8. Enforcement of Integriiy
^ Enforcement of integrity requires that no update operations be allowed

which can cause integrity violations. Integrity problems can occur from an
Megal sequence of legal operations or from faulty operations that make updates
which violate integrity rules. Preconditions on operations can eliminate illegal
sequences of operations, and verification techniques cam prove that the abstract
operations preserve the abstract invariant. It remains to implement the
abstract specification in the concrete specification and to verify that this
implementation satisfies the abstract specification.

!Rie concrete specification describes an implementation of the abstract
spec^cation. This implementation must have the same behavior as the abstract
specification, but is not constrained to using the same representations and
algorithms for realizing that behavior. Thus the abstract specification acts as a
guide for constructing the concrete specification in terms of some lower-level
data model. It is important to realize that the concrete specification merely
represents a different level of abstraction emd that emy number of levels of
absbiaction are possible.

Verifying the correctness of the concrete specification includes proofs of
ttie correctness of the implementations of the operations with respect to their
pre and post conditions using assertions for runtime checks. Programmer
control over where assertions are placed within the operations allows for
flexibility in where the runtime checks are actually done.

bi order to verify that the concrete specifications correctly implement the
abstract specifications, it is necesssLry for the concrete specifications to contain
a representation, a concrete invariant, an abstraction function abs (the mapping
between the concrete or physical representation and the abstract image), and
fSOncrete input and output constrEiints for each of the implementations of the
abstract operations.

Apossible implementation for the abstract type course follows:

concrete specifications
representation: db record (key is cid)

cid: integer;
mie: name;
eprofi professor;
eroom: location;
hour: time;
max: integer;
no—of—stud: integer;
stud—list; list of student

end record
mmcrete Invariant

O^no—of—studsmax
abstraction function

(cid, title, cprof, croom, hour, max, no—of—stud,
•tud—Iist)= <id:cid, cname:title, proficprof,
ioc: croom, ctime:hour, max#stud:max,
•tudlist:[s I i, O^i^no—of—stud,s=stud—list[i]j>

aerations
assign-professor (out c.prof=p)
add-student (in enrolled?(c,s)= false & c.no-of-stud<c.max

out c.stud-list= add(c.stud-list*+l &c.no-of-stud=c.no-of-stud+l)
delete—student (in enrolled?(c.s)=truB

%eeifieatipn« Yajfirartinn. airi Bifoteemmt ofSemanticIntegrity 17

out c.stud—Iist= delete(c.stud—list',s)
Ac c.no—of—stud= c.no—of-stud-1

enroIIed?(c,s) (oiitb= searohlist (c.stud-Iist.s))

Note that the above abstracstion function may be many-to-one. That is, more
than one concrete object may represent the same abstract object. As one case
of this, sometimes it is convenient to maintain some information in the data
base to help simplify the checking or enforcement of invariants. For example, if
an invariant states that a student cannot enroll in more than seven classes, it is
helpful to maintain the total number of classes for each student and update the
total as necessary rather than to continually recalculate it.

In the Alphard methodology, the proof of the correctness of the concrete
realization consists of four steps:

1) show that the data structures used in the implementation constitute a valid
representation of the abstract concept, Le.,

b^z) ==> Ia(abs(z})

where abs is the abstraction function. i
2) show that the initializatian performed when an object of the type is created

produces a legitimate rejaiesentation of an abstract object. That is, if the

initial precondition, i® satisfied before executing the initialization

®init' concrete invariant as well as the assumption about the initialtue, ^inif hold edter the imtialijreition code is executed.

^req J®init^ Cjjjj^(irf>s(x)) &Ic(x)
And for each operation j and concrete object x,

3) show that eachoperation body satisfies its input andoutputconstraints and
pzwserves the concrete invariant

Cj^(^ &Ic(x) JS.] C^(z) &Ic(x)
La order to verify all the constraints, it may be necessary to generate and
insert assertions into the code of the implementation,

4) show that the concrete operation is applicable whenever the abstract
precondition holds, and that if the operation is performed, the results
cmrespond properly to the abstract specifications, Le., establish the
relationship between the concrete input and output constraints and the
abstract pre and post conditions.

SreX«^s(x)) &Ic(x) ==> Cjjj (x)
^ &C^utfe ==> Cp^gt_(abs(x))

vdiere x* stands for the value of the concrete object
Xbefore the concrete operation is executed.

For the course specification, step 1 requires showing that:

IB Lsveson and Vasaeiinan

O^no—of—stud^max
—=> 0^cartii7iaZifi/(abs(students))^abs(maxj5fstud)

I^oof: car(imaKf3^(abs(students)) =
coTxffnati<2/(no-of-stud,stud-list)= no-of-stud

Steps 2 and 3 can be accomplished using standard verification methods and thus
mechanical verification aids. Step 4 establishes the relation between the
concrete input and output constraints and the abstract pre emd post constraints
for each operation. For the step 4 proofs, the following relationships will be
assumed between list and set operations:

add(s:Iist, erelement) ==> s:=s' u e
delete(s:list. eielement) ==> s:=s' - JeJ
®Barehlist(s;list. e:element) = (e s)

The proofs for step 4 are:
L for the operation assign—professor

show: OSc.no—of-studSc.max & true ==> true
proofi immediate
^ow: O^c.no—of—stud^c.max Sc true & c.cprof=p ==>true
proof; immediate ^

2. for the operation add—student
^ow: OSc.no—of—stud^c.max & enrQlled?(c,s)=false

&corsii7iaf'ifi/(abs{c.students))<abs(c.max#stud)
=s!> enrolled?(cBs)=false & c.no—of—stud<c.max

prooC immediate except for
ean2inal'i^(abs(c.students)) < abs(c.max#stud)
=> C£ircfi7iaZify(c.no—of—stud,c.stud—list)<c.mEuc
==> c.no—of—stud < c.max

^tow: cardinanty(c.students')<abs(c.max#stud') &
mirtdled?(cis}=false & O^c.no—of—stud'^c.max' &
c.stud—Iist=add(c.stud—list'.s) & no—of—stud=no—of—stud'+l
=»> abs(c.students)= abs(c.students)' u s

proof; abs(c.students)==> {c.no-of-stud.c.stud-list)
=> (c.stud—list'+l, add(c.stud—list'.s))
=«> (c.no-of-stud',c.stud-list*) U c.studlist[no-of-stud])

abs(c.students)= abs(c.students') u |sj
3. for the operation delete—student

show: eiirolled?(c,s)=true & O^c.no-of-stud^c.max
ss=:> Bnrolled?(c.s)=true

prooh immediate
show: enrolled?(c.s)=true & 0^c.no-of-stud'Sc.max'

ic cjio-of-stud=c.no-of-stud'-l &c.stud-list=delete(c.stud-list'.s)
ss=> abs(c.students) - fsj

prooh abs(c.students) = (c.no-of-stud,c.stud-list)
S5=> {c.no—of—stud'-l,delete{c.stud—list'.s))

(c.no—of—stud*.c.stud—list') - ^sj ,
s=> abs(c.students)= abs(c.students') - JsJ

4. for the operation enrolled?
show: true & O^c.no—of—stud^c.max ==> true
prooC Immediate
i&ow: true &O^c.no—of—stud'̂ c-max* &b=searchlist(c.stud—list.s)

=> b= s (c.students)
proo£ b=Bearchlist(c.stud—list,s)

19

==> b= s (c.stud-list, s)
==> b= s abs(c.students)

9. Views and Shared Data Issues

•tu ^ interact directly with a data base, but instead interactswith an image, or view, of it. The view becomes in effect a virtual data base [ill.
Anumber of views of a data base will usually exist because a data base is shared,
rad different users may need to view the data in logically different ways since
Uiey are using the data base for different purposes. Further, a user usually has
mcomplete knowledge about the data base on which he operates. This is the
tesult of practical reasons (data bases are usually too large for a user to be
expected to be familiar with the entire data base or even to be interested), and
for security reasons (certain data may be deliberately hidden from particular
US0lSja

In the behavioral abstraction model of a data base, a view may be
considered as an abstraction which is determined by the operations that can be
performed by the class of users. These operations are, of course, abstract
operations which are specific to the view of the data base with which the user
interacts. Different views may then incorporate different subsets of data base
objects, may have both nonoverlapping objects and objects in common, may
u^ort only certain rights, and may see the objects they share involved in
different relationships. Therefore, a view is just a behavioral abstraction and
really needs to be treated no differently than any other object in the data base.

For the most part, different classes of users are given different and
nopoverlapping views that have a very smaU. and possibly empty, intersection of
data objects. In cases where the views ihvolve disjoint portions of the data, they
may be specified and implemented as described so far. However, if the views are
aUowed to manipulate shared objects (and not just copies of the same data), the
vmws must agree, at least to some extent, on the semantics of the shared
objects. Otherwise, integrity may be lost when one view alters an object in a way
which makes the integrity constraints ofanother view no longer true.

The problem then is that of ensuring that the invariants of the abstract
type are consistent, that is, that the operations of one type do not violate the
invariants of other types which are bound to the same instance. There are two
ways of ensuring consistency - through a data abstraction of a "composed"
object or by methods for ensuring the consistency of separate abstractions.

9.1 Ensuring Consistency
• If a shared object dl is in some relationship with another object d2, then

this relationship (composed object) may be defined as a separate abstract
object where the relationship is specified in the abstract invariant of the
composed object. All operations allowed on the composed object must, of
course, be defined in the abstract type for the object, and thus must preserve
the invariant. Le.. the relationship. Views or abstractions which contain the
composed object need not see it identically. It is possible to control how an
object is shared by using access rights as described above. Thus, one view may
only have the right to invoke operations i and j on the shared object, while
another may have the right to issue calls to operations j and k.

It should be noted that the distinction between entities and relationships
often made in the data base literature is a specious one. Relationships can be
treated as merely composed objects. In fact, every entity represents a

20. Leveson and ffasserman

lationship among its attributes. As an example, the relationship "is-reserved-
b/' which, in a library, connects a cardholder and a book, could also be defined
as an abstract object "reservation." Thus, entities aind relationships can be
represented in the same way as long as the capability exists for defining an
entity as the composition of entities sind for defining the characteristics of the
composed entity which comprise the relationship between the component
entities [2,14]. f

As an example, let dl be the number of employees and d2 be the set of
employees. When a new employee is hired or an employee is fired or quits, i.e.,
the set of employees, d2, is changed, it is necessary to alter dl accordingly.
Thus any view which is allowed to alter the set of employees is forced to go
through the operations defined on a composed object "employees" which would
ensure that the relationship between dl and d2 is maintained. As another
example, consider the type course defined previously. A relationship between
the maximum number of students in the class and the number enrolled is
defined in the abstract invariant. It is possible to specify that any changes to
these objects must occur through operations defined on the object course, or it
is possible to define a separate abstract object "class list" which contains this
data and which enforces the proper relationship. Then the operations defined on
course (and in the other views which share the object "class list") which need to
modify part or all of the class list object would be forced to do so by invoking
abstract operations defined on class list.

A second way to ensure consistency between abstract specifications
involving shared data is to ensure that the implementations of the abstract
specifications are compatible, Le.. ensure the properties of the shared data. The
question then is what relationship must hold between the two concrete
specifications in order for the types to be considered compatible.

The concrete representation of an abstract type will consist of several

variables t^, c„,...,c^ where n^l. The concrete representation is related to an
abstract object A by the abstraction function such that

A abs(c^,Cg,...,c^)

The concrete invariant Ic defines the relationship between the concrete
variables cl,c2,...,cn to ensure that they fall within the domain of abs. That is, Ic
is the characteristic function of the domain of abs:

domain(abs) = Jc^ c^ 1Ic(cj,...,cJJ

If the same concrete implementation participates in the construction of
multiple views, then an abstraction function will be required for each view where
Uie domain of each abs is the same (although their ranges may obviously differ).
Le.,

domain(abSj)= domain(abSg)=...= domain(abs^)=
^Cj,Cg,...,Cn IIc(Cj,Cg,...,c^)j

If each abstract view has a different implementation, i.e., concrete
specification, then the implementations must preserve the properties of and
relationships ^ong the shared variables. That is, the invariants must place the
same constraints on the possible combinations of values that shared variables

Speclflcirtitm, Vertficationi andEnforeement ofSmMwfij. 2I

may take. Here shared variables must include not only the concrete variables in
the mtersection of the domains of the abstraction functions, but also those
concrete variables which are related to these variables.

Formally, let k implementations share the objects c.,c„ c for The
1 C Uk implementations will be said to be compatible if and only if the intersection of

the domains of the abs function for each implementation is (cj,...,c. |
Ics(cj,...,Cj)J where Ics is the characteristic function of the shared objects. For
implementations which have no shared variables, the intersection will be empty,
and the implementations will be triviaUy compatible.

In order to prove that several implementations are compatible, it is
necessary to define an invariant Ics which specifies the constraints on the
shared objects and to show that

Icj(ci,.,.,Ci) ==> Ics(cj,...,cp
for each implementation J.

^ an example, assime that a relation student exists in the data base with
domains D— that three views are defined on this relation;

1) View 1defines operations only on lower-division students, e.g.,
Icj = 0^#units<60 &...

2) View 2 operates only on upper division students, e.g.,
ICg = eo^jjfunits &: ...

3) View 3 sees all students but not all ofthe domains of the relation
ICg = 0^#units &...

To prove that the views are compatible, it is necessary to define the invariant of
the relation student

Istud = 0^#units & ...
and then to show that ICj, ICg, and Icg imply Istud.
If a new view which uses the relation student is added in the future, then it will
be necessary only to show that the concrete invariant of the added view implies
Istud in order to be sure that it is compatible with aU other views.

Since the implementations of the operations of the abstract types preserve
the concrete invariants, Ic-, and thus the shared concrete invariant, Ics, these
operations must maintain tne integrity of the shared object.

0.2 Initialization

One last problem remains. Each abstract specification defines a C which
defines the conditions of the environment necessary to create an abstract
object, and these conditions must be shown to be true before the initialization
code is executed, that is, before an object is created:

^req ^®init^ ^init(^^®W) ^

22 Leveson and-.WassiRrTnaii .

where x is a concrete object. Since only one of the abstract objects will actually
create the shared, constituent objects and C may diSer for the views, it is

necessary to include another operator, a "bind," in each view. This operator
would be used when a create operation would normally be invoked but the

concrete object already exists. guarantees that the initial preconditions
assumed by abstract specifications actually hold for the shared objects, i.e.,

^req ^®ind^
If the shared objects constitute only a part of the concrete object of the view,
the bind operator may be invoked by the create operation.

10. Summary
Thfi niethodology presented in this paper provides not only for a complete

specification of the semantic integrity constraints, but also includes a practical
means for verifying both the specification and implementation of the integrity
constraints. Integrity constraints au'e associated with particular semantically
high-level operations so that no unnecessary checking need ever be done. Not
only are the integrity constraints involved in an operation explicitly stated so
that modifications to constraints can be made, but verification techniques can
fa© used, to ensure thet both the ebstrsict sind. concrete operations preserve the
constraints.

Some constraints will be proved to always hold, thus eliminating any
necessity for execution time checking and greatly reducing runtime overhead.
For those constraints which csinnot lae proved to always hold, enforcement is
accomplished by assertions incorporated at the programmer's discretion into
the code qsed to implement the abstract operations. This means that the
appropriate assertions can be checked at the appropriate time. There is
complete fiexibility as to when within the operation the assertion is checked,
since an abstract data type allows local exceptions to integrity constrednts as
long as their truth is restored by the time control leaves the operation. Also, a
"violation action" can be specified by the programmer with the assertion so that
complete fiexibility is possible for specifying what execution time action should
take place when a constraint is violated. An integrity system cannot be
expected to guarantee the correctness of every value in the data base, but only
to enforce the constraints which have been made explicitly. The system being
proposed allows complete fiexibility in constraint checking. If it is decided that
the checking of certain constraints during particular operations is not worth the
extra runtime overhead, then the designer has the flexibility of omitting these
Checks. In fact, the designer has complete control over which constraints are
checked in which operations ~ although if some checking is omitted, then the
cojnplste integrity of the data base cannot be guaranteed. In summary, this
methodology allows a complete specification of integrity constraints, pre-
verification of constraints, and fiexibility as to what and when runtime checks
must be made and what violation-action should be taken in case of assertion
failure.

It is also important to note one other advantage of applying this
methodology to data integrity. Many of the integrity specification schemes
involve using computer terminology in the specification of the constraints, e.g.,
fimctional relationships between the domains of a relation. But the abstract

S^eeificfltiom, VetiiBca^cai, ai^ Bnfifftiement of Semantic Integrity 23

specifications proposed herein can be written entirely in terms that application
experts use and imderstand. The integrity and correctness of the information
system being designed Is thiis enhanced by the fact that application experts,
who have a natural understanding of the world being modelled, can fully
participate in the abstract design and specification of the system.

Rnally, it should be understood that just as a program can be tested and
used without ever being formally verified, an Information system can be
designed and implemented and the integrity specified and enforced using the
methodology being presented without actually formally verifying the
specification or the implementation. Verification is certainly desirable, but in
some situations may not be practical. Further, the verification consists of
several steps and again not all bf , these steps need actually be formally
completed. Some of the verification can be accomplished with the aid of
mechanical verification systems, and when these systems have been perfected,
perhaps verification of large systems will become more practical and frequent.

Keferences

[1] Astrahan, M.M. et al., "System R: Relational Approach to Data Base
Management", ACM TraTisactions on Database Systems, vol. 1, no. 2 (June, 1976),
pp. 97-137.

[2] Erodie, M.L., "Specification and Verification of Data Base Semantic
Integrity," Technical Report CSRG-91, University of Toronto, 1978.
t3] Colombetti, M., P. Paollni, euid G. Pelagatti "Non Deterministic Languages
Used for Definition of Data Models," Internal Report, Institute di Electronica,
Politecnico di Milano, 1978.

[4] Ehrig, H., H.J. Kreowski, and H. Weber "Algebraic Specification Schemes
for Data Base Systems," Proc. 4th Int'l Conf. on Very Large Data Bases, Berlin,
1978, pp. 427-440.

[5] Hammer, M.M. and D.J. McLeod, "Semantic Integrity in a Relational Data
Base System," i^oc. Ini'l. Conf. on Very Large Data Bases, 1975.
[6] Linden, T.A. "The use of abstract data types to simplify program
modifications," Proc. of Conference on Data: Abstraction, Definition, and
Strvx:ture, ACMSJCPLAN Notices, vol. 11, Special Issue (1976), pp. 12-23.
[7] Lockemann, P.C., H.C. Ma3rr, W.H. Weil, and W.H. Wohlleber, "Data
Abstractions for Database Systems," ACM Transactions on Database Systems,
vol. 4. no. 1 (March, 1979), pp. 60-75.
[8] Maibaiim, T.S. "Mathematical Semantics and a Model for Data Bases," in
Information Processing 77, ed. B. Gilchrist. Amsterdam: North Holland, 1977,
pp. 133-138.

[9] McLeod, D.J., "High Level Expression of Semantic Integrity in a Relational
Data Base System," Technical Report TR-165, MIT Laboratory for . Computer
Science, Cambridge, MA, 1976.

[10] Melkanoff, M. and M. Zamfir. "The Axlomatization ofData Base Conceptual
Models by Abstract Data Types," Technical Report UCLA-ENG-7785, University of
California, Los Angeles, January, 1978.
[11] Minsky, N. "On interaction with data bases." Proc. of ACM 1974 SICMOD
Workshop on Data Description, Access, and Control, Ann Arbor, Mich., May, 1974,
pp. 51-62.

24 LeTeson and Wiasserman :

[12] Smith, J,M. and D.C. Smith, "Conceptual Database Design," in Infotech
State of the Art Report tnt Data Design, ed. M. Atkinson. Maidenhead, England:
Infotech International, 19^.
[13] Stmiebraker, M. "Implementation of integrity constraints and views by
query modification," Proc. ACM 1975 SIGMOD Conference, San Jose, May 1975,
pp. 65-7a

[14] Weber, H. "The D-Graph Model of Large Shared Data Bases: A
Representation of Integrity Constraints and Views as Abstract Data Types," IBM
Research Report RJ-1875, San Jose, November 1976.
[15] Weber, H.J., "Modularity in Data Base System Design: a Software
Engineering View of Data Base Systems," in Issues in Data Base Management,
fed. H.J. Weber and A.I. Wasserman. Amsterdam; North-Holland, 1979, pp. 65-91.
[16] Weldon, J.-L., "Using data base abstractions for logical design," Computer
/ourmri, vol. 23, no. 1 (1980), pp. 41-45.
1^17] Wujf, W. A-, R.L. London, and M.Shaw, "An Introduction to the Construction
and Verffication of Alpliard Programs," IEEE Transactions on Software
Engineermg, vol. SE-2, no, 4 (December, 1976), pp. 263-265.
[18] Zloof, M.M. "Query-by-example: the invocation and definition of tables and
forma," iVoc. IntH Conf. on Very LargeData Bases, 1975, pp. 1-24.

