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ABSTRACT OF THE THESIS 
 
 
 

SMAD2 and miR-181b roles in the transition from indolent to aggressive Chronic 
Lymphocytic Leukemia 

 
 

by 
 

 
 

Michelle Pablo Salcedo 
 
 

Master of Science in Biology 
 
 

University of California, San Diego, 2012 
 
 

Professor Thomas J. Kipps, Chair 
 

The clinical course of Chronic Lymphocytic Leukemia (CLL) patients is 

heterogeneous: some patients progress relatively rapidly whereas others survive for many 

years without requiring therapy. Because static prognostic markers, such as IGVH 

mutation and ZAP-70 protein expression, lack indication of disease progression, 

alternative approaches for discriminating patients into their disparate risks for CLL 
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progression is needed. By integrating gene expression measurements over sets of genes 

that encode proteins known to interact within a protein subnetwork we found 22 of the 38 

significant subnetworks had increased activity in defined high-risk patients (referred to as 

pro-onconets) whereas the other 16 had decreased activity (referred to as anti-onconets).  

MicroRNA 181b (miR-181b) was described to decrease over time in patients with 

progressive CLL and not in those who remained indolent. Interestingly, one of the targets 

of miR-181b is SMAD2, a gene upregulated in the pro-onconets. With that said, miR-

181b may regulate some pro-onconet pathways. In this study, we asked whether protein 

expression of our pro-onconet genes increased in protein expression over time and also if 

miR-181b may target SMAD2 transcript. Through western blot, quantitative Real-Time 

PCR, and transfection of miR-181b mimic into progressive CLL samples, we were able 

to answer these questions. This study shows that protein expression of these pro-onconet 

genes may increase over time and that miR-181b regulates SMAD2 expression. These 

studies value the importance of future studies investigating the oncogenic role of SMAD2, 

the relative expressions of target transcripts for particular microRNAs, and epigenetic 

regulation in progressive CLL. 
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Introduction 
 

Chronic Lymphocytic Leukemia (CLL) is a blood cancer consisting of neoplastic 

growth of mature monoclonal B-lymphocytes in the lymphoid tissue microenvironment 

(Burger, 2011) and high accumulation of these malignant cells, stuck in the G0-phase of 

the cell cycle, in the peripheral blood (Hamblin & Oscier, 1997). CLL is the most 

prevalent leukemia in the Western world. One of the main abnormalities of these CLL B-

cells are their impaired function of programmed cell death (Danilov, Klein, Lee, Baez, & 

Huber, 2005) due to the halt at the G0-phase (in peripheral blood) and expression of 

many activation markers, a decrease in pro-apoptotic molecules, and upregulation or 

sustained expression of pro-survival molecules (Hamblin & Oscier, 1997).  

Tumor evolution is comprised of a series of molecular events that direct the tumor 

cell to survive in anaerobic conditions, resist cell cycle control, and escape apoptosis.  

CLL is the most prevalent leukemia in the Western world. Powerful single-gene 

prognostic markers, such as IGVH mutation status and ZAP-70 protein expression, are 

markers that are static over time, thus are unlikely to associate with disease 

progression/tumor evolution in CLL. Included in this study, is a network-based analysis 

on gene expression data from a cohort of 130 CLL patients has revealed gene expression 

changes over time, of which such changes correspond to disease progression in CLL.  

Several subnetworks discovered are pathways that are, but not limited to, 

involved in apoptosis, signal transduction, cell cycling, and cellular metabolism. Towards 

disease progression, this study shows that patients on this path will eventually have 

certain subnetworks that are highly active (referred to as pro-onconets) and other 
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subnetworks that decrease in activity (referred to as anti-onconets) when reached to an 

aggressive state of the disease and requiring treatment (Chuang et al., 2012). From 

Visone et al., there has been evaluation of microRNA expression over time (Visone et al., 

2011). MicroRNA 181b (miR-181b) is seen to decrease over time in progressive patients. 

With this in mind, this microRNA may be a missing regulator to some of these 

subnetworks found in this study. From the subnetwork analysis, SMAD2 was identified to 

be upregulated during disease progression. In association with the miR-181b story in 

CLL, SMAD2 is predicted to be a target of miR-181b in silico. The aim of this study is to 

explore the relationship between expression levels of SMAD2 and miR-181b in CLL cells 

of patients during disease progression. Together, miR-181b and SMAD2 may be players 

in the same pathway and thus contribute to disease progression. 

 

Prognostic Markers in CLL 

The clinical course of CLL is heterogeneous. Patients with the indolent form of 

the disease are asymptomatic and have a longer time to treatment or may not require 

treatment at all, yet patients with the aggressive form have a shorter time to treatment and 

overall survival, and require immediate therapeutic action. Identifying the two clinical 

courses of CLL can be assessed by many factors.  

Clinic-based prognostic systems, such as Rai (Rai et al., 1975) and Binet  (Binet 

et al., 1981) staging systems, encompass physical examinations assessing for presence of 

lymphadenopathy, organomegaly, and cytopenias. Although these staging systems are 

beneficial for acknowledgment of systemic spread and disease severity, their prognostic 

power is not as robust as biology-based prognostic markers (Morabito et al., 2009). 
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Furthermore, patients with Rai Stage I-II (intermediate risk) are the hardest to predict if 

patients with indolent disease may become aggressive (Kufe et al., 2003).  

Two of the most prevalent and robust biology-based prognostic markers used to 

stratify patients into the high risk group (aggressive CLL) and the low risk group 

(indolent CLL) are Immunoglobulin Variable Region Heavy Chain (IGHV) gene mutation 

status (Rosenwald et al., 2001) and Zeta-associated Protein 70 (ZAP-70) (Durig et al., 

2003) protein expression. Mutation of the immunoglobulin variable region’s heavy chain 

occurs on the hypervariable regions after antigen stimulation. In CLL, IGHV mutation 

status corresponds to the two disease courses in CLL, whereas the mutated form (<98% 

homology to germline sequence) is highly associated to the indolent course as the 

unmutated form (>=98% homology to germline sequence) is highly associated to the 

aggressive course (Damle et al., 1999).  

Various studies have investigated protein marker associations with IGHV 

mutation status due to the long procedures to obtaining results from DNA sequencing. 

Such associations, or surrogate markers, to IGHV include ZAP-70 (Crespo et al., 2003) 

and CD38 (Hamblin et al., 2002). Flow cytometry is a faster technique and ZAP-70 

protein expression was observed to be a better stand-alone prognostic marker to IGHV 

(Rassenti et al., 2004). In the Rassenti et al. study, of the patients in whom the rearranged 

IGHV gene had 98 % or greater homology with a known germ-line IGHV gene, 71 % 

were ZAP-70–positive; 83 % of the patients with a mutated IGHV gene were ZAP-70–

negative (Rassenti et al., 2004). Despite these strong and statistically significant 

associations, there were also discordant associations between IGHV mutation status with 

ZAP-70 and CD38.  
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Although these biology-based prognostic markers do categorically define CLL 

patients into one risk group or the other to an extent, these markers cannot correspond 

their presence or absence to disease progression because they do not change expression 

over time (Rassenti et al., 2004). Although, there was some inference of changes in CD38 

expression to occur over time (Hamblin et al., 2002), but actual proof has not yet 

surfaced. Furthermore, patients with discordant associations between IGHV mutation 

status and ZAP-70 expression cannot be determined on their clinical course. Last but not 

least, patients stratified to have good prognosis sometimes develop to the aggressive 

course, which then makes IGVH mutation status and ZAP-70 expression unreliable to 

identifying this discrepancy amongst patients with indolent CLL and their susceptibility 

to disease progression. Other means to determining time to treatment and disease 

progression early is necessary to overcome these flaws in biology-based single-gene 

prognostic markers. 

 

Molecular Interaction Networks as Prognostic Profiles and Progression Indicators 

 An alternative means to understand, detect, and evaluate disease progression in 

CLL, one must realize that disease progression in any cancer involves a series of 

intracellular and molecular changes to achieve transformation from a normal cell into a 

cancer cell, which in other words, is the idea of cancer evolution. With this idea in mind, 

bioinformatic studies (Chen & Yuan, 2006; Trey Ideker, Ozier, Schwikowski, & Siegel, 

2002) have utilized large data sets of human protein-protein and protein-DNA 

interactions, pooled from systematic yeast two-hybrid screens (Uetz et al., 2000) and co-

immunopreciptation experiments (Gavin et al., 2002), and sought to investigate the 
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interaction of these molecules in order to define which ones interacted with other in a 

network via bioinformatic techniques. These defined networks can then reveal signaling 

and regulatory pathways that are significantly active and important. Significantly “active” 

networks are determined by meticulous statistical analyses that formulate a scoring 

system to identifying gene sets (genes encoding proteins that may interact with each other 

in a pathway) that may be differentially expressed significantly between two conditions, 

ie. GAL80 knock out vs. Wild type in yeast (T Ideker et al., 2001; Trey Ideker et al., 

2002). To do these analyses in CLL, we compiled gene expression data from DNA 

microarray experiments on 130 CLL patient samples to extrapolate molecular interaction 

networks significantly active in aggressive CLL using the same analysis as the study 

mentioned previously (Chuang et al., 2012). In our study, we compared two different 

time points of which the initial time point is closer to the diagnostic date as the latter time 

point is closer to the treatment date. Patients who were not treated had the same time 

interval between time point one and two as all the rest. With these sample criteria, we 

aimed to see the differences in gene expression over time in patients who were treated 

and untreated.  From our results we have identified 1) gene expression profiles 

differentiate between stable and aggressive CLL patients, 2) stable CLL patients who 

have undergone disease progression eventually share the same gene expression patterns 

of patients who have aggressive CLL, and 3) we have identified 38 subnetworks known 

to be significantly active in aggressive CLL.  

 Of these 38 subnetworks, 22 had increased activity in the defined high-risk 

patients (referred to as pro-onconets) whereas the other 16 had decreased activity 

(referred to as anti-onconets). Many of these pro-onconet subnetworks involve pathways 
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that are not only perturbed in many cancers (ie. Cell cycle and apoptosis pathways) but 

are specifically perturbed in CLL (ie. WNT (Lu et al., 2004) and TGF-beta pathways 

(Laurence Lagneaux, Delforge, Bernier, Stryckmans, & Bron, 1998)). This work is 

submitted for publication and is included in this thesis with permission from the co-

authors behalf.  

 

TGF-beta Signaling and SMAD2 

  One of the aspects of CLL research includes specifically on the role of TGF-β1 

in CLL. TGF-beta is a cytokine that binds to three TGF-beta receptors, referred to as 

TGF-Beta Receptor I, II, and III, to induce anti-proliferative and pro-apoptotic pathways, 

via Smad signaling, in normal B-lymphocytes (Sebestyén et al., 2005). Patients with CLL 

who are resistant to TGF-beta stimulation have low expression of TGF-beta receptors 

(Laurence Lagneaux et al., 1998), thus indicating a possible mechanism of how CLL B-

cells have a growth advantage. Although CLL B-cells still produce TGF-beta cytokine, 

these cells produce more than normal B-cells, particularly because of the expansion of 

this CLL B-cell clone (Laurence Lagneaux et al., 1998).  

TGF-beta resistance may also contribute an escape from apoptosis. Apoptotic 

response to TGF-beta treatment was shown to have a wide range of sensitivity in CLL 

patients to TGF-beta mediated apoptosis, but over all is resistant compared to normal B-

lymphocytes (Douglas, Capocasale, Lamb, Nowell, & Moore, 1997). It was also shown 

that this resistance is not generally due to lack of TGF-beta receptor expression (Douglas 

et al., 1997), thus indicating that there could be deregulation of signal transduction 

pathways connected with apoptosis.  
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SMAD2 is a receptor-mediated SMAD protein involved in TGF-βR1 activated 

signal transduction (Itoh, Itoh, Goumans, & Ten Dijke, 2000). Upon activation, SMAD2 

becomes phosphorylated, complexes with other SMAD proteins, and relocates to the 

nucleus, which in turn upregulate genes involved in cell proliferation, apoptosis, and 

differentiation (Lebman & Edmiston, 1999; Ten Dijke, Goumans, Itoh, & Itoh, 2002). Its 

role in progressive CLL is unknown, yet evidence of its upregulation in patients with 

aggressive CLL from our pro-onconets and its role in TGF-beta signaling, makes it a 

strong candidate for investigation in its functional significance in progressive CLL.  

 

MiR-181b, Marker of Disease Progression in CLL 

Aside from deregulation of pathways due to over expression of certain oncogenes 

and deletion of tumor suppressor genes, a new type of regulation has been discovered at 

the post-transcriptional level. This new mechanism of regulation at the mRNA level is 

due to the discovery of short, non-coding RNA sequences (~22 nt long), referred to as 

microRNAs (recognized as genes with “miR” as a prefix), that target specific mRNA 

transcripts via binding on semi-complementary “seed” regions located on the 3’ UTR 

area of the target mRNA (Lai, 2002). In many studies in various cancers, microRNAs 

have been observed to have tumor suppressor or oncogenic roles.  

A number of novel microRNAs have been discovered to be involved in CLL.  A 

few tumor suppressor candidates include miR15-a/miR-16-1 cluster, miR-34a, miR-34b, 

miR-34c, miR-29, and miR-181 (Nana-Sinkam & Croce, 2010).  The expression of these 

microRNAs has been proven to modulate the expression of anti-apoptotic or tumor 

suppressor genes such as BCL2, TP53, TCL1 and MCL1 as well as ZAP-70 tyrosine 
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kinase.  In aggressive CLL, miR-29 and miR-181b targeting anti-apoptotic genes like 

TCL1 and MCL1, are downregulated thus resulting to overexpression of those anti-

apoptotic genes (Nana-Sinkam & Croce, 2010). In indolent CLL, miR15-a/miR-16-1 

cluster located at the 13q14 region are deleted, those microRNAs are known to target not 

only anti-apoptotic proteins like BCL2 (Cimmino et al., 2005) and MCL1 (Calin et al., 

2008) but also the tumor suppressor, TP53 (Fabbri et al., 2011). The dowregulation of 

such microRNAs is also associated with increased level of TP53 expression and 

transactivation of miR34a, miR-34b and miR-34c resulting to reduced level of ZAP-70 

expression (Fabbri et al., 2011). 

Of the many microRNAs (and counting) found to be associated with CLL, Visone 

et al. found that the single microRNA, namely miR-181b, was observed to decrease in 

serial samples of patients who developed progressive disease, but not in serial samples of 

patients who had CLL that remained indolent (Visone et al., 2011). As a biomarker for 

disease progression in CLL, it is highly likely that this microRNA may be a missing 

regulator of a few of the pro-onconets found in our study.  
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Methods 
 

Patients and cell lines 

 All twenty-three patients chosen for this project are enrolled in the Chronic 

Lymphocytic Leukemia Research Consortium (CRC) in the Moores Cancer Center. All 

patients registered in the CRC Tissue Core have multiple sample collections at different 

dates. Whole blood sample collections of patients were processed in order to isolate total 

white blood cells (consisting of >90% CD5+CD19+, assessed by flow cytometry) and 

then stored in 10% DMSO in liquid nitrogen. Samples ready to be used for 

experimentation are then removed from liquid nitrogen and then thawed quickly for 

laboratory use.  

 Criteria of this cohort included that all samples used for analysis are untreated. 

This allows evaluation of the disease without any influence of any kind of treatment. 

Patients who were eventually treated during the course of their disease only had samples 

chosen prior to treatment, whereas patients with no treatment had samples chosen due to 

availability of total vials in CRC Tissue bank. For over time studies, a second time point 

was taken for each patient. Average years between sample collection 1/initial time point 

(SC1) and sample collection 2/second time point (SC2) was 2.7 years.  

 

RNA extraction 

 Patient samples had their total RNA content extracted with standard TRIzol 

Reagent (Invitrogen) method. After extraction of RNA, samples were treated with 

TURBO DNAse enzyme for removal of any trace DNA remaining after extraction using 
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the TURBO DNA-free Kit (Ambion) protocol. Quantification of total RNA concentration 

was done by NanoDrop ND-1000 spectrophotometer. RNA quality was evaluated by 

Novex 15% TBE-Urea Gels (Invitrogen) using Novex 2X TBE Urea Sample Buffer 

(Invitrogen). Intact and useable RNA had distinctive 5.8S rRNA and 5S rRNA bands and 

as well as presence of small RNAs at the very bottom. Further validation of intact and 

useable RNA was done on the Agilent 2100 Bioanalyzer. Range of RNA Integrity 

Number (RIN) of all samples included in this study was from 7.8 to 10. The RIN is a 

quantitative grade on the degradation of RNA of which grades less than 7.0 are 

considered poor RNA quality. Patient samples with good and working RNA were then 

used to synthesize complementary DNA (cDNA) for further analysis on mRNA 

expression.  

  

Reverse Transcriptase cDNA synthesis for random cDNA and gene-specific cDNA 

Nine microliters (ul) of total RNA was reversely transcribed using 0.5 ug of 

Oligo(dT)12-18 Primers (Invitrogen), 1 uM of dNTPs, 20nM DTT, 5mM MgCl2, 1x of 

10x PCR Buffer, and 200 units of Superscript II Reverse Transcriptase Enzyme 

(Invitrogen) in order to generate random cDNA. Standard thermocycler conditions 

consisted of 5 minutes at 65 degrees (after addition of only Oligo(dT) primers to total 

RNA aliquot) and then 42 degrees for 55 minutes and 70 degrees for 15 minutes after 

addition of mastermix consisting of the rest of the components mentioned previously. 

RNAse OUT RNAse Inhibitor enzyme was used (Invitrogen) by adding 40 units in 

each sample and incubated at 37 degrees for 20 minutes. Concentration of synthesized 

random cDNA was determined by a Nanodrop ND-1000 spectrophotometer. As random 
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cDNA was utilized for analysis on larger mRNA transcripts, microRNA cDNA required 

a different protocol. Like described in the methods of Visone et al. (Visone et al., 2011), 

gene-specific cDNA synthesis for miR-181b and RNU44 were generated with TaqMan® 

MicroRNA Assays (Applied Biosystems) that included reverse transcription primers 

specific for miR-181b and RNU44. RNU44 is a small nuclear RNA encoding in the C/D 

box 44 and was used as the endogenous control only for miR-181b expression in 

quantitative Real-Time polymerase chain reaction.  

 

Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

 Samples studied in this project were also evaluated on their mRNA expression of 

miR-181b and SMAD2. Expression of miR-181b via qPCR was conducted using the 

methods in TaqMan® MicroRNA Assay (mentioned in cDNA synthesis methods) 

specific for miR-181b and RNU44. TaqMan® Universal Master Mix II with no UNG 

(Applied Biosystems) was also used for miR-181b qPCR. Eight nanograms of random 

cDNA were used for detection of SMAD2 and GAPDH. Each sample was done in 

triplicate on a standard 96-well plate with a non-template control for each gene. GAPDH 

was used as an internal control strictly for larger genes, such as SMAD2. QPCR reactions 

for SMAD2 used Power® SYBR Green PCR Master Mix (Applied Biosystems). Primer 

sequences used were from our unpublished work from Chuang et al. in 2012 and are as 

follows: SMAD2 forward, GCCTGTTGTATCCCACTGATC; SMAD2 reverse, 

GCCATCACCACTCAAAACTGT. GAPDH primers were designed in this study and 

sequences are as follows: GAPDH forward, AGCCGAGCCACATCGCT; GAPDH 

reverse, TGGCAACAATATCCACRRRAC. All qPCR reactions were done in an 
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Applied Biosystems 7900HT Fast Real Time PCR system. Calculation of relative fold 

change to GAPDH used the 2^(-ΔCt) method on individual samples and the 2^(-ΔΔCt) 

method for relative fold changes over time between SC1 and SC2 (Schmittgen & Livak, 

2008). 

 

Transfection of miR-181b mimic in CLL cells  

 A HiPerFect ®Transfection Reagent (Qiagen) was utilized to introduce mimic 

miR-181b into CLL cells. For obtain physiological concentrations of miR-181b mimic in 

CLL cells, mimic negative control and mimic miR-181b (both from Ambion) in reactions 

had a final concentration of 50 nM and 0.05 nM, respectively. Amount of HiPerFect and 

RPMI without serum and PSG per reaction were 3 ul and 100 ul, respectively. A 24-well 

plate contained 2 x 10^6 cells per well. Aside from the mimic negative control, a non-

stimulated (NS) control (only having growth media) was also added. Prior to transfection, 

CLL cells were thawed from storage, counted, and incubated for at least 24 hours over 

night in 5% CO2 and 37 degree conditions. On transfection day, cells were re-counted, 

aliquoted on plate, and then incubated in transfection complexes for one hour in 5% CO2 

and 37 degree conditions. After the first hour, RPMI media with 10% Fetal Bovine 

Serum and 1% PSG was added. Five more incubation hours then followed where a total 

of six hours of incubation time passed. Twenty-four incubations with transfection 

complexes were incubated for approximately 23 hours more.  
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Protein lysis and Immunoblot 

 CLL patient samples and cell lines were lysed with RIPA Buffer (Thermo 

Scientific) containing 25 mM Tris•HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium 

deoxycholate, 0.1 % SDS, and freshly added Halt Protease and Phosphatase Inhibitor 

Cocktail (Thermo Scientific) and 5mM EDTA (Thermo Scientific) to get total cell 

lysates. Prior to addition of lysis buffer, cells were washed with cold PBS twice. Spinning 

conditions at 1100 rpm at 4 degrees for 6 minutes or 2000 rpm at 4 degrees for 3 minutes 

(depending on G-force of centrifuge) remained consistent throughout the entire lysis 

process, except for certain steps. To obtain more concentrated lysates, approximately 1 x 

107 cells were treated with 10-70ul microliters of lysis buffer and then sonicated with 

50% pulse for 5 seconds 5 times. Incubation in lysis buffer took place in 4 degrees for 15-

30 minutes maximum. Lysates were then spun for 15 minutes at 14000 x g in 4 degrees to 

spin down cellular debris. Quantification of protein lysates were done using a BCA 

protein assay kit (BioRad).  

 Proteins on gel were transferred to a nitrocellulous membrane using an iBlot Dry 

Blot System from Invitrogen. Blocking step used 5% milk in 1X TBST either in the cold 

and overnight or 30 minutes in room temperature. Primary antibodies of SMAD2 and 

GAPDH (both from Cell Signaling #3122 and #2118) were diluted 1:2500 in 5% milk in 

1X TBST and 1:1000 in 5% Bovine Serum Albumin in 1X TBST, respectively.  Anti- 

CCT4 (Santa Cruz Biotechology) and anti-CSNK2A1 (Sigma-Aldrich) were diluted 

1:400 and 1:1000 in 5% milk in 1X TBST as well. Secondary antibody dilution of Anti-

Rabbit HRP (Cell Signaling #7074) was 1:10,000 in 5% milk in 1X TBST for one hour in 

room temperature. Chemiluminescence was detected using a SuperSignal West Femto 
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Chemiluminescent Substrate (Thermo Scientific) and Pierce ECL Plus Western Blotting 

Substrate (Thermo Scientific). After probing, membranes were stripped with Restore Plus 

Western Blot Stripping Buffer (Thermo Scientific) for next probes.
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Chapter 1:  Disease Phases in CLL have Distinct Transcription Activity 

 When assigning patients with CLL into clinical courses, one way of determining 

this is use of the Rai and Binet staging systems, which are basically physical assessments 

of the patient’s lymphocyte counts and organ growth (lymph node and spleen size). These 

systems, although useful for determining the severity of the disease, are flawed in 

detecting disease progression at an earlier fashion since they are solely dependant on 

physical examinations. Furthermore, most studies in defining prognostic markers have 

investigated risk stratification in CLL based on time between diagnosis (DX) and 

treatment (TX), which ignores changes in the transcriptome during disease progression. 

To account these changes, gene expression changes of 130 CLL patients were evaluated 

at different disease phases of CLL. Figure 1A shows the distribution of patients based on 

amount of years between DX and sample collection (SC), referred to as DXSC. 

Approximately 40 percent of our patient cohort had a gap of 1 year or less of DXSC, 

indicating that most patients samples were collected at the early phase. The rest of the 

samples varied of DXSC, thus reflecting the heterogeneity of DXSC in our cohort.  

 To correspond disease phase to the point in time the samples were collected, we 

resorted to the amount of years between sample collection and time to treatment, referred 

to as SCTX. Sample collections considered “early stage” of CLL had a SC TX 

greater than 4 years, whereas “intermediate stage” sample collections had a SC TX less 

than 4 years but no shorter than 1 year, and “late stage” had a SC TX less than one 

year. With this convention, the variability of disease phases in our cohort were quite 

widespread, as seen in Figure 1B (disease phases are the colored bars). Most sample 

collections from our cohort had a SCTX about 6 months, thus were mainly taken from
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the late phase of the disease. For further analysis we wanted to see the amount of patient 

samples that have a mutated IGVH status (Figure 1B, black bars), thus see whether any of 

the patients observed in this study were stratified with a good prognosis. Based on our 

results, we observed that a high percentage of patients using a mutated IGVH have 

sample collections at a late phase of the disease. This implicated that these patients were 

more likely patients who have eventually progressed and thus required eventual 

treatment. Observing this find also implicated that IGVH mutation status was an 

unreliable marker for progression. 

Like single-gene expression studies from other laboratories utilizing microarray 

techniques to observe gene expression differences between IGVH mutation status, we 

aimed to evaluate the gene expression in our cohort the same way. In our analysis, we 

counted the number of differentially expressed genes between disease phases and IGVH 

mutation status subtypes. This approach showed that comparison between early and late 

phase gene expression had the largest number of differentially expressed genes 

suggesting two different transcriptional activities (Figure 1C, leftmost panel). By 

comparison between the two IGVH mutation subtypes, a large difference of 

transcriptional activity was also observed. Furthermore, we also compared the gene 

expression differences between disease phases within the IGVH mutated subtype groups 

(Figure 1C, middle panel). We found that the greater difference resided mainly in the 

early disease phase only. Interestingly, the number of genes differentially expressed 

drastically lowered in patients in intermediate phase, and even lower in patients in late 

phase (Middle panel; Figure 1C). Such a result suggests that transcription activity 

eventually becomes similar as the disease progresses. The heterogeneity of disease phases 
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found with either mutated or unmutated IGVH subtypes suggests that IGVH mutation is a 

static marker that cannot be associated with a changing transcription activity, thus 

irrelevant to associate with disease progression. This work has currently been submitted 

for publication and accredits co-authors of this submitted work listed under Chuang et al., 

2012.  
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Chapter 2: Single-gene Prognostic Markers Cannot Distinguish Disease Phases 

 Other prognostic markers have been established in other studies, in addition to 

IGVH mutation status. With these other single-gene prognostic marker sets, we tested our 

cohort of 130 patients on their prognostic power on differentiating low- and high-risk 

groups in terms of DXTX, a perspective most studies on prognosis are based on, and 

SCTX, a perspective that represents treatment-free survival. As expected, IGVH 

mutation status was the most prevalent predictor with DXTX, but failed in terms of 

SCTX due to non-significant p-values of patients with a SCTX less than one year 

(denoted by *) and with more than one year (denoted by #) (Figure 1D, leftmost panel). 

Again, such a result can be explained by the static nature of IGVH mutation status.  

Furthermore, other established prognostic marker sets failed to differentiate the risk 

groups in terms of SCTX and sometimes with DXTX. These results indicate that 

single-gene markers were not powerful enough to distinguishing between risk groups 

based on SCTX, therefore unfit to predicting treatment-free survival. Evidence of this 

is seen in two key studies that took sample collection into consideration as seen at the 

rightmost panel in Figure 1D. This work has currently been submitted for publication and 

accredits co-authors of this submitted work listed under Chuang et al., 2012.  
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Chapter 3: The Subnetwork Profile of Aggressive CLL 

Since single-gene prognostic markers failed to differentiate low- and high-risk 

groups in our cohort, we ventured towards a different approach by instead aggregating 

gene expression data as sets instead of individual gene markers. These sets are comprised 

of genes encoding proteins that may interact with each other through protein-protein or 

protein-DNA interactions, thus essentially comprising specific metabolic pathways, or 

subnetworks. Through bioinformatic analysis and scoring (as described in Chuang et al., 

2012), we discovered thirty-eight subnetworks that are significantly active in aggressive 

CLL (Chuang et al., 2012) (Figure 2A). These thirty-eight subnetworks can be 

subdivided into two different groups. These two groups are: 1) genes in networks that are 

increased in aggressive CLL, referred to as the pro-onconets (A-O), and 2) genes in 

networks that decrease, referred to as the anti-onconets (P-T).  Evidence of expression 

change of these subnetwork genes were mainly evaluated at the mRNA level via real-

time qPCR. Interestingly, the pro-onconet subnetworks included pathways involved in 

cell cycle, apoptosis, and the WNT signaling pathway, all of which are known to be 

perturbed in CLL. Use of these subnetworks can give rise to potential studies of 

investigating key pathways and targets for therapy. 

More so, we attempted to see the prognostic power of these subnetworks into 

stratifying our patient samples into their corresponding clinical courses. Based on a 

supervised clustering, these subnetworks were able to categorize the gene expression data 

of these patients into three distinct risk groups, which were a high risk group, low risk I, 

and low risk II (data not shown). Interestingly, the high risk group expression profile had 

sample collections with a short SCTX, thus indicating a high association at the late
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stage of disease, whereas the two low risk groups had longer SCTX intervals, thus a 

high association to the early and intermediate disease phases. Over all, this cluster 

analysis utilizing subnetworks as prognostic markers represented the gene expression 

changes that may occur in the transition from indolent CLL to aggressive CLL. This 

work has currently been submitted for publication and accredits co-authors of this 

submitted work listed under Chuang et al., 2012.  
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Chapter 4: Change of Pro-onoconet Subnetwork Genes also Increase Over Time at the 

Protein Level 

At this point, we have exemplified that aggressive CLL has certain subnetworks 

that increase over time (pro-onconets) and other that decrease over time (anti-onconets). 

Because of this change of expression, it was curious to see whether protein changes of 

members of these networks also occurred. To resolve this curiosity, protein expression 

analysis of some pro-onconet subnetwork genes were conducted via western blot. Such 

subnetwork members evaluated included, CSNK2A1, SMAD2, CCT4, SUPT3H, SKP2, c-

MYC, and DMD. Optimization of antibodies against the encoded proteins of these genes 

included clean detection of the protein of interest (testing specificity of these antibodies), 

ensuring bands detected were at the correct molecular weight (also in correspondence to 

postive controls), and detection of expression in CLL samples. Of the seven antibodies 

tested, three were successfully optimized. These three antibodies, anti-CSNK2A1, anti-

SMAD2, and anti-CCT4 were used to screen for protein expression of a few progressive 

patient samples (looking at both the early time point and last time point sample 

collections) also observed in our subnetwork analysis. As shown in Figure 2B, CCT4 and 

SMAD2 protein expression was observed to increase over time, just the same as it was 

observed at the mRNA level. CSNK2A1 had no distinguishable difference at the protein 

level (data not shown), which can be due to the limitations of the assay used. In addition, 

we also noted the IGVH mutation status of these samples that had increases of CCT4 and 

SMAD2 proteins, which included both IGVH mutation subtypes. Over all, we were able 

to conclude that the changes of expression of genes belonging in our subnetworks also
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 can happen at the protein level. This work has currently been submitted for publication 

and accredits co-authors of this submitted work listed under Chuang et al., 2012.  
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Chapter 5: SMAD2 is a Predicted Target of miR-181b 

In relation to the subnetworks found through the approach of aggregating gene 

expression as gene sets, this data implicates that there might be some dysregulation 

occurring during disease progression. Such dysregulation can be caused by different 

mechanisms, which includes regulation by microRNAs. MicroRNAs are regulators solely 

involved at the transcript level. As described in the Introduction section of this thesis, 

microRNAs are small RNA segments about 22 nucleotides long that target mRNA 

transcripts at the 3’UTR region, which then marks them for degradation or prevention 

from translation.  

A global microRNA expression study observing the microRNA expression 

changes of two sequential time points in both progressive and indolent CLL patient 

samples was conducted by the Visone et al. group from Ohio State University (Visone et 

al., 2011). From this study, it was revealed that a single microRNA, namely miR-181b, 

significantly decreased over time, which also was verified via real-time qPCR (Visone et 

al., 2011). Furthermore, they displayed that progressive CLL patients samples generally 

have a lower expression of miR-181b in comparison to indolent CLL patients samples. 

Because of this find, we hypothesized that miR-181b may be a missing regulator in the 

pathways suggested by our subnetwork analyses.  

Utilizing the DIANA microT 3.0 database (Maragkakis et al., 2009) we 

performed a search of all target genes of miR-181b using a “loose” threshold setting of 

7.3. This threshold setting only shows targets with a total miTG score of 7.3 and above, 

of which a total miTG score is a prediction score that indicates the likelihood that the 

gene of interest is a possible target, thus the higher the total miTG score, the more likely
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a possible target. Our search found 1705 targets in 735 genes for human miR-181b (data 

not shown). With this data, we attempted to find targets that belonged in the pro-onconet 

subnetworks. As listed in Table 1, three genes from the pro-onconet subnetworks were 

observed as predicted targets of miR-181b. Interestingly, one of these predicted targets, 

namely SMAD2, was a member part of a subnetwork that involves interaction with c-

MYC (Figure 2A, subnetwork F), an important cell cycle regulator and a widely known 

oncogene observed to be over expressed in many cancers. Because of this target was 

centralized player of this particular subnetwork, further investigation of regulation of this 

gene was conducted. 

Based on results generated from DIANA microT 3.0, miR-181b could bind at 

three different positions on the 3’ UTR of SMAD2 (Figure 3A) with a total miTG score of 

9.88. Although the highest scoring predicted target (TIMP3) had a total miTG score of 

11.34, SMAD2 as a target was fairly possible due to other studies that have confirmed 

miR-181b directly targeted genes such as AICDA (De Yébenes et al., 2008) and BCL2 

(Zhu, Shan, Wang, Shu, & Liu, 2010), which in this public database have lower total 

miTG scores than SMAD2 (data not shown). As SMAD2 is proposed target of miR-181b, 

we hypothesized that miR-181b may be a regulator in pro-onconet pathway involving 

SMAD2 (Figure 3B). 
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Chapter 6: Studies of MiR-181b and SMAD2 Expression Over Time 

 To investigate the relationship between miR-181b and SMAD2 during disease 

progression, we sought to observe messenger RNA (mRNA) expression of miR-181b and 

SMAD2 via real-time qPCR in 18 CLL patients. Primer sets for SMAD2 and GAPDH 

(reference gene) were first tested using a melting curve analysis with an evaluation of 

their products on an agarose gel (Figure S1). Sample collections at two different time 

points before the date of initial treatment were analyzed in every patient. As indicated in 

Tables 2 and 3, patient sample collections were calculated of the amount of years from 

sample collection to treatment (SCTX). Samplings collected from treated patients had 

an initial time point collected from either the early phase and intermediate phase as all 

last time points collected were at a late phase of the disease. Thus, these sample 

collections were evaluated during disease progression. Patients who had an indolent 

disease course (not treated) were also included in our cohort for screening of miR-181b 

and SMAD2 expression. 

 Because miR-181b was established as a marker for disease progression in CLL in 

the Visone et al. study, we investigated our cohort in the same terms as this paper. These 

terms, which were described as “properties”, consisted that patients undergoing disease 

progression undergo a decrease equal or greater than 50% of miR-181b expression over 

time and/or have an initial miR-181b relative expression of 0.005 or less (Visone et al., 

2011) .Within our cohort about 56% (10 out of 18) have these “properties” with most 

patients undergoing a 50% or more decrease in miR-181b relative expression over time 

and only two patients had an initial miR-181b relative expression of less than 0.005 

(Figure 2S). Sample collections with large decreases also occurred in samples that had a
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 low miR-181b relative expression at the first initial time point, thus suggesting that 

decrease of miR-181b may be an affect of disease progression and not due to baseline 

expression. Notably, patients with “properties” were mostly treated (Tables 2 and 3). This 

shows that eventual loss of miR-181b expression contributes disease progression.  

 Along with miR-181b expression, we also evaluated the mRNA expression of 

SMAD2, a gene observed to be upregulated in aggressive CLL in our pro-onconet 

subnetworks and as well as a predicted target of miR-181b in silico. As represented in 

Figure 3S, majority of patients with a significant increase of SMAD2 expression mainly 

resided in patients with “properties”. A significant increase or decrease was considered to 

being at least 50% change from the initial time point’s relative expression level. Those 

who experienced a significant increase of SMAD2 over time, 83% of these patients 

belong to those who had “properties” whereas one patient belonged to those without. The 

frequent occurrence of a significant decrease (50% and above) of miR-181b and 

significant increase in SMAD2 simultaneously suggests that perhaps that miR-181b may 

regulate SMAD2. All other cases that may not suggest this regulation are possibly due to 

the genetic heterogeneity amongst the different patients and as well as the possibility of 

over abundance of other transcripts for miR-181b. For the most part, these data suggest 

that increase of SMAD2 expression is an event that occurs during disease progression, 

which is what our subnetworks have shown. 
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Chapter 7: MiR-181b can Modulate SMAD2 if Target is Abundantly Expressed 

To confirm that miR-181b modulates SMAD2 expression, we introduced miR-

181b, via Hiperfect Transfection Reagent kit, in the cases that had a significant decrease 

in miR-181b and a significant increase in SMAD2. Viabilities were accounted before and 

after 24 hour incubation without treatment, which ranged from 98% to 87% throughout 

the whole duration of the experiment. Thus, viabilities after transfection were assumed to 

be just as good. To ensure that introduction of miR-181b mimic in CLL cells resulted in 

expressions at physiological levels detected in CLL, a test of optimal mimic 

concentrations were conducted (Figure 5A). Serial dilutions from starting point 

concentration of mimic, 20 nM, were made in 1:100 (0.2 nM), 1:1000 (20 picoM), and 

1:10,000 (2 picoM) dilutions. After 6 hrs of introduction of mimic miR-181b, RNA was 

collected and then further processed for preparation on real time qPCR. Avoiding 

contamination of non-transfected mimic miR-181b and false positives, cells collected 

were washed with PBS before extracted for RNA. This test showed that a concentration 

of 20 picoM was the proper concentration to express high miR-181b expression and also 

stay within the normal physiological expression range seen in CLL.  

As the ideal concentration was optimized, a time course of transfection in CLL 

cells was tested for the optimal time to introduce a maximum amount of miR-181b. Due 

to the common fact that CLL cells in culture tend to apoptose drastically after 48 hours, 

our time course only tested incubation durations of only 6 hours and 24 hours. Viabilities 

of samples were calculated before and after the initial 24 hour incubation in culture 

without treatment. Controls included in this experiment were a Non-Stimulated (NS) 

population, which only consisted of growth media, and a population introduced to a
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mimic negative control (scrambled sequence), which allowed us to observe any effects by 

transfection alone and as well as show the baseline of miR-181b expression for 

comparison. According to our results from both 6-hour and 24-hour incubations, 

significant elevation of miR-181b expression was observed in all samples at both time 

points (Figure 5B). NS and mimic negative controls were very similar in expression, thus 

indicating that mimic negative controls reflected baseline expression of endogenous miR-

181b. P-values resulted from comparing a difference between the negative control 

population and mimic transfected population were all very significant. Yet, observation 

of a maximum expression of miR-181b transfected occurred in 24-hour incubations 

(Figure 5B, two rightmost sets of columns), which, additionally, also had less variability 

in expression in comparison to 6 hours of incubation.  

Along with successful transfection of miR-181b mimic in CLL cells at 24 hours, 

we also observed SMAD2 expression to test if miR-181b modulates SMAD2 mRNA. 

From our results, SMAD2 mRNA expression, detected on real-time qPCR, was variable 

in our mimic miR-181b transfected samples (Figure 5C). Observed in this experiment 

was an inconsistency in regulating SMAD2 transcript. Comparison between samples of 

CLL 4 and CLL 26 showed that regulation of SMAD2 by miR-181b displayed no 

regulation and down regulation, respectively. Notably, the normal expression levels of 

SMAD2 in these patient samplings (meaning that these samples were extracted of their 

RNA from the time of thawing) were relatively different (Figure 5D). CLL 4 had a 

SMAD2 relative expression of 0.39 whereas CLL 26 had a SMAD2 relative expression of 

2.63. Such differential expression made it reasonable why SMAD2 expression was 

possible to be down regulated by introduction of miR-181b in CLL 26 and not in CLL 4. 
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Due to these confounding results, this experiment suggests that miR-181b regulation of 

target transcripts may be determined by the abundance of target transcript. Between 

specific patient samplings, we concluded that variability of modulation of SMAD2 is 

most likely due to the expression abundance of other miR-181b targets.
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Discussion 
 

Determining disease progression early in CLL has been a challenge due to the 

limitations of static markers, such as IGVH mutation status and ZAP-70 protein 

expression, and as well as late detection of progression by the clinic-based staging 

systems, such as the Rai and Binet systems. Furthermore, gene expression studies of the 

most accepted and robust prognostic marker, IGVH mutation status, has proven to be 

inconsistent on what genes are differentially expressed between the subtypes (Klein et al., 

2001; Rosenwald et al., 2001). In our study, which was submitted for publication, we 

show that transcriptional activity towards a more aggressive stage of disease becomes 

similar, which then allowed us to use an alternative type of analysis described by Ideker 

et al. in 2002. This network-based analysis revealed key pathways that could be 

responsible for the pathogenesis of CLL (Figure 2A). In addition, we have shown that the 

encoded proteins of these pathways can also change over time, thus corresponding with 

the gene expression data (Figure 2B). Furthermore, we wanted to ask whether 

dysregulation of transcription regulation mechanisms could be a cause as to why we 

observe these changes of expression over time. Because miR-181b was observed to 

decrease significantly in progressive patients over time (Visone et al., 2011), we also 

monitored the expression behavior of this particular microRNA in our own cohort and 

correspond this microRNA to the genes found in our subnetworks. Interestingly, we 

found that miR-181b can regulate SMAD2, a member of the pro-onconet subnetworks, 

but depending on how much this target transcript is abundantly expressed (Figure 5C and 

5D). Over all, these results open avenues for further investigation on SMAD2 function in
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CLL, target favorability by microRNAs, and studies on other regulatory mechanisms at 

the transcription and gene level that may contribute to disease progression in CLL.  

 The fact that we were able to observe SMAD2 increase at the protein level 

suggests that there could be oncogenic function of SMAD2 in CLL. SMAD2 is a 

receptor-mediated SMAD of the TGF-Beta signaling pathway. Receptor-mediated 

SMADs are activated by phosphorylation via TGF-Beta and activin type I receptors, 

which then allow them to form complexes with cofactor-SMADs to act as a transcription 

factor complexes (Itoh et al., 2000); downstream targets depend on cell type, yet function 

of TGF-Beta generally for B-lymphocytes is cell cycle arrest and apoptosis (Lebman & 

Edmiston, 1999). Most studies have exemplified the importance of TGF-beta in 

mediating apoptosis, thus stating the tumor-suppressive functions of this pathway 

(Derynck, Akhurst, & Balmain, 2001; Douglas et al., 1997; Sebestyén et al., 2005). 

Despite these studies, there has only been one study to show otherwise (Baughn et al., 

2009), which in our case, we have also shown adverse function of the TGF-Beta pathway 

at the signal transduction level. In CLL, there has been evidence of various degrees of 

apoptotic resistance against TGF-Beta stimulation due to variable expression of TGF-

Beta receptors between individual CLL patients (L Lagneaux et al., 1997). Additionally, 

another study has described mutations of the TGF-Beta receptor that may contribute to 

this apoptotic resistance (Schiemann et al., 2004). Yet, reports have not confirmed any 

SMAD-signaling dysfunction in CLL. In this study, we have demonstrated that the 

downstream signal transduction mechanisms of TGF-Beta activation may also be a 

contributor to apoptotic resistance in aggressive CLL. A clue as to how SMAD2 can be 

anti-apoptotic may possibly be through targeting pro-survival genes. Evidence of CDK2 
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phosphorylation at the threonine 8 residue of SMAD2 protein, an abnormal site for 

SMAD2 post-translational modification, has been observed in bone marrow myeloma 

cells (Baughn et al., 2009). This modification may alter the binding of SMAD2 with its 

common binding partners and bind on other cofactors, thus resulting to transcription of 

different gene targets, which may possibly be pro-survival molecules. Future studies 

examining the phosphorylation of SMAD2 protein and its potential downstream targets in 

CLL can validate this insight.  

 As miR-181b was exemplified to regulate SMAD2 transcript, it is highly possible 

that miR-181b may regulate other transcripts simultaneously expressed. MicroRNAs bind 

semi-complementary to their target transcript, thus suggesting up to hundreds of possible 

targets for each microRNA. Public databases, such as TargetScan, DIANA microT 3.0, 

miRbase.org, ncRNA.org, and etcetera, confirm this notion of numerous targets for a 

single microRNA. Although these sites give only predictions based on sequence 

homology of the microRNA and the 3’ UTR region of target transcripts, they exemplify 

how complicated microRNA function can be. Our data suggests regulation by 

microRNAs may be dependent on the abundance of target transcript. Additionally, there 

has been evidence of this particular phenomenon in a study lead by Arvey et al. at the 

Memorial Sloan-Kettering Cancer Center in 2010. Multiple transcript targets for miR-

181b in CLL are present and abundantly expressed. Such factors include BCL-2 (Otake et 

al., 2007; Zhu et al., 2010), TCL-1 (Pekarsky et al., 2006), and AICDA (De Yébenes et 

al., 2008; Palacios et al., 2010), all which are confirmed targets of miR-181b and over 

expressed in CLL. Conclusively, SMAD2 transcript expression in CLL patients may vary 

across the board, thus miR-181b may not always regulate this transcript when others may 
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be highly expressed. Because of this situation, it is highly recommended to determine 

relative expression levels of genes targeted by miR-181b in CLL. With this data the true 

target(s) of miR-181b in CLL may come to light. Furthermore, other microRNAs may be 

variably expressed between different patients, thus other microRNAs may possibly 

regulate miR-181b target transcripts. Over all, the study of microRNAs in any disease is a 

complicated situation, thus research on the regulation dynamics of microRNAs is very 

important in order to know what microRNAs target which transcripts and which 

microRNAs solely regulate those transcripts. 

 We have exemplified that microRNAs, specifically miR-181b, can regulate genes 

in our subnetworks, thus in turn, translate as an overall regulatory effect on the entire 

subnetwork. Due to this evidence, it is plausible to hypothesize that other microRNAs 

may also regulate our subnetworks, thus aberrant expression of these microRNAs may 

result to the aberrant expression of the genes observed in aggressive CLL. The indication 

of microRNAs having tumor suppressor functions have been first described in CLL 

(Calin et al., 2008). Patients who have acquired 13q deletions over time have also lost 

miR-15a/16-1 expression, which are the microRNAs that are encoded in this region. 

Through searching possible targets of these microRNAs in public databases, pro-onconet 

members, MAP2K1, IRAK2, and SMAD2, are proposed targets. The loss of expression of 

miR-15a/16-1 thus result to the over expression of these factors in CLL, as observed in 

our subnetworks. Acquired loss of tumor suppressor microRNAs may occur during the 

coexistence of microRNAs functioning as oncogenes. In CLL, it has been observed that 

aggressive CLL patient samples have an over expression of miR-155 (Marton et al., 

2008). Conversely, this microRNA targets a number of genes belonging in the anti-
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onconet subnetworks (Figure 2A, subnetworks P-T). Such genes include, MYB, CEBPA, 

and SP1. Validation of these microRNAs with our subnetwork genes is necessary to 

relate this microRNA story in CLL with our subnetwork story in order to piece together 

the events responsible for disease progression.  

 In addition to other microRNAs, along with miR-181b, epigenetic regulation can 

also be responsible for the significant change of expression of our subnetwork. 

Epigenetics is way of regulation at the gene level where methylation and acetylation of 

histones (enzymes that spool DNA together) repress and activate gene transcription, 

respectively. These protein modifications can either compact the DNA to prevent 

transcription or “loosen” the DNA to allow transcription. In addition to the two types of 

modifications mentioned above, phosphorylation, ubiquination, and sumolyation are also 

the types of modifications to occur on histones. Epigenetic regulation is a genome-wide 

regulation, thus this form of regulation basically governs the function of the cell to its 

entirety. Each cell and tissue type has its own “epigenetic code”—its own combination of 

these modifications which then result to the differential expression of certain genes 

between cell and tissue types (Turner, 2007). In relation to CLL, there has been evidence 

of particular genes that are aberrantly methylated in comparison to normal B-cells 

(Kuang et al., 2008; Tong et al., 2010). Although these cited studies that have determined 

these epigenetic mishaps in CLL, studies determining whether these epigenetics are 

acquired over time have not been done. Studying the epigenetic changes during disease 

progression is a fruitful addition to answer why some subnetworks are aberrantly 

expressed in aggressive CLL.  
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Retrospectively, our research on SMAD2 and miR-181b roles during the transition 

from indolent to aggressive CLL have opened avenues of research that are paramount 

understanding why progression happens. These future studies may lead us to discover 

key markers of disease progression in CLL, which in turn may allow better therapeutic 

advances and early detection of progression.
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Appendix 

 

 
 
 
 
 

Figure 1: Disease phase cannot be corresponded to IGVH mutation status and other 
established prognostic markers. A) Out of a cohort of 130 patients the amount of years 
between diagnostic date (DX) and sample collection (SC), referred to as DX SC, was 

calculated per patient sample and then the proportion of patients vs. DXSC was 
graphed. Over 40% of our cohort have a DXSC of a year or less. Median amount of 
years is 1.4 years. B) With the same patients, the amount of years between time of SC 

and treatment (TX), referred to as SC TX, was also calculated. Patients with an 
SCTX greater than 4 years were considered “early stage” (E; green bars), SCTX 

equal or less than 4 years but no shorter than 1 year were considered “intermediate stage” 
(I; yellow bars), and SCTX less than 1 year were considered “late stage” (L; red bars). 
Majority of the patients in our cohort have sample collections taken at the late stage of 

CLL. Corresponding to that, we evaluated proportion of patients that have mutated IGVH 
(black bars). C) With gene expression data, we sought to calculate the number of genes 
differentially expressed between the disease phases and IGVH mutation status. Leftmost 

panel red bars show comparisons between early and late (E vs. L) disease stages and 
within the same phase (E vs. E and L vs. L). Comparisons of genes differentially 

expressed between IGVH mutation status was also evaluated (blue bar). Further analysis 
between disease phases based on categorization by IGVH status is seen in the middle 
panel (all blue bars). Rightmost panel are permutation tests performed to find false 

positives. D) Furthermore, analyses on treatment-free survival were performed. 
Graphically displayed are the p-values of the difference between low- and high-risk 
groups when using DXTX (blue bars) and SCTX (red bars) amount of years. 
Leftmost panel shows prognostic power of IGVH mutation status alone, whereas * 

denotes patients with an SCTX of less than a year and # denotes an SCTX more than 
a year. Middle panel shows prognostic power of markers established from other studies. 
Rightmost panel show the only two studies that have taken sample collection to account. 
This work has currently been submitted for publication and accredits co-authors of this 

submitted work listed under Chuang et al., 2012. 
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Figure 2: Thrity-eight subnetworks were identified to be significantly active in 
aggressive CLL. A) Thirty-eight subnetworks found to be significantly active in 

aggressive CLL. Gene expression and subnetwork-based analysis on aggressive and 
indolent CLL patients revealed 22 subnetworks are significantly upregulated (referred to 

as pro-onconets, subnetworks A-O) and 16 other subnetworks significantly 
downregulated (referred to as anti-onconets, subnetworks P-T) in aggressive CLL. 
Protein-protein interactions are labeled as nodes as DNA-protein interactions have 

directed ends. B) To observe whether protein expression also changes over time of a few 
molecules belonging in the pro-onconet subnetworks, western blot analysis was done. 
SMAD2 and CCT4 protein expression are observed at two sequential time points of 

progressive patients. Different patient sample collections are divided by the dashed lines. 
Above, “U” denotes as patients using an unmutated IGVH as “M” denotes as patients 
using a mutated IGVH. Internal control used was Beta-actin. This work has currently 
been submitted for publication and accredits co-authors of this submitted work listed 

under Chuang et al., 2012.
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(Figure 2 continued) 
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Figure 3: MicroT v3.0 Web Server (Maragkakis et al., 2009) predicts SMAD2 as a target 

of hsa-miR-181b. A) MiR-181b binds on SMAD2 3’UTR in 3 different ways in silico 
using the DIANA microT v3.0 Web Server. Binding type is the number of nucleotides 

that bind together within the first 9 nucleotides of the alignment and as well as presence 
of any G:U wobble pairs. The score for each alignment is based on their contribution of 
the total miTG score, which is a prediction score measuring the likelihood as possible 

target. Overall, SMAD2 as a target of miR-181b is pretty likely with a total miTG score 
of 9.88. Conservation value is the amount of species this sequence is conserved. B) 

Diagram of the SMAD2 subnetwork from the pro-onconets and miR-181b as a regulator 
of this pathway. This diagram was generated by the same program used in the submitted 

works of Chuang et al. in 2012. 
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Figure 4: Inverse correlation of miR-181b and SMAD2 mRNA change of expression 
over time. Each individual triangle represents different patients. Plotted are the 2-DdCt 
values of both miR-181b and SMAD2, which is a value that indicates the fold change of 
expression change over two sequential time points. Calculating these values refer to the 
methods described in Schmittgen and Livak, 2008. X-axis is for miR-181b change of 
relative expression over time as Y-axis is for SMAD2 change of relative expression over 
time. Linear regression analysis displays an inverse correlation between changes of 
expression of these genes during disease progression, as verified by an R value of -0.5 
and p-value of 0.03.  
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Figure 5: Progressive CLL cells introduced to miR-181b mimic can modulate SMAD2 
mRNA. A) To ensure appropriate concentrations of miR-181b mimic were transfected 
into CLL cells, we performed serial dilutions of miR-181b mimic starting from 20 nM. 

These dilutions were 1:100 (0.2 nM), 1:1000 (20 picoM), and 1:10,000 (2 picoM). 
Graphed are the relative expressions values of miR-181b expression for each condition. 

Relative expression values were calculated using the 2-Delta Ct method (Schmittgen & 
Livak, 2008). B) Validating that 20 picoM concentration gave a high miR-181b 

expression at physiological levels in CLL, a time course of transfection was conducted at 
6 hours and 48 hours. Relative miR-181b expression of Non-stimulated (NS) cells are the 

blue bars, cells treated with the scramble negative control mimic (Neg Ct) are the red 
bars, and cells introduced with miR-181b mimic (Mimic 181b) are the green bars. C) 

SMAD2 relative expression was also monitored at the different treatment conditions after 
24 hours of transfection. Colored bars represent the same conditions as the previous 

graphs. D) SMAD2 relative expression of patient samples chosen for transfection. This 
data was from our initial screening of SMAD2 expression via real-time qPCR. All error 
bars plotted are the standard deviations of relative expression (2-Delta Ct) of 3 samples. 
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(Figure 5 continued) 
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Figure 1S: Melting curve analysis for real-time qPCR of SMAD2 and GAPDH primers. 
Each graph represents the negative first derivative of temperature vs. fluorescence 
disassociation curve, which indicates the melting temperature of the product synthesized. 
X-axis scales for temperature as Y-axis scales for the derivative. For both SMAD2 and 
GAPDH primers, one peak from each primer set was observed at both at different 
temperatures, thus indicating different products (A and C). Non-template controls (NTC) 
for each primer set were tested per reaction plate for our experiment, which as expected, 
showed no sign of products (B and D). Products synthesized reactions were run in a 2% 
agarose gel for evaluation of amplicon size (E). Each lane, denoted as A, B, C, and D, 
represent the products made from the corresponding graphs in this figure. This verified 
that SMAD2 and GAPDH products were the correct amplicons. As evaluated with 
Ensembl, our SMAD2 and GAPDH primers would synthesize amplicons of 111 and 122 
bp of length, respectfully. Our gel results verified these lengths. 
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Figure S2: miR-181b relative expression over time in CLL. A cohort of 18 CLL patients 
were observed of their relative expression of miR-181b at two sequential time points 
before treatment (if given) via real-time qPCR. Orange bars and blue bars are expression 
levels of miR-181b at the first sample collection (SC1) and the last sample collection 
(SC2), respectively. Patients samples left of the blue line had at least a 50% decrease of 
miR-181b expression over time and/or had SC1 expression of less than or equal to 0.005. 
Right of this blue line are patient samples that have not undergone these characteristics. 
Relative expression values were calculated using the 2-deltaCt method (Schmittgen & 
Livak, 2008).  
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Figure S3: Percent change of miR-181b and SMAD2 relative expression over time. Each 
patient (N = 18) was evaluated at two different sample collections (initial sample 
collection, SC1, and last sample collections, SC2) for their expression of miR-181b and 
SMAD2 via real-time qPCR. Percent change of the expression of each gene (blue 
represents miR-181b as red represents SMAD2) over time are graphically shown here 
whereas values above bars are the percent change. Like in Figure S2, blue line stands for 
the same reason described. 
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Table 1: Pro-onconet genes targeted by miR-181b. DIANA micro v3.0 was used for this 
search.  

 
 
Table 2: Summary data of patients with “properties”. These sample collections have  
“properties”, defined as a greater than or equal to a 50 percent decrease of miR-181b 
relative expression over time.  

 
 
 
Table 3: Summary data of patients without “properties”.  
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