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a b s t r a c t

Disruptions of interregional correlations in the blood oxygenation level dependent fMRI signal have been
reported in multiple diseases, including Alzheimer’s disease and mild cognitive impairment. “Default
network” regions that overlap with areas of earliest amyloid deposition have been highlighted by these
reports, and abnormal default network activity is also observed in unimpaired elderly subjects with
high amyloid burden. However, one limitation of current methods for analysis of interregional correla-
tions is that they rely on transformation of functional data to an atlas volume (e.g., Talairach-Tournoux
or Montreal Neurological Institute atlases) and may not adequately account for anatomic variation
between subjects, particularly in the presence of atrophy. We assessed the utility of the FreeSurfer cor-
unctional connectivity
ementia
reeSurfer
tlas
egistration

tical parcellation to analyze default network functional correlations on the native surfaces of individual
subjects. Group-level quantitative analysis was accomplished by comparing correlations between equiv-
alent structures in different subjects. The method was applied to resting-state fMRI data from young,
healthy subjects; preliminary results were also obtained from cognitively unimpaired elderly subjects

er’s
and patients with Alzheim
with Lewy bodies.

. Introduction

Characteristic patterns of low-frequency correlations have been
epeatedly identified in the blood oxygenation level dependent
BOLD) fMRI signal when subjects are asked to simply lie still in
he scanner (Biswal et al., 1995; Greicius et al., 2003; Buckner et al.,
008). The relative consistency of these patterns across studies
nd analysis methods, as well as the simplicity of the instructions,
as led to considerable interest in their potential application as
biomarker in disease (Fox and Raichle, 2007; Rogers et al., 2007;
reicius, 2008; Auer, 2008; van den Heuvel and Hulshoff Pol, 2010).

articular attention has been paid to a collection of regions called
he default network1 and the disruption of correlations across these
egions in Alzheimer’s disease (Greicius et al., 2004; Wang et al.,

Abbreviations: BOLD, blood oxygenation level dependent; fMRI, functional mag-
etic resonance imaging; ICA, independent component analysis; AD, Alzheimer’s
isease; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; DLB, dementia
ith Lewy bodies; MNI, Montreal Neurological Institute; RMS, root-mean-square.
∗ Corresponding author at: 9500 Gilman Dr., MC 0949, La Jolla, CA 92093-0949,
SA. Tel.: +1 858 534 1227; fax: +1 858 534 1240.

E-mail addresses: tseibert@ucsd.edu (T.M. Seibert), jbrewer@ucsd.edu (J.B.
rewer).
1 A number of brain regions exhibit greater activity in functional neuroimaging

tudies when subjects are permitted to rest than when they are instructed to engage
n a specific cognitive task. These regions have been collectively deemed the “default
etwork” (Raichle et al., 2001; Raichle and Snyder, 2007; Buckner et al., 2008).

165-0270/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.04.010
disease, Parkinson’s disease, Parkinson’s disease dementia, and dementia

© 2011 Elsevier B.V. All rights reserved.

2006; Allen et al., 2007; Supekar et al., 2008; Koch et al., 2010;
Zhang et al., 2010; for review, see Greicius, 2008; Sorg et al., 2009).
Disruptions in so-called functional connectivity in the default net-
work have also been reported in conditions believed to precede
onset of Alzheimer’s disease, including patients with amnestic mild
cognitive impairment (Sorg et al., 2007; Pihlajamäki et al., 2009; Bai
et al., 2009) and cognitively unimpaired subjects with high amyloid
burden (Hedden et al., 2009; Sheline et al., 2010).

Anatomical variability across subjects gives rise to two notable
challenges in the analysis of spontaneous BOLD correlations within
the default network. First, if analyses are to be extended beyond
qualitative assessment in individual subjects, a method of compar-
ing results across subjects is critical. Second, the network of interest
has to be identified in each subject. In seed-correlation analyses,
this is typically accomplished by choosing an a priori seed region
known to lie within the network (e.g., Hedden et al., 2009; Sheline
et al., 2010). For independent component analyses (ICA), a template
is used to identify the component that best matches the default
network (e.g., Greicius et al., 2004; Seeley et al., 2009).

Currently, both of these challenges are addressed by perform-
ing analyses in atlas-volume space. Anatomical and functional
images from each subject are transformed, or warped, to match a
canonical brain (e.g., Talairach-Tournoux or Montreal Neurological

Institute template). Once in a standardized, or atlas, volume, seed
regions and templates from the literature or other data sets can
be applied to the spatially transformed data to identify the default
network. The process of transforming data to an atlas volume also

dx.doi.org/10.1016/j.jneumeth.2011.04.010
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:tseibert@ucsd.edu
mailto:jbrewer@ucsd.edu
dx.doi.org/10.1016/j.jneumeth.2011.04.010
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Table 1
Subject demographics.

Subject group n Age range Field strength

Young adults 15 22–28 3.0 T
Elderly controls 7 69–90 1.5 T
Alzheimer’s disease 4 61–94 1.5 T
02 T.M. Seibert, J.B. Brewer / Journal of N

ermits direct comparison of analysis results across subjects and
tudies.

Unfortunately, atlas-space results are only valid to the extent
hat the warping process is valid, a point of particular concern
n conditions where participants’ brains differ considerably from
he atlas due to disease. Functional correlation analyses are sub-
ect to concerns similar to some known issues with voxel-based

orphometry, a method for structural MRI analysis which also
epends heavily on accurate registration to a template. Improper
egistration can lead to misleading results in both cases because,
or example, a given coordinate represents gray matter in the tem-
late but lies in cerebrospinal fluid in a patient’s warped brain.
oxel-based morphometry gives varied results depending on the
articular warping algorithm used (Senjem et al., 2005), and even
lgorithms identified as “optimized,” which include multiple steps
o improve normalisation, are still prone to errors when atro-
hy causes gross changes in brain structure (Bookstein, 2001;
shburner and Friston, 2001; Senjem et al., 2005). Despite the cru-
ial role warping plays in functional correlation analyses and the
nown pitfalls of common methods in the face of structural brain
athology, accuracy of individual transformations are rarely, if ever,
eported or displayed.

Analysis on a subject’s native surface offers potential advantages
ver atlas-volume methods. First, possible ambiguity about precise
natomic locations is reduced. Measuring functional correlations
n native surfaces also facilitates accounting for anatomic effects of
isease and age. Moreover, by preserving inter-individual anatomic
ariability, longitudinal patient studies can better avoid confounds
ue to disease-related structural changes that affect an individ-
al patient’s brain over time. Comparison of functional measures
o other individual markers is also straightforward on native sur-
aces, in particular cross-modal imaging markers such as amyloid
maging results and regional cortical thickness. There is also a clin-
cal appeal to obtaining and displaying functional imaging results
n the brain surface of an individual patient. Prior studies have
ointed to the potential of functional correlations to provide mean-

ngful results in individual patients (Greicius et al., 2004; Buckner
nd Vincent, 2007; Koch et al., 2010); analyzing functional data on
ative surfaces may be an important step toward that aim.

We assessed the utility of the FreeSurfer
http://surfer.nmr.mgh.harvard.edu) cortical parcellation to
nalyze functional correlations on the native surfaces of individual
ubjects. Automated processes are employed to anatomically
arcellate each subject’s cortical surface into distinct regions of
ortex (subcortical gray matter structures are included after a
imilar automated volume segmentation). One cortical region, the
sthmus cingulate, is proposed as a suitable native-surface seed for
dentification and analysis of the default network. Parcellation and
egmentation regions are then used for group-level analyses by
omparing interregional correlations between equivalent regions
n different subjects. Additionally, registration of native sulcal and
yral patterns to an average surface allows display of group-level
esults after quantitative parcellation analysis on native surfaces.

Here we present results from the application of this method
o BOLD data from young, healthy subjects as a proof of concept.
he primary findings were reproduced in preliminary data from
ultiple disease populations, including Alzheimer’s disease (AD),

arkinson’s disease dementia (PDD), Dementia with Lewy bodies
DLB), and cognitively unimpaired elderly controls.

. Methods
.1. Subjects

Subject demographics are provided in Table 1. Patients des-
gnated ‘Alzheimer’s disease’ had a clinical diagnosis of probable
Parkinson’s disease dementia 8 65–86 1.5 T
Dementia with Lewy bodies 7 61–75 1.5 T

AD based on the NINCDS/ADRDA criteria (McKhann et al., 1984);
diagnoses for dementia with Lewy bodies and Parkinson’s disease
dementia were based on the criteria established by the Move-
ment Disorders Society Task Force (Geser et al., 2005; McKeith,
2007). Diagnosis for all patients was made by consensus of two or
more neurologists in the UCSD Shiley-Marcos Alzheimer’s Disease
Research Center Clinical Core. Elderly controls with no cognitive
impairment had a mini mental status exam score of at least 27 and
a CDR score of zero.

2.2. MRI acquisition

Functional imaging of each subject consisted of two T2*-
weighted sequences of approximately 7 min each on a General
Electric Signa Excite HDx using an eight-channel phased-array
head coil (General Electric Healthcare, Waukesha, WI). Data
for young subjects were acquired on a 3.0 Tesla system (TE:
30 ms; TR: 2124 ms; flip angle: 90◦; matrix: 64 × 64; voxel size:
3.75 mm × 3.75 mm × 4 mm; 36 adjacent sagittal slices; 205 sam-
ples per series); data for elderly subjects, including patients, were
acquired on a 1.5 T system (TE: 45 ms; TR: 2624 ms; flip angle:
90◦; matrix: 64 × 64; voxel size: 3.75 mm × 3.75 mm × 5 mm; 32
adjacent sagittal slices; 155 samples per series). The initial five
samples from each functional run were excluded to allow for
T1-equilibration. Immediately prior to each functional series, a
spin-echo volume was acquired with opposite phase-encoding
polarity for field inhomogeneity correction (Holland et al., 2010).
Instructions for the young subjects were to rest motionless with
eyes closed. Instructions for the elderly subjects were to rest
motionless with eyes open; this modification was adopted after
it was suggested that functional correlations in the default net-
work are more robust with eyes open (Yan et al., 2009; Van
Dijk et al., 2009). In addition to the functional volumes, a high-
resolution, three-dimensional, T1-weighted volume was acquired
for each subject during the same session (TE: 2.8 ms/3.8 ms;
TR: 6.5 ms/8.5 ms; TI: 600 ms/500 ms; flip angle: 8◦/10◦; matrix:
256 × 256; voxel size: 0.9375 mm × 0.9375 mm × 1.2000 mm; val-
ues separated by ‘/’ are for 3.0 T data/1.5 T data). Respiratory effort
and heart rate were monitored with a pressure transducer (BioPac
Systems Inc., Goleta, CA) and a pulse oximeter (BioPac Systems and
InVivo, Orlando, FL), respectively.

2.3. Structural MRI processing

A model of each subject’s cortical surface was reconstructed
from the T1-weighted MRI volume (Dale et al., 1999; Fischl et al.,
1999a). To ensure accuracy, the automatically generated bound-
aries were overlaid on the original T1-weighted volume as thin
colored lines to aid visual confirmation of the tissue bound-
aries on each slice—yellow for the boundary between white and
gray matter, and red for the boundary between gray matter and
cerebrospinal fluid. Where these automatically generated lines

deviated from the visually identified boundaries, manual control
points were created, and the automated algorithms were applied
again. Final surfaces were visually inspected to search for gross
errors; none were found in the present data set.

http://surfer.nmr.mgh.harvard.edu/
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The surface model was then anatomically parcellated using the
esikan–Killiany atlas and standard FreeSurfer tools (Fischl et al.,
004; Desikan et al., 2006). This process assigns each point (vertex)
n the native surface to the most probable anatomical label (e.g.,
nferior parietal, precentral, parahippocampal, etc.) based on reg-
stration to a probabilistic atlas of surface folding patterns and on
he observed surface geometry at that location of the native surface
Fischl et al., 2004). Subcortical structures were similarly identified
y volume segmentation (Fischl et al., 2002). Automated parcella-
ion by this method has been shown to be comparable to manual
abeling (Fischl et al., 2004). Additionally, the parcellation for each
ubject was visually inspected to search for gross errors; none were
ound in the present data set.

For direct comparison with prevailing methods, the T1-
eighted volume from an Alzheimer’s patient exhibiting atrophy
as submitted to common registration algorithms to warp the

trophied brain to the Montreal Neurological Institute (MNI)
52 T1 reference brain provided in standard software packages.
ffine transformation with 12 degrees of freedom was per-

ormed using 3dWarpDrive in AFNI (http://afni.nimh.nih.gov/afni).
onlinear transformations were performed using FNIRT in FSL

http://www.fmrib.ox.ac.uk/fsl/index.html), the “normalise” pro-
ess in SPM2 (http://www.fil.ion.ucl.ac.uk/spm/), and the DARTEL
rocess in SPM8. An older version of SPM (SPM2) was included
ecause it appears to be among the more common packages used in
he relevant literature (e.g., Wang et al., 2007, 2010; Supekar et al.,
008; Buckner et al., 2009; Van Dijk et al., 2009). All registration
rocedures followed the configurations and parameters recom-
ended in the documentation provided with the corresponding

oftware. Simple alignment of the original volume was also per-
ormed using manually defined markers in AFNI in order to display
he original images in a similar orientation to the registered images.

.4. fMRI data pre-analysis processing

All fMRI pre-analysis processing was performed using custom
oftware written in MATLAB (Mathworks, Natick, MA), except
here noted. Functional images were first corrected for distor-

ion due to inhomogeneity in the static magnetic field (Holland
t al., 2010). Effects of respiratory fluctuations were modeled and
emoved from time series using RETROICOR (Glover et al., 2000).
imilar removal of cardiac fluctuations did not have a meaningful
mpact on the results in any group, and this step was not included in
nal analyses for the sake of consistency across all subjects (pulse
ecordings were sporadically lost in approximately 20% of scans in
lderly and disease subjects due to technical problems). After inter-
olation for slice acquisition timing, rigid body volume registration
as performed using AFNI (Cox and Jesmanowicz, 1999), followed

y voxel-wise regression of six head motion parameters and a cubic
olynomial baseline from each functional series. Functional data
ere next projected onto the subject’s cortical surface model using

reeSurfer, and a bandpass filter of 0.01–0.08 Hz was applied to the
ime series from each vertex on the surface. BOLD correlation anal-
ses typically include a smoothing step with a Gaussian kernel to
ccount for functional and anatomic variation across subjects, but
his step is not necessary for native-surface parcellation analysis.

.5. fMRI correlation analysis

We designed an fMRI correlation analysis that takes advantage
f the FreeSurfer surface generation and parcellation tools and
voids transforming functional data to an atlas volume. All steps

ere performed using custom software written in MATLAB, except
here noted. Functional time series were averaged across surface

ertices within the left isthmus cingulate region to serve as the
eed time series for correlation analyses. Average time series were
cience Methods 198 (2011) 301–311 303

also calculated from each of the other 30 cortical surface parcella-
tion regions in the Desikan–Killiany atlas not adjacent to the seed
(see Fig. 4), as well as from five volume segmentation regions from
the left hemisphere (hippocampus, caudate, pallidum, putamen,
and amygdala). A Pearson’s correlation coefficient was calculated
for the correlation between the seed time series and each region’s
average time series, and Fisher’s z-transform was applied to these
coefficients. The same process was repeated for right hemisphere
regions, with the right isthmus cingulate region as the seed. Region
time series were obtained by loading both the subject’s functional
data and the parcellated native surface (which contains a region
code at each vertex location) in MATLAB; time series at each vertex
could then be classified by the region code at the corresponding
location in the parcellated surface.

Results from native-surface parcellation analysis were summa-
rized in two ways. First, the z-transformed correlation coefficients
from each region were averaged across subjects. Second, as it is
possible that relative changes in correlation coefficient may also be
informative, all 35 regions per hemisphere were ranked in order of
highest to lowest coefficient for a given subject. These ranks were
summarized by calculating the median rank across subjects for each
region.

A power analysis was performed to give an estimate of the num-
ber of subjects needed to detect a difference between two groups.
For each region, the standard deviation (across subjects) was calcu-
lated for the z-transformed correlation coefficient with the isthmus
cingulate seed. This standard deviation was included in Cohen’s
equation sample size for a population difference (Cohen, 1988;
Dawson and Trapp, 2004). The expected effect size (i.e., popula-
tion difference) was assumed to be 0.2; the actual value is unknown
and specific to the populations studied, but available published val-
ues suggest this value is conservative for comparing unimpaired
elderly with high risk for Alzheimer’s disease to age-matched con-
trols (Fleisher et al., 2009; Hedden et al., 2009; Koch et al., 2010). All
calculations also assumed 80% power and an alpha value of 0.05.
The final result of the power calculations was an estimated sam-
ple size for each region, corresponding to the number of subjects
necessary to detect a population difference of 0.2 in the correlation
coefficient.

Vertex-wise correlation analysis was performed in addition to
the parcellation analysis, allowing visualization of entire hemi-
spheres at finer resolution. Individual maps were produced by
calculating the Fisher’s z-transformed correlation coefficient for
the average seed region time series and the time series of each
vertex on the surface. Individual native surfaces were registered
to the FreeSurfer fsaverage surface using a spherical-based algo-
rithm in FreeSurfer (Fischl et al., 1999b). That registration was
used to transform the individual maps to the fsaverage surface,
also using FreeSurfer tools. Group maps were created by load-
ing the fsaverage versions of the individual maps in MATLAB and
taking the average across subjects. A surface-based smoothing pro-
cess was applied using FreeSurfer for display in the figures (28
iterative steps, approximately equivalent to a 6 mm full-width half-
maximum Gaussian kernel in two dimensions). Group maps were
calculated from unsmoothed individual maps so that the smooth-
ing process was only applied once. The minimum threshold for both
group and individual hemisphere maps was set as the mean coef-
ficient across all vertices on the surface plus 0.5 times the standard
deviation; the maximum threshold was set as the mean coefficient
plus 1.5 times the standard deviation.

2.6. Comparative analysis: volume atlas versus native surface
To assess the degree to which warping to a volume atlas affects
functional correlation results, all functional data from this study
were also analyzed after nonlinear transformation to the MNI152

http://afni.nimh.nih.gov/afni
http://www.fmrib.ox.ac.uk/fsl/index.html
http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 1. Warping to an atlas volume. T1-weighted volume from a patient with atrophy transformed to an atlas volume using popular software packages. AC-PC aligned:
Original image, after rotation and cropping for comparison with transformed images (rotation in AFNI after manual landmark identification). AFNI: After affine (12 degrees
of freedom) transformed with 3dWarpDrive. FSL: After nonlinear warping with FNIRT. SPM2: After nonlinear warping with “Normalise” tool. SPM8: After nonlinear warping
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ith the “DARTEL” process. MNI 152: standard T1 atlas volume used for all transfor
ffects of atrophy in this patient. One consequence of the poor alignment is some
rain.

olume atlas. All pre-analysis processing and correlation proce-
ures for the volume-atlas analysis were performed as in the
ative-surface analysis up to the point of projection of time series
ata to the surface. Instead of directly projecting processed func-
ional time series to each subject’s native surface, all data were
ransformed to volume-atlas space using standard tools in a soft-
are package cited in several resting correlation studies (SPM2).

he transformation to volume-atlas space was calculated for each
ubject using the individual high-resolution T1-weighted volumes.
he time series in MNI space were then projected onto the fsav-
rage surface using the standard transformation provided with
reeSurfer. Subsequent bandpass filtering and correlation analy-
is (using the fsaverage surface parcellation) were performed as in
he native-surface analysis.

Any inaccuracies in registration to the MNI volume atlas could
hange the definition of the seed and therefore affect correlation
easures across the entire brain even if the rest of the brain was

erfectly registered to MNI. To isolate the effect of whole-brain
egistration to a volume atlas, the time series from each subject’s
ative-surface isthmus cingulate was used as the seed in both the
ative-surface and volume-atlas analyses. Additionally, the cor-
elation coefficient between the native-surface isthmus cingulate
ime series and the MNI-transformed isthmus cingulate time series
as calculated for each subject to quantify the effect of MNI trans-

ormation on the seed. Note that, in order to maintain intuitive
nterpretation of the values, these seed-to-seed correlation coeffi-
ients were not Fisher-transformed.

MNI volume-atlas correlation coefficients for each region on
he fsaverage surface were compared to the corresponding region
n the native surfaces. As volume-atlas registration inaccuracies
ead to a heterogeneous mix of both increases and decreases in
orrelation values, the magnitude of the differences was used for
omparing the methods. The mean (across-subjects) difference
etween MNI-transformed and native-surface results was calcu-

ated for each region. Paired t-tests were applied to evaluate the
tatistical significance of any regional differences between the two
ethods.
Vertex-by-vertex comparison of the MNI volume-atlas results

projected on the fsaverage surface) to the native-surface results
as achieved using the native-surface maps that were registered

o the fsaverage surface (see Section 2.5). Difference maps were
alculated by taking the root-mean-square (RMS) average, at each
ertex, of the difference between MNI-transformed and native-
urface results.

. Results
Both linear and nonlinear algorithms successfully aligned the
trophied brain to the MNI template (Fig. 1). The nonlinear methods
FSL, SPM2, SPM8) appear to have reduced ventricular spaces and
ns presented here. None of these methods adequately accounted for the structural
al MNI coordinates correspond to cerebrospinal fluid in the patient’s transformed

stretched the brain tissue to fill portions of the adjacent CSF space
(distortions to the skull and other tissues in the nonlinear examples
should be ignored, as the methods are optimized for registration of
the brain, not extraparenchymal tissues). None of the transforma-
tions, however, fully accounted for the bulk atrophy in the superior
brain or the enlarged sulci evident throughout the cortex. Many
MNI coordinates that lie within cortical regions in the template
correspond to cerebrospinal fluid in the transformed brains for this
patient.

The T1-weighted volume and reconstructed cortical surface
model are shown in Fig. 2A and B, respectively, for the brain of
a young subject and the atrophied brain from Fig. 1. Anatomic
features of each individual brain were preserved by the surface
reconstructions. The depression of the superior aspect of the atro-
phied brain is reflected in the relatively flat superior aspect of the
surface. Similarly, the patient’s enlarged sulci are readily observ-
able in the corresponding surface. Neither of these abnormalities
prevented successful automated parcellation of the cortical surface
(Fig. 2C). The isthmus cingulate seed region is identified for each
subject within the parcellation (Fig. 2D, dark green), allowing cal-
culation of correlation coefficients for the rest of the cortex on the
subject’s native surface (Fig. 2D and E).

Cortical surface models reconstructed from five individual
young subjects are shown in Fig. 3A (all subjects are included in
supplementary material). As expected, substantial variability in
anatomy is observed between individuals; brain size, gyral pat-
terns, and structural landmarks are all unique for each surface. The
inferior parietal region identified by the FreeSurfer parcellation is
also shown for each subject.

Functional correlation maps are displayed on the native sur-
faces for the same five individual young subjects in Fig. 3B. Many
individual subject maps resemble the well-known default network
pattern typically reported in group averages. As with the anatomy,
though, the functional maps demonstrate considerable variability
from one individual to another.

Native-surface regions most consistently correlated with the
seed region in each hemisphere are shown in Table 2. All of the
top five regions in each hemisphere are among those frequently
included in the default network (dorsolateral prefrontal, medial
prefrontal, inferior parietal, and medial temporal). Both the mean
correlation coefficient and median rank measures identify default
network regions as the most strongly correlated with the isthmus
cingulate seed.

Group-average functional correlation maps for the young sub-
jects are displayed in Fig. 4. While interindividual variability is lost
in the group average, the pattern at the group level confirms that

typical default network patterns are identified using the isthmus
cingulate seed.

Power analysis estimated the sample size required for a differ-
ence in population mean for the regions in Table 2. Sample sizes
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Fig. 2. Analysis on native surfaces. The top row shows structural and functional analysis for a young subject; the bottom row shows corresponding images from a patient with
atrophy (see Fig. 1). (A) Original T1-weighted volumes after AC-PC alignment. (B) Cortical surface models generated from T1-weighted volumes; anatomical features from
individual subjects, including effects of atrophy, are preserved. (C) Automated anatomical parcellation of cortical surface for each subject. (D and E) Individual correlation
maps consisting of coefficients (z-transformed) from correlation of each surface vertex with the average time series of the isthmus cingulate seed (dark green). The isthmus
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ingulate region was defined on the native surface for each subject during the autom
or each subject from the mean and standard deviation of correlation coefficients f
his figure legend, the reader is referred to the web version of the article.)

or the regions in Table 2 had a median of 21.5 subjects. Among
hese regions, the right inferior parietal and right parahippocam-
al regions had the greatest estimated sample sizes at 37 subjects
ach. Right medial orbitofrontal had the smallest estimated sample
ize at 15 subjects.

Functional correlation maps were calculated for five additional
opulations (Fig. 5). The qualitative patterns in these group-average
aps were similar for cognitively unimpaired elderly, Parkinson’s

isease, Parkinson’s disease dementia, Alzheimer’s disease, and
ementia with Lewy bodies. Characteristic features of the default

etwork are observed in each group. Sample sizes from each group
re insufficient for intergroup comparisons, but pooled analysis
cross groups demonstrates that some of the same regions remain
ost consistently correlated with the isthmus cingulate seed in

ig. 3. Individual correlation maps. Columns represent individual subjects. (A) Cortical
lue. The substantial anatomic variability across subjects is captured by the individual su
oefficients (z-transformed) from correlation of each vertex on the surface with the aver
egion was defined on the native surface for each subject during the automated anatomica
n supplementary material. (For interpretation of the references to color in this figure leg
anatomical parcellation. Thresholds (for display only) were determined separately
vertices on the individual surface. (For interpretation of the references to color in

native-space analysis (Table 3). As with the young subjects, the top
two most consistently correlated regions in both hemispheres were
inferior parietal and superior frontal.

The effect of defining a seed in volume-atlas space rather than
defining a seed on the native surface was quantified by calculat-
ing the correlation coefficient between the two average time series
for each subject. For young subjects, the median correlation coeffi-
cient (and interquartile range) between the MNI isthmus cingulate
and native-surface isthmus cingulate was 0.84 (0.81–0.86) for the
left hemisphere and 0.87 (0.85–0.87) for the right hemisphere. The

minimum coefficient among the young subjects was 0.63, and the
maximum was 0.93. For healthy and impaired elderly subjects, the
median correlation coefficient was 0.77 (0.65–0.85) for the left isth-
mus cingulate and 0.79 (0.66–0.85) for the right. The minimum

surface models with a single parcellation region (inferior parietal) highlighted in
rfaces. (B and C) Individual correlation maps for five young subjects, consisting of
age time series of the isthmus cingulate seed (dark green). The isthmus cingulate
l parcellation. Individual correlation maps for all fifteen young subjects are included
end, the reader is referred to the web version of the article.)
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Table 2
Native-space correlation analysis in young subjects. Regions most consistently correlated with the seed region in each hemisphere. A median rank of 2 for the superior frontal
region in the left hemisphere indicates that this region is among the top 2 regions most correlated with the seed in at least 50% of subjects (interquartile ranges give analogous
results for the 25th and 75th percentiles). Mean z and SE indicate the population mean z-transformed correlation coefficient and standard error, respectively. Sample size
indicates the estimated sample size to detect a difference in mean z of 0.2 with 80% power and alpha value set to 0.05.

Region name Region ranks Correlation coefficients

Median Quartiles Mean z SE Sample size

Left hemisphere
Superior frontal 2 1–2.75 1.06 0.06 21
Inferior parietal 3 2–6.25 1.02 0.07 33
Medial orbitofrontal 3 2–7.75 1.02 0.06 21
Hippocampus 6 5–10.5 0.90 0.05 16
Parahippocampal 7 4–13.25 0.89 0.06 18
Right hemisphere
Superior frontal 4 2–7.75 0.91 0.06 22
Inferior parietal 5 1.25–8.75 0.94 0.08 37
Hippocampus 6 3–10.75 0.89 0.07 28
Parahippocampal 7 4.25–18.75 0.80 0.08 37
Medial orbitofrontal 8 2.25–13.75 0.87 0.05 15

F n ma
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ig. 4. Group correlation map for young subjects. Vertex-wise average correlatio
fsaverage” subject. The Desikan–Killiany cortical parcellation atlas is shown in the fi
For interpretation of the references to color in this figure legend, the reader is refe

oefficient among the elderly and patients was −0.09, and the max-

mum was 0.95.

Registration to an atlas volume also led to significant effects on
orrelation results throughout the rest of the cortex, even when the
ame (native-surface) seed time series was used for both methods.

able 3
ative-surface correlation analysis in elderly subjects and patients. Regions most consis

he superior frontal region in the left hemisphere indicates that this region is among the t
anges give analogous results for the 25th and 75th percentiles). Mean z and SE indica
espectively. Sample size indicates the estimated sample size to detect a difference in me

Region name Region ranks

Median Quartiles

Left hemisphere
Inferior parietal 2 1–4
Superior frontal 4 2–5
Caudal middle frontal 6 4–14
Hippocampus 10 6–19
Caudate 10.5 7–17
Right hemisphere
Inferior parietal 3 1–5
Superior frontal 3 2–8
Pericalcarine 8.5 4–14
Caudal middle frontal 9 6–15
Middle temporal 9 6–19
p across fifteen young subjects after surface-based registration to the FreeSurfer
lumn, and the isthmus cingulate seed is shown in dark green on all medial surfaces.
the web version of the article.)

Correlation coefficients for MNI-transformed regions on the fsav-

erage surface differed from their native-surface homologues by a
mean magnitude of 0.14 ± 0.06 (standard deviation) in young sub-
jects. Paired t-tests for a non-zero magnitude difference between
MNI and native regions gave p-values less than 0.005 for all regions

tently correlated with the seed region in each hemisphere. A median rank of 2 for
op 2 regions most correlated with the seed in at least 50% of subjects (interquartile
te the population mean z-transformed correlation coefficient and standard error,
an z of 0.2 with 80% power and alpha value set to 0.05.

Correlation coefficients

Mean z SE Sample size

0.84 0.05 36
0.77 0.05 30
0.67 0.05 38
0.57 0.04 24
0.59 0.04 27

0.84 0.05 28
0.79 0.05 31
0.66 0.05 29
0.64 0.05 38
0.60 0.05 40
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ig. 5. Group correlation maps for elderly subjects and patients. Vertex-wise averag
he isthmus cingulate seed is shown in dark green. The upper left map is the aver
ithin elderly and disease subgroups. (For interpretation of the references to color

n both hemispheres in the young subjects, and the median p-value
as less than 10−4. In the elderly (including patients) group, the
ean magnitude of the difference was 0.16 ± 0.04, which was sig-

ificantly greater than in the young subjects (t-test, p < 0.05). Paired
-tests between MNI and native regions gave p-values less than
0−5 for all regions in both hemispheres in the elderly and patients
roup, and the median p-value was less than 10−7.

Vertex-wise group-level maps showing the root-mean-square
ifference between correlation coefficients obtained with MNI-
ransformed time series versus native-surface coefficients are
isplayed in Fig. 6. The maps have a threshold RMS difference of
.2, corresponding to the magnitude of the estimated population
ifference used in the power analysis above. Root-mean-square
ifferences greater than 0.2 are widespread throughout both
emispheres in both young and elderly/diseased subjects. Among
egions with the greatest RMS differences (greater than 0.35) are
ome associated with the default network, including the isthmus
ingulate, inferior parietal, and medial prefrontal cortices.

. Discussion

Spontaneous BOLD correlation studies may afford opportuni-
ies to increase our understanding of how regions of the brain
nteract and to develop clinical tools for diagnosis or measure-

ent of disease progression. Already, intriguing results have been
eported in various diseases, including mild cognitive impairment
nd Alzheimer’s disease. Analysis in native space may improve
ccuracy, allow more rigorous investigation into resting-state cor-
elation phenomena, and otherwise facilitate transition to clinical
tility.

Reliance on warping to atlas space has the potential to criti-

ally influence results of functional correlation analyses. Despite
he critical importance of accurate localization and known issues
ith warping, very few studies report on the accuracy of transfor-
ations, and transformed images are rarely included in published
elation maps after surface-based registration to the FreeSurfer “fsaverage” subject.
ross all thirty-four elderly subjects and patients; the other five maps are averages
figure legend, the reader is referred to the web version of the article.)

manuscripts. Many methods for warping to atlas volumes exist, and
these usually have many user-selected parameters that affect the
transformation but are not typically reported in methods descrip-
tions. In the case of patients with atrophy or other structural
abnormalities, these issues become more apparent and have been
described previously (Bookstein, 2001; Ashburner and Friston,
2001; Senjem et al., 2005).

Fig. 1 gives a striking example of the pitfalls of warping an
atrophied brain to a normal template. Four methods from three
standard software packages, using the recommended parameters,
produced warped volumes that have obvious inconsistencies with
the MNI template. Analysis of this subject with current methods
might yield decreased correlations relative to controls, for example,
in regions corresponding to the hippocampus or dorsal cortex. Fol-
lowing typical practices, statistical results would be overlaid on the
atlas brain to show the effect. However, decreased correlations in
this hypothetical example might be explained by the fact that rela-
tively large portions of the MNI cortex correspond to cerebrospinal
fluid in the patient’s warped brain, and therefore in the patient’s
warped functional data.

Analysis on native surfaces avoids warping individual brains to
atlas volumes and the accompanying issues. Fig. 2 demonstrates
how the model of the individual cortical surface can still readily
capture the features of the severely atrophied brain from the previ-
ous example. Remaining within the individual anatomy rather than
attempting to distort it through spatial normalisation, reduces the
risk of mistakenly analyzing correlations outside the gray matter,
or outside the brain altogether. Images of other brains, especially
those without atrophy, may transform more accurately to the tem-
plate. Use of other warping algorithms, other warping parameters,
or other templates may improve the registration of this, and other,

imaged brain volumes. However, at a minimum, the accuracy of
the transformations for brains with structural pathology must be
assessed and reported alongside functional analyses that depend
on that transformation. Moreover, it is possible even studies using
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ig. 6. Group RMS difference maps for volume-atlas versus native-surface correlat
etween correlation results obtained after nonlinear transformation to the MNI15
inimum threshold for the RMS difference (0.2) matches the magnitude of estima

saverage parcellation is included in the top row.

oung, healthy subjects with no pathology could benefit from anal-
sis on individual surfaces.

The effects of warping to a volume atlas on seed definition and
n interregional correlations are quantified in this manuscript by
irect comparison of native-surface results to results obtained after
arping to the MNI152 volume atlas. In one such comparison,
NI transformation was shown to affect the isthmus cingulate

eed time series, yielding MNI seed time series that were often
oorly correlated with the seed defined on the subject’s native
urface. 25% of the healthy and impaired elderly subjects had MNI-
o-native isthmus cingulate correlation coefficients less than 0.66,
nd two subjects had coefficients less than 0.10. The weak cor-
elation between the MNI and native time courses in this region
uggests defining the seed on the native surface may impact
esting correlation analyses independent of other methodologi-
al considerations. Moreover, a region-by-region comparison of
olume-atlas and native-surface results revealed significant differ-
nces in every region tested, even when controlling for potential
ifferences in the seed time series. This was true both in the young
nd elderly/patient groups. Finally, group maps of vertex-wise root-
ean-square differences between the two methods also showed

hat MNI transformation led to sizeable effects throughout the
ortex in both groups. Of concern is the observation that these
roup-level effects were as large as population differences reported
n the literature, and regions highly correlated with the seed (in
his case, default network regions) may be particularly vulnerable
o modulation during transformation to an atlas volume. As the
ccuracy of registration to a volume atlas is logically dependent on
he severity of structural pathology, studies of disease populations
equire special attention to these possible confounds.
Quantitative, native-surface parcellation analysis of sponta-
eous fMRI in young subjects highlights known default network
egions when the isthmus cingulate is used as a seed (Table 2).
ecause the seed is defined on the native surface, individual vertex-
sults. The overlays in the bottom two rows show the root-mean-square difference
me-atlas and results obtained from analysis on each subject’s native surface. The
pulation difference used in power analyses (see Tables 2 and 3). For reference, the

wise maps can also be calculated to show both the similarities
across subjects and the unique features of each subject’s data. Inter-
individual variability in both anatomy and functional correlations
is preserved in this method, and composite statistics still allow
comparisons between groups and between sessions.

Association with other individual markers is one of the primary
advantages of analysis in native space. Native-surface cortical anal-
ysis is especially convenient for comparison to cortical thickness, as
many morphometry studies already use FreeSurfer to measure cor-
tical thickness in the same parcellation regions used in the present
study for functional analysis (for example, see Du et al., 2007;
Desikan et al., 2010; Rimol et al., 2010; Liu et al., 2010). A potential
confound in all functional MRI studies of populations with atro-
phy, including those using the present method, is that decreased
tissue volume might lead to a decrease in BOLD signal-to-noise
ratio. Therefore, while a decrease in functional correlations with
atrophy is expected due to effects on neural communication, it is
difficult to distinguish this neural effect from the signal-to-noise
effect. While this limitation is not entirely addressed by analysis
on native surfaces, the availability of regional cortical thickness and
volume measurements allows local atrophy effects to be accounted
for in each subject. This may be additionally advantageous in longi-
tudinal studies of patients with neurodegenerative disorders where
atrophy may give structural changes over the course of the exper-
iment.

The power analysis for the native-surface parcellation analy-
sis suggests that a moderate difference in correlation coefficient
(with the isthmus cingulate seed) can be detected in any of the
regions in Table 2 with practical sample sizes for neuroimaging
studies and clinical trials (Jack et al., 2010). Sample sizes range

from 16 to 42 subjects, depending on the region; this is consistent
with another report of regional differences in variability of corre-
lation strength (Chang and Glover, 2010). The actual sample size
necessary to detect a change is highly dependent on the effect size
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etween the populations (sample size is proportional to the square
f the effect size). Both the intersubject variance and the effect size
ill be unique to each disease studied, so caution should be exer-

ised when extrapolating the values presented in Table 2 to other
opulations. Further research is warranted to estimate population-
pecific sample sizes; these power analyses will provide additional
uantitative information to guide inference and practical appli-
ation of correlation measurements in those diseases. The value
f the power analysis presented here is to demonstrate that the
ange of expected sample sizes suggests studies of diseases with
oderate differences in BOLD correlations are feasible using the

ative-surface method.
In addition to the benefits of quantitative native-surface anal-

sis of individual subject data, it is also valuable to display
urface-based, group-level results. Integrating and interpreting
arge numbers of individual maps can be difficult, and space con-
traints will prevent many authors from including maps for each
ndividual in publications. Comparison to other published group

aps, particularly those of cortical thickness in aging and demen-
ia (Salat et al., 2004; Dickerson et al., 2009), might also be useful.
egistration of individual surface models to a surface average (e.g.,
he “fsaverage” subject in FreeSurfer) requires transformation to an
tlas space, which raises some of the same concerns described for
olume transformations, but evidence suggests that surface regis-
ration may be substantially more accurate (Fischl et al., 1999b).
mportantly, since cortex is being registered to cortex, the risk of

apping an atlas coordinate to white matter or cerebrospinal fluid
s greatly decreased.

Results from the patient and elderly subjects demonstrate that
efault network regions are highlighted in native-surface analy-
is in multiple populations and with relatively small sample sizes.
he robustness of default network correlations to the effects of
ge, atrophy, and dementia (of at least two different presumed
tiologies) is also evident. However, the group maps also serve
s an illustration of the degree to which inter-individual differ-
nces can be hidden by group averages. The Alzheimer’s disease
roup map in Fig. 5, for example, was generated from only four
ubjects. This map shows many of the characteristics of typi-
al default network maps and is not remarkably different from
he maps of the other groups. At least one of the four sub-
ects, though, has a functional correlation map (Fig. 2C and D)
ivergent from the typical default pattern. Investigation into the
ognitive and pathological correlates of inter-individual differences
n functional correlation patterns may prove enlightening, and
ative-surface analyses would be a powerful approach for such

nvestigation.
Limitations of analysis on native surfaces include the computa-

ional cost of reconstructing and parcellating each subject’s surface,
hich can take approximately 24 h processing time per node. Visual

onfirmation of automated pial and white matter boundaries in
he T1-weighted volume is also recommended. In our opinion,
owever, checking the anatomical boundary definition is simpler
han an equivalent check on a warping algorithm’s match of each
yrus in each slice in the volume. We also find it easier to cor-
ect small errors in the boundaries for the surface than to optimize
onlinear registration parameters for individual subjects. Analysis
ith this method requires a high-resolution T1-weighted volume

or each subject, which may be viewed as a limitation to authors
ot routinely including this acquisition in their scanning proto-
ols.

The parcellation atlas itself poses a limitation to the size and
hape of the regions tested with the native-space parcellation

nalysis. Some applications may require more flexibility in region
efinitions, smaller regions, or specific subdivisions within some
f the atlas regions. For others, there may be reason to question
he implied assumption of relative functional homogeneity within
cience Methods 198 (2011) 301–311 309

the anatomically defined regions. Exploratory studies may require
functionally defined regions or a vertex-wise analysis, which makes
transformation to the atlas surface necessary for inter-subject com-
parisons. Investigators may also consider another atlas available in
FreeSurfer for native surfaces that subdivides the regions shown in
Fig. 4 into gyral and sulcal cortex (Destrieux et al., 2010). Many other
atlases exist, and custom atlases can be created within FreeSurfer or
elsewhere; these additional atlases typically rely on registration to
the average surface, though, and are not automatically produced in
the reconstruction process within FreeSurfer. The primary advan-
tages of the Desikan–Killiany atlas parcellation are its common use
for cortical thickness studies and its definition based on landmarks
that can be consistently identified in individual subjects’ anatomy.

An alternative to native-surface analysis is analysis within the
native volumes of individual subjects. To avoid manual ROI selec-
tion, the seed region could be defined by a coordinate in the atlas
volume and reverse-transformed to each subject by applying the
inverse of the transformation matrix from the warping algorithm.
Accuracy of seed placement in this case, however, is subject to
the same limitations of the transformation matrix as analysis in
atlas space. Seed location should be verified for each subject, most
likely by visual inspection. A spherical region centered on a reverse-
transformed atlas coordinate may increase the chances of including
the desired cortex, but if the spheres are much larger than the thick-
ness of the cortex, it is very likely voxels containing primarily white
matter or cerebrospinal fluid will be included in the seed. Common
diameters for spheres range from 8 mm to 12 mm or larger (Fox
et al., 2005, 2006; Vincent et al., 2006; Hedden et al., 2009), com-
pared to cortical thickness which is around 2 mm (Du et al., 2007;
Liu et al., 2010).

Even if the reverse-transformed seed is sufficiently accurate, the
native-surface functional correlation maps generated with it can-
not be quantitatively compared across individuals unless additional
regions are defined. One approach is to create more regions of inter-
est from other reverse-transformed atlas volume coordinates, but
each of these regions will be subject to the same limitations as
the seed. Another approach is to use the reverse-transformed seed
to perform seed-correlation analysis in the native brain. However,
inter-subject comparisons of the native results in this voxel-wise
approach still requires warping the functional data to an atlas vol-
ume, and it is unlikely that any advantage is gained by applying that
transformation to final statistics rather than to the raw data. An
analogous challenge faces independent component analysis (ICA)
in native space: even if a suitable template is defined for each sub-
ject to identify the component of interest, warping the native-space
components to atlas space is necessary for comparison across sub-
jects or groups.

Future development of this method could focus on broaden-
ing the scope of its applications. Parcellation regions other than
the isthmus cingulate might be used as seeds for other corti-
cal networks that are associated with neurological or psychiatric
diseases (Greicius, 2008; Seeley et al., 2009; Ebisch et al., 2010).
Additional methods of analyzing functional correlations might also
be adapted to native surfaces. Currently, methods such as ICA
could be readily applied within the average surface space; how-
ever, ICA components are difficult to compare quantitatively across
subjects without transforming to atlas space. One idea for native-
space ICA is to use one or more of the anatomical parcellation
regions highlighted in this study as a template for identifying the
default network components. Independent components could then
be compared across subjects within analogous parcellation regions.
A similar approach could be taken to define templates for other
resting-state network components. Regardless of analysis method,
investigation of these resting-state functional patterns in disease

can benefit from leveraging the underlying anatomy and pathology
of individual subjects.
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