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Mental inference: Mind perception as Bayesian model selection
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Abstract

Beyond an ability to represent other people’s mental states,
people can also represent different types of minds, like those of
newborn babies, pets, and even wildlife that we rarely interact
with. While past research has shown that people have a nu-
anced understanding of how minds vary, little is known about
how we infer what kind of mind different agents have. Here we
present a computational model of mind attribution as Bayesian
inference over a space of generative models. We tested our
model in a simple experiment where participants watched short
videos in the style of Heider & Simmel, 1944, and had to in-
fer the representations in the agent’s mind. We find that, from
just a few seconds, people can make accurate inferences about
agents’ mental capacities, suggesting that people can quickly
infer an agent’s type of mind, based on how they interact with
the world and with others.

Keywords: Theory of Mind; Computational modeling; Social
cognition

Introduction
People’s ability to understand each other’s behavior rests on
an assumption that agents are, broadly speaking, rational
(Dennett, 1989). If you learned that a person named Char-
lie wants his favorite toy, and that he believes that someone
put it in a drawer, you can predict that he’ll walk towards the
drawer, open it, and take his toy. Conversely, if you watched
Charlie walk straight towards a drawer, open it, and retrieve
his toy, you would immediately recognize that he wanted his
toy and knew where to find it (why else would he have acted
in this way?). This capacity to transform people’s actions
into judgments about their mental states, called a Theory of
Mind (Gopnik et al., 1997; Wellman, 2014), is the basis of
human social intelligence, allowing us to explain other peo-
ple’s behavior (Malle, 2006), share what we know (Bridgers
et al., 2016), distinguish those who are nice from those who
are mean (Jara-Ettinger et al., 2015; Hamlin et al., 2013),
and communicate with each other (Jara-Ettinger, Floyd, et al.,
2019; Sedivy, 2003; Grice et al., 1975).

Consider, however, what would happen if you found out
that Charlie is not actually a person, but a golden retriever.
Intuitively, Charlie could still want his favorite toy and know
where to find it. Yet, we would not always expect him to be
able to get it. Most obviously, this is because Charlie’s physi-
cal constraints are different from our own, making it difficult
for him to open drawers and retrieve objects. Yet, we might
also expect Charlie to fail for a deeper reason: His inability to

devise complex action plans that can fulfill his desires given
his beliefs and physical constraints.

Classical research in cognitive science has found that peo-
ple perceive a wide range of types of minds, roughly or-
ganized around two dimensions: agency and experience
(H. M. Gray et al., 2007). Intuitively, agency corresponds
to an agent’s cognitive activity—the complexity of their rep-
resentations and the sophistication of the computations that
they perform. Experience corresponds to an agent’s subjec-
tive ability to sense the world and their own mental states—
experiences like seeing and hearing, and emotions like joy,
jealousy, anxiety, and pain. The degree to which we as-
cribe agency and experience to a mind captures a wide range
of phenomena, from our perception of the ‘uncanny valley’
(K. Gray & Wegner, 2012) to the type of moral responsibility
that we think a creature can receive (K. Gray et al., 2012).

Despite evidence that people distinguish between myriad
types of minds, several major questions remain. First, how
do people acquire this ‘mental space’? Does it emerge from a
slow process requiring years of experience? Or is it a natural
byproduct of the building blocks we use to represent human
minds? Second, how do inferences about minds relate to in-
ferences about mental states? Are the computations behind
mind inference similar to the ones at work when we infer be-
liefs and desires? Or do they follow radically different infer-
ential principles? And finally, how can we formalize agency
and experience in precise computational terms?

In this paper, we provide a first step towards answering
these questions. Our goal is to develop a computational
model of mind perception that clarifies how we infer what
type of mind we are observing, and how these inferences re-
late to the computations we undergo when reasoning about
mental states. By establishing how we infer types of minds,
we hope to lay the groundwork towards understanding how
to formalize agency and experience in computational terms,
and explore how people’s mind space emerges. Our approach
builds on previous work that models mental-state attribution
as Bayesian inference over a generative model of rational ac-
tion, and extends it to the perception of other minds.

While much work has attempted to formalize in precise
computational terms how people infer beliefs and desires
from observable actions (Jern et al., 2017; Lucas et al., 2014;
Jara-Ettinger, Schulz, & Tenenbaum, 2019; Baker et al.,
2017; see Jara-Ettinger 2019 for review), to our knowledge,
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Figure 1: Three example mental models that our approach
considers. A) mind with no Beliefs. B) mind with Beliefs but
no Theory of Mind. C) mind with a Theory of Mind, capable
of understanding that other agents have minds of their own.

no similar effort exists for the problem of the perception of
other minds. Inspired by classical work that showed how sim-
ple two-dimensional displays can elicit rich mental-state in-
ferences (Heider & Simmel, 1944), we compare our model’s
predictions to human judgments in a simple task where partic-
ipants have to infer the mental structure of a “guard” attempt-
ing to capture a “thief”, using continuous confidence mea-
sures that allow us to obtain graded quantitative inferences.

Computational Framework
At a high level, our computational model searches over a
space of possible minds, to find one which, under the right
beliefs and desires, explains the agent’s observed behavior.
We thus begin by briefly reviewing models of mental-state
inference, and then turn to how our framework expands on
this approach.

When inferring mental states, research suggests that we do
so by assuming that agents act rationally to fulfill their de-
sires, given their beliefs (Dennett, 1989; Gopnik et al., 1997).
This idea can be formalized as an expectation that agents act
to maximize the subjective rewards that they obtain while
minimizing the costs that they incur (Jara-Ettinger et al.,
2016; Lucas et al., 2014; Jern et al., 2017). Through this as-
sumption, mental-state attribution can be achieved by apply-
ing Bayesian inference to a generative model that produces
action plans which maximize the agent’s expected utilities, as
determined by their beliefs and desires. Formal implementa-
tions of this idea—typically done through Markov Decision
Processes, a framework for computing utility-maximizing
plans—capture with quantitative accuracy how people in-
fer other people’s competence, preferences, beliefs, percepts,
and moral standing (Jara-Ettinger, Schulz, & Tenenbaum,
2019; Baker et al., 2017, 2009; Ullman et al., 2009; Lucas
et al., 2014; Jern et al., 2011, 2017).

Inferences around an expectation that agents maximize
utilities, however, depend not only on an assumption of ra-
tionality, but also on the structure of the generative model.
Returning to the example in our introduction, if Charlie wants
to grab his favorite toy, we’d expect that the way he attempts
to maximize his utility (namely, by getting his toy while in-
curring the lowest necessary cost) will depend on how Char-
lie represents his environment, on how he holds this desire in
memory over extended periods of time, and on how he com-
bines the two to determine what actions to take.

Building on previous work, we define a mind M as a gen-
erative model that transforms mental states onto observable
actions (see Figure 1). Given some observed actions a, the
posterior probability that an agent has mind M is given by

p(M|a) ∝ p(a|M)p(M). (1)

Because the relationship between a type of mind and ob-
served behavior is mediated by the mental states, we com-
pute the likelihood function by integrating over the potential
mental states that the agent might have, such that

p(a|M) = ∑
s∈SM

p(a|b,M)p(b|s,M)p(s|M) (2)

where SM is the space of all mental states that a mind M can
have (i.e. the space of all possible inputs to the generative
model), p(s|M) is the prior probability that an agent with
mind M would have mental states s, p(b|s,M) is the prob-
ability that the agent would have behavior b under mind M in
mental states s, and p(a|b,M) is the likelihood that an agent
engaging in behavior b would take actions a.

Modeling the full space of possible minds is beyond the
scope of our work. Our goal instead is to test for the plau-
sibility of this approach and thus we made two simplifying
assumptions. First, we only considered a small family of
types of minds (see Fig. 1, constructed by parameterizing
whether (1) the agent had belief representations (Fig. 1a-b;
Belief component; determining whether the agent’s actions
were the product of a mental representation, or the result of a
direct mapping of their percepts), (2) whether its belief rep-
resentations were stable or whether they decayed over time
(Forgetting component; leading the agent to lose its repre-
sentations over time; set to probabilistically happen after ap-
proximately one-and-a-half to two-and-a-half seconds), (3)
whether it could represent the mental states of other agents
(Fig. 1b-c; Theory of Mind component; allowing it to predict
other agents’ trajectories), and (4) whether the agents’ per-
ceptual system only consisted of seeing, or if it consisted of
seeing and hearing (Hearing component).

Our second assumption was that agents’ desires are known,
making Eq. 2 more tractable. In the context of our experiment
(see Procedure), participants had to infer the mind of a guard
trying to catch a thief, and thus always knew the guard’s de-
sire.

These assumptions help specify the space of minds we con-
sider and the space of mental-states SM that they might have.
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Specifically, all mental states in our model include a reward
associated with capturing the thief (i.e. the representation
inside the desires), and a binary representation determining
whether the agent is within the guard’s visual field or not (the
perceptual representation). Agents that have beliefs (Fig. 1B)
can have an empty representation (no thief has been seen), or
represent the thief as occupying a particular position in space,
which can exist outside of the guard’s visual field. Guards
with no beliefs (Fig. 1A) only react to the thief when the thief
is within the guard’s visual field and cannot represent the thief
as occupying a position out of its perceptual range. Finally,
agents who have a Theory of Mind (Fig. 1C) can simultane-
ously represent the agent’s current position in space, and the
agent’s target position in space (i.e. inferring where the agent
is navigating towards) and use this information to construct
the agent’s path. Guards with Theory of Mind can use this
trajectory to find the shortest path to intercept the thief.

Given the set of minds and mental states that agents can
have, we next define the space of behaviors that the guard
can produce. Here we considered a simple space of behav-
iors that the guard could produce: ‘guarding’ (consisting of
standing still until seeing the thief), ‘chasing’ (planning to
move directly towards the last position the thief was seen in),
‘intercepting’ (moving to a position that would intercept the
thief along his route to the treasure), ‘searching‘ (moving ran-
domly in the hope of locating the thief), and ‘patrolling’ (re-
peating a route continuously).

Because the generative models specify the representations
in an agent’s mind, they also determine the space of goals
that agents can pursue. For instance, an agent with no be-
liefs can chase an agent, but will stop doing so as soon as the
agent is out of sight (as there is no longer a representation to
plan towards). By contrast, an agent with beliefs can continue
searching for an agent (although they may eventually forget
about the thief’s existence), or move to where they predict
the thief was going (if they have a Theory of Mind). Finally,
as the agent navigates, agents who can hear can also update
their representations if another agent moves within a certain
radius of them. An agent with hearing can use this auditory
information even if the nearby agent is not within their field
of view.

To summarize, in our framework, a parameter space deter-
mines the space of possible minds (instantiated as generative
models) and mental states (formalized as inputs to the gen-
erative model); the generative model determines the space of
behaviors that the agent can exhibit; and, finally, these behav-
iors specify how the agent plans to move to different loca-
tions (using a probabilistic Markov Decision Process where
we softmax the value function to produce a probabilistic pol-
icy, in line with past work on action understanding; Baker et
al. 2009, 2017; Jara-Ettinger, Schulz, & Tenenbaum 2019).
Given this entire forward process we can then compute the
posterior distribution over types of minds given some ob-
served actions through Eq. 1, using a uniform prior over the
space of minds and the space of behaviors.

Experiment
To test our model, we ran a simple experiment where partici-
pants watched 2D videos of a thief trying to steal a treasure,
which was protected by a guard. After watching each video,
participants had to infer the guard’s type of mind.

Methods

Participants.
90 U.S. participants (as determined by their IP address; M =
36.77; SD = 12.41) were recruited through Amazon’s Me-
chanical Turk platform.

Stimuli. Stimuli consisted of fifteen silent videos last-
ing approximately 10 seconds (range = 2 - 22 secs; see
bit.ly/2O2nyUX for videos). Figure 2 shows schematics of
these videos. In each video the thief navigates towards the
treasure along a different route. The thief’s behavior was
hard-coded with the goal of eliciting different behaviors from
the guard, but the guard’s behavior was obtained directly by
sampling from different generative mind models. Guard paths
were then adjusted to make the videos more concise and to
elicit different inferences (e.g., aligning the guard’s search
path so that it would miss the thief). Below we briefly de-
scribe the key components of each video.

Stimuli description. In Trial 1, the guard is initially posi-
tioned immediately behind the thief, and chases him all the
way to the treasure. Because even the simplest model can
produce this behavior, the trajectory did not reveal any as-
pects of the guard’s mind. In Trial 2, the guard is inside a
room, and exits as soon as the thief walks nearby, revealing
that the guard can hear. In Trial 3, the guard sees the thief
walk, chases after him, and then begins to search upon losing
him, thus revealing that the guard has beliefs, but no Theory
of Mind. Trial 4 shows the guard using Theory of Mind to
predict the thief’s location and intercept him on his way to
the treasure (rather than going to where the guard last saw the
thief). Trial 5 shows a guard with no beliefs, who first chases
after the thief (as the thief slows down), but stops moving
after the thief is out of sight.

Trial 6 begins in the same way as Trial 5, revealing that
the guard has no belief representations. However, the thief
then enters the room and begins moving around, prompting
the guard to move each time he hears a new sound. In Trial
7, the guard begins patrolling the area and then goes straight
towards the treasure as soon as he sees the thief. Trial 8 is
similar, with the difference that the guard never sees the thief
and does not hear him as he moves around inside the room.
Trial 9 is the same as Trial 8, but the guard does hear the thief
moving around in the room, and so switches his route to find
the thief. Trial 10 shows a guard that spots the thief and then
turns around and goes to the treasure after he stops seeing the
thief, revealing that the guard has a Theory of Mind.

The last five trials show more complex trajectories. In
Trial 11, the guard chases the thief, and then searches around
as the thief moves inside the room (revealing that the guard
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Figure 2: Schematics of the fifteen trials in our experiment. In each figure, the blue line indicates the thief’s trajectory, the red
line indicates the guard’ trajectory, and the golden star indicates the treasure. Dotted lines indicate slower movement, and the
numbers in each trajectory correspond to matched time points in the video.

does not hear and also does not forget about the thief’s exis-
tence). Trial 12 is similar to Trial 11, with the difference that
the guard eventually forgets about the thief and returns to his
original position. In Trial 13, the thief retraces his steps after
the guard sees him. The guard then continually searches for
the thief, revealing he has stable belief representations, but
also fails to hear the guard moving around on the other side
of the wall. Finally, in Trials 14 and 15, the guard first spots
and loses the thief. As the guard searches, he either hears the
thief’s movements (Trial 14) or does not (Trial 15).

Procedure. Participants first read a short tutorial that ex-
plained the logic of the task. Here, participants were told
about each component of the generative model (beliefs, for-
getting, hearing, and Theory of Mind) and were shown dia-
grams of each behavior. This allowed us to convey the full
generative model to participants and test their ability to infer
which model best explains each guard’s behavior. Partici-
pants, however, were not told about the space of behaviors
the agent could pursue (guarding, patrolling, chasing, inter-
cepting, and searching), as our interest is in whether people
could spontaneously recognize the cognitive capacities that a
mind requires to produce these novel behaviors. Participants
then completed a questionnaire that ensured they had read the
instructions and only participants who answered all questions

correctly were given access to the task. The rest of the par-
ticipants were told they had answered at least one question
wrong and they were given the chance to read back through
the instructions and complete the questionnaire again.

Each participant was assigned five randomly-selected
videos (counterbalanced to get an equal number of partici-
pants in each trial). Each trial showed the video on repeat
and four questions: A Belief question asking “Does the guard
have a memory? (does not immediately forget)”, a Forget-
ting question asking “Does the guard forget that the thief ex-
ists after a period of time? (approx. 2 seconds)”, a Hear-
ing question asking “Can the guard hear?”, and a Theory of
Mind question asking “Can the guard predict where the thief
is going?”. Each of these sliders had labels “Definitely No”,
“Unsure”, and “Definitely Yes” at the left, middle, and right
of the slider, respectively.

Results.
Judgments were z-scored within participants and then aver-
aged across trials. Figure 3 shows the results from the study.
Each sub-plot illustrates the model and participant inferences
about each type of mind (arranged in the same order as Fig-
ure 2). Overall, our model showed a correlation of r = 0.70
(CI95%: 0.54−0.81) against participant judgments.

Trial 12 shows a case where participant inferences mim-
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Figure 3: Results from the experiment. Each plot shows the results from the corresponding trial in Figure 2. F (forgetting)
corresponds to the probability that agent’s memory decays, H (hearing) to the probability that the agent can detect sounds,
B (beliefs) to the probability that the agent has beliefs, and T (Theory of Mind) to the probability that the agent can predict
other agents’ goals and plan accordingly. The black lines show z-scored model predictions, and red lines show average z-scored
participant judgments with 95% bootstrapped confidence intervals. Our model does not make predictions about forgetting when
it infers that the agent lacks beliefs and we thus do not include those judgments in trials 5 and 6.

icked those of our model. After losing the thief, the guard
began searching in the wrong area, revealing that he had be-
lief representations but no Theory of Mind. The fact that the
agent failed to detect the thief as it moved inside the room
reveals that he lacked hearing, and his eventual return to the
starting point suggested that he forgot about the thief (note
that, because values are z-scored, such that 0 indicates aver-
age inference value).

Trial 1 shows a case where participants and our model dis-
agree. Here, the guard was always one step behind the thief,
not revealing any of its capacities. Nonetheless, participants
were more likely to think that the agent could hear, had be-
liefs and Theory of Mind, and did not forget. Interestingly,
these attributes correspond to the typical way we represent
other agents, suggesting that participants had priors that our
model did not consider.

Looking at each individual capability, our model had a cor-
relation of r = 0.86 (CI95%: 0.62−0.95) for Hearing against
participant judgements. This is, unsurprising, given the vi-
sual nature of hearing inferences. Theory of Mind had a cor-
relation of r = 0.62 (CI95%: 0.16− 0.86) against participant
judgements, suggesting that humans can recognize Theory of
Mind in others rather easily. Forgetting showed a correlation
of r = 0.62 (CI95%: 0.10−0.87). This capability can be dif-
ficult to infer because of its temporal nature and because our
model may have had more precise estimates of the memory
decay (see Discussion). Finally, Beliefs showed the lowest
correlation, r = 0.58 (CI95%: 0.10− 0.84). This was unex-

pected given the large effect Beliefs have on the guard’s be-
havior. This could be due to a failure in conveying the mean-
ing of beliefs to participants in the experiment, or because
agents with no beliefs are rare, making them harder to reason
about.

Discussion
Here we proposed a computational model of mind attribution
as Bayesian inference over a family of generative models that
transform mental states into observable actions. In a simple
task showing two-dimensional displays of a guard trying to
catch a thief, we found that people can infer the structure of
the underlying generative model from just a few seconds of
video.

Our work connects Bayesian models of action under-
standing with research in cognitive science that shows peo-
ple conceptualize different types of agents as having differ-
ent types of minds (K. Gray et al., 2012). Although past
work has argued that minds are structured around two di-
mensions, agency and experience, no work, to our knowl-
edge, has attempted to formalize these dimensions in pre-
cise computational terms. Our work is a first step in this en-
deavor. In our approach, experience can be considered the
sensory component of the generative model—what the agent
sees and hears—and agency can be considered the cognitive
components—its beliefs, memory decay, and ability to men-
talize about others. At the same time, the space of minds in
our model was derived from computational models of The-
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ory of Mind. A challenge for future work is testing more
exhaustively whether this approach can give rise to the full
dimensions captured in agency and experience H. M. Gray et
al. (2007).

Participants performed surprisingly well in our task, partic-
ularly when considering that they had to infer an agent’s mind
from just a few seconds of a silent 2D video. Nonetheless,
participants also showed some notable disagreements with
our model (Figure 3). While more research is needed, at least
two possibilities may help explain why this happened. A first
possibility is that searching over a space of generative models
is difficult. In our experiment, the generative models that we
considered may not directly map to the ones that we use when
we reason about agents in the natural world—such as beetles,
birds, squirrels, and scallops. As such, it is possible that we
inadvertently increased task demands by asking participants
to reason about a space of minds that they are not accustomed
to reasoning about. Alternatively, it is possible that our gener-
ative model included too many details about the domain, rela-
tive to what participants knew (e.g., our model had more pre-
cise estimates of agents’ hearing radius, memory decay, etc).
Indeed, our model’s inferences showed less graded structure
relative to participants, suggesting that, unlike participants,
our model was exploiting all available information from ev-
ery single frame. Thus, it is possible that a generative model
with less information about the possible mental states and be-
haviors may show less confidence in a human-like way. We
are currently exploring this possibility. Nonetheless, the fact
that participants were able to reconstruct big components of
agents’ minds, suggests that people can indeed perform quick
and flexible mind inferences, even in unusual situations.

In addition, our model included a set of intermediate
behaviors—guarding, patrolling, searching, chasing, and
intercepting—that linked mental states to actions. Each of
these behaviors could only be generated by agents with the
appropriate mental representations. However, a critical lim-
itation is that this space of behaviors did not naturally arise
from our planner. Instead, we introduced these behaviors to
help make planning more efficient: in our generative model,
agents’ mental states determine the behavior they select, each
of which is then transformed into action sequences through
a simpler behavior-specific planner. In future work, we hope
to expand our model so that it naturally gives rise to a more
comprehensive set of behaviors that people can detect and use
to infer agents’ minds.

A related limitation in our model is that we used a uniform
prior over the space of possible minds. It is likely that people
come with strong priors about what types of minds are more
likely than others. For instance, participants may find it a
priori plausible that an agent lacks a Theory of Mind, but not
that an agent lacks an entire belief representation. In current
work we are estimating participants’ priors empirically and
integrating them into our model.

One outstanding question is how to formalize the complete
space of minds that people can reason about. Our approach

of instantiating minds as generative models allows us to ask
this question in a more formal way. Under our framework,
the problem is reduced to constructing a space of generative
models that capture how we can reason about agents which
contain or lack different representations and reasoning capa-
bilities. In future research we will investigate this question.

In our study, both participants and our model knew the
agent’s goal, making Eq. 2 easier to compute. In more real-
istic situations, observers have to simultaneously compute an
agent’s type of mind, its mental states, and goals, all at once.
Thus, it is possible that with this added uncertainty, learn-
ing the variability in minds that we encounter in the world
may require more data than our task suggests, taking years to
learn.

On the other hand, our experiment intuitively suggests that
people might have more sophisticated capacities than what
we tested. While our task focused on inferring a single mind,
people might be able to infer multiple types of minds at once.
In Trial 5, for instance (Figure 2), the guard’s behavior reveals
that it lacks belief representations. At the same time, the fact
that the thief strategically slowed down to get the guard to
move away from the treasure, suggests that the thief (1) knew
that the guard lacked beliefs, (2) had a stable representation
of the guard, and (3) could predict the guard’s behavior. This
intuition is consistent with classical work showing that we
can read complex social interactions between multiple agents
(Heider & Simmel, 1944). In future work we may test for this
possibility.

Altogether, our work shows how, beyond an ability to infer
the contents of other people’s minds, people can also infer the
type of mind behind an agent’s behavior. Our work is a first
step towards a computational understanding of how we infer
types of minds, and sheds light on how people can search
through and attribute different mental models, based on how
agents act and plan to fulfill their goals.
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