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As population-level patterns of interest in forests emerge from individual vital

rates, modelling forest dynamics requires making the link between the scales at

which data are collected (individual stems) and the scales at which questions

are asked (e.g. populations and communities). Structured population models

(e.g. integral projection models (IPMs)) are useful tools for linking vital rates to

population dynamics. However, the application of such models to forest trees

remains challenging owing to features of tree life cycles, such as slow growth,

long lifespan and lack of data on crucial ontogenic stages. We developed a sur-

vival model that accounts for size-dependent mortality and a growth model

that characterizes individual heterogeneity. We integrated vital rate models

into two types of population model; an analytically tractable form of IPM

and an individual-based model (IBM) that is applied with stochastic simu-

lations. We calculated longevities, passage times to, and occupancy time in,

different life cycle stages, important metrics for understanding how demo-

graphic rates translate into patterns of forest turnover and carbon residence

times. Here, we illustrate the methods for three tropical forest species with

varying life-forms. Population dynamics from IPMs and IBMs matched a

34 year time series of data (albeit a snapshot of the life cycle for canopy

trees) and highlight differences in life-history strategies between species.

Specifically, the greater variation in growth rates within the two canopy

species suggests an ability to respond to available resources, which in turn

manifests as faster passage times and greater occupancy times in larger size

classes. The framework presented here offers a novel and accessible approach

to modelling the population dynamics of forest trees.

1. Introduction
Forests host the majority of terrestrial biodiversity and regulate global climate,

making the need to understand forest dynamics across spatial, temporal and

biological scales greater than ever [1–4]. Data from large permanent plots are

increasingly available (e.g. [5,6]) and can be used to parameterize demographic

models that build large-scale understanding of dynamics while retaining local-

scale mechanisms, such as size-dependent competition, in their structures [7,8].

However, translating measurements of individuals into insights regarding

dynamics across landscapes remains a challenge. Measurement errors can be

larger than growth increments between censuses [9], data are highly skewed

towards small stems of common species [10], and data on critical life-history

stages are scarce [11]. Further, individual differences persist through time,

resulting in a minority of trees that define much of the physical structure of

the forest and produce the majority of recruits [8,12,13]. There is, therefore, a
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need to shift focus from population averages towards a

framework that accounts for temporal correlations in

individual differences.

Species-specific patterns of tree mortality determine the

physical structure of the forest, the light environment that

drives competition in the understorey [9,14,15], successional

dynamics [16–18] and carbon turnover [19]. Survival rates

have been shown to vary with tree size, species and environ-

mental conditions [20,21]. Further, carbon residence times,

largely driven by patterns of mortality, remain one of the

greatest sources of uncertainty in dynamic global vegetation

models (DGVMs) [3]. Fitting robust models that capture

species differences, as well as changes in survival through

ontogeny, is therefore critical for capturing community and

ecosystem dynamics.

One difficulty in modelling whole-life-history survival is

capturing senescence at large sizes given that the data are

dominated by small stems showing the opposite pattern of

size-dependent mortality. U-shaped mortality curves have

been documented in a number of mature forests [20–22]

and result from different processes influencing survival

probability through ontogeny. To overcome the problem of

skewed size distributions, we model survival with two

functions corresponding to survival in small and large

individuals.

Growth data are highly asymmetric with the majority of

stems growing slowly and a small subset of consistently

fast growing trees. In a closed canopy forest, these asym-

metries are largely driven by competition for resources,

especially light [23–25]. Many models of forest dynamics,

therefore, include complex representations of light environ-

ment, including species-specific crown architecture and

fluctuations in light availability [26,27]. Previous studies

have also used spatial coordinates to calculate competition

indices that act as proxies for direct measurements of light

at the individual level [11,28,29]. To capture the asymmetry

in growth rates, we show how to fit multiple distributions

to increment data. The multiple distributions reflect species’

responsiveness to available resources (often light), i.e. the

ability to grow quickly when conditions allow.

Population models of forest trees must also account for

the minority of consistently fast growing individuals that

contribute disproportionately to the population growth rate

[12,13,30,31] and define the structure, biomass and carbon

dynamics of the forest. In typical population models, e.g.

integral projection models (IPMs) (cf. [32,33]), growth at

each size is represented by a distribution of increments cap-

turing the variety of mechanisms that influence growth.

Population heterogeneity, however, is not correlated through

time. As a result, over long time-spans average growth will

trend towards the mean; a poor reflection of how trees typi-

cally grow—usually consistently slowly with rare instances

of release from growth suppression resulting in sustained

periods of fast growth [31]. To address this problem, we

adopt the method presented by Caswell [34], adjusting the

age-by-stage matrix model for a growth-by-size IPM that

describes the transitions of individuals between growth

distributions.

Seed and seedling dynamics have important implications

for adult abundance and spatial distributions [35,36] but data

are challenging to collect and integrate into population

models. Recruitment, therefore, requires further treatment

in future studies and is not included here. However, in the
electronic supplementary material, appendix S1, we give a

brief overview of various methods that can be used to

complete the life cycle where data on seedlings are available.

Depending on the system of interest and the specific ques-

tions, either IPMs or individual-based models (IBMs) (e.g.

[26]) may be more appropriate. IPMs offer analytical

solutions making them useful for theoretical analysis and

readily calculating a wide variety of population statistics

[34,37]. There is a growing literature extending the IPM

framework to incorporate density dependence [38], multiple

state variables [39] and environmental stochasticity [40].

However, IBMs can easily be made spatially explicit and,

by extension, more easily allow interactions between

individuals. Furthermore, owing to the requirement for

high-resolution numerical integration when constructing

IPMs for long-lived, slow-growing species (electronic sup-

plementary material, appendix S1), depending on the

computational platform, analytical solutions from large

IPMs can be more time consuming than simulating with an

analogous IBM. We encourage ecologists to consider both

options when deciding which is more suited to the question

at hand.

We demonstrate how to use permanent plot data to con-

struct both analytically tractable IPMs and stochastic

simulation based IBMs. Both IPMs and IBMs take into account

size-dependent survival and temporal correlations in growth

rates, enabling us to capture the subset of the population

that survive to adulthood. The parametrization of these

models from demographic data, combined with straightfor-

ward analytic tractability, offers the potential for spatial and

temporal extrapolation, for example, inferring forest dynamics

across landscapes [41], or exploring evolutionary strategies

through the analysis of equilibrium dynamics [42].
2. Methods and results
We introduce the site and data collection protocols and then

describe novel vital rate functions (growth and survival) that

are used to construct IPMs and IBMs. From the population

models, we calculate passage times, size-dependent life expec-

tancies and occupancy times in each growth distribution. We

compare results from the IBMs, IPMs and observed census

data. Electronic supplementary material, appendix S1 includes

a description of sensitivity analyses to the transition probabilities

between growth distributions and recommendations for IPM

specifications. Further details on IPM analysis are provided in

the electronic supplementary material, appendix S2. Electronic

supplementary material, appendix S3 provides a fully worked

example of the workflow including R scripts. All work was car-

ried out in R [43], with RStan (http://mc-stan.org) for Bayesian

estimation of vital rate parameters.

(a) Site and data
We used data from a 50 ha forest plot located on Barro Colardo

Island (BCI), Panama (9890 N, 798510 W) [44–46] (http://www.

forestgeo.si.edu). The plot consists of moist, tropical forest, of

which 48 ha is undisturbed old-growth forest and 2 ha is appro-

ximately 100-year-old secondary forest [47]. More detailed

descriptions of the geography and vegetation of BCI are available

in Croat [48], Leigh et al. [49] and Leigh [50]. Within the 50 ha

plot all stems greater than or equal to 1 cm diameter at breast

height 1.3 m above the ground (DBH) are mapped, measured

and identified to species [51]. The first censuses were conducted

in 1981, 1983 and 1985 and then every 5 years. In this paper, we

http://mc-stan.org
http://mc-stan.org
http://www.forestgeo.si.edu
http://www.forestgeo.si.edu
http://www.forestgeo.si.edu
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use the census intervals from 1990 to 2015 for construction of

IPMs but compare results to the full time series of data.

To illustrate the general applicability of our methods, we

chose three species of varying life-history strategies; an emergent,

Prioria copaifera, a canopy, Calophyllum longifolium and an under-

storey species, Garcinia intermedia. More information on these

species can be found in Condit et al. [52] and Lim [53]. In the

census intervals between 1990 and 2015 there were 2706, 3501

and 7003 stems of P. copaifera, C. longifolium and G. intermedia,

respectively.
.org
Proc.R.Soc.B
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(b) Survival
To capture the change in size-dependent survival through onto-

geny without model fits being influenced by highly skewed size

distributions, we modelled survival with one curve describing

the increase in survival probability at small sizes, and another

describing survival probability at large sizes. This prevents

large individuals which are crucial to forest function being

treated as statistical outliers.

Survival follows a Bernoulli distribution with survival

probability over a census interval, s, given by

s ¼ K
1þ e(�r1(z�p1))

� �t

for all z , thresh ð2:1Þ

and

s ¼ K
1þ e(�r2(z�p2))

� �t

for all z � thresh: ð2:2Þ

K is the upper asymptote of the curves, r and p are the rate of

change and inflection point in the curves, respectively, with sub-

scripts 1 and 2 denoting parameters for the small and large

curves, respectively. z is DBH and ‘thresh’ is a species-specific

size threshold at which the two curves meet. The curve is

raised to the power of t, the time in years between censuses, so

that parameters describe annual survival probability. To ensure

inverted ‘u’ or flat survival forms, r1 and r2 were constrained

to be �0 and � 0, respectively, during parameter estimation.

The six parameter curve (including thresh) offers sufficient flexi-

bility to capture variation in survival rates between species,

while still having interpretable parameters. For instance, K corre-

sponds to survival probability over much the life cycle, r1 and p1

correspond to the degree of thinning in the understorey, and r2

and p2 correspond to senescence at large sizes.

To ensure sufficient data with which to fit each part of the

curve, we fixed the size threshold as 0.25 �max(DBH). This

has little influence on the curve as survival probabilities are

approximately constant with size (at K ) across much of the size

range (figure 1). However, in instances where different datasets

are being used to fit juvenile and adult portions of the survival

curve, it might be necessary to use smoothing functions over a

size interval where the two functions meet (as in [41]).
(i) Results: survival
Calophyllum longifolium had the lowest asymptotic survival rate

(median over all census intervals of 0.96 compared with 0.98

and 0.99 in the other two species) (figure 1). Differences in

adult survival probability of a few per cent can have significant

impacts on population dynamics in long-lived species such as

trees. The decreased survival of small P. copaifera individuals is

responsible for the rapid increase in life expectancy with size

early in life (electronic supplementary material, figure A.2).

There was little evidence of decreased survival at small sizes in

C. longifollium and G. intermedia, most probably because thinning

occurs before saplings reach census size (10 mm DBH). Survival

rates appeared to be temporally stable, the exception being size
at senescence in C. longifolium and G. intermedia with values of

p2 ranging from 804–915 and 372–431, respectively.

(c) Growth
We modelled growth with a mixture of two gamma distributions

fitted to the slowest 95% and fastest 5% of trees. Distinguishing

between these common and extreme growth rates captures the

way that individuals of different species perform when given

access to resources, especially light. Gamma distributions offer

the flexibility needed to capture the highly skewed distribution

of slow growers and the more symmetric distribution of fast

growers. Five per cent was chosen based on rough estimates of

light availability (gap frequency, sun flecks, etc.) in closed

canopy forests [54,55].

We estimated parameters for each distribution as follows:

Dz � Gamma(a1,b1) for Dz , q
Gamma(a2,b2) for Dz � q:

�
ð2:3Þ

Dz is absolute change in DBH, annualized by dividing change in

DBH by time in years between measurements. a and b are the

distribution shape and rate parameters with subscripts 1 and 2

referring to the slow and fast distributions, respectively. q is

some percentile of observed Dz (here 95%) that determines the

proportion of stems that are used to fit each distribution. The

two distributions were mixed with a weighting of 95% and 5%

(see the electronic supplementary material, appendix S3), from

which we were able to draw random samples (for simulating

growth in the IBM), and estimate transitions between sizes (in

construction of IPMs).

Growth is often log transformed for analyses in order to cap-

ture the multiplicative aspect of growth (as carbon gain scales as

a power function [56–58]), to normalize data (which are often

heavily right skewed), or to control for size differences between

individuals. However, in our approach which focuses on predict-

ing and projecting the complete life cycle, we found that

transformations skew the ways in which trees are projected

through long time-spans, resulting in a failure to capture realistic

individual trajectories.

(i) Results: growth
The canopy species had faster growth rates than the understorey

species G. intermedia (figure 1; electronic supplementary material,

table A.2). The expectation of growth in each distribution, given

by the medians of the slow and fast portions of the mixed

gamma distribution, were 0.33 mm yr21 and 2.55 mm yr21,

respectively, in G. intermedia. In comparison, these values were

0.69 and 12.80 mm yr21 for the emergent species P. copaifera. As

an understorey species, G. intermedia shows a conservative strat-

egy, as long-term competition for canopy space has not been

selected. On the other hand, P. copaifera individuals have the

potential to reach the canopy and growth rates, therefore, reflect

aggressive allocation to growth when resources allow.

(d) Transitions between growth distributions
Because the two growth distributions reflect growth when indi-

viduals are suppressed or released, such as under closed

canopy or in a light gap, reconstructing life-trajectories requires

moving individuals between the slow and fast growth distri-

butions. However, estimating the transition probabilities

between growth distributions is difficult owing to long census

intervals, and context-dependent canopy dynamics.

Spatial information could be used to estimate changes in

individuals’ competitive neighbourhoods, although this requires

finding relevant estimates of neighbourhoods that correlate with

growth rates. With annual growth data, a hidden Markov model

(HMM) would allow simultaneous estimation of growth
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parameters and transition probabilities between growth distri-

butions. The growth distribution of each individual would

be a latent state which could be estimated based on observed

size at each time step. However, with 5 year census intervals,

HMMs are non-identifiable, as many combinations of annual

growth can produce the same 5 year growth rate (see the

electronic supplementary material, appendix S1).

We explored transitions in two ways. First, we built models

(IPMs and IBMs) without transitions, to demonstrate for each

species the slowest and fastest lifetime trajectories. We then

explored an IBM example with size-dependent transitions

between growth distributions representing the growth response

to light attenuation through the canopy. With increasing DBH,

trees are assumed to be taller and have increased access to

light (see fig. 5, [55]), resulting in an increased probability of

growing fast. The probabilities of moving from slow to fast,

and of remaining fast, increased linearly from 0.1 at the smallest

size to 0.99 at the largest size. Probabilities of remaining slow or

moving from fast to slow were the compliment of this. Second,
we conducted a sensitivity analysis of IPM passage times

and life expectancies to transition probabilities (see the electronic

supplementary material, appendix S1).

(e) Vec-permutation integral projection models
IPMs in which individuals are classified by size and growth distri-

bution require a vec-permutation approach to link these two states

[34,59]. The IPMs we develop combine matrices describing growth

and survival within a growth distribution, with matrices describ-

ing transition probabilities between growth distributions,

analogous to the age by stage matrix models in Caswell [34], but

with growth distribution replacing age. As the theory for vec-per-

mutation population models has already been presented in detail

[34], we describe construction of such models in the electronic sup-

plementary material, appendix S1 and a fully worked example

with R code in the electronic supplementary material, appendix S3.

We constructed IPMs and calculated passage times to

200 mm DBH, i.e. the number of years an individual of each
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size and starting growth distribution would be expected to take

to grow to 200 mm DBH, conditional on survival. We also calcu-

lated longevity, i.e. the expected number of years until death at

each size, and the expected occupancy time in each growth

distribution for stems above and below 200 mm DBH. See the

electronic supplementary material, appendix S2 for more details

on how these metrics are calculated, and electronic supplemen-

tary material, appendix S1 for a sensitivity analysis of these

outputs to the number of size bins used to construct the IPMs.
ing.org
Proc.R.Soc.B

285:2017
(i) Results: integral projection models
Passage times to 200 mm DBH were shorter for the two canopy

species as a result of faster growth rates. Life expectancy early in

life was lowest in C. longifollium as a result of the lower long-

term survival probability (K ). Despite having the fastest growth

rates, P. copaifera had the longest occupancy times at sizes above

200 mm DBH, owing to high asymptotic survival and late senes-

cence. Results are described in more detail in the electronic

supplementary material, appendix S1 (figures A.2 and A.3).
2050
( f ) Individual-based models
We ran an IBM to compare individual trajectories to census data.

Each year of the IBM simulation, individuals survive according

to a draw from a binomial, with size-dependent survival

probabilities given by the species-specific survival function,

equations (2.1) and (2.2). Survivors grow according to a random

draw from the mixed gamma distribution equation (2.3).

Growth increments are sampled from above or below the incre-

ment threshold of the mixed distribution (defined as the 95%

percentile of growth increments from all censuses combined),

according to whether an individual is in fast or slow growth. Indi-

viduals can then potentially move between growth distributions.

We initialized the IBM with the size distribution of each species in

1981 and projected forward 500 years. We compared estimates of

passage time to 50 mm DBH from our IPMs and IBMs with the

mean time taken to reach 50 mm DBH for stems less than or

equal to 20 mm DBH in 1981–1983 in the census data.
(i) Results: individual-based models
The distribution of passage times to 50 mm DBH from the IBMs

and IPMs were, for the most part, qualitatively similar to census

data for each species (figure 2; electronic supplementary material,

A.8), considering the data are temporally truncated. When tran-

sition probabilities between growth distributions were zero, the

distribution of passage times from IPMs and IBMs most closely

matched observations in the emergent species P. copaifera.

Observed passage times to 50 mm DBH had a minimum of 4

and a median of 29 years, while the minimum and median pas-

sage times from the IBMs were 4 and 26 years, respectively, and

passage times of fast and slow growers were 3 and 16 years in

the IPMs. Calophyllum longifolium and G. intermedia dynamics

more closely matched census data when transition probabilities

between growth distributions changed in a size-dependent

manner. For example, the minimum and median passage times

from the census data were 4 and 24 years for C. longifolium and

5 and 23 years from the IBM. In G. intermedia, minimum and

median passage times in the census data were 10 and 30 years,

and 13 and 37 years in the IBM.

It is worth noting that in the field data very few individuals

grew to 50 mm DBH within the 34 year time frame, and those

that did represent the very fastest growing individuals in the

population. With longer time series of data we expect

the median passage time to a given size to increase, i.e. the

right-hand side of the distribution to be revealed.
3. Discussion
Capturing demographic rates, and their impact on popu-

lation dynamics, is a critical step in advancing our

understanding of how forests will respond to global

change. Here, we show how individual level measurements

can be scaled up to provide population-level inference.

We find that models accounting for persistent variation in

individual vital rates are able to reproduce observed

dynamics of three tropical tree species with differing life his-

tories. However, validating predictions of passage times and

life expectancies is challenging given that few, if any, datasets

extend over the full life cycle of canopy trees. Here, we were

able to compare results from our projections to a 34 year time

series of data, but although results matched observed trajec-

tories of individuals, this was still only a small proportion

of the life cycle for all three species. Brienen & Zuidema

[31] used tree ring data to study lifetime growth patterns of

tropical trees and found considerable variation within and

between species. However, in the tropics many species do

not produce tree rings, and when they do, samples are

biased towards trees that survived to reach adult stature. Pas-

sage times calculated from IPMs or IBMs on the other hand

provide information on the full distribution of pathways

through the life cycle (figure 2).

(a) Harnessing demographic data for use in forward
projections

Forest plot data are available from all the major forest biomes

globally, e.g. [5,6,60,61], allowing statistical descriptions of

size-dependent vital rates (e.g. [62]). Although the methods

presented here can be implemented using only census data,

the modular nature of the workflow makes it easy to extend

any or all of the vital rate models, e.g. by including environ-

mental covariates [41,63] or interactions between vital rates.

The increased probability of mortality associated with slow

growth has been noted for many years [64] and could be

incorporated here, either through parametrization of separate

survival functions for each growth distribution, or by making

survival probability a function of both size and growth rate.

Although ideally we would fit mechanistic models based

on detailed understanding of the physiological processes that

drive individual growth, survival and reproduction, the data

necessary to parameterize such models are generally not

available across broad scales. Further, recent studies have

found that gap models with simple representations of vital

rates are able to reproduce the dynamics predicted by more

complex models [65]. While additional parameters improve

the fit of a model to a given dataset, they narrow the applica-

bility of the model [66] and, in this context, complicate efforts

at forward projection.

(b) Temporal correlations in vital rates
There are many examples of population models that incor-

porate temporal correlations in vital rates (e.g. [67,68]), but

examples for tree species often rely on data which are not

commonly available, for example, measurement of individual

light environments [22] or individual age [12]. An alternative

approach is to model ‘individual effects’, e.g. through

inclusion of individual intercepts in regressions of vital

rates. Individual ‘quality’ can either be fixed [39], or mod-

elled with linear autoregression so that quality at each time
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Figure 2. Passage times of each species from 10 mm to 50 mm DBH, estimated from IPMs (a), IBMs with zero transitions between growth distributions (b), IBMs
with non-zero size-dependent transitions between growth distributions (c), and the census data (d ). Lighter and darker histograms show the distribution of passage
times from the full 500 years of IBM simulations and when results were truncated to 34 years to match the census data time series. Passage times were estimated
from the census data by tracking how long it took individuals between 10 and 20 mm DBH in 1981 to reach 50 mm by 2015. Estimates from the census data show a
truncated distribution, as many individuals will take longer than 34 years to reach 50 mm. Results best matched the census data when transitions were zero for
P. copaifers but when size-dependent in the other two species.
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step depends linearly on quality at the time step before [37,

p. 162–167]. In our framework, individuals move between

growth distributions (the equivalent of quality) in a size-

dependent manner, that is independent of previous growth.

The Ellner et al. [37] approach suits cases where quality is a

continually varying state. However, we find that two

growth distributions work well for trees, where access to

resources, especially light, result in large asymmetries in

growth rates within the population. Other forest dynamics

models also deal with the binary nature of light by discretely

dividing populations. For instance in the perfect plasticity

approximation [24,69] individuals are either in or out of the

canopy, and two sets of vital rates govern dynamics of

understorey and canopy trees.
(c) Applications and future directions
Biodiversity needs to be better represented in global climate

models. DGVMs diverge widely in their predictions of the
feedback between vegetation and changing climates (e.g.

[3,70,71]), partly because they move from physiology to

global dynamics with very little consideration of the scales

in between (e.g. species or communities) (e.g. [3,72]). Yet,

carbon uptake and residence times are driven by species-

specific patterns of mortality and growth at the landscape

level (e.g. [73,74]). This calls for models that take into account

how individual level processes scale to demographic rates

and how within- and between- species differences influence

community composition and carbon turnover [1–4,21].

Advances in terrestrial and airborne lidar systems have

made it possible to track the fate of individual trees [75]. Inte-

grating remote sensing technologies with forest inventory

data will be one way to track demography across landscapes.
(d) Conclusion
Species differences in demographic rates are critical to deter-

mining the outcome of local competitive interactions. Over
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large extents these competitive interactions determine species

range shifts and shape community composition. Yet, moving

from individual level data, through descriptions of vital rates

and population models to an understanding of forest

dynamics across large geographical and temporal scales

remains an important challenge. By proposing flexible vital

rate models that capture the critical processes shaping popu-

lations, we make best use of increasingly available forest

inventory data to translate knowledge of individuals into

an understanding of dynamics at the population level. This

demographic approach will be essential for reducing uncer-

tainty in predictions of how forests will respond to global

change.
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