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Abstract 

This research involves the development of a tool that can be used to assess the 
changes in traffic safety tendencies that result from changes in traffic flow.  The tool 
uses data from single inductive loop detectors, converting 30-second observations of 
volume and occupancy for multiple freeway lanes into traffic flow regimes.  Each regime 
has a specific pattern of crash types, which were determined through nonlinear 
multivariate analyses of over 1,000 crashes on freeways in Southern California.  These 
analyses revealed ways in which differences in variances in speeds and volumes 
across lanes, as well as central tendencies of speeds and volumes, combine in complex 
ways to explain crash taxonomy.  This research may provide the foundation to forecast 
the crash rates, in terms of vehicle miles of travel, for vehicles that are exposed to 
different traffic flow conditions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An earlier version of this paper was presented at the  82nd Annual Meeting of the 
Transportation Research Board, Washington, DC,  January 12-26, 2003 
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1 Background 
Benefit/cost comparisons have long been a standard in assessing the effectiveness of 
investment of limited resources, and have served as an essential element in 
determining the most effective allocation of such resources.  Assessment of benefits of 
ATMS and ITS improvements largely translates into a problem of quantifying the 
benefits of improved traffic flow.  Improved flow ostensibly leads to reductions in travel 
time, vehicle emissions, fuel usage, psychological stress on drivers, and improved 
safety.  Developing these comparisons presents a perplexing problem for operating 
agencies, primarily because hard numbers cannot be obtained practically by direct 
measurement (e.g., by shutting down ramp metering or curtailing freeway service 
patrols for a period of time to measure consequences).  This measurement problem is 
heightened dramatically when issues of safety are involved, but one of the most 
compelling arguments for implementation of ITS elements is their presumed 
enhancement of traffic safety. 
 
There is strong empirical evidence of functional relationships between crash rates and 
traffic flow (Aljanahi, et al., 1999, Cedar and Livneh, 1982, Dickerson, Peirson and 
Vickerman, 2000, Frantzeskakis and Iordanis, 1987, Garber and Gadiraju, 1990, 
Gwynn, 1967, Hall and Pendleton, 1989, Jansson, 1994, Johansson, 1996, Jones-Lee, 
1990, Maher and Summersgill, 1996, Newberry, 1988, O’Reilly, et al., 1994, Sandhu 
and Al-Kazily, 1996, Shefer and Rietveld, 1997, Stokes and Mutabazi, 1996, Sullivan, 
1990, Sullivan and Hsu, 1988, Vickery, 1969, Vitaliano and Held, 1991, and Zhou and 
Sisiopiku, 1997).  Nevertheless, the manner in which safety is improved by smoothing 
traffic flow is not well understood at this time.  The present research is aimed at 
shedding light on the complex relationships between traffic flow and traffic crashes.  The 
overall objective is to develop an evaluation tool that uses relationships between traffic 
flow and crash characteristics to assess the safety benefits that are likely to be realized 
under specific ATMS implementations.   
 
A software tool, called FITS (Flow Impacts on Traffic Safety) has been developed that 
uses a data stream of 30-second observations from single inductance loop detectors to 
forecast the types of crashes that are most likely to occur for the flow conditions being 
monitored.  The algorithm, in its present form, is based on analyses of crash 
characteristics of more than 1,000 crashes on six major freeways Orange County 
California in 1998 as a function of traffic flow conditions for a thirty-minute time period 
immediately preceding the crashes.  The algorithm could be re-estimated for other 
urban areas if similar data were available. 
 
In previous research (Golob and Recker, 2002), we conducted a series of analyses 
aimed at determining the extent to which traffic flow variables, in the form of 30-second 
observations from single inductive loop detectors, account for variation in accident 
typology, controlling for ambient weather (wet or dry) and lighting (daylight or nighttime) 
conditions.  The data used here, as described in Section 2, are a subset of the data 
used in the previous study.  In the previous study we used nonlinear (nonparametric) 
canonical correlation analysis applied with three sets of variables: crash characteristics, 
traffic flow variables, and segmentation based on weather and lighting conditions.  
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Nonlinear canonical correlation analysis (NLCCA) (Gifi, 1990, de Leeuw, 1985, 
Michailidis and de Leeuw, 1998, van de Geer, 1986, ver Boon, 1996, van der Burg and 
de Leeuw, 1983) is a form of canonical correlation analysis in which categorical and 
ordinal variables are optimally scaled as an integral component in finding linear 
combinations of variables with the highest correlations among them.  The analysis 
revealed clear patterns relating crash characteristics and prevailing traffic flow 
conditions, and it showed how these relationships are conditional upon lighting and 
weather.  Prevailing traffic flow conditions were measured in terms of statistics derived 
from approximately 30 minutes of lane-specific 30-second loop-detector observations 
prior to the time of each crash.   
 
We concluded from the Golob and Recker (2002) study that an evaluation tool could be 
developed to forecast the types of crashes that are most likely to occur under different 
traffic flow conditions.  This tool uses a similar data stream of observations from single 
inductive loop detectors and is based on some of the same statistical methods used in 
the previous study, with the addition of several new steps required for monitoring and 
forecasting purposes.  Our results may provide the foundation to forecast the crash 
rates, in terms of vehicle miles of travel, for vehicles that are exposed to different traffic 
flow conditions.   
 
The remainder of this paper is organized as follows.  Data are discussed in Section 2.  
In Section 3 we present results of the analyses in which we determine how traffic flow is 
related to differences in safety.  For reporting purposes, results are shown for only one 
segment of weather and lighting conditions: dry roadways during daylight and dusk-
dawn conditions.  In Section 4, we apply the tool in a case study of a section of one 
freeway for one week.  In Section 5, we present a hypothetical example of how the FITS 
tool could be used to assess expected safety benefits accrued from ATMS applications.  
We close with conclusions and a discussion of future research in Section 6.  
 
 
 
2 Data 

2.1 Case Study 

Our data cover crashes that occurred on six major freeway routes in Orange County 
California during calendar year 1998.  Orange County is located on the Pacific coast 
between Los Angeles and San Diego Counties, and the six freeways included in this 
study account for over 209 route kilometers (130 miles), with between 3 and 6 lanes in 
each direction.  
 
Crash data were drawn from the Traffic Accident Surveillance and Analysis System 
(TASAS) database (Caltrans, 1993), which covers all police-reported crashes on the 
California State Highway System.  In 1998 there were a total of 9,341 mainline crashes 
on the six Orange County freeway routes.  Out of these 9,341 crashes, 1,192 (12.8%) 
had valid loop detector data for a full 30 minutes preceding the crash for three 
designated lanes at a loop detector station that was relatively close to the crash.  For 
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each of the crash characteristics used in this study (described in Section 2.3), 
contingency table chi-squared tests revealed that there is no statistically significant 
difference (at the 95% confidence level) between the selected subset of 1,192 crashes 
and the unused subset of 8,150 crashes.  The average distance from the crash location 
to the closest detector station for the 1,192 crashes is 274 meters (0.17 miles) and the 
median distance is 193 meters (0.12 miles).  Fully 78% of these crashes were located 
within 400 meters (0.25 miles) of the closest detector station.  
 
Traffic flow data are in the form of 30-second loop detector data at the closet detector 
station to the scene of the crash for 30 minutes preceding the reported time of the 
crash.  Each observation provides count and percentage occupancy for a 30-second 
time slice.  At each mainline loop detector station, data are available for each freeway 
lane.  A consistent scheme was used for designation of lanes comprising the analysis: 
(a) the left lane, always being the lane designated as being the number one lane 
according to standard nomenclature; (b) one interior lane, being lane number two on 
three- and four-lane freeway sections and lane number three on five- and six-lane 
sections; and (c) the right lane.  Because the reported times are typically rounded off to 
five-minute intervals, crash times are not know with precision.  In recognition of this, the 
loop data for the 2.5-minute period immediately preceding the reported times were 
discarded in order to avoid potential inclusion of post-crash conditions.   
 
 
2.2 Segmentation Based on Weather and Lighting Conditions 

In Golob and Recker (2002), we present empirical evidence confirming previous 
observations (e.g., Fridstrøm, et al., 1995) that relationships between safety and traffic 
flow conditions depend upon driving conditions defined, by weather and ambient lighting 
conditions.  By analyzing all combinations of lighting and weather conditions, we 
determined that the Wet-Night and Wet-Day segments can be combined into a single 
Wet segment, and the relatively sparse Dry-Dusk-Dawn segment can be combined with 
the Dry-Day segment.  The resulting segmentation for Orange County crashes in 1998 
is: (1) Dry-Day (including Dusk-Dawn): 819 crashes, (2) Dry-Night, 217 crashes, and (3) 
Wet (any lighting condition): 156 crashes.  For the purpose of developing an evaluation 
tool, we conducted separate analyses for each of these three segments.  However, for 
purposes of brevity, in the remainder of this paper we report on results for only the 
largest segment: daylight and dusk-dawn conditions on dry roads.  
 

2.3 Crash Characteristics 

Three crash characteristics were used in this analysis: (1) crash type, based on the type 
of collision (rear end, sideswipe, or hit object), the number of vehicles involved, and the 
movement of these vehicles prior to the crash, (2) the crash location, based on the 
location of the primary collision (e.g., left lane, interior lanes, right lane, right shoulder 
area, off-road beyond right shoulder area), and (3) crash severity, in terms injuries and 
fatalities per vehicle.  Based on exploratory statistical analyses, and taking into account 
requirements on minimum category frequencies, we used six categories of crash type, 
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five categories of crash location, and two categories of crash severity.  We were only 
able to use two categories for crash severity because there were very few fatal crashes 
and the extent of non-fatal injuries is not recorded in the TASAS database.  These 
variables are described in Table 1.  

 

 
Table 1 Characteristics of Crashes during Daylight on Dry Roads (N = 819 crashes) 

Crash Characteristic Percent of 
sample 

Crash type  
Single vehicle hit object or overturn 10.5 
Multiple vehicle hit object or overturn 5.6 
2-vehicle weaving crash a 17.8 
3-or-more-vehicle weaving crash a 5.1 
2-vehicle straight-on rear end crash 38.2 
3-or-more-vehicle straight-on rear end 22.7 

Crash Location  
Off-road, driver’s left 12.3 
Left lane 30.4 
Interior lane(s) 32.5 
Right lane 18.7 
Off road, driver’s right 6.1 

Severity  
Property damage only 75.0 
Injury or fatality  25.0 

a Sideswipe or rear end crash involving lane change or other 
turning maneuver 

  
 
 
2.4 Traffic Flow Variables 

This research uses raw detector data that provide information on two variables: count 
and occupancy for each thirty-second interval.  Although these two variables can be 
used (under very restrictive assumptions of uniform speed and average vehicle length, 
and taking into account the physical installation of each loop) to infer estimates of point 
speeds, we avoid making any such assumptions, and use only these direct 
measurements. 
 
Based on preliminary analyses, four blocks of three variables (one variable for each of 
the three lanes: left, interior, and right) were found to be related to crash typology.  (1) 
The first block comprises the median of the ratio of volume to occupancy for each of the 
three lanes, and measures the central tendency of (density), an approximate 
proportional indicator of space mean speed.  Median, rather than mean, is used in order 
to avoid the influence of outlying observations that can be due to failure of the loop 
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detectors or unusual vehicle mixes. (2) The second block comprises the difference of 
the 90th percentile and 50th percentile in the ratio of volume to occupancy (density) for 
each lane, and represents the temporal variation of this ratio.  Here we use the 
percentile differences because we wish to minimize the influence of outlying 
observations.  (3) The third block comprises the mean volumes for all three lanes taken 
over the entire 27.5-minute period preceding the accident.  Volume alone is not as 
sensitive to outliers as the ratio of volume to occupancy is, so mean, rather than 
median, is used as a measure of central tendency.  (4) Finally, the fourth block is 
composed of the standard deviations of the 30-second volumes for all three lanes as a 
measure of variation in volume over the 27.5-minute period. 
 
We expect that some of the traffic flow variables will be highly correlated, clouding 
interpretation of analysis results.  Specifically, the three variables in each of the four 
blocks might be highly correlated if the flow characteristic being measured is consistent 
across all three lanes.  However, it is not known how strongly these particular measures 
of traffic flow are linked across lanes, and this is especially true of speed and volume 
variances.  To minimize this potential problem, we apply principal components analysis 
(PCA) to extract a sufficient number of factors to identify independent traffic flow 
variables while simultaneously discarding as little of the information in the original 
variables as possible.  
 
A PCA with varimax rotation was performed on the twelve traffic flow variables (i.e., the 
four blocks of three variables defined above) for the group of crashes that occurred 
during daylight or dusk-dawn on dry roads.  Six factors accounted for 86.8% of the 
variance in the original twelve variables.  One variable was then selected to represent 
each factor in the subsequent stages of the analysis.  These six variables are listed in 
Table 2, together with the factor that they represent. 
 

 
Table 2 Loop Detector Variables Used to as Input to the FITS Tool  

Specific Variable Factor Represented 

Median volume/occupancy interior lane Central tendency of speed - all lanes 

90th%tile - 50th%tile of volume/occupancy interior lane Variation in speed – all but right lane 

90th%tile - 50th%tile of volume/occupancy right lane Variation in speed – right lane 

Mean volume left lane Central tendency of volume - all lanes 

Standard deviation of volume interior lane Variation in volume – all but right lane 

Standard deviation of volume right lane Variation in volume – right lane 

 
 

 
The factor loadings (not shown) indicate that the central tendency of speed (Variable 
Block 1) is consistent across all three lanes.  The variable chosen to represent this 
central tendency of speed factor is median volume/occupancy in the interior lane.  The 
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second factor represents the temporal variation in volume/density on the left and interior 
lanes only.  Variation in volume/density in the right lane is captured by a separate, third, 
factor.  The implication here is that the variation in speed in the rightmost lane, which 
tends to be influenced by weaving in the vicinity of freeway on- and off-ramps, relates to 
crash characteristics in a fundamentally different way than does the variation in speed 
that is attributable primarily to mainline freeway flow. 
 
A single factor (the fourth factor in Table 2) also encompasses the central tendency of 
volume in all three lanes.  Mean volume in the left lane was chosen to represent this 
factor in all further analyses.  Finally, the PCA results also show that temporal variations 
in volumes on the three lanes is partitioned into two factors: variations in volume on the 
left and interior lanes (fifth factor), and variation in volume on the right lane (sixth and 
last factor in Table 2).  Volume in the rightmost lane, which has a direct influence on the 
level of service in the vicinity of freeway on- and off-ramps, relates to crash 
characteristics in a fundamentally different way than does flow in the other lanes. 
 
 
 
3 Finding Traffic Flow Regimes that Best Explain Crash Typology 

3.1 Clustering in the Six-dimensional Space of the Traffic Flow Variables 

Cluster analyses were performed in the space of these six principal traffic flow variables 
in order to establish relatively homogenous traffic flow regimes.  A k-means clustering 
algorithm was used.  The objective was to determine the best grouping of observations 
into a specified number of clusters, such that the pooled within groups variance is as 
small as possible compared to the between group variance given by the distances 
between the cluster centers.  We repeated runs of the clustering algorithm with different 
initial cluster centers to avoid local optima.   
 
The optimal number of clusters, specific to any particular problem, is usually determined 
by inspecting clustering criteria developed from eigenvalues of the characteristic 
equation involving the ratio of the pooled within-groups and between-groups covariance 
matrices (e.g., Wilk’s Lambda, given by the ratio of the determinants of the within-
groups and total covariance matrices, or Hotelling’s Trace, given by the sum of the 
eigenvalues of the characteristic equation).  Selection of the optimal number of groups 
using such criteria is relatively arbitrary.  To reduce such arbitrariness, we instead 
conducted a nonlinear canonical correlation analysis (NLCCA, described in Section 1) 
for each clustering solution, adopting a two-dimensional solution.  The NLCCA problem 
was configured with the multiple nominal cluster variable on one side and the three 
single nominal crash variables described in Table 1 on the other side.  The criteria that 
describe how well each of the cluster variables explained the crash characteristics are 
the canonical correlations between the two sets of variables, one for each of the 
variates of the two-dimensional solution.  For prevailing traffic conditions for crashes on 
dry roads during daylight, the canonical correlations for the first dimension were found 
to reach a maximum at eight clusters; the fit for the second dimension has a local 
maximum at eight clusters, but does not achieve a global optimum until the 13-cluster 
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level is reached.  Based on these results, and corroborative evidence from Wilk’s 
Lambda and Hotelling’s Trace, we selected eight clusters, which we refer to as eight 
distinct Traffic Flow Regimes.    
 
The eight traffic flow regimes can be described based on the location of their cluster 
centers in the six-dimensional space of the traffic flow variables.  Briefly, they are, 
ordered in terms of increasing flow: (D1) light free flow, (D2) heavily congested flow, 
(D3) congested flow, (D4) light right-variable flow, (D5) flow at capacity, (D6) heavy, 
variable flow, (D7) heavy, steady flow, and (D8) flow near capacity.  A more complete 
description is provided in Table 4 below. 
 

3.2 Crash Profiles for Eight Traffic Flow Regimes 

Nonlinear canonical correlation analysis (NLCCA) of the eight-category regime 
segmentation variable versus the three crash characteristics was used to determine 
how the traffic flow regimes are related to patterns of crash characteristics.  Another 
way to view the problem is to ask how the crash characteristics distinguish among traffic 
flow regimes.  Indeed, NLCCA with a single categorical (segmentation) variable in one 
set is equivalent to nonlinear (nonparametric) discriminant analysis. 
 
A two-dimensional NLCCA solution was chosen.  The canonical correlations, which 
indicate the percentage of variance which is shared between the two sets of variables – 
(1) the traffic flow regimes and (2) the crash characteristics – are 0.424 for the first 
canonical variate and 0.150 for the second variate.  Thus, the first variate is 
considerably more important in explaining differences in crash characteristics in terms 
of traffic flow regimes.  The two independent variates combine to explain 0.574 of 
shared variance between the two sets of variables.  The R2 value for the regression of 
the optimally scaled crash characteristics on each of the independent canonical variates 
is 0.712 for the first canonical variate and 0.574 for the second variate. 
 
Table 3 lists the centroids for all categories of the four optimally scaled variables on the 
two independent canonical variates.  These category centroids can be used to label the 
canonical variates.  The distances between the centroids of any two categories in the 
two-dimensional space of the canonical variates is a measure of the association 
between the categories. 
 
The traffic flow regimes (Table 3) are ordered on the first variate from low to high in 
terms of decreasing mean speed in the interior lanes.  The four regimes that score in 
the positive domain of the first variate (D8, D5, D3 and D2) are more similar to one 
another; they all represent heavy traffic, and their ordering from low to high is according 
to mean volume, rather than mean speed.  The first dimension captures aspects of the 
density (concentration) dimension of the fundamental diagram of traffic flow versus 
traffic density (Prigogine and Herman, 1971).  The second canonical variate, which by 
definition is independent of the first in terms of its functional relationships with the two 
sets of variables, primarily distinguishes high-flow regimes (Regimes D5, D6 and D7), 
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from low-flow regimes (D2 and D1).  This dimension captures the flow dimension of the 
fundamental diagram. 
 

 
Table 3 Category Centroids – NLCCA of Traffic Flow Regimes versus Three Crash 

Characteristics for Crashes During Daylight on Dry Roads 

Variable and Category Variate 1 Variate 2 

SET 1:  Traffic Flow Regime   

D1: light free flow -0.87 1.04 
D2: heavily congested flow 0.59 1.79 
D3: congested flow 0.62 0.24 
D4: light right-variable flow -1.74 -0.12 
D5: flow at capacity 0.75 -0.87 
D6: heavy, variable flow -0.43 -0.46 
D7: heavy, steady flow -0.47 -0.36 
D8: flow near capacity  0.83 0.25 

SET 2:  Crash type   

Single vehicle hit object or overturn -1.69 -0.37 
Multiple vehicle hit object or overturn -1.36 -0.38 
2-vehicle weaving crash a -0.24 0.32 
3-or-more-vehicle weaving crash a -0.71 -0.19 
2-vehicle straight-on rear end 0.54 0.13 
3-or-more-vehicle straight-on rear end 0.56 -0.16 

SET 2:  Crash Location   

Off-road, driver’s left -0.71 -0.07 
Left lane 0.62 -0.96 
Interior lane(s) -0.08 0.72 
Right lane 0.10 0.41 
Off road, driver’s right -1.50 -0.21 

SET 2:  Severity   
Property damage only 0.13 0.15 
Injury or fatality  -0.39 -0.46 

a Sideswipe or rear end crash involving lane change or other turning maneuver 
 
 

Crash type is more strongly explained by the first (R2=.544) than the second canonical 
variate (R2=.071).  Thus, crash type is related more to density in the fundamental 
diagram.  The optimal scaling of the crash type categories contrasts hit-object versus 
rear-end crashes, with weaving crashes in between.  As expected, rear-end crashes are 
associated with high density traffic, and hit-object crashes are associated with low 
density traffic.  Weaving crashes (sideswipes and rear-ends caused by lane-change 
maneuvers) are associated with intermediate density traffic.  High-density regimes D8, 
D3 and D5 are most associated with rear-end crashes, while low-density regimes, 
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particularly D4, are associated with hit-object crashes.  Intermediate-density regimes D6 
and D7 are most associated with crashes involving weaving maneuvers. 
 
Crash location is more strongly explained by the second canonical variate (R2=.513, 
versus R2=.049 for the first variate).  Crash location is a primarily a flow phenomenon.  
The optimal scaling of the categories of the location variable shows that left-lane 
crashes are associated with high density and high flow conditions, while other locations, 
especially interior lane crashes, are associated with low density and low flow conditions.  
Regime D5 is especially associated with left lane crashes, while Regime D4 is 
associated with off-road crashes.       
 
Finally, crash severity is explained by both dimensions, on an approximately equal 
basis.  Thus, the difference between property-damage and injury crashes is a function 
both of flow and density.  Injury crashes are more likely to occur in lower density 
conditions, and in higher flow conditions.  Regimes D2 and D4 have the most extreme 
projections onto the vector defined by the category quantifications of the severity 
variable.  Thus, the NLCCA model predicts that Regime D4 will have a higher proportion 
of injury crashes, and Regime D2 will have a higher proportion of property-damage-only 
crashes.    
 
The results of the NLCCA model were verified and refined by cross-tabulating each 
crash characteristic against the eight-category regime segmentation variable.  The 
results were consistent.  The traffic flow conditions that define the eight traffic flow 
regimes for daylight, dry road conditions are summarized in Table 4, along with the 
crash typology.     
 
 
3.3 Programming of the FITS Tool 

A C++ program was written to classify any freeway location according to traffic flow 
regime, based on a proximity index to the respective centroids of the eight regimes in 
canonical space.  The input data are a stream of loop detector data, stamped with the 
date and time, for the three designated freeway lanes.  The classification applies to a 
point along one freeway direction of travel.  Date and time are needed to distinguish 
between daylight and nighttime, based on an algorithm that determines the time, for 
each day of the year, at which dawn begins (0.5 hours prior to sunrise) and the time at 
which darkness begins (sunset plus 0.5 hours).  The user can set the latitude and 
longitude for this algorithm, which currently defaults to the center of the Orange County 
freeway network.  The user must also manually set a toggle which identifies periods of 
wet roads.  It takes 27.5 minutes to initialize the program before the first classification is 
generated.  Thereafter, classification is generated each 30-seconds, based on the 
current loop detector observation and the previous 54 observations.  (In this case, since 
reporting round-off is not an issue, it is unnecessary to delete the 5 most recent 
observations.)  Based on these classifications, tendencies toward certain accident 
characteristics are identified, providing real-time monitoring of potential traffic safety 
problems.   
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Table 4 Summary of the Eight Traffic Flow Regimes for Crashes During Daylight on 
Dry Roads 

Traffic flow characteristics Most likely types of crashes  

D1. Light free-flow:  Very low 
volume, high average speed, low 
variation in right -lane speed.  

Single-vehicle run-offs and 
lane-change crashes, 
particularly right -side.  

D2. Heavily congested flow:  Low 
volume and very low speeds,  low 
variations in volumes and speeds in 
all lanes. 

All types of property damage 
crashes, except single-vehicle 
hit-object crashes. 

D3. Variable-volume congested 
flow: Low mean flows and speeds.  
High variations in all flows and in 
speeds in left and interior lanes 
speeds.   

Rear-end crashes, especially 
those with two vehicles. 

D4. Mixed free flow: Highest mean 
speeds and high variations in right- 
lane speed and left and interior lanes 
flows. 

All types of injury crashes and 
two-vehicle rear-end crashes.  

D5. Variable-speed congested 
flow: Moderate flow and high 
variations in speeds in all lanes. 

Run-offs and lane-change 
crashes, especially left -lane 
crashes.  

D6. Heavy, variable free flow:  High 
flows and high variations in flows; 
high mean speeds and relatively low 
speed variances. 

Two-vehicle lane change, and 
multi-vehicle rear-end crashes. 

D7. Flow approaching capacity: 
High mean flow and moderately high 
mean speeds, with low variations in 
speeds and in right lane flow.  

Two-vehicle and multi-vehicle 
lane-change crashes. 

D8. Heavy flow at moderate 
speed: High volume, low variations 
in flows, especially those in left and 
interior lanes.   

Two-vehicle rear-end crashes.  

 

 
4 Case Study Application 
In this Section we demonstrate an application of the tool by applying it retroactively to 
streams of loop detector data from two adjacent loop detector stations along northbound 
SR-55 in the City of Santa Ana, Orange County, California.  The two detector stations, 
located about 2,000 meters (1.25 miles) apart between two freeway interchanges (the 
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SR-55/I-405 and SR-55/I-5 interchanges).  FITS output is graphed for two daytime 
periods at these two locations for Monday and Saturday of the first week of March 1998 
(Figures 1-4).  The remainder of this Section contains a brief interpretation of this 
output. 
 
Daytime Monday (Figures 1 and 2):  Traffic picks up at both locations at about 6:30AM 
(slightly later at the upstream location).  At the first location the sequence in terms of 
most likely types of crashes is: short period of (D4) serious run-offs and (D6) mixed 
types, 7:30-9:00 (D7) lateral navigation, 9:00-noon (D6) mixed types, short periods of 
(D7) and (D8) two-vehicle rear ends, then (D7) again until afternoon peak, In which 
there are periodic spells of (D8) two-vehicle rear ends.  The downstream location 
operates mainly in Regime D7 lateral navigation crashes, until about 5:00 PM, when it 
breaks down into flow at capacity (D5) with left-lane rear ends most likely, and 
congested flow (D3) which favors two-vehicle rear-end crashes. 
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Figure 1  Classification of Traffic Conditions on SR-55 Northbound at Dyer Road, 

Postmile 8.12, Daytime Monday, March 2, 1998 

 
 
Daytime Saturday (Figures 3 and 4):  Following early morning free flow (D1 and D4) 
prior to 8:30AM, the first location shows highly variable flow in the 8:30AM to 9:45AM 
period, as evidenced by repeated cycles of heavy flow (D6 or D7) and free flow (D1).  
From 9:45AM until 1:30PM heavy variable flow predominates (D6: mixed crash types), 
followed by heavy steady flow the remainder of the day (D7: conducive to lateral 
navigation crashes).  The upstream location has low flow (D1 and D4) until about 9:30, 
then also shifts to heavy steady flow for most of the remainder of the day. 
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Figure 2  Classification of Traffic Conditions on SR-55 Northbound at Edinger Avenue, 

Postmile 9.41, Daytime Monday, March 2, 1998  
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Figure 3  Classification of Traffic Conditions on SR-55 Northbound at Dyer Road, 

Postmile 8.12, Daytime Saturday March 7, 1998  
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Figure 4  Classification of Traffic Conditions on SR-55 Northbound at Edinger Avenue, 

Postmile 9.41, Daytime March 7, 1998 

 
 
 

5 Demonstration of the Tool 
In this section, we offer a demonstration of the methodology developed in this research.  
Because of systematic biases introduced by non-reporting loop stations (as well as with 
the sample of crashes used to estimate the models), the following is intended for 
demonstration purposes only; no claim is made that the results are representative of 
actual conditions.  We consider a freeway segment, S, during some time interval, T, 
containing n loop stations, , 1,2,il i n= K . 
 
Let itR  denote the regime in the vicinity of loop station , 1,2,il i n= K , during 30-second 
time interval 1,2, , 30sect T= K .  Ostensibly, each regime itR  defines traffic flow 
conditions prevailing on a section of freeway extending from the midpoint between loops 

1  and i il l−  and loops 1 and i il l +  during the 30-second time interval t.  The FITS program 
can easily determine itR  from 30-second loop count data, based on the membership 
functions that led to the regime classifications for dry roads during daylight or dusk-
dawn, dry roads at nights, and wet roads, respectively. 
 
The total population of regimes defined by 30-second loop counts on freeway segment 
S during T is simply 30secTSN nT= .  The number of occurrences of any particular 

regime R in the population is { }| , , ;R it itn R R R i S t T R= = ∀ ∈ ∀ ∈ ∈ R , where R  is the set 

of regimes (which may be further broken down by particular environmental 
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segmentation, e.g., { }Dry Day Dry Darkness Wet− −=R R R R ).  An estimate, ˆRn , of Rn  can be 

obtained as follows: 

1. Draw a random sample of SampleN  30-second regimes.  Each such sample 
requires 27.5 minutes of preceding loop data to calculate regime membership. 

2. Compute  { }| , ;Sample Sample
R l ln R R R l N R= = ∀ ∈ ∈ R ,  We note Sample Sample

R
R

n N
∈

=∑
R

. 

3. Compute the frequency of occurrence of regime R in the sample, 
Sample Sample Sample

R Rf n N= . 

4. Compute an estimate of Rn  as ˆ Sample Sample Sample
R R TS R TSn f N n N N= ⋅ = ⋅ . 

 
An output of FITS represents the distribution of crash typologies (for crashes contained 
in the database on which the analysis was performed) relative to the various regimes 
that were identified by the analysis.  Specifically, it is possible to assign each of the 
specific crash typologies (e.g., type, location severity) of each of the crashes contained 
in the database to a particular regime.  So, for example, we can compute from the 
accident database and the analysis results: 

base
base CR

CR base
C

N
f

N
=  

where 
 frequency distribution of database accidents of typology  relative to Regime ,

 Total number of database accidents of typology  assigned to Regime  by FITS, and

 Total number

base
CR

base
CR

base
C

f C R

N C R

N

=

=

=  of database accidents of typology .C

 

 
From the TASAS database, it is possible to identify the total number of crashes of 
typology C that have occurred on any freeway segment S during a specified time 
interval T (e.g., number of fatal collisions on I-5 in Orange County during the morning 
peak period of the year 1998), say CTSN .  Then, CTS CTS TSf N N=  is the frequency 
distribution of crashes of typology C per 30-second loop count occurring on freeway 
segment S during time T.  And, ˆ ˆ/ /C base base

R CR CTS R CR CTS TS Rf N n f f N nρ = ⋅ = ⋅ ⋅  is an estimate of 
the expected number of crashes of typology C per occurrence of regime R on freeway 
segment S during time T.  Finally, an estimate of the expected number of crashes of 
typology C, ˆ C

accidentN , is given by ˆ ˆC C
accident R R

R

N nρ= ⋅∑  

 
As a demonstration of this procedure, we consider crashes occurring during the 
morning peak hours on the six major freeways in Orange County, CA, using the year 
1998 as a base, and compare expected crashes resulting from a hypothetical change in 
traffic flow conditions .  There are a total of 551 loop stations on these freeways; the 
weekday morning peak comprises 6:00AM to 9:00AM inclusive, yielding a total of 
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51,573,600 TSN = regime occurrences.  For purposes of this example, we make the 
simplifying assumption that all of these occurrences correspond to dry conditions.  A 
total of 895SampleN =  of the random sample of 30-second regimes occurred during the 
dry weekday morning peak hours.  The expected distribution of these among the eight 
Dry-Day regimes is given in Table 5.  Suppose that, through traffic control measures, 
we were able to virtually eliminate the two “congested flow” regimes (D2 and D3), 
transferring these previously congested periods to the “heavy, steady flow” Regime D7.  
The expected distribution of Dry-Day regimes under this scenario is shown in the fourth 
column of Table 5. 
 
 
 
Table 5 Distribution of Dry-Day Regimes in the Random Sample 

R Sample
Rn  ˆ Sample Sample

R R TSn n N N= ⋅  ˆForecast
Rn  

D1 113 6,511,527 6,511,527 

D2 35 2,016,845 0 

D3 43 2,477,838 0 

D4 186 10,718,089 10,718,089 

D5 47 2,708,334 2,708,334 

D6 198 11,409,579 11,409,579 

D7 209 12,043,444 16,538,127 

D8 64 3,687,945 3,687,945 

SampleN  895 
TSN =  51,573,600 TSN =  51,573,600 

 
 
 
The distribution of crash types in the analysis database with respect to the eight Dry-day 
regimes is given in Table 6.  Calculations of base

CRf  may be obtained directly from this 
Table. 
 
There were a total of 9,341CTSN =  reported crashes on the six major Orange County 
freeways during 1998.  Of these, 1,639 occurred during the AM weekday peak hours 
between 6:00AM and 9:00AM.  The distribution by crash type is given in Table 7. 
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Table 6 Distribution of Crash Type with respect to the eight Dry-Day Regimes 

Dry Day Regimes 
Crash Type 

D1 D2 D3 D4 D5 D6 D7 D8 
Total % 

single veh. hit object 29 15 24 46 56 72 49 22 313 38.2 

2 +veh. hit object 18 9 18 28 31 50 24 8 186 22.7 

2 veh. lane-change 16 17 12 32 13 21 17 18 146 17.8 

3 +veh. lane-change 3 7 7 10 4 3 4 4 42 5.13 

2 veh. rear-end 1 23 15 23 2 6 2 14 86 10.5 

3 + veh. rear-end 1 14 5 9 2 7 3 5 46 5.62 

Total 68 85 81 148 108 159 99 71 819  

% 8.3 10.3 9.89 18.0 13.1 19.4 12.0 8.67  100 

 
 
 
Table 7 CTS CTS TSf N N= for Crash Type for the eight Dry-Day Regimes 

Crash Type Frequency CTS CTS TSf N N=  

single veh hit object 102 1.97776E-06 

2 +veh hit object 47 9.11319E-07 

2 veh lane-change 310 6.01083E-06 

3 +veh lane-change 90 1.74508E-06 

2 veh rear-end 671 1.30105E-05 

3 + veh rear-end 419 8.12431E-06 

Total 1,639  

 
 
 
From the information in these tables we can calculate the respective 

ˆ/C base
R CR CTS TS Rf f N nρ = ⋅ ⋅  and from which we calculate ˆ ˆC C

accident R R
R

N nρ= ⋅∑  and their 

expected distribution across the various regimes.  These distributions are listed in Table 
8 for crash type.  The row tota ls here, by definition, match the observed values; the 
categorizations by regime are products of FITS.  However, the model may also be used 
in a forecasting mode to estimate expected modifications in safety outcomes accrued 
from changes in flow patterns, say through reducing congestion by ramp metering. 
 
Displayed in Table 9 are the expected crashes under the new traffic flow conditions in 
this hypothetical example (i.e., a revised Table 8) and summaries of improvements in 
safety that would be expected under the above scenario.  When applied in a forecast 
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mode, FITS does not guarantee consistency between typologies for different 
characteristics (crash type, location, and severity).  This is because the membership 
functions for each typology were determined independently.  Resolving such 
inconsistency through a combined analysis (e.g., by a two-dimensional classification 
scheme, such as crash type and severity) could not be supported by the sample data 
that was available for the present study.   
 
 
 
Table 8 ˆ ˆC C

accident R R
R

N nρ= ⋅∑  for Crash Type for the eight Dry-Day Regimes 

Dry day Regimes 
Crash Type 

D1 D2 D3 D4 D5 D6 D7 D8 
Total 

single veh hit object 9 5 8 15 18 23 16 7 102 

2 +veh hit object 5 2 5 7 8 13 6 2 47 

2 veh lane-change 34 36 25 68 28 45 36 38 310 

3 +veh lane-change 6 15 15 21 9 6 9 9 90 

2 veh rear-end 8 179 117 179 15 47 15 109 671 

3 + veh rear-end 9 127 46 82 18 64 27 46 419 

Total 72 365 215 373 96 198 109 211 1,639 

 
 
 
Table 9 Forecast ˆ ˆC C

accident R R
R

N nρ= ⋅∑  for Crash Type for the eight Dry-Day Regimes 

Dry day Regimes 
Crash Type 

D1 D2 D3 D4 D5 D6 D7 D8 
Forecast 

Total 
Expected 
Change 

single veh hit object 9 0 0 15 18 23 22 7 95 -7 

2+veh hit object 5 0 0 7 8 13 8 2 42 -5 

2 veh lane-change 34 0 0 68 28 45 49 38 262 -48 

3+veh lane-change 6 0 0 21 9 6 12 9 63 -27 

2 veh rear-end 8 0 0 179 15 47 21 109 380 -290 

3+ veh rear-end 9 0 0 82 18 64 37 46 256 -163 

Total 72 0 0 373 96 198 150 211 1,099 -539 
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6 Conclusions and Directions for Further Research 
We have developed a tool, called FITS (Flow Impacts on Traffic Safety), that can be 
used to assess the changes in traffic safety tendencies that result from changes in 
traffic flow.  The only input that FITS requires is a stream of 30-second observations 
from single inductive loop detectors.  FITS can be used as part of any evaluation that 
compares before and after traffic flow data, as measured by single loop detectors.  Such 
an evaluation might involve assessing the benefits of ATMS operations.  Another 
application might be to compare the same section of roadway during different time 
periods or under different weather/lighting conditions.  FITS is meant to complement 
existing performance measurement tools such as PeMS (Chen, et al., 2001, Choe, 
Skabardonis, Varaiya, 2002, Varaiya, 2001). 
 
FITS applies only to urban freeways with at least three lanes in each direction.  In 
particular, the statistical models that underlie the tool have been estimated using 
historical data for freeways in Orange County, California.  We presume that the 
relationships uncovered are indicative of all California urban freeways, particularly those 
in the San Francisco Bay, San Diego, and Sacramento Metropolitan Areas, but 
validation has not yet been conducted, so we cannot confirm the degree of spatial 
transferability.   
 
FITS has its limitations.  First, due to the quality of the historical loop detector data that 
were used in calibrating the tool, we were unable to include crash rates as a function of 
vehicle miles of travel.  The historical traffic flow data were not sufficiently 
representative of Orange County for an entire year, because there were systematic 
patterns in missing data as a function of freeway route, location along each route, day of 
week, and week of the year.  Thus, we were unable to accurately calculate the rates, in 
terms of vehicle miles of travel, for crashes that happened to vehicles that were 
exposed to different traffic flow conditions.  Consequently, FITS provides information as 
to which types of crashes are more likely under different types of traffic flow, but does 
not forecast crash rates.  The enhancement of FITS to include crash rates as well as 
types is an important subject for future research. 
  
In spite of these limitations, we believe that we have demonstrated that FITS can be 
used to gain insight into how changing traffic flow conditions affect traffic safety.  To the 
extent that changed conditions are due to ATMS operations, or other projects that 
influence traffic operations, FITS can be used in evaluating the effectiveness of such 
projects.  FITS can also be used as a forecasting tool combined with simulation studies 
of the likely future conditions; FITS can be used to evaluate the safety conditions of 
alternative scenarios of operations with different ATMS or infrastructure treatments.  
Due to the problem with missing traffic flow data for 1998, it is strongly recommended 
that FITS be re-calibrated with more recent crash and traffic flow data before any large-
scale deployment of this tool. 
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