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ABSTRACT OF THE DISSERTATION

Inference for High-dimensional Left-censored Linear Model and High-dimensional
Precision Matrix

by

Jiaqi Guo

Doctor of Philosophy in Mathematics

University of California, San Diego, 2018

Professor Jelena Bradic, Chair

In the first two chapters, we consider inference for high-dimensional left-censored linear

models. Left-censored data arises from measurement limits in scientific devices and social

science data. We consider the problem of constructing confidence intervals for the parameters in

left-censored linear models. In Chapter 1, we present smoothed estimating equations (SEE) and

smoothed robust estimating equations(SREE) frameworks that are adaptive to censoring level and

are more robust to misspecification of the error distribution. In Chapter 2, we study inference

problem for parameters in high-dimensional left-censored quantile regression model. We modify

the quantile loss to accommodate the left-censored nature of the problem, by extending the idea

xiv



of redistribution of mass. Furthermore, applying the de-biasing technique to the initial estimator

leads to an improved estimator suitable for high-dimensional inference under left-censored

quantile regression setting. For both problems, asymptotic properties have been investigated.

In Chapter 3, we devise a projection pursuit testing procedure for generalized hypotheses

on high-dimensional precision matrix. We illustrate the procedure under specific examples of

hypotheses: testing for row sparsity, minimum signal strength, bandedness and generalized band-

edness. We demonstrate the performance of the testing procedure through extensive numerical

experiments, and present the findings for two real datasets.
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Chapter 1

Generalized M-estimation for

High-dimensional Left-censored Linear

Model

1.1 Introduction

Left-censored data is a characteristic of many datasets. In physical science applications,

observations can be censored due to limits in the measurements. For example, if a measurement

device has a value limit on the lower end, the observations are recorded with the minimum value,

even though the actual result is below the measurement range. In fact, many of the HIV studies

have to deal with difficulties due to the lower quantification and detection limits of viral load

assays [SCG+14]. In social science studies, censoring may be implied in the nonnegative nature

or defined through human actions. Economic policies such as minimum wage and minimum

transaction fee result in left-censored data, as quantities below the thresholds will never be

observed. At the same time, with advances in modern data collection, high-dimensional data

where the number of variables, p, exceeds the number of observations, n, are becoming more
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and more commonplace. HIV studies are usually complemented with observations about genetic

signature of each patient, making the problem of finding the association between the number of

viral loads and the gene expression values extremely high dimensional.

In this chapter, we present a generalized M-estimation scheme for high-dimensional left-

censored linear model, also known as Tobit I model, which is first presented in [Tob58]. We begin

with an introduction of the model and its areas of applications, along with our major contributions

in the novel methodology. Following that we summarize related work in the literature. Finally,

we present Smoothed Estimating Equations (SEE) and Smoothed Robust Estimating Equations

(SREE) frameworks, together with their theoretical properties.

1.1.1 Contributions

In general, we cannot develop p-values from the high-dimensional observations without

further restrictions on the data generating distribution. A standard way to make progress is

to assume that the model is selected consistently, for example in [ZY06, FL01], i.e., that the

regularized estimator accurately selects the correct set of features. The motivation behind model

selection consistency is that, given sparsity of the model at hand, it effectively implies that one can

disregard all of the features whose coefficients are equal to zero. An immediate consequence is that

p-values are now well defined for the small selected set of variables; see for example [BFW11].

Such results heavily rely on assumptions named “irrepresentative condition” and variants thereof,

including but not limited to the minimal signal strength, see [VDGB+09]. Thus, if we were to

know that such conditions hold, p-value construction would follow standard literature of what are

essentially low-dimensional problems. Many early applications of regularized methods effectively

impose conditions similar to the irrepresentable condition, and then rely solely on the results of

the regularized estimator. However, such restrictions can make it challenging to discover strong

but unexpected significant signals. The SEE and SREE frameworks address these challenges.

It is shown that valid p-values can be well defined for all of the features in the model through

2



development of robust, bias-corrected estimator that yields valid asymptotic inference regardless

of whether or not irrepresentable-type conditions are assumed.

Classical approaches to inference in left-censored models, include maximum likelihood

approaches as in [Ame73], consistent estimators of the asymptotic covariance matrix as in

[Pow84], bayesian methods as in [Chi92], and maximum entropy principles as in [GJP97]. These

methods perform well in applications with a small number of covariates (smaller than the sample

size), but quickly break down as the number of covariates increases.

The current framework explores the use of ideas from the high-dimensional literature to

improve the performance of these classical methods with many covariates. It is based on the

family of de-biased estimators introduced by [ZZ14], which allow for optimal inference in high

dimensions by building an estimator that corrects for the regularization bias. Bias-corrected

estimators are related to one-step M-estimators in that they improve on an initial estimator by

following a Newton-Raphson updating rule, see [Bic75]; however, they differ from the classical

one-step M-estimators in that their initial step is not consistent and direct estimator of the

asymptotic variance does not exist.

1.1.2 Related Work

From a technical point of view, our main contribution is an asymptotic normality theory

enabling statistical inference in high-dimensional Tobit I models. Results by [Pow86a], [Pow86b]

and [NP90] have established asymptotic properties in low-dimensional setting where the number

of features is fixed, while [Son11] and [ZBW+14] developed distribution free and rank-based

tests. [MvdG16] offered a penalized version of Powell’s estimator (penalized CLAD). Robustness

properties of sample-selection models in low-dimensions were studied in [ZGR16].

A growing literature, including [VdGBR+14], [ZZ14], [RSZ+15] and [RWG+16], has

considered the use of regularized algorithms for performing inference in high-dimensional

regression models. These papers use the bias correction method, and report confidence intervals

3



and p-values for testing feature significance. Meanwhile, [BCK14, BCK13], [ZKL14] and

[JM14b] use robust approaches to estimate the asymptotic variance, and then use related bias

correction step to remove the effect of regularization.

Several papers use one-step methods for eliminating the bias of regularized estimates.

In removing the bias of the regularized estimates, we follow most closely the approach of

[VdGBR+14], which proposes bias correction estimator for least squares losses, and obtain valid

confidence intervals. Other related approaches include those of [JM14b] and [NL17], which build

different variance estimates to determine a more robust bias correction step; however, these papers

only focus on least squares losses (more importantly they do not extend naively to non-smooth

or non-differentiable loss functions). [BCK14] and [ZKL14] discuss one-step approaches for

quantile inference; however, the tools and techniques heavily depend on the convexity of the

quantile loss. It is worth mentioning that the double-robust approach of [BCCW17], which

proposes a powerful inference method for quantile regression, is based on leveraging principles

of doubly-robust scores and their estimating equations.

1.1.3 Content

In Section 1.2, we introduce the smoothed estimating equations (SEE) for left-censored

linear models. In Section 1.3, we present the main result on confidence regions. In Section 1.4,

we introduce robust and left-censored Mallow’s, Schweppe’s and Hill-Ryan’s estimators and

present their theoretical analysis. Section 1.5 provides numerical results on simulated data sets.

In Section 1.6, we include discussions and conclusions for this work. We defer more general

results for confidence regions, as well as the Bahadur representation of the SEE estimator, to

Section 1.7. In addition, Section 1.8 and 1.9 consist of technical details and proofs.
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1.2 Inference in Left-censored Regression

We begin by introducing a general modeling framework followed by highlighting the diffi-

culty for directly applying existing inferential methods (such as de-biasing, score and Wald) to the

models with left-censored observations. Finally, we propose a new mechanism, named smoothed

estimating equations, to construct semi-parametric confidence regions in high-dimensions.

1.2.1 Left-censored Linear Model

We consider the problem of confidence interval construction where we observe a vector

of responses Y = (y1, . . . ,yn) and their censoring level c = (c1, . . . ,cn) together with covariates

X1, . . .Xp. The type of statistical inference under consideration is regular in the sense that it does

not require model selection consistency. A characterization of such inference is that it does not

require a uniform signal strength in the model. Since ultra-high dimensional data often display

heterogeneity, we advocate a robust confidence interval framework. We begin with the following

latent regression model:

yi = max
{

ci,xiβββ
∗+ εi

}
,

where the response Y and the censoring level c are observed, and the vector βββ
∗ ∈ Rp is unknown.

Observe that the censoring mechanism considered here is fixed and non-random. This model

is often called the semi-parametric censored regression model, whenever the distribution of the

error ε is not specified. We assume that {εi}n
i=1 are independent across i, and are independent

of xi. Matrix X = [X1, · · · ,Xp] is the n× p design matrix, where xi’s are i.i.d. random variables

centered to have variance one element-wise and maxi, j |Xi j| ≤K. When Xi j follows an unbounded

continuous distribution, we can easily use truncation arguments to satisfy the bound above; this

can be efficiently done for a wide class of sub-gaussian distributions for example. We also

denote Sβββ := { j|βββ j 6= 0} as the active set of variables in βββ and its cardinality by sβββ := |Sβββ |. We
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restrict the study to constant-censored model, also called Type-I Tobit model, where entries of the

censoring vector c are the same. Without loss of generality, we focus on the zero-censored model,

yi = max
{

0,xiβββ
∗+ εi

}
. (1.1)

1.2.2 Smoothed Estimating Equations (SEE)

Smoothed Estimating Equations framework takes a general approach to the problem of

designing robust and semi-parametric inference for left-censored linear models, and is motivated

by the principles of estimating equations. Although estimating equations have been studied in

many previous works, the smoothed estimating equations (SEE) framework presented in the

following tailors to the high-dimensional and censored scenario. In addition, the method is simple

enough to apply more generally to non-smooth loss functions. We begin by observing that the

true parameter vector βββ
∗ satisfies the population system of equations

E
[
Ψ(βββ ∗)

]
= 0. (1.2)

for some function Ψ(βββ ) often taking the form of Ψ(βββ ) = n−1
∑

n
i=1 ψi(βββ ) for a class of suitable

functions ψi. Observe that for left-censored models ε rarely, if ever, follows a specific distribution.

A particular example of interest, that allows error misspecifications, is

ψi(βββ ) = sign(yi−max{0,xiβββ})w>i (βββ ) (1.3)

where wi(βββ ) = xi 1I{xiβββ > 0}. The motivation comes from the renowned least absolute deviation

l1 loss. The advantage of the function ψi above is that it naturally bounds the effects of outliers;

large values of the residuals yi−max{0,xiβββ} are down-weighted using l1 distance. In fact, we

work with Ψ resulting from this specific choice of ψi function later in the analysis. Nevertheless,

6



the SEE framework has a much broader spectrum, see Remark 1 below. Other functions Ψ can be

applied as well. Another example of a function Ψ that has semi-parametric advantage is a variant

of a trimmed least squares loss, where the vanilla quadratic loss is multiplied by an indicator

function as follows 1I{yi− xiβββ > 0,xiβββ > 0}.

However, with the appropriate choice of Ψ, solving estimating equations Ψ(βββ ) = 0,

although practically desirable, still has several drawbacks, even in low-dimensional setting. In

particular, for semi-parametric estimation and inference in model (1.1), the function Ψ is non-

monotone as the loss is non-differentiable and non-convex. Hence, the system above has multiple

roots resulting in an estimator that is ill-posed, and additionally presents significant theoretical

challenges. Instead of solving the system (1.2) directly, we augment it by observing that, for a

suitable choice of the matrix ϒϒϒ ∈ Rp×p, βββ
∗ also satisfies the system of equations

E[Ψ(βββ ∗)]+ϒϒϒ[βββ ∗−βββ ] = 0. (1.4)

For certain choices of the matrix ϒϒϒ, we aim to avoid both non-convexity and huge dimensionality

of the system of equations (1.2). To avoid difficulties with non-smooth functions Ψ, we propose

to consider a matrix ϒϒϒ = ϒϒϒ(βββ ∗), where the matrix ϒϒϒ(βββ ∗) is defined as

ϒϒϒ(βββ ) = EX
[
∇βββ S(βββ )

]
,

for a smoothed vector S(βββ ) defined as

S(βββ ) =
∫

∞

−∞

Φ(βββ ,x) fε(x)dx.

The unknown error distribution smooths the function Ψ, and acts as a kernel smoother function. In

the above display Ψ(βββ ∗) =Φ(βββ ∗,ε), for a suitable function Φ= n−1
∑

n
i=1 φi and φi :Rp×R→R,

whereas fε denotes the density of the model error (1.1). Additionally, EX denotes expectation
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with respect to the random measure generated by the vectors X1, . . . ,Xn.

Following Ψ as in (1.3), the respective smoothed score function that we will be working

with is

S(βββ ∗) = n−1
n

∑
i=1

[
1−2Pε

(
yi− xiβββ

∗ ≤ 0
)](

wi(βββ
∗)
)>

, (1.5)

where Pε denotes the probability measure generated by the errors ε in (1.1). Smoothed score

typically depends on the unknown density of the error terms and the unknown parameter of

interest. For practical purposes, we will propose a suitable estimate of the function (1.5) –

for homoscedastic errors εi, the unknown cumulative distribution function above can easily be

estimated using empirical distribution function. With this choice of the smoothed loss, we obtain

an information matrix as follows ∇
βββ
∗S(βββ ∗) = 2 fε(0)n−1

∑
n
i=1 wi(βββ

∗)>wi(βββ
∗). We then proceed

to define the matrix ϒϒϒ as

ϒϒϒ(βββ ∗) = 2 fε(0)EX

[
n−1

n

∑
i=1

wi(βββ
∗)>wi(βββ

∗)

]
:= 2 fε(0)ΣΣΣ(βββ

∗). (1.6)

We note that the matrix above is inspired by the linearization of non-differentiable losses,

and is in particular very different from the Hessian or the Jacobian matrix typically employed for

inference. Throughout the text, we denote the inverse of ΣΣΣ(βββ ∗) as ΣΣΣ
−1(βββ ∗), which is assumed

to exist. In addition, we have Σ̂ΣΣ(βββ ) := n−1
∑

n
i=1 wi(βββ )

>wi(βββ ). To infer the parameter βββ
∗, we

need to efficiently solve the SEE equation (1.4). We can observe that solving SEE equations (1.4)

requires inverting the matrix ϒϒϒ(βββ ∗), as we are looking for a solution βββ that satisfies

ϒϒϒ(βββ ∗)βββ = ϒϒϒ(βββ ∗)βββ ∗+EΨ(βββ ∗).

For low-dimensional problems, with p� n, this can be done efficiently by considering an initial
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estimate β̂ββ and a sample plug-in estimate ϒϒϒ(β̂ββ ) of ϒϒϒ(βββ ∗),

ϒϒϒ(β̂ββ ) = 2n−1 f̂ε(0)
n

∑
i=1

wi(β̂ββ )
>wi(β̂ββ ) (1.7)

and a sample estimate of EΨ(βββ ∗), denoted with Ψ(β̂ββ ) and a suitable density estimate f̂ε(0).

However, when p� n, this is highly inefficient. Instead, it is better to directly estimate ϒϒϒ
−1(βββ ∗)=

ΣΣΣ
−1(βββ ∗)/2 fε(0). Let ΩΩΩ(β̂ββ ) be an estimate of ΣΣΣ

−1(βββ ∗) (see Section 1.2.3 for discussion). Then,

we proceed to solve SEE equations approximately, by defining the SEE estimator as

β̃ββ = β̂ββ +ΩΩΩ(β̂ββ )Ψ(β̂ββ )/2 f̂ε(0).

Remark 1. The proposed SEE can be viewed as a high-dimensional extension of inference from

estimating equations. Although a left-censored linear model is considered, the proposed SEE

methodology applies more broadly. For example, this framework includes loss functions based

on ranks or non-convex loss functions for the fully observed data. For instance, the method in

[VdGBR+14] is based on inverting KKT conditions might not directly apply for the non-convex

loss functions (e.g., Cauchy loss) or rank loss functions (e.g., log-rank loss). Recent methods

of [NNLL15] do not apply to non-differentiable estimating equations (see Section 2.1 where a

twice-differentiable assumption is imposed).

1.2.3 Estimation of the Scale in Left-Censored Models

The methodology for estimating each row of the matrix ΣΣΣ
−1(βββ ∗) is introduced in this

section. For further analysis, it is useful to define W (βββ ) as a matrix composed of row vectors

wi(βββ ); W (βββ ) = A(βββ )X , where A(βββ ) = diag(1I(Xβββ > 0)) ∈ Rn ×Rn. The methodology is
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motivated by the following observation:

τ
−2
j ΓΓΓ( j)(βββ

∗)>ΣΣΣ(βββ ∗) = e j,

where ΓΓΓ( j)(βββ
∗) =

[
−γγγ∗( j)(βββ

∗)1, · · · ,−γγγ∗( j)(βββ
∗) j−1,1,−γγγ∗( j)(βββ

∗) j+1, · · · ,−γγγ∗( j)(βββ
∗)p

]
and

γγγ
∗
( j)(βββ ) := argmin

γγγ∈Rp−1
E
∥∥Wj(βββ )−W− j(βββ )γγγ

∥∥2
2 /n

as well as τ2
j := n−1

E

∥∥∥Wj(βββ
∗)−W− j(βββ

∗)γγγ∗( j)(βββ
∗)
∥∥∥2

2
. This motivates us to consider the follow-

ing as an estimator for the inverse ΣΣΣ
−1(βββ ∗). Let γ̂γγ( j)(β̂ββ ) and τ̂2

j denote the estimators of γγγ∗( j)(βββ
∗)

and τ2
j respectively. We will show that a simple plug-in Lasso type estimator is sufficiently good

for construction of confidence intervals. We propose to estimate γγγ∗( j)(βββ
∗), with the following l1

penalized plug-in least squares regression,

γ̂γγ( j)(β̂ββ ) = argmin
γγγ∈Rp−1

{
n−1

∥∥∥Wj(β̂ββ )−W− j(β̂ββ )γγγ
∥∥∥2

2
+2λ j‖γγγ‖1

}
. (1.8)

Notice that this regression does not trivially share all the nice properties of the penalized least

squares, as in this case the rows of the design matrix are not independent and identically distributed.

An estimate of τ2
j can then be defined through the estimate of the residuals ζζζ

∗
j := Wj(βββ

∗)−

W− j(βββ
∗)γγγ∗( j)(βββ

∗). Throughout this paper we assume that ζζζ
∗
j has sub-exponential distribution,

and we denote ‖ΓΓΓ( j)(βββ
∗)‖0 = s j for j = 1, · · · , p, where ‖ · ‖0 denotes the number of nonzero

entries in the vector. We propose the plug-in estimate for ζζζ
∗
j as ζ̂ζζ j =Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ ),

and a bias corrected estimate of τ2
j defined as

τ̂
2
j (λ j) = n−1

ζ̂ζζ
>
j ζ̂ζζ j +λ j

∥∥∥γ̂γγ( j)(β̂ββ )
∥∥∥

1
. (1.9)
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Observe that the naive estimate n−1ζ̂ζζ
>
j ζ̂ζζ j does not suffice due to the bias carried over by the

penalized estimate γ̂γγ( j)(β̂ββ ). Lastly, the matrix estimate of ΣΣΣ
−1(βββ ∗), much in the same spirit as

[ZZ14] is defined with

ΩΩΩ j j(β̂ββ ) = τ̂
−2
j , ΩΩΩ j,− j(β̂ββ ) =−τ̂

−2
j γ̂γγ( j)(β̂ββ ), j = 1, . . . , p. (1.10)

The proposed scale estimate can be considered as the censoring adaptive extension of the

graphical lasso estimate of [VdGBR+14].

1.2.4 Density Estimation

Whenever the model considered is homoscedastic, i.e., εi are identically distributed with

a density function fε (denoted whenever possible with f ), a novel density estimator designed to

be adaptive to the left-censoring in the observations is used. For a positive bandwidth sequence

ĥn, we define the density estimator of fε(0) as

f̂ (0) = ĥ−1
n

n

∑
i=1

1I(xiβ̂ββ > 0)1I(0≤ yi− xiβ̂ββ ≤ ĥn)

∑
n
i=1 1I(xiβ̂ββ > 0)

. (1.11)

Of course, more elaborate smoothing schemes for the estimation of f (0) could be devised for this

problem, but there seems to be no a priori reason to prefer an alternate estimator.

Remark 2. We will show that a choice of the bandwidth sequence satisfying

h−1
n = O(

√
n/(s log p))

suffices. However, we also propose an adaptive choice of the bandwidth sequence and consider
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ĥn = O(1), such that with ui := yi− xiβ̂ββ ,

ĥn = c
{

s
β̂ββ

log p/n
}−1/3

median
{

ui : ui >
√

log p/n, xiβ̂ββ > 0
}
,

for a constant c > 0. Here, s
β̂ββ

denotes the size of the estimated set of the non-zero elements of

the initial estimator β̂ββ , i.e., s
β̂ββ
= ‖β̂ββ‖0.

1.2.5 Confidence Intervals

Following the SEE principles, the solution to the equations is defined as an estimator,

β̃ββ = β̂ββ +ΩΩΩ(β̂ββ )Ψ(β̂ββ )/2 f̂ (0). (1.12)

For the presentation of our coverage rates of the confidence interval (1.15) and (1.16), we start

with the Bahadur representation. Lemmas 1 - 6 in Section 1.9 enable us to establish the following

decomposition for the introduced one-step estimator β̃ββ ,

√
n
(

β̃ββ −βββ
∗
)
=

1
2 f (0)

ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)+∆, (1.13)

where the vector ∆ represents the residual component. We show that the residual vector’s size is

small uniformly and that the leading term is asymptotically normal. The theoretical guarantees

required from an initial estimator β̂ββ is presented below.

Condition (I): An initial estimate β̂ββ is such that the following three properties hold.

There exists a sequence of positive numbers rn and dn such that rn,dn → 0 when n→ ∞ and

‖β̂ββ −βββ
∗‖2 = OP(rn), ‖β̂ββ −βββ

∗‖1 = OP(dn) and ‖β̂ββ‖0 = t = OP(sβββ
∗).

One particular choice of such estimator can be l1 penalized CLAD estimator studied in
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[MvdG16]

β̂ββ := argmin
βββ∈B

{
1
n
‖Y −max{0,Xβββ}‖1 +λ‖βββ‖1

}
, (1.14)

which satisfies the Condition (I) with dn = s
βββ
∗
√

log p/n, r2
n = s

βββ
∗ log p/n and ‖β̂ββ‖0 = OP(sβββ

∗×

λmax(X>X)/n), under the suitable conditions. However, other choices are also allowed. It is

worth noting that the above condition does not assume model selection consistency of the initial

estimator and the methodology does not rely on having a unique solution to the problem (1.14);

any local minima suffices as long as the prediction error is bounded accordingly.

With the normality result of the proposed estimator β̃ββ (as shown in Theorem 10, Section

1.7), we are now ready to present the confidence intervals. Fix α to be in the interval (0,1),

and let zα denote the (1−α)th standard normal percentile point. Let c be a fixed vector in Rp.

Based on the results of Section 1.7, the standard studentized approach leads to a (1−2α)100%

confidence interval for c>βββ
∗ of the form

In =

(
c>β̃ββ −an,c>β̃ββ +an

)
, (1.15)

where β̃ββ is defined in (1.12) and

an = zα

√
c>ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )c

/
2
√

n f̂ (0) (1.16)

with ΩΩΩ(β̂ββ ) as defined in (1.10), Σ̂ΣΣ(β̂ββ ) as defined in (1.7) and f̂ (0) as defined in (1.11). In the

above, for c = e j, the above confidence interval provides a coordinate-wise confidence interval

for each β j, 1 ≤ j ≤ p. Notice that the above confidence interval is robust in a sense that it is

asymptotically valid irrespective of the distribution of the error term ε .
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1.3 High-dimensional Asymptotics

Within this section, we present the theoretical results using a specific initial estimator.

However, the methodology has a much broader spectrum of applications. More details on the

preliminary theoretical results, as well as more general results than the ones presented below, can

be found in Section 1.7 in the later text. We begin with a set of very mild model error assumptions.

1.3.1 Theoretical Background

There has been considerable work in understanding the theoretical properties of high-

dimensional one-step bias correction estimators. The convergence and consistency properties

of least squares based methods have been studied by, among others, [BRT09], [MY09] and

[NYWR09]. Meanwhile, their sampling variability has been analyzed by [VdGBR+14]. However,

to the best of our knowledge, Theorem 1 is the first result establishing conditions under which

one-step estimators are asymptotically unbiased and normal in high-dimensional Tobit I models.

Probably the closest existing result is that of [BCK14] and [ZKL14], which showed that

high-dimensional quantile models can be successfully de-biased for the purpose of confidence

intervals construction. However, it is worth noting that their procedures do not adapt to censoring,

and their de-biased methods cannot be applied to fixed, left-censored models. Observe that

the optimal Hessian matrix we have developed depends on the level of censoring and an initial

estimate, whereas procedures in the above mentioned work do not: the post-lasso estimation

in [BCK14] relies on the score vector being a convex function of unknown parameters, and the

Hessian matrix in [ZKL14] depends merely on features. However, under convexity condition,

left-censored models cannot be solved non-parametrically (without knowing the density function

of the model error). Of course a surrogate score vector may be developed, but then it remains

unclear if efficient attainment of optimal bias-variance decomposition can be achieved. Although

the methods of [BCK14] and [ZKL14] may appear qualitatively similar to the current work in the
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common choice of LAD loss, they cannot be used for valid inference in left-censored models.

The non-smooth losses have been studied extensively by [BCK13] as well as [BCCW17]

who showed that rates slower than that of smooth counterparts should be expected for many

inferential problems; in particular rates are slower than those needed for estimation alone.

However, it is important to note that in all approaches the de-biasing step consists of a non-

smooth score and smooth variance estimate. In the current setting, however, we have non-smooth

score as well as non-smooth Hessian matrix (treated as parameters of the unknown). We identify

that such departure in structure of the problem requires new concentration of measure as well as

contracting principles regarding indicator functions: a step not needed in the mentioned literature.

Even in low dimensions, such results are of independent interest, as they provide a unique

Bahadur representation for left-censored semi-parametric method. Instead of using projections

for Hessian estimation, inference for Tobit models is usually performed in terms of bootstrap

sampling. High-dimensional inference with bootstrap, however, have proven to be unreliable

and inconsistent (unless done after bias correction step). As observed by [KP16], estimators

resulting from direct bootstrap in high dimensions can exhibit surprising properties even in simple

situations.

Finally, an interesting question for further theoretical study is to understand the optimal

scaling of the sparsity for Tobit models. Size of the model sparsity can be treated as a robustness

parameter. It would be of considerable interest to develop methods that adapt to the size of the

model sparsity and achieve uniform rates of testing.

1.3.2 Main Results

Condition (E): The error distribution F has median 0, and is everywhere continuously dif-

ferentiable, with density f , which is bounded above, fmax < ∞, and below, fmin > 0. Furthermore,

f (·) is also Lipschitz continuous, | f (t1)− f (t2)| ≤ L0 · |t1− t2|, for some L0 > 0. Define function

Gi(z,βββ ,r) =E [1I(|xiβββ | ≤ ‖xi‖ · z)‖xi‖r]. In addition, Gi(z,βββ ,r)≤K1 ·z, if 0≤ z< ξ , r = 0,1,2,
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for some positive K1 and ξ such that ‖βββ −βββ
∗‖1 ≤ ξ .

We require the error density function to be with bounded first derivative. This excludes

densities with unbounded first moment, but includes a class of distributions much larger than

the Gaussian. Moreover, this assumption implies that xiβββ are distributed much like the error εi,

for βββ close to βββ
∗ and xiβββ close to the censoring level 0. Last condition in particular implies

that P(|xiβββ | ≤ z) = o(z) for all βββ close to βββ
∗. This condition does not exclude deterministic

components of the vector xi, nor components which have discrete distributions; only the linear

combination xiβββ must have a Lipschitz continuous distribution function near zero. Therefore,

implying P(|xiβββ
∗|= 0) = 0. For fixed designs, this condition implies |xiβββ

∗| ≥ k0, for k0 > 0.

Apart from the condition on the error distribution, we need conditions on the censoring

level of the model (1.1) for further analysis.

Condition (C): There exist constants C2 > 0 and φ0 > 0, such that for all βββ satisfying

‖(βββ −βββ
∗)SC

βββ
∗
‖1 ≤ 3‖(βββ −βββ

∗)S
βββ
∗‖1,

∥∥max{0,Xβββ
∗}−max{0,Xβββ}

∥∥2
2 ≥C2‖X(βββ −βββ

∗)‖2
2, and

nφ 2
0 ‖(βββ −βββ

∗)S
βββ
∗‖2

1 ≤ (βββ −βββ
∗)>E[X>X ](βββ −βββ

∗)s
βββ
∗. Additionally, vn = λmin(ΣΣΣ(βββ

∗)) is also

strictly positive, with 1/vn = O(1) and assume max
j

ΣΣΣ j j(βββ
∗) = O(1).

The censoring level ci has a direct influence on the constant C2. In general, higher values

for ci increase the number of censored data. The bounds for the coverage probability (see Theorem

1 and Theorem 6) do not depend on the censoring level ci. The fact that the censoring level does

not directly appear in the results should be understood in the sense that the percentage of the

censored data is important, not the censoring level. Note that the compatibility factor φ0 does not

impose any restrictions on the censoring of the model, i.e., it is the same as the one introduced

for linear models [BRT09]. Observe that this condition does not impose distribution of W to be

Gaussian or continuous. However, it requires that ΣΣΣ(βββ ∗), the population covariance matrix, is at

least invertible, a condition unavoidable even in linear models.

In order to establish theoretical results on the improved one-step estimator, we also need

to control the scale estimator in the precision matrix estimation, which requires the following
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condition. The condition is not uncommon, and can also be found in [VdGBR+14, BCK14].

Condition (ΓΓΓ): Parameters γγγ∗( j)(βββ
∗) for all j = 1, . . . , p are bounded and such that∣∣∣{k : γγγ∗( j),k(βββ

∗) 6= 0}
∣∣∣ ≤ s j for some s j ≤ n. Function γγγ∗( j)(βββ ) is Lipschitz continuous for all βββ

satisfying condition (C).

With the conditions above, we present our main result. More generalized results for initial

estimators satisfying Condition (I) are presented in Theorem 10 and 11 in Section 1.7.

Theorem 1. Let β̂ββ be defined as in (1.14) with a choice of the tuning parameter

λ = A2K
(√

2log(2p)/n+
√

log p/n
)

for a constant A2 > 16 and independent of n and p. Assume that s̄(log p)1/2/n1/4 = O(1), for

s̄ = s
βββ
∗ ∨ sΩ with sΩ = max j s j. Suppose that conditions (E),(C) and (ΓΓΓ) hold. Moreover, let

λ j =C
√

log p/n for a constant C > 1.

(i) Then, for j = 1, . . . , p

∥∥∥γ̂γγ( j)(β̂ββ )− γγγ
∗
( j)(βββ

∗)
∥∥∥

1
= OP

(
1

φ 2
0C2

s j
√

log p/n
)
. (1.17)

(ii) For j = 1, . . . , p and ζζζ
∗ and ζ̂ζζ

∣∣∣∣ζ̂ζζ>j ζ̂ζζ j/n−Eζζζ
∗
j
>

ζζζ
∗
j/n
∣∣∣∣= OP

(
K2s j

√
log(p∨n)/n

)
.

(iii) Let ΩΩΩ(β̂ββ ) defined in (1.10). Then, for τ̂2
j as in (1.9), we have τ̂

−2
j = OP(1). Moreover,

∥∥∥ΩΩΩ(β̂ββ ) j−ΣΣΣ
−1(βββ ∗) j

∥∥∥
1
= OP

(
K2s3/2

j

√
log(p∨n)/n

)
.

(iv) Let β̃ββ be defined as in (1.12) with ΩΩΩ(β̂ββ ) defined in (1.10), Σ̂ΣΣ(β̂ββ ) defined in (1.7) and f̂ (0)
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as defined in (1.11). Then, for s̄ = s
βββ
∗ ∨ sΩ with sΩ = max j s j, the size of the residual term

in (1.13) is

‖∆‖∞ = OP

(
s̄2 log(p∨n)

n1/2

∨ s
βββ
∗(log(p∨n))3/4

n1/4

)
.

(v) Assume that s̄(log p)3/4/n1/4 = O(1), for s̄ = s
βββ
∗ ∨ sΩ with sΩ = max j s j. Let In and an

be defined in (1.15) and (1.16). Then, for all vectors c = e j and any j ∈ {1, . . . , p}, when

s̄,n, p→ ∞ we have

Pβββ

(
c>βββ

∗ ∈ In

)
= 1−2α.

A few comments are in order. Part (i) of Theorem 1 implies that the proposed estimator

and confidence intervals have distinct limiting behaviors with varying magnitude of the censoring

level. In particular, (i) implies that
∥∥∥γ̂γγ( j)(β̂ββ )− γγγ∗( j)(βββ

∗)
∥∥∥

1
inherits the rates available for fully

observed linear models whenever C2 is bounded away from zero. Additionally, if all data is

censored, i.e., whenever C2 converges to zero at a rate faster than λ j, the estimation error will

explode. These results agree with the asymptotic results on consistency in left-censored and

low-dimensional models; however, they provide additional details through the exact rates of

censoring that is allowed. For example,
∥∥∥β̂ββ −βββ

∗
∥∥∥

2
< n−1/4 is sufficient for optimal inferential

rates, and the asymptotic result above matches those of fully observed linear models. In this

sense, our results are also efficient.

Part (ii) provides easy to verify sufficient conditions for the consistency of a class of

semi-parametric estimators of the precision matrix for censored regression models. This result

highlights specific rate of convergence (see Theorem 1 for more details). Part (iii) establishes

properties of the graphical lasso estimate with data matrix that depends on β̂ββ . In comparison

to linear models, the established rate is slower for a factor of s j, whereas in comparison to the

18



results of Section 3 of [VdGBR+14] (see Theorem 3.2 therein), we avoid a strict condition of

bounded parameter spaces.

Observe that Part (iv) is a special case of general theory presented in the Supplementary

document. There we show that a large class of initial estimates suffices.

For the case of low-dimensional problems with s = O(1) and p = O(1), we observe that

whenever the initial estimator of rate rn, is in the order of n−ε , for a small constant ε > 0, then

√
n
(

β̃ββ −βββ
∗
)
=U +∆. (1.18)

with

U =
1

2 f (0)
ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)

and ‖∆‖∞ = OP(n−2ε). In particular, for a consistent initial estimator, i.e. rn = O(n−1/2) we

obtain that ‖∆‖∞ = OP(n−1/4).

For high-dimensional problems with s and p growing with n, for all initial estimators of

the order rn such that rn = O(sa
βββ
∗(log p)b/nc) and t = O(s

βββ
∗) we obtain that

‖∆‖∞ = OP

(
s̄(2a+3)/4(log p)(1+b)/2/nc/2

)

whenever s̄(log p)1/4/n1/4 = O(1), where s̄ = s∨ sΩ. Classical results on inference for left-

censored data, with p� n, only imply that the error rates of the confidence interval is OP(1);

instead, we obtain a precise characterization of the residual term size.

Remark 3. In particular, for the special case where the initial estimate is penalized CLAD

estimate, we show

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

]− 1
2

j j
U j

d−−−−−→
n,p,s̄→∞

N

(
0,

1
4 f (0)2

)
.
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We obtain that the confidence interval In is asymptotically valid and that the coverage errors are

of the order O
(

s̄(log p)3/4/n1/4
)

, whenever s̄(log p)1/4/n1/4 = O(1).

Moreover, with p� n the rates above match the optimal rates of inference for the absolute

deviation loss (see e.g. [ZP96]), indicating that our estimator is asymptotically efficient in the

sense that the censoring asymptotically disappears even for p≥ n.

The condition s̄4 log3 p� n is also similar to the results in [BCK13] obtained for p� n.

While it is unclear the orthogonal moments approach therein is applicable for fixed-censored

model, the rate condition required for quantile procedure is s3 log3(p)� n, for known density

and s4 log4(p)� n, for unknown density ( see Comment 3.3 and equation (ii) therein).

Lastly, observe that the result above is robust in the sense that it holds regardless of the

particular distribution of the model error (1.1), and holds in a uniform sense. Thus, the confidence

intervals are honest. In particular, the confidence interval In does not suffer from the problems

arising from the non–uniqueness of βββ
∗ (see Theorem 11 in Section 1.7).

1.4 Left-censored Mallow’s, Schweppe’s and Hill-Ryan’s

One-step Estimators

Statistical models are seldom believed to be complete descriptions of how real data are

generated; rather, the model is an approximation that is useful, if it captures essential features

of the data. Good robust methods perform well, even if the data deviates from the theoretical

distributional assumptions. The best known example of this behavior is the outlier resistance

and transformation invariance of the median. Several authors have proposed one-step and k-step

estimators to combine local and global stability, as well as a degree of efficiency under target linear

model [Bic75]. There have been considerable challenges in developing good robust methods for

more general problems.
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We present here a family of robust generalized M-estimators (GM estimators) that stabilize

estimation in the presence of “unusual” design or model error distributions. Observe that

(1.1) rarely follows distribution with light tail. Namely, model (1.1) can be reparametrized

as yi = zi(βββ
∗)βββ ∗+ξi, where zi(βββ

∗) = xi 1I{xiβββ
∗+εi ≥ 0} and ξi = εi 1I{xiβββ

∗+εi ≥ 0}. Hence ξi

will often have skewed distribution with heavier tails, and it is in this regard important to design

estimators that are robust. We introduce Mallow’s, Schweppe’s and Hill-Ryan’s estimators for

left-censored models.

1.4.1 Smoothed Robust Estimating Equations (SREE)

In this section, we propose a robust generalized population estimating equations

E[Ψr(βββ )] = 0 (1.19)

with Ψr = n−1
∑

n
i=1 ψr

i (βββ ) and

ψ
r
i (βββ ) =−n−1

n

∑
i=1

qiw>i (βββ ) ψ

(
vi
(
yi−max{0,xiβββ}

))
, (1.20)

where ψ is an odd, nondecreasing and bounded function. Throughout we assume that the function

ψ either has finitely many jumps, or is differentiable with bounded first derivative. Notice that

when qi = 1 and vi = 1, with ψ being the sign function, we have ψr
i = ψi of previous section.

Moreover, observe that for the weight functions qi = q(xi) and vi = v(xi), both functions of

Rp→ R+, the true parameter vector βββ
∗ satisfies the robust population system of equations above.

Appropriate weight functions q and v are chosen for particular efficiency considerations. Points

with high leverage are considered “dangerous”, and should be downweighted by the appropriate

choice of the weights vi. Additionally, if the design has “unusual” points, the weights qi’s serve

to downweight their effects in the final estimator, hence making generalized M-estimators robust

21



to the outliers in the model error and the model design.

We augment the system (1.19) similarly as before, and consider the system of equations

E[Ψr(βββ ∗)]+ϒϒϒ
r[βββ ∗−βββ ] = 0, (1.21)

for a suitable choice of the robust matrix ϒϒϒ
r ∈ Rp×p. Ideally, most efficient estimation can be

achieved, when the matrix ϒϒϒ
r is close to the matrix that linearizes the smoothed score function of

the robust equations (1.19).

To avoid difficulties with non-smoothness of ψ , we propose to work with a matrix ϒϒϒ
r

that is smooth enough and robust simultaneously. To that end, observe Ψr(βββ ∗) = Φr(βββ ∗,ε) for a

suitable function Φr = n−1
∑

n
i=1 φ r

i and φ r
i : Rp×R→ R. We consider a smoothed version of the

Hessian matrix, and work with ϒϒϒ
r = ϒϒϒ

r(βββ ∗) for

ϒϒϒ
r(βββ ∗) = EX

[
∇

βββ
∗

∫
∞

−∞

Φ
r(βββ ∗,ε) fε(x)dx

]
,

where fε denotes the density of the model error (1.1). To infer the parameter βββ
∗, we adapt a

one-step approach in solving the empirical counterpart of the population equations above. The

empirical equations are named as Smoothed Robust Estimating Equations or SREE in short. For

a preliminary estimate, we solve an approximation of the robust system of equations above, and

search for the βββ that solves

Ψ
r(β̂ββ )+ϒϒϒ

r(β̂ββ )(β̂ββ −βββ ) = 0.

The particular form of the matrix ϒϒϒ
r(βββ ∗) depends on the choice of the weight functions q

and v and the function ψ . In particular, for the left-censored model (1.1),

∇
βββ
∗Eε [Ψ

r(βββ ∗)] = n−1
n

∑
i=1

qi∇βββ
∗Eε

[
ψ
(
vi(yi−max{0,xiβββ

∗})
)]

, (1.22)
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leads to the following form

ϒϒϒ
r(βββ ∗) = EX

[
n−1

n

∑
i=1

qiviψ
′(viri(βββ

∗))x>i wi(βββ
∗)

]
,

whenever the function ψ is differentiable. We denote ψ ′ (viri(βββ )) := ∂ψ (viri(βββ ))/∂βββ , where

ri(βββ ) := yi−max{0,xiβββ}). In case of non-smooth ψ , ψ ′ should be interpreted as g′= ∂g/∂βββ , for

g(βββ ) = Eε [ψ(viri(βββ ))]. For example, if ψ(·) = sign(·), then g(βββ ) is equal to 1−2P(ri(βββ )≤ 0)

and g′(βββ ∗) = 2 fεi(0)1I(xiβββ
∗ > 0).

1.4.2 Left-censored Mallow’s, Hill-Ryan’s and Schweppe’s Estimator

Here we provide specific definitions of new robust one-step estimates. We begin by

defining a robust estimate of the precision matrix, i.e., {ϒϒϒr}−1(βββ ∗). We design a robust estimator

that preserves the “downweight” functions q and v as to stabilize the estimation in the presence

of contaminated observations. For further analysis, it is useful to define the matrix W̃ (βββ ) =

Q1/2W (βββ ) and

Q = diag(q◦d) ∈ Rn×n,

where ◦ denotes entry-wise multiplication, also known as the Hadamard product, with q =

[q(x1),q(x2), · · · ,q(xn)]
> ∈ Rn and

d =

[
ψ ′(v1r1(βββ

∗)), ψ ′(v2r2(βββ
∗)), · · · , ψ ′(vnrn(βββ

∗))

]>
∈ Rn

for ri(βββ
∗) = yi−max{0,xiβββ

∗}. When function ψ does not have first derivative, we replace

ψ ′(viri(βββ
∗)) with n−1

∑
n
i=1[Eψ(viri(βββ

∗))]′. With this notation, we have

W̃j(βββ
∗) = Q1/2A(βββ ∗)X j,
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and ϒϒϒ
r(βββ ∗) = n−1E

[
W̃ (βββ ∗)>W̃ (βββ ∗)

]
takes the form of a weighted covariance matrix. Hence, to

estimate the inverse {ϒϒϒr}−1(βββ ∗), we project columns onto the space spanned by the remaining

columns. For j = 1, . . . , p, we define the vector θ̃θθ ( j)(βββ ) as follows,

θ̃θθ ( j)(βββ ) = argmin
θθθ∈Rp−1

E
∥∥∥W̃j(βββ )−W̃− j(βββ )θθθ

∥∥∥2

2
/n. (1.23)

Also, we assume the vector θ̃θθ ( j)(βββ
∗) is sparse with s̃ j := ‖θ̃θθ ( j)(βββ

∗)‖0 ≤ sΩ. Thus, we propose

the following as a robust estimate of the scale

Ω̃ΩΩ j j(β̂ββ ) = J̃
−2
j , Ω̃ΩΩ j,− j(β̂ββ ) =−J̃

−2
j θ̃θθ ( j)(β̂ββ ), (1.24)

with

θ̃θθ ( j)(β̂ββ ) = argmin
θθθ∈Rp−1

{
n−1

∥∥∥W̃j(β̂ββ )−W̃− j(β̂ββ )θθθ
∥∥∥2

2
+2λ j‖θθθ‖1

}
,

and the normalizing factor

J̃
2
j = n−1

∥∥∥W̃j(β̂ββ )−W̃− j(β̂ββ )θ̃θθ ( j)(β̂ββ )
∥∥∥2

2
+λ j‖θ̃θθ ( j)(β̂ββ )‖1.

Remark 4. Estimator (1.24) is a high-dimensional extension of Hampel’s ideas of approximating

the inverse of the Hessian matrix in a robust way, by allowing data specific weights to trim

down the effects of the outliers. Such weights can be stabilizing estimation in the presence of

high proportion of censoring.[Hil77] compared the efficiency of the Mallow’s and Schweppe’s

estimators to several others and found that they dominate in the case of linear models in low-

dimensions.
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Lastly, we arrive at a class of robust one-step generalized M-estimators,

β̌ββ = β̂ββ + Ω̃ΩΩ(β̂ββ )

(
n−1

n

∑
i=1

qiw>i (β̂ββ ) ψ

(
vi
(
yi−max{0,xiβ̂ββ}

)))
. (1.25)

We propose a one-step left-censored Mallow’s estimator for left-censored high-

dimensional regression by setting the weights to be vi = 1, and

qi = min

{
1,bα/2

((
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)
ΩΩΩŜ,Ŝ(β̂ββ )

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)>)−α/2
}
,

for constants b > 0 and α ≥ 1, with

w̄Ŝ(β̂ββ ) = n−1
n

∑
i=1

wi,Ŝ(β̂ββ )

and Ŝ = { j : β̂ββ j 6= 0}. Extending the work of [CH93], it is easy to see that Mallow’s one-step

estimator with α = 1 and b = χ2
ŝ,0.95 quantile of chi-squared distribution with ŝ = |Ŝ| improves a

breakdown point of the initial estimator to nearly 0.5, by providing local stability of the precision

matrix estimate.

Similarly, the one-step left-censored Hill-Ryan estimator is defined with

vi = qi = 1/
∥∥∥ΩΩΩŜ,Ŝ(β̂ββ )(wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ ))

∥∥∥
2
, (1.26)

and the one-step left-censored Schweppe’s estimator with the same qi as the left hand side of

(1.26), but vi = 1/qi. Note that these are not the only choices of Hill-Ryan and Schweppe’s type

estimators.

Another family of one-step estimators defined for Tobit-I models, for which we can use

the framework above, is the class of adaptive Huber’s one-step estimators, where vi = 1 and

qi = 1, and the function ψ takes the form of a first order derivative of a Huber loss function.
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However, it is unclear what the benefit of such loss would be for left-censored data, as the nice

convexity property of traditional least squares is no longer available regardless.

The purpose of this paper is to explore the behavior of the different types of one-step

estimators for left-censored regression model through studying their higher order asymptotic

properties. This provides a unified synthesis of results as well as new results and insights. We

will show that the effect of the initial estimate persists asymptotically, only if it is of least squares

type. We also show that the one-step robust estimate has fast convergence rates, and leads to a

class of robust confidence intervals and tests.

1.4.3 Theoretical Results

Similar to the concise version of Bahadur representation presented in (1.13) for the

standard one-step estimator with qi = 1 and vi = 1, we also have the expression for robust

generalized M-estimator,

√
n
(

β̆ββ −βββ
∗
)
=Ur+∆

r, (1.27)

but now with the leading term of a different form

Ur =
1

2 f (0)
{ΣΣΣr}−1(βββ ∗)

1√
n

n

∑
i=1

qiψ

(
vi

(
yi−max{0,xiβββ

∗}
))

(wi(βββ
∗))>.

Next, we show that the leading component has asymptotically normal distribution, and that the

residual term is of smaller order. To facilitate presentation, we present results below with an

initial estimator being penalized CLAD estimator (1.14) with the choice of tuning parameter as

presented in Theorem 1. We introduce the following condition.

Condition (rΓΓΓ): Parameters θθθ
∗
( j)(βββ

∗) for all j = 1, . . . , p are bounded and such that∣∣∣{k : θθθ
∗
( j),k(βββ

∗) 6= 0}
∣∣∣ ≤ s̃ j for some s j ≤ n. Function θθθ

∗
( j)(βββ ) is Lipschitz continuous for all
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βββ satisfying condition (C). In addition, let qi and vi be functions such that maxi |qi| ≤M1 and

maxi |vi| ≤M2 for positive constants M1 and M2 and E[ψ(εivi)] = 0. Moreover, let ψ be such

that ψ(z)< ∞ and 0 < ψ ′(z)< ∞.

We will show that for the proposed set of weight functions, the above condition holds.

Boundedness of the function ψ ′ allows for error distributions with unbounded moments, and

provides necessary robustness to the possible outliers in the model error. For the leading term of

the Bahadur representation (1.27), we obtain the following result.

Theorem 2. Assume that s̄ log1/2(p)/n1/4 = O(1), with s̄ = s
βββ
∗ ∨ s̃Ω and s̃Ω = max j s̃ j. Let

Conditions (C), (rΓΓΓ) and (E) hold and let λ j =C
√

log p/n for a constant C > 1. Then,

[
Ω̃ΩΩ(β̂ββ )ϒ̂ϒϒr(β̂ββ )Ω̃ΩΩ(β̂ββ )

]− 1
2

j j
Ur

j
d−−−−−−→

n,p,s
βββ
∗→∞

N (0,1) .

For the residual term of the decomposition (1.27) we have the following statement.

Theorem 3. Let Conditions (C), (rΓΓΓ) and (E) hold and let λ j =C
√

log p/n for a constant C > 1.

Assume that s̄ log1/2(p)/n1/4 = O(1), for s̄ = s
βββ
∗ ∨ s̃Ω with s̃Ω = max j s̃ j. Then,

‖∆r‖∞ = OP

(
s̄2 log(p∨n)

n1/2

∨ s
βββ
∗(log(p∨n))3/4

n1/4

)
.

Remark 5. The estimation procedure described above is based on the initial estimator β̂ββ taken to

be penalized CLAD. However, it is possible to show that a large family of sparsity encouraging

estimator suffices. In particular, suppose that the initial estimator β̄ββ is such that ‖β̄ββ −βββ
∗‖2 ≤ γn,

and let for simplicity s
βββ
∗ = s. Then results of Theorem 3 extend to hold for the confidence interval

defined as Īn = (c>β̃ββ −an,c>β̃ββ +an) with an as in (1.29). In particular, the error rates are of the

order of

(γ
1/2
n t1/4∨ γnt1/2)t1/2(log p)1/2 +

√
nss̃3/2

Ω
λ jγ

2
n +
√

ns̃3/2
Ω

λ jγn.

When s = O(1) and s j = O(1), and all
√

nλ j = O(1), previous result implies that the initial
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estimator needs only to converge at a rate of O(n−ε) for a small ε > 0.

With the results above, we can now construct a (1− 2α)100% confidence interval for

c>βββ of the form

Irn =
(

c>β̆ββ − ăn,c>β̆ββ + ăn

)
, (1.28)

where β̆ββ is defined in (1.25), c = e j for some j ∈ {1,2, . . . , p},

ăn = zα

√
c>Ω̃ΩΩ(β̂ββ )ϒ̂ϒϒr(β̂ββ )Ω̃ΩΩ(β̂ββ )c

/√
n, (1.29)

with the robust covariance estimate that we define as

ϒ̂ϒϒ
r(β̂ββ ) = n−1

n

∑
i=1

qiviψ
′(vi(yi− x>i β̂ββ ))x>i wi(β̂ββ ).

Remark 6. Constants M1 and M2 change with a choice of the robust estimator. For the Mallow’s

and Hill-Ryan’s, by Lemma 5 in Section 1.7,

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)>
ΩΩΩŜ,Ŝ(β̂ββ )

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)
>C

∥∥∥wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )
∥∥∥2

2
≥ 0.

Thus, the coverage probability of Mallow’s and Hill-Ryan’s estimator is the same as that of the

M-estimator. However, the coverage of the Schweppe’s estimator is slightly slower, as result of

Lemma 1 and Lemma 5 in Section 1.7 imply

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)>
ΩΩΩŜ,Ŝ(β̂ββ )

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)
≤
(

wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )
)>

ΣΣΣ
−1(βββ ∗)

(
wi,Ŝ(β̂ββ )− w̄Ŝ(β̂ββ )

)
+OP(1)

≤
∥∥∥xi,Ŝ

∥∥∥2

2
/λmin

(
ΣΣΣ(βββ ∗)

)
= OP(sβββ

∗).

Together with Theorem 6 in Section 1.7, we observe now a rate that is slower by a factor of s
βββ
∗ ,
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i.e., the leading term is of the order of O
(

s2
βββ
∗(log(p∨n))3/4n−1/4

)
.

Theorem 4. Under Conditions of Theorems 2 and 3, we have for Mallow’s and Hill-Ryan’s

estimator

‖∆r‖∞ = OP

(
s

βββ
∗(log(p∨n))3/4

n1/4

∨ s̄2 log(p∨n)
n1/2

)
,

whereas for the Schweppe’s estimator

‖∆r‖∞ = OP

(
s2

βββ
∗(log(p∨n))3/4

n1/4

∨ s̄3 log(p∨n)
n1/2

)
.

Remark 7. This result implies that the residual term sizes depend on the type of weight functions

chosen. Due to the particular left-censoring, the ideal weights measuring concentration in the

error or design depend on the unknown censoring. Hence, we approximate ideal weights with

plug-in estimators, and therefore obtain rates of convergence that are slightly slower than those of

non-robust estimators. This implies that the robust confidence intervals require larger sample size

to achieve the nominal level.

Corollary 5. Under Conditions of Theorem 2 and 3, for all vectors c = e j and any j ∈ {1, . . . , p},

when s̄,n, p→ ∞ and all α ∈ (0,1) we have that (i) whenever the interval is constructed using

Mallow’s or Hill-Ryan’s estimator and s̄(log(p∨n))3/4/n1/4 = o(1), the respective confidence in-

tervals have asymptotic coverage 1−α; (ii) whenever the interval is constructed using Schweppe’s

estimator and s̄2(log(p∨n))3/4/n1/4 = o(1), the respective confidence intervals have asymptotic

coverage of 1−α .
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1.5 Numerical Results

In this section, we present a number of numerical experiments from both high-dimensional,

p� n, and low-dimensional, p� n, simulated settings.

We implemented the proposed estimator in a number of different model settings. Specifi-

cally, we vary the following parameters of the model. The number of observations, n, is taken to

be 300, while p, the number of parameters, is taken to be 40 or 400. The error of the model, ε , is

generated from a number of distributions including: standard normal, Student’s t with 4 degrees

of freedom, Beta distribution with parameters (2,3) and Weibull distribution with parameters

(1/2,1/5). In the case of the non-zero mean distributions, we center the observations before

generating the model data. The parameter s
βββ
∗ , the sparsity of βββ

∗, #{ j : βββ
∗
j 6= 0}, is taken to be 3,

with all signal parameters taken to be 1 and located as the first three coordinates. The n× p design

matrix, X , is generated from a multivariate Normal distribution N (µ,ΣΣΣ). The mean µ is chosen

to be vector of zero, and the censoring level c is chosen to fix censoring proportion at 25%. The

covariance matrix, ΣΣΣ, of the distribution that X follows, is taken to be the identity matrix or the

Toeplitz matrix such that ΣΣΣi j = ρ |i− j| for ρ = 0.4. In each case, we generated 100 samples from

one of the settings described above and for each sample we calculated the 95% confidence interval.

The complete algorithm is described in Steps 1-4 below. We note that the optimization problem

required to obtain the penalized CLAD estimator is not convex. Nevertheless, it is possible to

write (1.14) as linear program within the compact set B, and solve accordingly [Pow84],

minimize
βββ∈B

u+,u−≥0
v+,v−≥0
βββ
+,βββ−≥0

{
n−1

n

∑
i=1

(
u+

i +u−i
)
+λ

p

∑
j=1

(
βββ
+
j +βββ

−
j

)}

subject to u+
i −u−i = yi−v+i , for 1≤ i≤ n

v+i −v−i =
p

∑
j=1

Xi j

(
βββ
+
j −βββ

−
j

)
, for 1≤ i≤ n.
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In addition, as our theory indicates, we allow for any initial estimator with desired convergence

rate. Penalized CLAD is one example thereof.

1. The penalization factor λ is chosen by the one-standard deviation rule of the cross validation,

λ̂ = argminλ∈{λ 1,...,λ m}CV(λ ). We move λ in the direction of decreasing regularization

until it ceases to be true that CV(λ ) ≤ CV(λ̂ ) + SE(λ̂ ). Standard error for the cross-

validation curve, SE(λ̂ ), is defined as a sample standard error of the K fold cross-validation

statistics CV1(λ ), . . . ,CVK(λ ). They are calibrated using the censored LAD loss as

CVk(λ ) = n−1
k ∑

i∈Fk

∣∣∣∣yi−max{0,xiβ̂ββ
−k
(λ )}

∣∣∣∣ ,
with β̂ββ

−k
(λ ) denoting the CLAD estimator computed on all but the k-th fold of the data.

2. The tuning parameter λ j in each penalized l2 regression, is chosen by the one standard

deviation rule (as described above). In more details, λ j is in the direction of decreasing

regularization until it ceases to be true that CV j(λ j) ≤ CV j(λ̂ j)+SE j(λ̂ j) for λ̂ j as the

cross-validation parameter value. The cross-validation statistic is here defined as

CV j
k(λ ) = n−1

k ∑
i∈Fk

(
Wi j(β̂ββ )−Wi j(β̂ββ )γ̂

−k
( j) (λ j)

)2
,

with γ̂
−k
j (λ j) denoting estimators (1.8) computed on all but the k-th fold of the data. This

choice leads to the conservative confidence intervals with wider than the optimal length.

Theoretically guided optimal choice is highly complicated and depends on both design

distribution and censoring level concurrently. Nevertheless, we show that one-standard

deviation choice is very reasonable.

3. Whenever the density of the error term is unknown, we estimate f (0), using the proposed

estimator (1.11), with a constant c = 10. We compute the above estimator by splitting the
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sample into two parts: the first sample is used for computing β̂ββ and β̃ββ and the other sample

is to compute the estimate f̂ (0). Optimal value of h is of special independent interest;

however, it is not the main objective of this work.

4. Obtain β̃ββ by plugging ΩΩΩ(β̂ββ ) and f̂ (0) into (1.12) with λ and λ j as specified in the steps

above.

The summary of the results is presented across dimensionality of the parameter vector.

The Low-Dimensional Regime with SEE Estimator are summarized in Table 1.1 and Figures 1.1

and 1.2. The High-Dimensional Regime are summarized in Table 1.3 and Figures 1.5 and 1.6. We

report average coverage probability across the signal and noise variables independently, as the

signal variables are more difficult to cover when compared to the noise variables.

We consider a number of challenging settings. Specifically, the censoring proportion

is kept relatively high at 25%, and our parameter space is large with p = 400 and n = 300. In

addition, we consider the case of error distribution being Student with 4 degrees of freedom, which

is notoriously difficult to deal with in left-censored problems. For the four error distributions, the

observed coverage probabilities are approximately the same.

We also note that symmetric distributions are very difficult to handle in left-censored

models. However, when errors were symmetric (Normal), the coverage probabilities were

extremely close to the nominal ones. The simulation cases evidently show that our method is

robust to asymmetric distributions and does not lose efficiency when the errors are symmetric.

Lastly, to investigate smoothed robust estimating equations (SREE) empirically, we

preserve the previous high-dimensional settings with standard normal and Student’s t4 error

distributions respectively. However, to illustrate the robustness of the estimator, we artificially

create outliers in the design matrix X , and perform Mallow’s type SREE estimating procedures

with the perturbed X̃ . Within each iteration, after generating X from N (µ,ΣΣΣ) accordingly, we

randomly select 10% of the columns, and then randomly perturb 10% of the entries in X by adding

32



Table 1.1: Coverage Probability for Low-Dimensional Regime with Smoothed Estimating
Equations (SEE) Estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.97 0.98 0.95 0.94
Student 0.97 1 0.97 0.98
Beta 0.94 1 0.98 0.97
Weibull 0.98 0.98 0.94 0.98

Table 1.2: Coverage Probability for Low-Dimensional Regime with Powell Estimator as in
[Pow84]

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.96 0.97 0.95 0.98
Student 0.95 0.98 0.96 0.96
Beta 0.94 0.99 0.91 0.99
Weibull 0.99 0.99 0.91 0.98

twice the quantity of the maximum entry in X , i.e. X̃i j = Xi j +2×maxi j Xi j. Such perturbations

create a considerate proportion of outliers in the design. The results are summarized in Table 1.4

and Figures 1.7 and 1.8. As coverages under various scenarios are close to the nominal level, the

results show that the SREE estimator is robust to high leverage points.

1.6 Discussion and Conclusion

SEE and SREE frameworks enrich regular high-dimensional inferential methods with

censoring and robust options. While a censoring option adds to the capacity of an existing

inferential methods extending them to non-convex problems in general, a robust option has the

potential to open a new direction. Usually, inferential methods have been aiming to create efficient

methods with asymptotically exact or pivotal properties in a class of specific models. However,
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Table 1.3: Coverage Probability for High-Dimensional Regime with Smoothed Estimating
Equations (SEE) Estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.92 0.96 0.97 0.95
Student 0.96 0.98 0.96 0.98
Beta 1 1 0.96 0.97
Weibull 0.95 1 0.87 0.97

Table 1.4: Coverage Probability for High-Dimensional Regime with Smoothed Robust Estimat-
ing Equations (SREE) estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.89 0.99 0.90 0.97
Student 0.92 0.96 0.90 0.99

●

●

●

●

●

●

0.0

0.5

1.0

1.5

normal student beta weibull

●

●

●

●

●●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

normal student beta weibull

Figure 1.1: SEE estimator p� n and Toeplitz Design with ρ = 0.4. Comparative boxplots of
the average Interval length of Signal (left) and Noise (right) variables.
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Figure 1.2: SEE estimator p� n and Identity Design. Comparative boxplots of the average
Interval length of Signal (left) and Noise (right) variables.
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Figure 1.3: Powell estimator under p� n and Toeplitz Design with ρ = 0.4. Comparative
boxplots of the average Interval length of Signal (left) and Noise (right) variables.
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Figure 1.4: Powell estimator under p� n and Identity Design. Comparative boxplots of the
average Interval length of Signal (left) and Noise (right) variables.
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Figure 1.5: SEE estimator p� n and Toeplitz Design with ρ = 0.4. Comparative boxplots of
the average Interval length of Signal (left) and Noise (right) variables.
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Figure 1.6: SEE estimator p� n and Identity Design. Comparative boxplots of the average
Interval length of Signal (left) and Noise (right) variables.
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Figure 1.7: SREE estimator p� n and Identity Design. Comparative boxplots of the average
Interval length of Signal (left) and Noise (right) variables.
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Figure 1.8: SREE estimator p� n and Toeplitz Design. Comparative boxplots of the average
Interval length of Signal (left) and Noise (right) variables.

sometimes the nature of the data collection process has determined that a significant noise is

inevitable for some observations, or that portions of the observations have been corrupted by an

adversary. In big and high-dimensional data setting, such cases may occur naturally. When the

cost of error is too large to bear, it may be wise to consider an alternative that can improve upon

the inferential accuracy in a stepwise manner. With one-step robust estimators, one can often

successfully iterate the estimate, and identify misleading observations. Therefore, limiting the

effect of poor data quality.

Many different loss functions and penalty functions, including non-convex ones, may be

incorporated into this framework for the purpose of achieving correct inferential tools. A novel

theory is provided, with emphasis on diverging dimensions and left-censoring. Future work will

be devoted to how to better utilize longitudinal and heterogeneous observations.

There are many one-step estimators based on a suitable choice of loss function or esti-

mating equations, some of which have proved to work well, especially when the dimension is

reasonably high. The proposed method allows for left-censoring, non-smooth, non-convex losses

and/or non-monotone equations, and complements the existing methods in these domains. The
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method achieves rates comparable the ones of efficient methods (with full observations), and the

accompanying analysis provides tight control over both Type I and Type II error rates, which

makes it a practically useful and efficient alternative.

1.7 General Results

In this section, we present the general results along with theoretical considerations.

Statements and proofs of Lemmas 1 - 6 and Theorems 6 - 11 are included.

We begin theoretical analysis with the following decomposition of (1.12)

√
n
(

β̃ββ −βββ
∗
)

=
1

2 f (0)
ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)+

1
2 f (0)

(
ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
) 1√

n

n

∑
i=1

ψi(βββ
∗)

+
√

n
(

β̂ββ −βββ
∗
)
+

1
2 f (0)

ΩΩΩ(β̂ββ )
√

n

(
n−1

n

∑
i=1

ψi(β̂ββ )−n−1
n

∑
i=1

ψi(βββ
∗)

)
. (1.30)

We can further decompose the last factor of the last term in (1.30) as

n−1
n

∑
i=1

ψi(β̂ββ )−n−1
n

∑
i=1

ψi(βββ
∗) =Gn(β̂ββ )−Gn(βββ

∗)+n−1
n

∑
i=1

E
[
ψi(β̂ββ )−ψi(βββ

∗)
]
,

where

Gn(βββ ) = n−1
n

∑
i=1

[ψi(βββ )−Eψi(βββ )] . (1.31)

To characterize the behavior of individual terms in the decomposition above, we develop

a sequence of results presented below that rely on the conditions that we listed in Section 1.3.

Lemma 1. Suppose that the Conditions (E) hold. Consider the class of parameter spaces model-

ing sparse vectors with at most t non-zero elements, C (r, t) = {w∈Rp | ||w||2 ≤ rn,∑
p
j=1 1I{w j 6=

0} ≤ t} where rn is a sequence of positive numbers. Then, there exists a fixed constant C (inde-
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pendent of p and n), such that the process µi(δδδ ) = 1I{xiδδδ ≥ xiβββ
∗}−1I{0≥ xiβββ

∗} satisfies with

probability 1−δ .

sup
δδδ∈C (rn,t)

n−1

∣∣∣∣∣ n

∑
i=1

µi(δδδ )−E[µi(δδδ )]

∣∣∣∣∣≤C

√rnt
√

t log(np/δ )

n

∨ t log(2np/δ )

n

 .

The preceding Lemma immediately implies strong approximation of the empirical process

with its expected process, as long as rn, the estimation error, and t, the size of the estimated set of

the initial estimator, are sufficiently small. The power of the Lemma 1 is that it holds uniformly

for a class of parameter vectors enabling a wide range of choices for the initial estimator.

Next, we present a linearization result useful for further decomposition of the Bahadur

representation (1.30).

Lemma 2. Suppose that the conditions (E) hold. For all βββ , such that ‖βββ − βββ
∗‖1 < ξ , the

following representation holds

n−1
n

∑
i=1

Eψi(βββ ) = 2 f (0)ΣΣΣ(βββ ∗)(βββ ∗−βββ )+O(‖βββ −βββ
∗‖1)(βββ

∗−βββ ).

where ΣΣΣ(βββ ∗) is defined in (1.6).

Once the properties of the initial estimator are provided, such as Condition (I), Lemma

2 can be used to linearize the population level difference of the functions ψi(β̂ββ ) and ψi(βββ
∗).

Together with Lemma 1, Lemma 2 allows us to overpass the original highly discontinuous and

non-convex loss function. Utilizing Lemma 2, Conditions (I)-(C) and representation (1.30), the

Bahadur representation of β̃ββ becomes

√
n
(

β̃ββ −βββ
∗
)
=

1
2 f (0)

ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)+ I1 + I2 + I3 + I4 (1.32)
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where

I1 =
√

n
(

I−ΩΩΩ(β̂ββ )ΣΣΣ(βββ ∗)
)(

β̂ββ −βββ
∗
)
, I2 =−

1
2 f (0)

ΩΩΩ(β̂ββ )
√

n ·OP(‖β̂ββ −βββ
∗‖1)(β̂ββ −βββ

∗)

I3 =
1

2 f (0)

(
ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
) 1√

n

n

∑
i=1

ψi(βββ
∗), I4 =

1
2 f (0)

ΩΩΩ(β̂ββ )
√

n
[
Gn(β̂ββ )−Gn(βββ

∗)
]
.

We show that the last four terms of the right hand side above, each converges to 0

asymptotically at a faster rate than the first term on the right hand side of (1.32).

The following two lemmas help to establish l1 column bound of the corresponding

precision matrix estimator. The first one provides properties of the estimator γ̂γγ( j)(β̂ββ ) as defined in

(1.8). Although this estimator is obtained via Lasso-type procedure, significant challenges arise

in its analysis due to dependencies in the plug-in loss function. The design matrix of this problem

does not have independent and identically distributed rows. We overcome these challenges by

approximating the solution to the oracle one and without imposing any new conditioning of the

design matrix.

Lemma 3. Let λ j =C
(
(log p/n)1/2∨(r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)

for a constant

C > 1 and let Conditions (I), (E), (C) and (ΓΓΓ) hold. Then,

∥∥∥γ̂γγ( j)(β̂ββ )− γγγ
∗
( j)(βββ

∗)
∥∥∥

1
= OP

(
1

φ 2
0C2

s jλ j

)
.

Remark 8. The choice of the tuning parameter λ j depends on the l2 convergence rate of the

initial estimator rn, and the size of its estimated non-zero set. However, we observe that whenever

rn is such that rn ≤ t−3/4 and the sparsity of the initial estimator is such that ts j
√

log p/n < 1,

then the optimal choice of the tuning parameter is of the order of
√

log p/n. In particular, any

initial estimator that satisfies rn < n−1/4 is sufficient for optimal rates of inference in a model

where t ≤ n1/4 and s j ≤ n1/4.

The next result gives a bound on the variance of our γ̂γγ( j)(β̂ββ ) estimator.
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Lemma 4. Let λ j =C
(
(log p/n)1/2∨(r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)

for a constant

C > 1 and let Conditions (I), (E), (C) and (ΓΓΓ) hold. Then, for j = 1, . . . , p and ζζζ
∗
j and ζ̂ζζ j

∣∣∣∣ζ̂ζζ>j ζ̂ζζ j/n−Eζζζ
∗
j
>

ζζζ
∗
j/n
∣∣∣∣= OP

(
K2s jλ j

)
.

Next is the main result on the properties of the proposed matrix estimator ΩΩΩ(β̂ββ ).

Lemma 5. Let the setup of Lemma 4 hold. Let ΩΩΩ(β̂ββ ) be the estimator as in (1.10). Then, for τ̂2
j

as in (1.9), we have τ̂
−2
j = OP(1). Moreover,

∥∥∥ΩΩΩ(β̂ββ ) j−ΣΣΣ
−1(βββ ∗) j

∥∥∥
1
= OP

(
K2s3/2

j λ j

)
.

The one-step estimator β̃ββ relies crucially on the bias correction step that carefully projects

the residual vector in the direction close to the most efficient score. The next result measures the

uniform distance of such projection.

Lemma 6. Let the setup of Lemma 4 hold. There exists a fixed constant C (independent of p and

n), such that the process Vn(δδδ ) = ΩΩΩ(δδδ +βββ
∗)
[
Gn(δδδ +βββ

∗)−Gn(βββ
∗)
]

satisfies

sup
δδδ∈C (rn,t)

‖Vn(δδδ )‖∞
≤C

√(rnt1/2∨ r2
nt)t log(np/δ )

n

∨ t log(2np/δ )

n

 ,

with probability 1−δ and a constant K1 defined in Condition (E).

Lemma 6 establishes a uniform tail probability bound for a growing supremum of an

empirical process Vn(δδδ ). It is uniform in δδδ and it is growing as supremum is taken over p, possibly

growing (p = p(n)) coordinates of the process. The proof of Lemma 6 is further challenged by the

non-smooth components of the process Vn(δδδ ) itself and the multiplicative nature of the factors

within it. It proceeds in two steps. First, we show that for a fixed δδδ the term ||Vn(δδδ )||∞ is small. In

the second step, we devise a new epsilon net argument to control the non-smooth and multiplicative
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terms uniformly for all δδδ simultaneously. This is established by devising new representations of

the process that allow for small size of the covering numbers. In conclusion, Lemma 6 establishes

a uniform bound ‖I4‖∞ = OP

(
r1/2

n t3/4(log p)1/2∨rnt(log p)1/2∨ t log p/n1/2
)

in (1.32).

Size of the remainder term in (1.13) is controlled by the results of Lemmas 1-6 and we

provide details below.

Theorem 6. Let λ j = C
(
(log p/n)1/2∨(r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)

for a con-

stant C > 1 and let Conditions (I), (E), (C) and (ΓΓΓ) hold. With sΩ = max j s j,

‖∆‖∞ = OP

(
(r1/2

n t1/4∨ rnt1/2)t1/2(log p)1/2
∨√

nts3/2
Ω

λ jr2
n

∨√
ns3/2

Ω
λ jrn

)
.

We first notice that the expression above requires t = O(n1/2/ log(p∨ n)), a condition

frequently imposed in high-dimensional inference (see [ZZ14] for example). Then, in the case of

low-dimensional problems with s = O(1) and p = O(1), we observe that whenever the initial

estimator of rate rn, is in the order of n−ε , for a small constant ε > 0, then ‖∆‖∞ = OP(n−ε/2). In

particular, for a consistent initial estimator, i.e. rn = O(n−1/2) we obtain that ‖∆‖∞ = OP(n−1/4).

For high-dimensional problems with s and p growing with n, for all initial estimators of the order

rn such that rn = O(sa
βββ
∗(log p)b/nc) and t = O(s

βββ
∗) we obtain that

‖∆‖∞ = OP

(
s̄(2a+3)/4(log p)(1+b)/2/nc/2

)

whenever s̄(log p)1/4/n1/4 = O(1), where s̄ = t ∨ sΩ.

Next, we present the result on the asymptotic normality of the leading term of the Bahadur

representation (1.13).

Theorem 7. Let λ j = C
(
(log p/n)1/2∨(r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)

for a con-

stant C > 1 and let Conditions (I), (E), (C) and (ΓΓΓ) hold.
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Define U := 1
2 f (0)ΣΣΣ

−1(βββ ∗) 1√
n ∑

n
i=1 ψi(βββ

∗) = OP(
√

n). Furthermore, assume

(r1/2
n t1/4∨ rnt1/2)t1/2(log p)1/2

∨√
nts3/2

Ω
λ jr2

n

∨√
ns3/2

Ω
λ jrn = o(1).

Denote s̄ = t ∨ sΩ. If f (0), the density of ε at 0 is known,

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

]− 1
2

j j
U j

d−−−−−→
n,p,s̄→∞

N

(
0,

1
4 f (0)2

)
.

Remark 9. A few remarks are in order. Theorem 7 implies that the effects of censoring asymptot-

ically disappear. Namely, the limiting distribution only becomes degenerate when the censoring

rate asymptotically explodes, implying that no data is fully observed. However, in all other cases

the limiting distribution is fixed and does not depend on the censoring level.

Density estimation is a necessary step in the semiparametric inference for left-censored

models. Below we present the result guaranteeing good qualities of density estimator proposed in

(1.11).

Theorem 8. There exists a sequence hn such that hn = O(1) and limn→∞ ĥn/hn = 1 and h−1
n (rn∨

r1/2
n t3/4(log p/n)1/2∨ t log p/n) = o(1). Assume Conditions (I) and (E) hold, then

∣∣∣ f̂ (0)− f (0)
∣∣∣= OP(1).

Together with Theorem 7 we can provide the next result.

Corollary 9. With the choice of density estimator as in (1.11), under conditions of Theorem 7

and 8, the results of Theorem 7 continue to hold unchanged, i.e.,

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

]− 1
2

j j
U j ·2 f̂ (0) d−−−−−→

n,p,s̄→∞
N (0,1) .

Remark 10. Observe that the result above is robust in the sense that the result holds regardless
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of the particular distribution of the model error (1.1). Condition (E) only assumes minimal

regularity conditions on the existence and smoothness of the density of the model errors. In the

presence of censoring, our result is unique as it allows p� n, and yet it successfully estimates

the variance of the estimation error.

Combining all the results obtained in previous sections we arrive at the main conclusions.

Theorem 10. Let λ j = C
(
(log p/n)1/2∨(r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)

for a con-

stant C > 1 and let Conditions (I), (E), (C) and (ΓΓΓ) hold. Furthermore, assume

(r1/2
n t1/4∨ rnt1/2)t1/2(log p)1/2

∨√
nts3/2

Ω
λ jr2

n

∨√
ns3/2

Ω
λ jrn = o(1),

for sΩ = max j s j. Denote s̄ = t ∨ sΩ. Let In and an be defined in (1.15) and (1.16). Then, for all

vectors c = e j and any j ∈ {1, . . . , p}, when n, p, s̄→ ∞ we have

Pβββ

(
c>βββ

∗ ∈ In

)
= 1−2α

Let P
βββ
∗ be the distribution of the data under the model (1.1). Then the following holds.

Theorem 11. Under the setup and assumptions of Theorem 10 when n, p, s̄→ ∞

sup
βββ∈B

Pβββ

(
c>βββ

∗ ∈ In

)
= 1−2α.

1.8 Proofs of Main Theorems

Proof of Theorem 1. The proof for the result with initial estimator chosen as the penalized

CLAD estimator of [MvdG16] follows directly from Lemma 1-6 and Theorem 6-10 with rn =

s1/2
βββ
∗ (log p/n)1/2 and t = s

βββ
∗ .

Proof of Theorems 2, 3 and 4. Due to the limit of space, we follow the line of the proof of
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Theorem 7 but only give necessary details when the proof is different. First, we observe that with

a little abuse in notation

ψi(βββ ) = w>i (βββ )R
r
i , Rr

i = qiψ(−viεi)

thus it suffices to provide the asymptotic of

T r
n :=

1√
n

n

∑
i=1

V r
i =

1√
n

n

∑
i=1

x1 1I{xiβββ > 0}Rr
i .

Moreover, observe that Rr
i are necessarily bounded random variables (see Condition (rΓΓΓ). Follow-

ing similar steps as in Theorem 7 we obtain

Var(T r
n )≥ n−2exp{−n2/2}

where in the last step we utilized Hoeffding’s inequality for bounded random variables.

Next, we focus on establishing an equivalent of Lemma 2 but now for the robust general-

ized M-estimator. Observe that

n−1
n

∑
i=1

Eε [ψ
r
i (βββ )] = n−1

n

∑
i=1

x>i 1I{xiβββ > 0}qiEε

[
ψ

(
−vixi(βββ

∗−βββ )− viεi

)]
. (1.33)

Moreover, whenever ψ ′ exists we have

Eε

[
ψ

(
−vixi(βββ

∗−βββ )− viεi

)]
=−vixi(βββ

∗−βββ )
∫

∞

−∞

ψ
′(ξ (u)) f (u)du.

for ξ (u) = α(−vixi(βββ
∗−βββ ))+(1−α)(−viu) for some α ∈ (0,1). When ψ ′ doesn’t exist we

can decompose ψ into a finite sum of step functions and then apply exactly the same technique

on each of the step functions as in Lemma 2. Hence, it suffices to discuss the differentiable case
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only. Let us denote the RHS of (1.33) with Λr
n(βββ )(βββ

∗−βββ ), i.e.

Λ
r
n(βββ ) = n−1

n

∑
i=1
−1I{xiβββ > 0}qivix>i xi

∫
∞

−∞

ψ
′(ξ (u)) f (u)du.

Next, we observe that by Condition (rΓΓΓ),

∣∣∣∣∫ ∞

−∞

ψ
′(ξ (u)) f (u)du−ψ

′(viεi)

∣∣∣∣≤ sup
x
|ψ ′(x)| :=C1

for a constant C1 < ∞. With that the remaining steps of Lemma 2 can be completed with ΣΣΣ

replaced with ΣΣΣ
r.

Next, by observing the proofs of Lemmas 3, 4 and 5 we see that the proofs remain to hold

under Condition (rΓΓΓ), and with W replaced with W̃ . The constants K appearing in the simpler

case will now be KM1M2. However, the rates remain the same up to these constant changes.

Next, we discuss Lemma 6. For the case of robust generalized M-estimator νn(δδδ ) of

Lemma 6 takes the following form

ν̃n(δδδ ) = n−1
n

∑
i=1

Ω̃ΩΩ(δδδ +βββ
∗)x>i [ fi(δδδ )g̃i(δδδ )− fi(0)g̃i(0)]

with g̃i(δδδ )= qiψ(vi(xiδδδ +εi)). Moreover, Eε [ fi(δδδ )g̃i(δδδ )] = fi(δδδ )Eε [qiψ(vi(xiδδδ +εi))] := w̃i(δδδ ).

We consider the same covering sequence as in Lemma 6. Then, we observe that a bound equivalent

to T1 of Lemma 6 is also achievable here.

Term T2 can be handled similarly as in Lemma 6. We illustrate the particular differences

only in T21 as others follows similarly. Observe that

fi(δδδ )g̃i(δδδ ) = 1I{xiδδδ ≥−xiβββ
∗}qiψ(v(εi))+1I{xiδδδ ≥−xiβββ

∗}qivixiδδδψ
′(ξδδδ )
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for ξδδδ = viεi +(1−α)vixiδδδ for some α ∈ (0,1). Next, we consider the decomposition

fi(δδδ )g̃i(δδδ )−E [ fi(δδδ )g̃i(δδδ )] = T r
211(δδδ )+T r

212(δδδ )

where

T r
211(δδδ ) =

(
1I{xiδδδ ≥−xiβββ

∗}−P(xiδδδ ≥−xiβββ
∗)
)

qiψ(viεi)

and

T r
212(δδδ ) = 1I{xiδδδ ≥−xiβββ

∗}qivixiδδδψ
′(ξδδδ )−E

[
1I{xiδδδ ≥−xiβββ

∗}qivixiδδδψ
′(ξδδδ )

]
Furthermore, we observe that the same techniques developed in Lemma 6 apply to T r

211(δδδ ) hence

we only discuss the case of T r
212(δδδ ). We begin by considering the decomposition T r

212(δδδ ) =

T r
2121(δδδ )+T r

2122(δδδ ) with

T r
2121(δδδ ) = 1I{xiδδδ ≥−xiβββ

∗}qivixiδδδ
(
ψ
′(ξδδδ )−Eε(ψ

′(ξδδδ ))
)

and

T r
2122(δδδ ) = 1I{xiδδδ ≥−xiβββ

∗}qivixiδδδEε(ψ
′(ξδδδ ))−E

[
1I{xiδδδ ≥−xiβββ

∗}qivixiδδδEεψ
′(ξδδδ )

]
Let us focus on the last expression as it is the most difficult one to analyze. Observe that we are

interested in the difference T r
2122(δδδ )−T r

2122(δ̃δδ k). We decompose this difference into four terms,

two related to random variables and two related to the expectations. We handle them separately

and observe that because of symmetry and monotonicity of the indicator functions once we

can bound the difference of random variables we can repeat the arguments for the expectations.
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Hence, we focus on

I1 = 1I{xiδδδ ≥−xiβββ
∗}qivixiδδδEε(ψ

′(ξδδδ ))−1I{xiδ̃δδ k ≥−xiβββ
∗}qivixiδ̃δδ kEε(ψ

′(ξ
δ̃δδ k
)).

First due to monotonicity of indicators and (1.57) we have

|I1| ≤ I11 + I12 + I13

with

I11 =
(

1I{xiδ̃δδ k + L̃n ≥−xiβββ
∗}−1I{xiδ̃δδ k ≥−xiβββ

∗}
)

qivixiδ̃δδ kEε(ψ
′(ξ

δ̃δδ k
))

I12 = 1I{xiδ̃δδ k + L̃n ≥−xiβββ
∗}qiviL̃nEε(ψ

′(ξδδδ ))

I13 = 1I{xiδ̃δδ k + L̃n ≥−xiβββ
∗}qivixiδ̃δδ k

(
Eε(ψ

′(ξδδδ ))−Eε(ψ
′(ξ

δ̃δδ k
))
)

As supψ ′ < ∞, I11 can be handled in the same manner as T21 of the proof of Lemma 6, whereas

I12 = OP(L̃n). For I13 it suffices to discuss the difference at the end of the right hand side of its

expression. It is not difficult to see that

Eε(ψ
′(ξδδδ ))−Eε(ψ

′(ξ
δ̃δδ k
))≤ 4CviL̃n ≤ 4CM1L̃n

with C = supx |ψ ′′(x)| for the case of twice differentiable ψ , C = supy ∂/∂y|
∫ y
−∞ ψ ′(x)dx| for

the case of once differentiable ψ and C = fmax for the case of non-differentiable functions ψ .

Combining all the things together we observe that the rate of Lemma 6 for the case of robust

generalized M-estimators is of the order of

C

√M3(rnt1/2∨K2M2
1M2

2r2
nt)t log(2np/δ )

n

∨ t log(2np/δ )

n

 .
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with M3 = supx |ψ ′(x)| for once differentiable ψ and M3 = fmax for non-differentiable ψ .

Now, with equivalents of Lemmas 1-6 are established, we can use them to bound succes-

sive terms in the Bahadur representation much like those of Theorem 1. Details are ommitted due

to space considerations.

For Theorem 4 in the Main Material, the same line of the proof of Theorem 11 applies,

but only replace the matrix ΣΣΣ with the matrix ΣΣΣ
r. The result of the Theorem then follows from

the arguments in Remark 2 in the Main Material. Uniformity of the obtained results is not

compromised as the weight functions qi and vi only depend on the design matrix.

Proof of Theorem 6. The proof of the theorem follows from the bounding residual terms in the

Bahadur representation (1.32) with the help of Lemma 3 - 6.

Recall in Lemma 6, we showed that

‖I4‖∞ = OP

(
(r1/2

n t1/4∨ rnt1/2)t1/2(log p)1/2
∨

t log p/n1/2
)
.

For the term I3, we have that

∥∥∥∥∥ 1
2 f (0)

(
ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
) 1√

n

n

∑
i=1

ψi(βββ
∗)

∥∥∥∥∥
∞

≤ OP

(
s3/2

Ω
λ j

)
,

by applying Hölder’s inequality and Hoeffding’s inequality along with Lemma 5.

For the term I2, we have

∥∥∥∥ 1
2 f (0)

ΩΩΩ(β̂ββ )
√

n ·O(‖β̂ββ −βββ
∗‖1)(β̂ββ −βββ

∗)

∥∥∥∥
∞

≤
√

nt
2 f (0)

(∥∥∥ΩΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗)

∥∥∥
1
+
∥∥ΣΣΣ
−1(βββ ∗)

∥∥
2

)
O(‖β̂ββ −βββ

∗‖2
2)

≤ OP

(√
nts3/2

Ω
λ jr2

n

∨√
ntr2

n

)
,

50



by Hölder’s inequality and Lemma 5, where ‖A‖∞ denotes the max row sum of matrix A, and

‖A‖1 denotes the max column sum of matrix A.

Lastly, for the only remainder term in (1.32), I1, we apply Hölder’s inequality and Lemma

5,

√
n
(

I−ΩΩΩ(β̂ββ )ΣΣΣ(βββ ∗)
)(

β̂ββ −βββ
∗
)

=
√

n
(

ΣΣΣ
−1(βββ ∗)−ΩΩΩ(β̂ββ )

)
ΣΣΣ(βββ ∗)

(
β̂ββ −βββ

∗
)

≤C
√

n
∥∥∥ΣΣΣ
−1(βββ ∗)−ΩΩΩ(β̂ββ )

∥∥∥
1
‖β̂ββ −βββ

∗‖2

≤ OP

(√
ns3/2

Ω
λ jrn

)
.

Proof of Theorem 7. We begin the proof by noticing that

ψi(βββ
∗) = sign(yi−max{0,xiβββ

∗})(wi(βββ
∗))>

= sign(max{0,xiβββ
∗+ εi}−max{0,xiβββ

∗})(wi(βββ
∗))>.

Recollect that by Condition (E), P(εi ≥ 0) = 1/2. Additionally, we observe that in distribution,

the term on the right hand side is equal to w>i (βββ
∗)Ri, with {Ri}n

i=1 denoting an i.i.d. Rademarcher

sequence defined as Ri = sign(−εi). Hence, it suffices to analyze the distributional properties of

w>i (βββ
∗)Ri. Moreover, Rademacher random variables are independent in distribution from wi(βββ

∗).

Thus, we provide asymptotics of

1
2 f (0)

ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

w>i (βββ
∗)Ri.
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We begin by defining

Vi :=
1√
n

Wi j 1I(xiβββ
∗ > 0)Ri =

1√
n

Xi j 1I(xiβββ
∗ > 0)Ri

and we also define Tn := ∑
n
i=1Vi. Notice that Vi’s are independent from each other, since we

assumed that each observation is independent in our design. We have

n

∑
i=1

E|Vi|2+δ =

(
1√
n

)2+δ

E
n

∑
i=1
|Xi j 1I(xiβββ

∗ > 0)|2+δ ≤ n−1−δ/2E
n

∑
i=1
|Xi j|2+δ ≤ n−δ/2K.

(1.34)

Moreover, VarTn = 1
n ∑

n
i=1E

(
Xi j 1I(xiβββ

∗ > 0)Ri
)2−

(
EXi j 1I(xiβββ

∗ > 0)Ri
)2
. Since Ri are inde-

pendent from X ,

EXi j 1I(xiβββ
∗ > 0)Ri = EXi j 1I(xiβββ

∗ > 0) ·ERi = 0.

In addition, also due to this fact, Vi follows a symmetric distribution about 0. Thus,

VarTn =
1
n
E

n

∑
i=1

(
Xi j 1I(xiβββ

∗ > 0)Ri
)2

=
1
n
E

(
n

∑
i=1

Xi j 1I(xiβββ
∗ > 0)Ri

)2

≥ 1
n

∫ n

−n
t2
n f (tn)dtn,

where with a little abuse in notation we denote the density and distribution of Tn to be f (tn) and

F(tn). Observe that

1
n
E

(
n

∑
i=1

Xi j 1I(xiβββ
∗ > 0)Ri

)2

=
1
n

∫
∞

−∞

t2
n f (tn)dtn ≥

1
n

∫ n

−n
t2
n f (tn)dtn.
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Thus,

VarTn ≥
1
n

(
t2
n F(tn)

∣∣ n
−n−2

∫ n

−n
tnF(tn)dtn

)
(1.35)

≥ 1
n

(
n2F(n)−n2F(−n)−2

∫ n

−n
tndtn

)
=

1
n

(
2n2F(n)−n2)= n(2F(n)−1)

Now combining (1.34) and (1.35), we have limn→∞
∑

n
i=1E|Vi|2+δ

(VarTn)
1+ δ

2
= 0. Thereby, we arrive at the

result
1√
n

(
n

∑
i=1

w>i (βββ
∗)Ri

)
j

d−→N (0,VarTn) ,

with the fact that VarTn =
1
nE∑

n
i=1Wi j(βββ

∗)2 = 1
nEW>j (βββ ∗)Wj(βββ

∗) = ΣΣΣ(βββ ∗) j j. Also, the covari-

ance

E

 1√
n

(
n

∑
i=1

w>i (βββ
∗)Ri

)
j1

1√
n

(
n

∑
i=1

w>i (βββ
∗)Ri

)
j2


= E

[
1
n

n

∑
i=1

Wi j1(βββ
∗)Wi j2(βββ

∗)

]
= ΣΣΣ(βββ ∗) j1 j2.

Therefore, we have the following conclusion,

[
1

2 f (0)
ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)

]
j

d−→N

(
0,

1
4 f (0)2

[
ΣΣΣ
−1(βββ ∗)ΣΣΣ(βββ ∗)

(
ΣΣΣ
−1(βββ ∗)

)>]
j j

)
,

where j = 1, · · · , p. This gives

[
ΣΣΣ
−1(βββ ∗) j j

]− 1
2

[
1

2 f (0)
ΣΣΣ
−1(βββ ∗)

1√
n

n

∑
i=1

ψi(βββ
∗)

]
j

d−→N

(
0,

1
4 f (0)2

)
(1.36)
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Notice that for two nonnegative real numbers a and b, it holds that

1√
a
− 1√

b
=

√
b−
√

a√
ab

=
b−a√

ab(
√

b+
√

a)
.

We first make note of a result in the proof of Theorem 10, that

∥∥∥Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗)

∥∥∥
max

= OP(1) (1.37)

Let a =
[
Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )

]
j j

and b = ΣΣΣ
−1(βββ ∗) j j. By Condition (C), we have

√
b is bounded

away from zero. Then,
√

a is also bounded away from zero by (1.37), and so is
√

ab(
√

b+
√

a),

since we have

[
ΣΣΣ
−1(βββ ∗)

]
j j−

[
Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )

]
j j
≤
∥∥∥Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
∥∥∥

max
= OP (1) .

The rate above follows from (1.41) in the proof of Theorem 10. Notice the rate is of order smaller

than the rate assumption in Theorem 6.

Thus, we can deduce that

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

]− 1
2

j j
−
[
ΣΣΣ
−1(βββ ∗) j j

]− 1
2 ≤C

∥∥∥Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗)

∥∥∥
max

.

for some finite constant C. Applying Slutsky theorem on (1.36) with the inequality above, the

desired result is obtained.

Proof of Theorem 8. We can rewrite the expression f̂ (0) in (1.11) as

f̂ (0) = ĥ−1
n

∑
n
i=1 1I(xiβ̂ββ > 0)1I(0≤ yi− xiβ̂ββ ≤ ĥn)

∑
n
i=1 1I(xiβ̂ββ > 0)

= ĥ−1
n

n−1
∑

n
i=1 1I(xiβ̂ββ > 0)1I(0≤ yi− xiβ̂ββ ≤ ĥn)

n−1 ∑
n
i=1P{xiβββ

∗ > 0}
· n
−1

∑
n
i=1P{xiβββ

∗ > 0}
n−1 ∑

n
i=1 1I(xiβ̂ββ > 0)

.
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Since
∣∣∣n−1

∑
n
i=1

[
1I{xiβ̂ββ > 0}−P{xiβββ

∗ > 0}
]∣∣∣= OP(1), we have

f̂ (0) d−→ (ĥnn)−1
∑

n
i=1 1I(xiβ̂ββ > 0)1I(0≤ yi− xiβ̂ββ ≤ ĥn)

n−1 ∑
n
i=1P{xiβββ

∗ > 0}
.

Using a similar argument and the fact that limn→∞ ĥn/hn = 1, we have

f̂ (0) d−→ (hnn)−1
∑

n
i=1 1I(xiβ̂ββ > 0)1I(0≤ yi− xiβ̂ββ ≤ ĥn)

n−1 ∑
n
i=1P{xiβββ

∗ > 0}
.

Now we work on the numerator of right hand side. Specifically, let ηi = yi− xiβββ
∗ and

η̂i = yi− xiβ̂ββ , we look at the difference of the quantities below,

(hnn)−1

∣∣∣∣∣ n

∑
i=1

1I{xiβ̂ββ > 0}1I{0≤ η̂i ≤ ĥn}−
n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ ηi ≤ hn}

∣∣∣∣∣
≤ (hnn)−1

∣∣∣∣∣ n

∑
i=1

1I{xiβ̂ββ > 0}1I{0≤ η̂i ≤ ĥn}−
n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ η̂i ≤ ĥn}

∣∣∣∣∣
+2(hnn)−1

∣∣∣∣∣ n

∑
i=1

1I{xiβ̂ββ > 0}1I{0≤ ηi ≤ hn}−
n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ ηi ≤ hn}

∣∣∣∣∣
+(hnn)−1

∣∣∣∣∣ n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ η̂i ≤ ĥn}−

n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ ηi ≤ hn}

∣∣∣∣∣
≤ 3(hnn)−1

n

∑
i=1

1I{xiβββ
∗ ≤ xi(β̂ββ −βββ

∗)}︸ ︷︷ ︸
T1

+(hnn)−1

∣∣∣∣∣ n

∑
i=1

(
1I{0≤ η̂i ≤ ĥn}−1I{0≤ ηi ≤ hn}

)∣∣∣∣∣︸ ︷︷ ︸
T2

.

We begin with term T1. By Condition (E), we have ET1 = O(h−1
n ‖β̂ββ−βββ

∗‖1). By Corollary

1, we have

T1−ET1 ≤ |T1−ET1|= OP

(
h−1

n (r1/2
n t3/4(log p/n)1/2∨ t log p/n)

)
,
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which then brings us that T1 is of order OP(1). For term T2, we work out the expression

1I{0≤ η̂i ≤ ĥn}−1I{0≤ ηi ≤ hn}= 1I{0≤ η̂i}1I(η̂i ≤ ĥn}−1I{0≤ ηi}1I{ηi ≤ hn}

= 1I{0≤ η̂i}
(

1I(η̂i ≤ ĥn}−1I(ηi ≤ hn}
)
+(1I{0≤ η̂i}−1I{0≤ ηi})1I{ηi ≤ hn}

≤ 1I{η̂i ≤ ĥn}−1I{ηi ≤ hn}+1I{0≤ η̂i}−1I{0≤ ηi}.

Next, we notice that for real numbers a and b, we have 1I(a > 0)−1I(b > 0)≤ 1I(|b| ≤ |a−b|).

Thus, we have

T2 ≤ (hnn)−1

∣∣∣∣∣ n

∑
i=1

{
1I(η̂i ≤ ĥn}−1I{ηi ≤ hn}+1I{0≤ η̂i}−1I{0≤ ηi}

)∣∣∣∣∣
≤ h−1

n n−1
n

∑
i=1

1I{|hn−ηi| ≤ |ĥn−hn|+ |ηi− η̂i|}+h−1
n n−1

n

∑
i=1

1I{|ηi| ≤ |η̂i−ηi|}

≤ h−1
n n−1

n

∑
i=1

1I{|hn−ηi| ≤ |ĥn−hn|+‖xi‖∞‖β̂ββ −βββ
∗‖1}︸ ︷︷ ︸

T21

+h−1
n n−1

n

∑
i=1

1I{|ηi| ≤ ‖xi‖∞‖βββ ∗− β̂ββ‖1}︸ ︷︷ ︸
T22

To bound T21, we use similar techniques as with T1. Notice that

ET21 = h−1
n P

(
|hn−ηi| ≤ |ĥn−hn|+‖xi‖∞‖β̂ββ −βββ

∗‖1

)

It is easy to see that |hn−ηi| shares the nice property of the density of εi. Thus, ET21 is bounded

by OP(1). Then by Hoeffding’s inequality, we have that with probability approaching 1 that T21 is

of OP(1). T22 can be bounded in exactly the same steps.

56



Finally, we are ready to put everything together that

(hnn)−1

∣∣∣∣∣ n

∑
i=1

1I{xiβ̂ββ > 0}1I{0≤ η̂i ≤ ĥn}−
n

∑
i=1

1I{xiβββ
∗ > 0}1I{0≤ ηi ≤ hn}

∣∣∣∣∣= OP(1).

By applying Slutsky theorem, the result follows directly,

f̂ (0) d−→ ∑
n
i=1 1I{xiβββ

∗ > 0}1I{0≤ ηi ≤ hn}
n−1 ∑

n
i=1P{xiβββ

∗ > 0}
.

Proof of Corollary 9. By multiplying and dividing the term f (0), we can rewrite the term on the

left hand side as

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

] 1
2

j j
U j ·2 f̂ (0) =

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

] 1
2

j j
U j ·2 f (0)

f̂ (0)
f (0)

.

Also, as a result of theorem 8, we have

| f̂ (0)− f (0)|
f (0)

= | f̂ (0)/ f (0)−1|= OP(1),

with Condition (E) guarantees that f (0) is bounded away from 0. It also indicates that

f̂ (0)/ f (0) d−→ 1.

Finally, we apply Slutsky’s Theorem and Theorem 7, we have

[
ΩΩΩ(β̂ββ )Σ̂ΣΣ(β̂ββ )ΩΩΩ(β̂ββ )

] 1
2

j j
U j ·2 f̂ (0) d−−−−−−→

n,p,s
βββ
∗→∞

N (0,1) .
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Proof of Theorem 10. The result of Theorem 10 is a simple consequence of Wald’s device and

results of Corollary 9. The only missing link is an upper bound on

∥∥∥ΩΩΩ(β̂ββ )ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗)

∥∥∥
max

. (1.38)

First, observe that

ΩΩΩ(β̂ββ )ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗) =

(
ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
)

ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )︸ ︷︷ ︸
T1

+ΣΣΣ
−1(βββ ∗)

(
ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )− I

)
︸ ︷︷ ︸

T2

.

Regarding term T1, observe that by Lemma 5 it is equal to OP(1) whenever ‖ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )‖max is

OP(1). This can be seen from the decomposition of ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )− I, which reads,

∥∥∥ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )− I
∥∥∥

max
=
∥∥∥ΣΣΣ
−1(βββ ∗)

(
Σ̂ΣΣ(β̂ββ )−ΣΣΣ(βββ ∗)

)∥∥∥
max︸ ︷︷ ︸

T21

+
∥∥∥(ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
)(

Σ̂ΣΣ(β̂ββ )−ΣΣΣ(βββ ∗)
)∥∥∥

max︸ ︷︷ ︸
T22

+
∥∥∥ΣΣΣ(βββ ∗)

(
ΩΩΩ(β̂ββ )−ΣΣΣ

−1(βββ ∗)
)∥∥∥

max︸ ︷︷ ︸
T23
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We notice that

T21 =

∥∥∥∥∥ΣΣΣ
−1(βββ ∗)

(
n−1

n

∑
i=1

w>i (β̂ββ )wi(β̂ββ )−n−1
n

∑
i=1

w>i (βββ
∗)wi(βββ

∗)

+n−1
n

∑
i=1

w>i (βββ
∗)wi(βββ

∗)−n−1E
n

∑
i=1

w>i (βββ
∗)wi(βββ

∗)

)∥∥∥∥∥
max

≤

∥∥∥∥∥ΣΣΣ
−1(βββ ∗)

(
n−1

n

∑
i=1

(
wi(β̂ββ )+wi(βββ

∗)
)>(

wi(β̂ββ )−wi(βββ
∗)
))∥∥∥∥∥

max

(1.39)

+

∥∥∥∥∥ΣΣΣ
−1(βββ ∗)

(
n−1

n

∑
i=1

(
w>i (βββ

∗)wi(βββ
∗)−Ew>i (βββ

∗)wi(βββ
∗)
))∥∥∥∥∥

max

. (1.40)

For (1.39), we have the following bound

(1.39)≤
∥∥ΣΣΣ
−1(βββ ∗)

∥∥
∞

∥∥∥∥∥n−1
n

∑
i=1

(
wi(β̂ββ )+wi(βββ

∗)
)>(

wi(β̂ββ )−wi(βββ
∗)
)∥∥∥∥∥

max

≤Cs1/2
Ω

n−1
n

∑
i=1

2K2
(

1I(xiβ̂ββ > 0)−1I(xiβββ
∗)
)
,

for some positive constant C, where ‖A‖∞ denotes the max row sum of matrix A and ‖A‖max

denotes the maximum element in the matrix A. By Lemma 1, we can easily bound the term above

with OP

(
K2s1/2

Ω
(r1/2

n t3/4(log p/n)1/2∨ t log p/n)
)

. For (1.40), we start with the following term,

n−1
n

∑
i=1

(
Wi j(βββ

∗)Wik(βββ
∗)−EWi j(βββ

∗)Wik(βββ
∗)
)
.

Applying Hoeffding’s inequality on this term, we have that with probability approaches 1, the

term is bounded by OP(n−1/2). Then we bound term (1.40) as following, for some constant C,

(1.40)≤
∥∥ΣΣΣ
−1(βββ ∗)

∥∥
∞

∥∥∥∥∥n−1
n

∑
i=1

(
w>i (βββ

∗)wi(βββ
∗)−Ew>i (βββ

∗)wi(βββ
∗)
)∥∥∥∥∥

max

≤Cs1/2
Ω

max
j,k

{
n−1

n

∑
i=1

(
Wi j(βββ

∗)Wik(βββ
∗)−EWi j(βββ

∗)Wik(βββ
∗)
)}

= OP(1)
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Term T22 can be bounded using Lemma 5 and the results from term T21, and turns out to

be of order OP

(
K4s3/2

Ω
λ j(r

1/2
n t3/4(log p/n)1/2∨ t log p/n)

)
.

Lastly, by Lemma 5, term T23 is of order OP

(
K2s3/2

Ω
λ j

)
.

Putting the terms together, we have
∥∥∥ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )− I

∥∥∥
max

bounded by

OP

(
(s1/2

Ω
∨ s3/2

Ω
λ j)(r

1/2
n t3/4(log p/n)1/2∨ t log p/n)

∨
s3/2

Ω
λ j

)

Thus, ‖ΣΣΣ(β̂ββ )ΩΩΩ(β̂ββ )‖max is OP(1), and so can T2 be shown similarly. The expression (1.38) is then

bounded as,

∥∥∥Ω̂ΩΩ(β̂ββ )ΣΣΣ(β̂ββ )Ω̂ΩΩ(β̂ββ )−ΣΣΣ
−1(βββ ∗)

∥∥∥
max

(1.41)

= OP

(
(s1/2

Ω
∨ s3/2

Ω
λ j)(r

1/2
n t3/4(log p/n)1/2∨ t log p/n)

∨
s3/2

Ω
λ j

)

which then completes the proof.

Proof of Theorem 11. The result of Theorem 11 holds by observing that Bahadur representations

(1.32) remain accurate uniformly in the sparse vectors βββ ∈B; hence, all the steps of Theorem 6

apply in this case as well.

1.9 Proofs of Lemmas

Proof of Lemma 1. Let {δ̃δδ k}k∈[Nδ ]
be the centers of the balls of radius rnξn that cover the set

C (rn, t). Such a cover can be constructed with Nδ ≤
(p

t

)
(3/ξn)

t , see [VdV00] for example.

Furthermore, let Dn(δδδ ) = n−1
∑

n
i=1 [µi(δδδ )−E[µi(δδδ )]] and let

B(δ̃δδ k,r) =
{

δδδ ∈ Rp : ||δ̃δδ k−δδδ ||2 ≤ r , supp(δδδ )⊆ supp(δ̃δδ k)
}
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be a ball of radius r centered at δ̃δδ k with elements that have the same support as δ̃δδ k. In what

follows, we will bound supδδδ∈C (rn,t) |Dn(δδδ )| using an ε-net argument. In particular, using the

above introduced notation, we have the following decomposition

sup
δδδ∈C (rn,t)

|Dn(δδδ )|= max
k∈[Nδ ]

sup
δδδ∈B(δ̃δδ k,rnξn)

|Dn(δδδ )|

≤ max
k∈[Nδ ]

|Dn(δ̃δδ k)|︸ ︷︷ ︸
T1

+ max
k∈[Nδ ]

sup
δδδ∈B(δ̃δδ k,rnξn)

|Dn(δδδ )−Dn(δ̃δδ k)|︸ ︷︷ ︸
T2

.
(1.42)

We first bound the term T1 in (1.42). To that end, let Zik =
(

µi(δ̃δδ k)−E
[
µi(δ̃δδ k)

])
. With

a little abuse of notation we use l to denote the density of xiβββ
∗ for all i. Observe,

E [µi(δδδ )] = P
(

xiβββ
∗ ≤ xiδδδ

)
−P
(

xiβββ
∗ ≤ 0

)
= wi(δδδ )−wi(0),

where wi(δδδ ) := P(xiβββ
∗ ≤ xiδδδ ), as a function of δδδ . Then T1 = maxk∈[Nδ ]

∣∣n−1
∑i∈[n]Zik

∣∣ . Note

that E[Zik] = 0 and

Var[Zik] = E
[

1I
(

xiβββ
∗ ≤ xiδ̃δδ k

)
+1I
(

xiβββ
∗ ≤ 0

)
−21I

(
xiβββ
∗ ≤ xiδ̃δδ k

)
1I
(

xiβββ
∗ ≤ 0

)]
−
[
E1I
(

xiβββ
∗ ≤ xiδ̃δδ k

)
−E1I

(
xiβββ
∗ ≤ xiδ̃δδ k

)]2

(i)
≤ E

[
1I
(

xiβββ
∗ ≤ xiδ̃δδ k

)
+1I
(

xiβββ
∗ ≤ 0

)
−21I

(
xiβββ
∗ ≤ 0

)
1I
(

xiβββ
∗ ≤ 0

)]
+2E

[(
1I
(

xiβββ
∗ ≤ 0

)
−1I
(

xiβββ
∗ ≤ xiδ̃δδ k

))
1I
(

xiβββ
∗ ≤ 0

)]
(ii)
≤ wi(δ̃δδ k)−wi(0)+2

∣∣∣wi(δ̃δδ k)−wi(0)
∣∣∣≤ 3

∣∣∣wi(δ̃δδ k)−wi(0)
∣∣∣ , (1.43)

where (i) follows from dropping a negative term, and (ii) follows from taking absolute value

within the second expectation. We can apply linearization techniques on the difference of
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wi(δ̃δδ k)−wi(0).

∣∣∣wi(δ̃δδ k)−wi(0)
∣∣∣ (iii)≤ ∣∣∣xiδ̃δδ k

∣∣∣ l(cixiδ̃δδ k

) (iv)
≤
∣∣∣xiδ̃δδ k

∣∣∣K1 (ci ∈ [0,1]) ,

where (iii) follows by the mean value theorem and (iv) from the Condition (E). Hence, we have

that almost surely, |Zik| ≤C maxi

∣∣∣xiδ̃δδ k

∣∣∣ for a constant C < ∞. For a fixed k, Bernstein’s inequality,

see Section 2.2.2 of [VDVW96] for example, gives us

∣∣∣∣∣n−1
∑

i∈[n]
Zik

∣∣∣∣∣≤C

√√√√K1 log(2/δ )

n2 ∑
i∈[n]

∣∣∣xiδ̃δδ k

∣∣∣∨ log(2/δ )

n



with probability 1−δ . Observe that for ∑i∈[n]

∣∣∣xiδ̃δδ k

∣∣∣, we have

∑
i∈[n]

∣∣∣xiδ̃δδ k

∣∣∣≤C2n
√

δ̃δδ
>
k X>X δ̃δδ k ≤C2nrnt1/2 (1.44)

where the line follows using the Cauchy-Schwartz inequality.

Hence, with probability 1−2δ we have for all λ j ≥ A
√

log p/n that

∣∣∣∣∣n−1
∑

i∈[n]
Zik

∣∣∣∣∣≤C

√rn
√

t log(2/δ )

n

∨ log(2/δ )

n

 .

Using the union bound over k ∈ [Nδ ], with probability 1−2δ , we have

T1 ≤C

√rn
√

t log(2Nδ/δ )

n

∨ log(2Nδ/δ )

n

 .
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Let us now focus on bounding T2 term. Let Qi(δδδ ) = µi(δδδ )−Eµi(δδδ ). For a fixed k we have

sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣Dn(δδδ )−Dn(δ̃δδ k)
∣∣∣≤ sup

δδδ∈B(δ̃δδ k,rnξn)

∣∣∣∣∣n−1
∑

i∈[n]
Qi(δδδ )−Qi(δ̃δδ k)

∣∣∣∣∣ := T21.

We further simply the expression, with a little abuse of notation,

Z′ik := Qi(δδδ )−Qi(δ̃δδ k) =
[
1I(xiδδδ ≥ xiβββ

∗)−1I(xiδ̃δδ k ≥ xiβββ
∗)
]

−
[
E1I(xiδδδ ≥ xiβββ

∗)+E1I(xiδ̃δδ k ≥ xiβββ
∗)
]
.

Then it is clear that EZ′ik = 0 and as shown earlier in Var(Zik),

Var(Z′ik)≤ 3
∣∣∣wi(δδδ )−wi(δ̃δδ k)

∣∣∣≤ 3K1

∣∣∣xi

(
δδδ − δ̃δδ k

)∣∣∣
Moreover, ∣∣∣xi(δδδ − δ̃δδ k)

∣∣∣≤ K||δδδ − δ̃δδ k||2
√∣∣∣supp(δδδ − δ̃δδ k)

∣∣∣
where K is a constant such that maxi, j |xi j| ≤ K. Hence,

max
k∈[Nδ ]

max
i∈[n]

sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣xiδδδ − xiδ̃δδ k

∣∣∣≤ rnξn
√

t max
i, j
|xi j| ≤Crnξn

√
t =: L̃n,

The term T21 can be bounded in a similar way to T1 by applying Bernstein’s inequality

and hence the details are omitted. With probability 1−2δ ,

T21 ≤C

√ L̃n log(2/δ )

n

∨ log(2/δ )

n


A bound on T2 now follows using a union bound over k ∈ [Nδ ]. We can choose ξn = n−1,
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which gives us Nδ .
(

pn2)t . With these choices, we obtain

T ≤C

√rnt
√

t log(np/δ )

n

∨ t log(2np/δ )

n

 ,

which completes the proof.

Proof of Lemma 2. We begin by rewriting the term n−1
∑

n
i=1 ψi(βββ ), and aim to represent it

through indicator functions. Observe that

n−1
n

∑
i=1

ψi(βββ ) = n−1
n

∑
i=1

x>i 1I(xiβββ > 0)[1−2 ·1I(yi− xiβββ < 0)]. (1.45)

Using the fundamental theorem of calculus, we notice that if xiβββ
∗ > 0,

∫ 0
xi(βββ−βββ

∗) f (εi)dεi =

F(0)−F(xi(βββ −βββ
∗)) = 1

2 −P(yi < xiβββ ), where F is the univariate distribution of εi. Therefore,

with expectation on ε , we can obtain an expression without the yi.

n−1
n

∑
i=1

Eεψi(βββ ) =

[
n−1

n

∑
i=1

x>i 1I(xiβββ > 0) ·2
∫ 0

xi(βββ−βββ
∗)

f (u)du

]

=

[
n−1

n

∑
i=1

x>i 1I(xiβββ > 0) ·2 f (u∗)xi(βββ
∗−βββ )

]
:= Λn(βββ )(βββ

∗−βββ ),

for some u∗ between 0 and xi(βββ
∗−βββ ), and where we have defined

Λn(βββ ) =

[
n−1

n

∑
i=1

1I(xiβββ > 0)x>i xi ·2 f (u∗)

]
.

We then show a bound for ∆ :=
∣∣∣[EX Λn(βββ )−2 f (0)ΣΣΣ(βββ ∗)

]
jk

∣∣∣, where we recall ΣΣΣ(βββ ∗) is
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defined as earlier, ΣΣΣ(βββ ∗) = n−1
∑

n
i=1EX 1I(xiβββ

∗ > 0)x>i xi. By triangular inequality,

∆≤

∣∣∣∣∣n−1
n

∑
i=1

EX 1I(xiβββ > 0)xi jxik ·2( f (u∗)− f (0))

∣∣∣∣∣ (1.46)

+

∣∣∣∣∣n−1
n

∑
i=1

EX 1I(xiβββ > 0)xi jxik ·2 f (0)−n−1
n

∑
i=1

EX 1I(xiβββ
∗ > 0)xi jxik ·2 f (0)

∣∣∣∣∣ . (1.47)

Notice that 1I(xiβββ > 0)−1I(xiβββ
∗ > 0)≤ 1I(xiβββ ≥ 2xiβββ

∗) = 1I[xiβββ
∗ ≤ xi(βββ −βββ

∗)]. Moreover, the

original expresion is also smaller than or equal to 1I
(
|xiβββ

∗| ≤ |xi(βββ −βββ
∗)|
)
. The term (1.47) can

be bounded by the design matrix setup and Condition (E),

∣∣∣∣∣n−1
n

∑
i=1

EX 1I(xiβββ > 0)xi jxik ·2 f (0)−n−1
n

∑
i=1

EX 1I(xiβββ
∗ > 0)xi jxik ·2 f (0)

∣∣∣∣∣
≤ 2 f (0)K2n−1

n

∑
i=1

EX 1I
(
|xiβββ

∗| ≤ ‖xi‖∞‖(βββ −βββ
∗)‖1

)
≤ 2 f (0)K2‖(βββ −βββ

∗)‖1.

With the help of Hölder’s inequality, |(1.46)|≤n−1
∑

n
i=1EX 1I(xiβββ > 0)‖xi‖2

∞ ·2 | f (u∗)− f (0)| .

By triangular inequality and Condition (E) we can further upper bound the right hand side with

2 ·n−1
n

∑
i=1

EX‖xi‖2
∞ ·L0‖xi‖∞‖βββ −βββ

∗‖1.

Then we are ready to put terms together and obtain a bound for ∆. Additionally, by the design

matrix setup we have

∆≤ (C+2 f (0))K3‖βββ −βββ
∗‖1,

for ‖βββ −βββ
∗‖1 < ξ and a constant C. Essentially, this proves that ∆ is not greater than a constant

multiple of the difference between βββ and βββ
∗. Thus, we have as n→ ∞

n−1
n

∑
i=1

Eψi(βββ ) = n−1
n

∑
i=1

EXEεψi(βββ ) = 2 f (0)ΣΣΣ(βββ ∗)(βββ ∗−βββ )+O(‖βββ −βββ
∗‖1)(βββ

∗−βββ ).

(1.48)
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Proof of Lemma 3. For the simplicity in notation we fix j = 1 and denote γ̂γγ(1)(β̂ββ ) with γ̂γγ(β̂ββ ).

The proof is composed of two steps: the first establishes a cone set and an event set of interest

whereas the second proves the rate of the estimation error by certain approximation results.

Step 1. Here we show that the estimation error γ̂γγ− γγγ∗ belongs to the appropriate cone set

with high probability. We introduce the loss function l(βββ ,γγγ) = n−1
∑

n
i=1 (Wi,1(βββ )−Wi,−1(βββ )γγγ)

2.

The loss function above is convex in γγγ hence

(γ̂γγ− γγγ
∗)
[
∇γγγ l(β̂ββ ,γγγ)|γγγ=γ̂γγ −∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗

]
≥ 0.

Let h∗ =
∥∥∥∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗

∥∥∥
∞

. Let δδδ = γ̂γγ− γγγ∗. KKT conditions provide
(

∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗+δδδ

)
j
=

−λ1sgn(γγγ∗j +δδδ j) for all j ∈ Sc
1∩{γ̂γγ j 6= 0} with S1 = { j : γγγ∗ 6= 0}. Moreover, observe that δδδ j = 0

for all j ∈ Sc
1∩{γ̂γγ j = 0}. Then,

(γ̂γγ− γγγ
∗)
[
∇γγγ l(β̂ββ ,γγγ)|γγγ=γ̂γγ −∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗

]
= ∑

j∈Sc
1

δδδ j(∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗+δδδ ) j + ∑
j∈S1

δδδ j(∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗+δδδ ) j +δδδ
>(−∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗)

≤ ∑
j∈Sc

1

δδδ j(−λ1sgn(γγγ∗j +δδδ j))+λ1 ∑
j∈S1

|δδδ j|+h∗‖δδδ‖1

= ∑
j∈Sc

1

−λ1|δδδ j|+ ∑
j∈S1

λ1|δδδ j|+h∗‖δδδ S1‖1 +h∗‖δδδ Sc
1
‖1

= (h∗−λ1)‖δδδ Sc
1
‖1 +(λ1 +h∗)‖δδδ S1‖1.

Hence on the event h∗ ≤ (a−1)/(a+1)λ1 for a constant a > 1, the estimation error δδδ

belongs to the cone set

C (a,S1) = {x ∈ Rp−1 : ‖xSc
1
‖1 ≤ a‖xS1‖1} (1.49)
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Next, we proceed to show that the event above holds with high probability for certain

choice of the tuning parameter λ1. We begin by decomposing

h∗ ≤
∥∥∇γγγ l(βββ ∗,γγγ)|γγγ=γγγ∗

∥∥
∞
+
∥∥∥∇γγγ l(βββ ∗,γγγ)|γγγ=γγγ∗−∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗

∥∥∥
∞

Let H1 = ∇γγγ l(βββ ∗,γγγ)|γγγ=γγγ∗ and let H2 = ∇γγγ l(βββ ∗,γγγ)|γγγ=γγγ∗ −∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗ We begin by

observing that ∇γγγ l(β̂ββ ,γγγ)|γγγ=γγγ∗ = ∇γγγ l(βββ ∗,γγγ)|γγγ=γγγ∗+∆1 +∆2 +∆3 +∆4, for

∆1 =−2n−1
(

W−1(β̂ββ )−W−1(βββ
∗)
)>

W1(β̂ββ )

∆2 =−2n−1 (W−1(βββ
∗)
)>(W1(β̂ββ )−W1(βββ

∗)
)

∆3 =−2n−1
(

W−1(β̂ββ )
)>(

W−1(β̂ββ )−W−1(βββ
∗)
)

γγγ
∗

∆4 = 2n−1
(

W−1(β̂ββ )−W−1(βββ
∗)
)>

W−1(βββ
∗)γγγ∗

Next, by Lemma 1 we observe

|∆1, j| ≤ 2K2n−1

∣∣∣∣∣ n

∑
i=1

µi(βββ
∗− β̂ββ )−µi(0)

∣∣∣∣∣= OP

(
K2r1/2

n t3/4(log p/n)1/2
∨

K2t log p/n
)
,

and similarly |∆2, j|= OP

(
K2r1/2

n t3/4(log p/n)1/2∨K2t log p/n
)

. Then, it is not difficult to see

that such assumption provides ‖W−1(βββ
∗)γγγ∗‖∞ = OP(K). By Hölder’s inequality followed by

Lemma 1

|∆3, j| ≤ 2K2n−1

∣∣∣∣∣ n

∑
i=1

[
µi(βββ

∗− β̂ββ )−µi(0)
]∣∣∣∣∣

= OP

(
K2r1/2

n t3/4(log p/n)1/2
∨

K3t log p/n
)
,

and similarly |∆4, j|= OP

(
K2r1/2

n t3/4(log p/n)1/2∨K2t log p/n
)
. Putting all the terms together
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we obtain

H2 = OP

(
K2r1/2

n t3/4(log p/n)1/2
∨

K2t log p/n
)
.

Next, we focus on the term H1. Simple computation shows that for all k = 2, · · · p, we

have

H1,k =−2n−1
n

∑
i=1

ui

for ui = Xikζζζ
∗
1,i 1I{xiβββ

∗ > 0}. Observe that the sequence {ui} across i = 1, · · · ,n, is a sequence

of independent random variables. As εi and xi are independent we have by the tower property

E[ri] = EX
[
Xik 1I{xiβββ

∗ > 0}Eε [ζζζ
∗
1,i]
]
= 0. Moreover, as ζζζ

∗
1 is sub-exponential random vector, by

Bernstein’s inequality and union bound we have

P(‖H1‖∞ ≥ c)≤ pexp
{
−n

2

(
c2

K̃2
∨ c

K̃

)}

where ‖ui‖ψ1 ≤K‖ζζζ ∗1,i‖ψ1 := K̃ < ∞. We pick c to be (log p/n)1/2, then we have with probability

converging to 1 that

h∗ ≤ ‖H1‖∞ +‖H2‖∞ ≤ (log p/n)1/2 +C1r1/2
n t3/4(log p/n)1/2 +C2t log p/n

≤ (a−1)/(a+1)λ1,

for some constant C1 and C2. Thus, with λ1 chosen as

λ1 =C
(
(log p/n)1/2

∨(
r1/2

n
∨

t1/4(log p/n)1/2
)

t3/4(log p/n)1/2
)
,

for some constant C > 1, we have that h∗ ≤ (a−1)/(a+1)λ1 with probability converging to 1.

More directly, with the condition on the penalty parameter λ1, this implies that the event for the

cone set (1.49) to be true holds with high probability.
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Step 2. We begin by a basic inequality

l(β̂ββ , γ̂γγ)+λ1‖γ̂γγ‖1 ≤ l(β̂ββ ,γγγ∗)+λ1‖γγγ∗‖1

guaranteed as γ̂γγ minimizes the penalized loss (1.8). Here and below in the rest of the proof we

suppress the subscript 1 and βββ in the notation of W1(β̂ββ ) and W−1(β̂ββ ) and use Ŵ and Ŵ− instead

and similarly W ∗ :=W1(βββ
∗) and W−∗ =W−1(βββ

∗). Rewriting the inequality above we obtain

−2n−1Ŵ>Ŵ−γ̂γγ +n−1
γ̂γγ
>Ŵ−

>
Ŵ−γ̂γγ

≤−2n−1Ŵ>Ŵ−γγγ
∗+n−1

γγγ
∗>Ŵ−

>
Ŵ−γγγ

∗−λ1‖γ̂γγ‖1 +λ1‖γγγ∗‖1

Observe that Wi j(β̂ββ ) = Wi j(βββ
∗)+Xi j[µi(βββ

∗− β̂ββ )− µi(0)]. Let αi j = Xi j[µi(βββ
∗− β̂ββ )−

µi(0)]. Let A be a matrix such that A = {αi j}1≤i≤n,1≤ j≤p. From now on we only consider

A to mean A1 and A− to mean A−1. Next, note that W ∗i = W−i
∗
γγγ∗+ ζ ∗i by the definition of

γγγ∗ in the node-wise plug-in lasso problem. Together with the above, we observe that Ŵi =

W−i
∗
γγγ∗+ζ ∗i +Ai :=W−i

∗
γγγ∗+ ε∗i . Hence, the basic inequality above becomes,

−2n−1 (W−∗γγγ∗+ εεε
∗)> (W−∗+A−)γ̂γγ +n−1

γ̂γγ
>
(W−∗+A−)>(W−∗+A−)γ̂γγ

≤−2n−1 (W−∗γγγ∗+ εεε
∗)> (W−∗+A−)γγγ∗+n−1

γγγ
∗>(W−∗+A−)>(W−∗+A−)γγγ∗

−λ1‖γ̂γγ‖1 +λ1‖γγγ∗‖1.
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With reordering the terms in the inequality above, we obtain

n−1∥∥W−∗γ̂γγ−W−∗γγγ∗
∥∥2

2 ≤ δ1 +δ2 +δ3−λ1‖γ̂γγ‖1 +λ1‖γγγ∗‖1,

for δ1 = 2n−1
ε
∗>
1
(
W−∗+A−

)(
γ̂γγ− γγγ

∗) ,
δ2 = 2n−1

γγγ
∗>W−∗>A−

(
γ̂γγ− γγγ

∗) ,
δ3 = n−1 (

γγγ
∗+ γ̂γγ

)>(A−>A−+2W−∗>A−
)(

γγγ
∗− γ̂γγ

)
.

Next, we observe that Ai are bounded, mean zero random variables and hence

n−1|
n

∑
i=1

Ai|= OP(n−1/2).

Moreover ε∗i is a sum of sub-exponential and bounded random variables, hence is sub-exponential.

Thus, utilizing the above and results of Step 1 we obtain

δ1 ≤ K2(a+1)‖γ̂γγS1
− γγγ
∗
S1
‖1OP(n−1/2),

δ2 ≤ K2(a+1)‖γ̂γγS1
− γγγ
∗
S1
‖1‖γγγ∗S1

‖1OP(n−1/2),

Lastly, observe that

δ3 ≤ n−1
γγγ
∗>
(

A−>A−+2W−∗>A−
)

γγγ
∗+n−1

γ̂γγ
>
(

A−>A−+2W−∗>A−
)

γ̂γγ (1.50)

Moreover, as γ̂γγ− γγγ∗ belongs to the cone C(a,S1) (1.49) by Step 1, by convexity arguments it is

easy to see that γ̂γγ belongs to the same cone. Together with Hölder’s inequality we obtain

δ3 ≤ 3Kn−1
n

∑
i=1

W−∗i,S1

>A−i,S1

[
‖γγγ∗S1
‖2

2 +‖γ̂γγS1
‖2

2
]

70



Utilizing Lemma 1 now provides

δ3 ≤ κ
[
‖γγγ∗S1
‖2

2 +‖γ̂γγS1
‖2

2
]

where κ is such that κ = OP(K2r1/2
n t3/4(log p/n)1/2). Moreover, observe that if λ1 is chosen to

be larger than the upper bound of κ . Putting all the terms together we obtain

n−1
n

∑
i=1

(
W−i

∗
γ̂γγ−W−i

∗
γγγ
∗)2 ≤ 2λ1‖γ̂γγS1

− γγγ
∗
S1
‖1 +λ1‖γγγ∗S1

‖2
2 +λ1‖γ̂γγS1

‖2
2−λ1‖γ̂γγ‖1 +λ1‖γγγ∗‖1

≤ 3λ1‖γ̂γγS1
− γγγ
∗
S1
‖1 +λ1‖γγγ∗S1

‖2
2 +λ1‖γ̂γγS1

‖2
2

where the last inequality holds as |γ̂ j− γ∗j | ≥ |γ∗j |− |γ̂ j| for j ∈ S1, and disregarding the negative

terms −λ1‖γ̂γγSc
1
‖1.

Moreover, by Condition (C) and Step 1 we have that the left hand side is bigger than or

equal to C2n−1
∑

n
i=1
(
X−i γ̂γγ−X−i γγγ∗

)2, allowing us to conclude

n−1C2
∥∥X(γ̂γγ− γγγ

∗)
∥∥2

2 ≤ 3λ1‖γ̂γγS1
− γγγ
∗
S1
‖1 +2λ1‖γγγ∗S1

‖2
2 +λ1‖γ̂γγS1

− γγγ
∗
S1
‖2

2 (1.51)

holds with probability approaching one. Let S = S
βββ
∗ for short. Condition (ΓΓΓ) and (CC) together

imply that now we have

(φ 2
0C2−λ1)‖γ̂γγS1

− γγγ
∗
S1
‖2

2 ≤ 3
√

s1λ1‖γ̂γγS1
− γγγ
∗
S1
‖2 +2λ1‖γγγ∗S1

‖2
2.

Solving for ‖γ̂γγS1
− γγγ∗S1

‖2 in the above inequality we obtain

‖γ̂γγS1
− γγγ
∗
S1
‖2 ≤ 3

√
s1λ1/(φ

2
0C2−λ1)
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The result then follows from a simple norm inequality

‖γ̂γγ− γγγ
∗‖1 ≤ (a+1)‖γ̂γγS1

− γγγ
∗
S1
‖1 ≤ (a+1)

√
s1‖γ̂γγS1

− γγγ
∗
S1
‖2

and considering an asymptotic regime with n, p,s
βββ
∗,s1→ ∞.

Proof of Lemma 4 . Recall the definitions of ζ̂ζζ j and ζζζ
∗
j . Observe that we have the following

inequality,

∣∣∣∣ζ̂ζζ>j ζ̂ζζ j/n−Eζζζ
∗
j
>

ζζζ
∗
j/n
∣∣∣∣≤ ∣∣∣∣n−1

ζ̂ζζ
>
j ζ̂ζζ j−n−1

ζζζ
∗
j
>

ζζζ
∗
j

∣∣∣∣+ ∣∣∣n−1
ζζζ
∗
j
>

ζζζ
∗
j −n−1Eζζζ

∗
j
>

ζζζ
∗
j

∣∣∣
≤ n−1

∥∥∥ζ̂ζζ j +ζζζ
∗
j

∥∥∥
∞

∥∥∥ζ̂ζζ j−ζζζ
∗
j

∥∥∥
1
+
∣∣∣n−1

ζζζ
∗
j
>

ζζζ
∗
j −n−1Eζζζ

∗
j
>

ζζζ
∗
j

∣∣∣ ,
using triangular inequality and Hölder’s inequality.

We proceed to upper bound all of the three terms on the right hand side of the previous

inequality. First, we observe

∥∥∥ζ̂ζζ j +ζζζ
∗
j

∥∥∥
∞

≤
∥∥∥Wj(βββ

∗)−W− j(βββ
∗)γγγ∗( j)(βββ

∗)
∥∥∥

∞

+
∥∥∥Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ )

∥∥∥
∞

. (1.52)

Moreover, the conditions imply that ‖Wj(β̂ββ )‖∞ ≤ K (by the design matrix condition),

‖W− jγ̂γγ( j)(β̂ββ )‖∞ ≤ K
(
‖γ̂γγ( j)(β̂ββ )− γγγ

∗
( j)(βββ

∗)‖1 +OP(K)
)

and by Lemma 3, for λ j as defined, the right hand size is OP
(
Ks jλ j∨K

)
. Thus, we conclude∥∥∥ζ̂ζζ j +ζζζ

∗
j

∥∥∥
∞

= OP

(
K
∨

Ks jλ j
∨

K
)
= OP

(
K∨K∨Ks jλ j

)
.
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Its multiplying term can be decomposed as following

n−1
∥∥∥ζ̂ζζ j−ζζζ

∗
j

∥∥∥
1
≤ n−1

∥∥∥X j ◦
(

1I(X β̂ββ > 0)−1I(Xβββ
∗ > 0)

)∥∥∥
1︸ ︷︷ ︸

i

+n−1
∥∥∥W− j(β̂ββ )γ̂γγ( j)(β̂ββ )−W− j(βββ

∗)γγγ∗( j)(βββ
∗)
∥∥∥

1︸ ︷︷ ︸
ii

, (1.53)

where ◦ denotes entry wise multiplication between two vectors. The reason we have to spend

such a great effort in separating the terms to bound this quantity is that we are dealing with a

1-norm here, rather than an infinity-norm, which is bounded easily.

We start with term i. Notice that

n−1
∥∥∥X j ◦

(
1I(X β̂ββ > 0)−1I(Xβββ

∗ > 0)
)∥∥∥

1
≤ Kn−1

n

∑
i=1

∣∣∣1I(xiβ̂ββ > 0)−1I(xiβββ
∗ > 0)

∣∣∣ ,
by Hölder’s inequality and the design matrix condition. Moreover, by Lemma 1 we can easily

bound the term above with OP

(
Kr1/2

n t3/4(log p/n)1/2∨Kt log p/n
)

, with rn and t as defined in

Condition (I).

For the term ii, we have

ii≤n−1
∥∥∥X− jγ̂γγ( j)(β̂ββ )◦1I(X β̂ββ > 0)−X− jγγγ

∗
( j)(βββ

∗)◦1I(X β̂ββ > 0)
∥∥∥

1

+n−1
∥∥∥X− jγγγ

∗
( j)(βββ

∗)◦1I(X β̂ββ > 0)−X− jγγγ
∗
( j)(βββ

∗)◦1I(Xβββ
∗ > 0)

∥∥∥
1
.

Observe, that the right hand side is upper bounded with

K
∥∥∥γ̂γγ( j)(β̂ββ )− γγγ

∗
( j)(βββ

∗)
∥∥∥

1

∥∥∥1I(X β̂ββ > 0)
∥∥∥

∞

+
∥∥∥X− jγγγ

∗
( j)(βββ

∗)
∥∥∥

∞

∣∣∣∣∣n−1
n

∑
i=1

[
1I(xiβ̂ββ > 0)−1I(xiβββ

∗ > 0)
]∣∣∣∣∣
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by the design matrix condition. Utilizing Lemma 1, Lemma 3 and Condition (ΓΓΓ) together we

obtain

ii = OP
(
Ks jλ j

)
+OP

(
Kr1/2

n t3/4(log p/n)1/2
∨

Kt log p/n
)
,

for the chosen λ j. Combining bounds for the terms i and ii, we obtain

n−1
∥∥∥ζ̂ζζ j−ζζζ

∗
j

∥∥∥
1
= OP

(
Ks jλ j

∨
Kr1/2

n t3/4(log p/n)1/2
∨

Kt log p/n
)

Next, we bound
∣∣∣n−1ζζζ

∗
j
>

ζζζ
∗
j −n−1Eζζζ

∗
j
>

ζζζ
∗
j

∣∣∣. If we rewrite the inner product in sum-

mation form, we have
∣∣∣n−1ζζζ

∗
j
>

ζζζ
∗
j −n−1Eζζζ

∗
j
>

ζζζ
∗
j

∣∣∣= n−1
∑

n
i=1

(
ζ ∗i j

2−Eζ ∗i j
2
)
. Notice that ζ ∗i j =

Wi j(βββ
∗)−Wi,− jγγγ

∗
( j)(βββ

∗) is a bounded random variable and such that |ζ ∗i j|= OP(K +Ks1/2
j ). We

then apply Hoeffding’s inequality for bounded random variables, to obtain

∣∣∣n−1
ζζζ
∗
j
>

ζζζ
∗
j −n−1Eζζζ

∗
j
>

ζζζ
∗
j

∣∣∣= OP(K2s jn−1/2).

Proof of Lemma 5 . We begin by first establishing that τ̂
−2
j =OP(1). In the case when the penalty

part λ j

∥∥∥γ̂γγ( j)(β̂ββ )
∥∥∥

1
happens to be 0, which means γ̂γγ( j)(β̂ββ ) = 0, the worst case scenario is that the

regression part, n−1
∥∥∥Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ )

∥∥∥2

2
, also results in 0, i.e.

0 =Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ ) (1.54)

We show that these terms cannot be equal to zero simultaneously, since this forces Wj(β̂ββ ) = 0,

which is not true. Thus, τ̂
−2
j is bounded away from 0.

In order to show results about the matrices ΩΩΩ(β̂ββ ) and ΩΩΩ(βββ ∗), we first provide a bound on

the τ̂ and τ . This is critical, since the magnitude of ΩΩΩ(·) is determined by τ . To derive the bound

on the τ’s, we have to decompose the terms very carefully and put a bound on each one of them.
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Recall definitions of ζ̂ζζ j and ζζζ
∗
j

ζ̂ζζ j =Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ ), ζζζ
∗
j =Wj(βββ

∗)−W− j(βββ
∗)γγγ∗( j)(βββ

∗).

Moreover, by the Karush-Kuhn-Tucker conditions of problem (1.8) we have λ j‖γ̂γγ( j)(β̂ββ )‖1 =

n−1ζ̂ζζ
>
j W− j(β̂ββ )γ̂γγ(β̂ββ ), which in turn enables a representation

τ̂
2
j = n−1

ζ̂ζζ
>
j ζ̂ζζ j +n−1

ζ̂ζζ
>
j W− j(β̂ββ )γ̂γγ(β̂ββ ).

By definition we have that τ2
j = n−1Eζζζ

∗
j
>

ζζζ
∗
j , for which we have τ̂2

j as an estimate. The τ2
j and

τ̂2
j carry information about the magnitude of the values in ΣΣΣ

−1(βββ ∗) and ΩΩΩ(β̂ββ ) respectively. We

next break down τ2
j and τ̂2

j into parts related to difference between γ̂γγ( j)(β̂ββ ) and γγγ∗( j)(βββ
∗), which

we know how to control. Thus, we have the following decomposition,

∣∣τ̂2
j − τ

2
j
∣∣≤ ∣∣∣∣n−1

ζ̂ζζ
>
j ζ̂ζζ j− τ

2
j

∣∣∣∣︸ ︷︷ ︸
I

+

∣∣∣∣n−1
ζ̂ζζ
>
j W− j(β̂ββ )γ̂γγ( j)(β̂ββ )

∣∣∣∣︸ ︷︷ ︸
II

.

The task now boils down to bounding each one of the terms I and II , independently. Term

I is now bounded by Lemma 4 and is in order of OP
(
K2s jλ j

)
. Regarding term II, we first point

out one result due to the Karush-Kuhn-Tucker conditions of (6),

λ j ·1> ≥ λ jsign
(

γ̂γγ( j)(β̂ββ )
)>

= n−1
(

Wj(β̂ββ )−W− j(β̂ββ )γ̂γγ( j)(β̂ββ )
)>

W− j(β̂ββ ) = n−1
ζ̂ζζ
>
j W− j(β̂ββ ).

For the term II, we then have

∣∣∣∣n−1
ζ̂ζζ
>
j W− j(β̂ββ )γ̂γγ( j)(β̂ββ )

∣∣∣∣≤ ∥∥∥∥n−1
ζ̂ζζ
>
j W− j(β̂ββ )

∥∥∥∥
∞

∥∥∥γ̂γγ( j)(β̂ββ )
∥∥∥

1
= OP

(
s1/2

j λ j∨ s jλ
2
j

)
,
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since by Lemma 3 we have

∥∥∥γ̂γγ( j)(β̂ββ )
∥∥∥

1
≤
∥∥∥γγγ
∗
( j)(βββ

∗)
∥∥∥

1
+
∥∥∥γ̂γγ( j)(β̂ββ )− γγγ

∗
( j)(βββ

∗)
∥∥∥

1
= OP(s

1/2
j )+OP(s jλ j).

Putting all the pieces together, we have shown that rate

∣∣τ̂2
j − τ

2
j
∣∣= OP

(
K2s jλ j∨ s1/2

j λ j∨ s jλ
2
j

)

As τ̂
−2
j = OP(1) we have

∣∣∣∣ 1
τ̂2

j
− 1

τ2
j

∣∣∣∣= OP

(∣∣∣τ2
j − τ̂2

j

∣∣∣) . We then conclude

∥∥∥ΩΩΩ(β̂ββ ) j−ΣΣΣ
−1(βββ ∗) j

∥∥∥
1
≤ τ̂

−2
j

∥∥∥γ̂γγ( j)(β̂ββ )− γγγ
∗
( j)(βββ

∗)
∥∥∥

1
+
∥∥∥γγγ
∗
( j)(βββ

∗)
∥∥∥

1

∣∣∣∣∣ 1
τ̂2

j
− 1

τ2
j

∣∣∣∣∣
= OP

(
K2s3/2

j λ j∨ s jλ j∨ s3/2
j λ

2
j

)

Proof of Lemma 6. For the simplicity of the proof we introduce some additional notation. Let

δδδ = β̂ββ −βββ
∗, and

νn(δδδ ) = n−1
n

∑
i=1

ΩΩΩ(β̂ββ )
[
ψi(β̂ββ )−ψi(βββ

∗)
]
.

Observe that 1I
{

yi− xiβ̂ββ ≤ 0
}
= 1I{xiδδδ ≥ εi} and hence

1−21I{yi− xiβ̂ββ > 0}= 21I
{

yi− xiβ̂ββ ≤ 0
}
−1.

The term we wish to bound then can be expressed as

Vn(δδδ ) = νn(δδδ )−Eνn(δδδ )
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for νn(δδδ ) denoting the following quantity

νn(δδδ ) = n−1
n

∑
i=1

ΩΩΩ(δδδ +βββ
∗)x>i [ fi(δδδ )gi(δδδ )− fi(0)gi(0)]

and

fi(δδδ ) = 1I
{

xiδδδ ≥−xiβββ
∗} , gi(δδδ ) = 21I{xiδδδ ≥ εi}−1.

Let {δ̃δδ k}k∈[Nδ ]
be centers of the balls of radius rnξn that cover the set C (rn, t). Such a

cover can be constructed with Nδ ≤
(p

t

)
(3/ξn)

t , see [VdV00] for example. Furthermore, let

B(δ̃δδ k,r) =
{

δδδ ∈ Rp : ||δ̃δδ k−δδδ ||2 ≤ r , supp(δδδ )⊆ supp(δ̃δδ k)
}

be a ball of radius r centered at δ̃δδ k with elements that have the same support as δ̃δδ k. In what

follows, we will bound supδδδ∈C (rn,t) ||Vn(δδδ )||∞ using an ε-net argument. In particular, using the

above introduced notation, we have the following decomposition

sup
δδδ∈C (rn,t)

||Vn(δδδ )||∞ = max
k∈[Nδ ]

sup
δδδ∈B(δ̃δδ k,rnξn)

||Vn(δδδ )||∞

≤ max
k∈[Nδ ]

||Vn(δ̃δδ k)||∞︸ ︷︷ ︸
T1

+ max
k∈[Nδ ]

sup
δδδ∈B(δ̃δδ k,rnξn)

||Vn(δδδ )−Vn(δ̃δδ k)||∞︸ ︷︷ ︸
T2

.
(1.55)

Observe that the term T1 arises from discretization of the sets C (rn, t). To control it, we

will apply the tail bounds for each fixed l and k. The term T2 captures the deviation of the process

in a small neighborhood around the fixed center δ̃δδ k. For those deviations we will provide covering

number arguments. In the remainder of the proof, we provide details for bounding T1 and T2.

We first bound the term T1 in (1.55). Let ai j(βββ ) = e>j ΩΩΩ(βββ )x>i We are going to decouple
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dependence on xi and εi. To that end, let

Zi jk = ai j(βββ
∗+ δ̃δδ k)

((
fi(δ̃δδ k)gi(δ̃δδ k)−E

[
fi(δ̃δδ k)gi(δ̃δδ k)|xi

])
− ( fi(0)gi(0)−E [ fi(0)gi(0)|xi])

)

and

Z̃i jk = ai j(βββ
∗+ δ̃δδ k)

(
E
[

fi(δ̃δδ k)gi(δ̃δδ k)|xi

]
−E [ fi(0)gi(0)|xi]

)
−E

[
ai j(βββ

∗+ δ̃δδ k)
(

fi(δ̃δδ k)gi(δ̃δδ k)− fi(0)gi(0)
)]

.

With a little abuse of notation we use f to denote the density of εi for all i. Observe that

E [ fi(δδδ )gi(δδδ )|xi] = fi(δδδ )P(εi ≤ xiδδδ ). We use wi(δδδ ) to denote the right hand side of the previous

equation. Then

T1 = max
k∈[Nδ ]

max
j∈[p]

∣∣∣∣∣n−1
∑

i∈[n]

(
Zi jk + Z̃i jk

)∣∣∣∣∣≤ max
k∈[Nδ ]

max
j∈[p]

∣∣∣∣∣n−1
∑

i∈[n]
Zi jk

∣∣∣∣∣︸ ︷︷ ︸
T11

+ max
k∈[Nδ ]

max
j∈[p]

∣∣∣∣∣n−1
∑

i∈[n]
Z̃i jk

∣∣∣∣∣︸ ︷︷ ︸
T12

.

Note that E[Zi jk | {xi}i∈[n]] = 0. With a little abuse of notation we use l to denote the density of

xiβββ
∗ for all i.

Var[Zi jk | {xi}i∈[n]]
(i)
≤ 3a2

i j(βββ
∗+ δ̃δδ k)

∣∣∣wi(δ̃δδ k)−wi(0)
∣∣∣

(ii)
≤ 3a2

i j(βββ
∗+ δ̃δδ k) fi(δ̃δδ k)

∣∣∣xiδ̃δδ k

∣∣∣ l(ηixiδ̃δδ k

)
(ηi ∈ [0,1])

(iii)
≤ 3a2

i j(βββ
∗+ δ̃δδ k)

∣∣∣xiδ̃δδ k

∣∣∣K1

where (i) follows similarly as in equation (1.43) in proof of Lemma 1, (ii) follows by the mean

value theorem, and (iii) from the assumption that the conditional density is bounded stated in

Condition (E) and taking the indicator to be 1.
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Furthermore, conditional on {xi}i∈[n] we have that almost surely,

|Zi jk| ≤ 2max
i j
|ai j(βββ

∗+ δ̃δδ k)|.

We will work on the event

A =

{
max
j∈[p]

∥∥∥ΩΩΩ j(βββ
∗+ δ̃δδ k)−ΣΣΣ

−1
j (βββ ∗)

∥∥∥
1
≤Cn

}
(1.56)

which holds with probability at 1−δ using Lemma 5. For a fixed j and k Bernstein’s inequality,

see Section 2.2.2 of [VDVW96] for example, gives us

∣∣∣∣∣n−1
∑

i∈[n]
Zi jk

∣∣∣∣∣≤C

√√√√K1 log(2/δ )

n2 ∑
i∈[n]

a2
i j(βββ

∗+ δ̃δδ k)
∣∣∣xiδ̃δδ k

∣∣∣
∨maxi∈[n], j∈[p] |ai j(βββ

∗+ δ̃δδ k)|
n

log(2/δ )

)

with probability 1−δ . On the event A

∑
i∈[n]

a2
i j(βββ

∗+ δ̃δδ k)
∣∣∣xiδ̃δδ k

∣∣∣= ∑
i∈[n]

((
ΩΩΩ j(βββ

∗+ δ̃δδ k)−ΣΣΣ
−1(βββ ∗)

)
x>i +ΣΣΣ

−1(βββ ∗)x>i
)2 ∣∣∣xiδ̃δδ k

∣∣∣
≤ ∑

i∈[n]

(∥∥∥ΣΣΣ
−1(βββ ∗)x>i

∥∥∥2

2
+K2C2

n

)∣∣∣xiδ̃δδ k

∣∣∣
≤ ∑

i∈[n]
K2 (

Λ
−1
min(ΣΣΣ

−1(βββ ∗))+C2
n
)∣∣∣xiδ̃δδ k

∣∣∣
≤ K2 (

Λ
−1
min(ΣΣΣ

−1(βββ ∗)+C2
n
)

nrnt1/2

where the line follows using the Cauchy-Schwartz inequality, equation (1.44) in proof of Lemma

1, and results of Lemma 5. Combining all of the results above, with probability 1−2δ we have
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that

∣∣∣∣∣n−1
∑

i∈[n]
Zi jk

∣∣∣∣∣≤C

√C2
nrn
√

t log(2/δ )

n

∨Cn log(2/δ )

n

 .

Using the union bound over j ∈ [p] and k ∈ [Nδ ], with probability 1−2δ , we have

T11 ≤C

√Cnrn
√

t log(2Nδ p/δ )

n

∨Cn log(2Nδ p/δ )

n

 .

We deal with the term T12 in a similar way. For a fixed k and j, conditional on the event A we

apply Bernstein’s inequality to obtain

∣∣∣∣∣n−1
∑

i∈[n]
Z̃i jk

∣∣∣∣∣≤C

(√
C2

nr2
nt log(2/δ )

n

∨Cn log(2/δ )

n

)

with probability 1−δ , since on the event A in (1.56) we have that
∣∣∣Z̃i jk

∣∣∣≤CnΛmax(ΣΣΣ(βββ
∗)) and

Var
[
Z̃i jk

]
≤ E

[
a2

i j(βββ
∗+ δ̃δδ k)

(
fi(δ̃δδ k)P(εi ≤ xiδ̃δδ k)− fi(0)P(εi ≤ 0)

)2
]

≤ K2 (
Λ
−1
min(ΣΣΣ

−1(βββ ∗)+C2
n
)(

3
∣∣Gi(rn,βββ

∗,0)−Gi(0,βββ
∗,0)

∣∣+ f 2
maxrnt1/2

)2
≤CC2

nr2
nt

where in the last step we utilized Condition (E) with z = rn. The union bound over k ∈ [Nδ ], and

j ∈ [p], gives us

T12 ≤C

(√
C2

nr2
nt log(2Nδ p/δ )

n

∨Cn log(2Nδ p/δ )

n

)

with probability at least 1−2δ . Combining the bounds on T11 and T12, with probability 1−4δ ,
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we have

T1 ≤C

√C2
n(rnt1/2∨ r2

nt) log(2Nδ p/δ )

n

∨Cn log(2Nδ p/δ )

n

 ,

since rn = OP(1). Let us now focus on bounding T2 term. Note that ai j(βββ
∗+ δδδ k) = ai j(βββ

∗)+

a′i j(β̄ββ k)δδδ k for some β̄ββ k between βββ
∗+δδδ k and βββ

∗. Let

Wi j(δδδ ) = a′i j(β̄ββ k)δδδ k ( fi(δδδ )gi(δδδ )− fi(0)gi(0)) ,

and

Qi j(δδδ ) = ai j(βββ
∗)( fi(δδδ )gi(δδδ )− fi(0)gi(0)) .

Let Q(δδδ ) = Q(δδδ )−E[Q(δδδ )]. For a fixed j, and k we have

sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣e>j (Vn(δδδ )−Vn(δ̃δδ k)
)∣∣∣

is upper bounded with

sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣∣∣n−1
∑

i∈[n]
Qi j(δδδ )−Qi j(δ̃δδ k)

∣∣∣∣∣︸ ︷︷ ︸
T21

+ sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣∣∣n−1
∑

i∈[n]
Wi j(δδδ )−E

[
Wi j(δδδ )

]∣∣∣∣∣︸ ︷︷ ︸
T22

.

We will deal with the two terms separately. Let Zi = max{εi,−xiβββ
∗}

fi(δδδ )gi(δδδ ) = 1I{xiδδδ ≥ Zi}−1I
{

xiδδδ ≥−xiβββ
∗} .

Observe that the distribution of Zi is similar to the distribution of |εi| due to the Condition (E).

Moreover, ∣∣∣xi(δδδ − δ̃δδ k)
∣∣∣≤ K||δδδ − δ̃δδ k||2

√∣∣∣supp(δδδ − δ̃δδ k)
∣∣∣
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where K is a constant such that maxi, j |xi j| ≤ K. Hence,

max
k∈[Nδ ]

max
i∈[n]

sup
δδδ∈B(δ̃δδ k,rnξn)

∣∣∣xiδδδ − xiδ̃δδ k

∣∣∣≤ rnξn
√

t max
i, j
|xi j| ≤Crnξn

√
t =: L̃n. (1.57)

For T21, we will use the fact that 1I{a < x} and P{Z < x} are monotone function in x. Therefore,

T21 ≤ n−1
∑

i∈[n]

[∣∣ai j(βββ
∗)
∣∣(1I

{
Zi ≤ xiδ̃δδ k + L̃n

}
−1I

{
−xiβββ

∗ ≤ xiδ̃δδ k− L̃n

}
−1I

{
Zi ≤ xiδ̃δδ k

}
+1I

{
−xiβββ

∗ ≤ xiδ̃δδ k

}
−P

[
Zi ≤ xiδ̃δδ k− L̃n

]
+P

[
−xiβββ

∗ ≤ xiδ̃δδ k + L̃n

]
+P

[
Zi ≤ xiδ̃δδ k

]
−P

[
−xiβββ

∗ ≤ xiδ̃δδ k

])]

Furthermore, by adding and substracting appropriate terms we can decompose the right hand side

above into two terms. The first,

n−1
∑

i∈[n]

[∣∣ai j(βββ
∗)
∣∣(1I

{
Zi ≤ xiδ̃δδ k + L̃n

}
−1I

{
−xiβββ

∗ ≤ xiδ̃δδ k− L̃n

}
−1I

{
Zi ≤ xiδ̃δδ k

}
+1I

{
−xiβββ

∗ ≤ xiδ̃δδ k

}
−P

[
Zi ≤ xiδ̃δδ k + L̃n

]
+P

[
−xiβββ

∗ ≤ xiδ̃δδ k− L̃n

]
+P

[
Zi ≤ xiδ̃δδ k

]
−P

[
−xiβββ

∗ ≤ xiδ̃δδ k

])]

and the second

n−1
∑

i∈[n]

[∣∣ai j(βββ
∗)
∣∣(P[Zi ≤ xiδ̃δδ k + L̃n

]
−P

[
−xiβββ

∗ ≤ xiδ̃δδ k− L̃n

]
−P

[
Zi ≤ xiδ̃δδ k− L̃n

]
+P

[
−xiβββ

∗ ≤ xiδ̃δδ k + L̃n

])]
.

The first term in the display above can be bounded in a similar way to T1 by applying Bern-

stein’s inequality and hence the details are omitted. For the second term we have a bound
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CCnL̃n, since
∣∣ai j(βββ

∗)
∣∣≤ K

(
Λ
−1/2
min (ΣΣΣ−1(βββ ∗)+Cn

)
by the definition of ai j and Lemma 5, and

P
[
Zi ≤ xiδ̃δδ k + L̃n

]
−P

[
Zi ≤ xiδ̃δδ k− L̃n

]
≤ C‖ f|εi|‖∞L̃n ≤ 2C fmaxL̃n. In the last inequality we

used the fact that ‖ f|εi|‖∞ ≤ 2‖ fεi‖∞. Therefore, with probability 1−2δ ,

T21 ≤C

√ fmaxC2
n L̃n log(2/δ )

n

∨Cn log(2/δ )

n

∨
fmaxL̃n

 .

A bound on T22 is obtain similarly to that on T21. The only difference is that we need to bound

a′i j(β̄ββ k)δδδ k, for β̄ββ k = αβββ
∗+(1−α)(βββ ∗+ δ̃δδ k) and α ∈ (0,1), instead of |ai j(βββ

∗)|. Observe that

ai j(βββ )τ̂
2
j = −γ̂( j),i. Moreover, by construction τ̂ j is a continuous, differentiable and convex

function of βββ and is bounded away from zero by Lemma 5. Additionally, γ̂γγ( j) is a convex

function of βββ as a set of solutions of a minimization of a convex function over a convex constraint

is a convex set. Moreover, γ̂ j is a bounded random variable according to Lemma 5. Hence,

|a′i j(βββ
∗)| ≤ K′, for a large enough constant K′. Therefore, for a large enough constant C we have

T22 ≤C

(√
fmaxr2

nξ 2
n L̃n log(2/δ )

n

∨ L̃n log(2/δ )

n

∨
fmaxCnL̃n

)
.

A bound on T2 now follows using a union bound over j ∈ [p] and k ∈ [Nδ ].

We can choose ξn = n−1, which gives us Nδ .
(

pn2)t . With these choices, the term T2 is

negligible compared to T1 and we obtain

T ≤C

√C2
n(rnt1/2∨ r2

nt)t log(np/δ )

n

∨Cnt log(2np/δ )

n

 ,

which completes the proof.
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Chapter 2

Estimation and Inference for

High-dimensional Left-censored Quantiles

2.1 Introduction

In this chapter, we present a quantile regression framework for high-dimensional left-

censored linear models. Comparing to the generalized M-estimation framework in Chapter 1, the

method introduced below is tailored towards quantile regression. Specifically, even though least

absolute deviation (LAD) estimator for the left-censored linear model is used as a primary example

in the Chapter 1, and LAD estimator is a special case of quantile estimators, a different approach,

namely redistribution of mass, was adopted in the initial estimation here. This creates new

challenges in estimation and inference of the problem. In return, the optimization problem can be

transformed from a nonconvex optimization involving left-censored data into a modified quantile

regression, which then greatly relieves computational burden. Since the problem considered

in this chapter relates much to Chapter 1, we only include here related work in addition to the

literature review in Chapter 1.
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2.1.1 Contributions

We develop methodology for the quantile estimation and inference under high-dimensional

and left-censoring settings. In details, the work provides a τ-quantile estimator and confidence

intervals for high-dimensional left-censored regression, for any τ ∈ (0,1), along with the theoreti-

cal guarantees. We modify a quantile regression estimation approach for right-censored data to

accommodate the left-censored nature of our problem, and further extend the recently developed

de-biasing techniques to derive an improved estimator suitable for high-dimensional inference.

2.1.2 Related Work

Quantile regression, as an robust alternative to ordinary linear regression, has received

great attention since its introduction in [KBJ78]. The concept has then been taken to settings with

heteroskedastic errors [KBJ82] and non-linear regression model [Obe82]. [Pow86a] first studied

censored quantile regression, where the method was first applied under fixed left-censored data

setting, with known censoring levels. Despite of the difficulties present in the censored nature

of the data, Powell showed that the proposed natural estimator is consistent and asymptotically

normal. However, many works, including [KP96], [Fit97], [BH98] and [FW07], have discussed

computational burden due to the nonconvexity nature of the minimization objective function

involved in Powell’s estimator.

Meanwhile, progress has been made in application of survival analysis. Under right-

censored data settings, both [KG01] and [Por03] have studied quantile regression with random

right-censored data in details. Moreover, [Por03] proposed a recursively reweighted estimator of

the regression quantile process, which generalized the Kaplan-Meier estimating scheme. Based

on the redistribution of mass idea of [Efr67], the method in [Por03] recursively updates the weight

of censored cases. Similarly, motivated by the same idea, [WW12] proposed a method, such that

the weights of the censored observations are estimated in a single step. We extend the idea to
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high-dimensional left-censored models.

2.1.3 Content

In Section 2.2, the methodology is presented with both procedures for deriving the initial

estimator and the de-biased estimator. In Section 2.3, we study the conditions and asymptotic

theory of the proposed method. Numerical simulations and a real data application are presented

in Section 2.4. Finally, lemmas and their proofs are provided in Section 2.5 and 2.6, and the

proofs of theorems are provided in Section 2.7.

2.2 Methodology

We start with the problem setup with model description. Then we lay out the methodology

in two parts. In the first subsection, we describe our proposal for initial estimator, and in the

second subsection we present the details of bias correction for the initial estimator.

2.2.1 Model Description

We consider the problem in the context of left-censored linear models. Let Ti be an

underlying response variable, which is uncensored. We also denote xi as our covariates vector of

length p. The underlying latent quantile regression model for some quantile τ ∈ (0,1) comes in

the form of

Ti = xiβββ
o(τ)+ εi(τ), i = 1, . . . ,n, (2.1)
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where εi(τ) is a random error, whose τ-th quantile conditional on xi we assume is at 0. Due to

left-censoring, however, we only observe the triplet (xi,Yi,Ci), where

Yi = max(Ti,Ci), and let δi = 1I(Ti >Ci), (2.2)

and i = 1, . . . ,n. Together (2.1) and (2.2) specify a left-censored quantile regression model. As

Ci is observed, one can always reduce (2.2) to a constant-censored model, also known as Type-I

Tobit model, in which the censoring vector is a constant c across i. Our interest lies in obtaining

confidence intervals for the quantile coefficient βββ
o(τ) for various τ , under high-dimensional

settings with p� n. Bearing the high-dimensionality in mind, we denote Sβββ
o = { j|βββ o

j 6= 0} as

the active set of variables of the coefficients and denote its cardinality by sβββ
o = |Sβββ

o|.

2.2.2 Initial Estimator

In the case without censoring, quantile regression is carried out with the specific loss

function ρτ(z) = z(τ − 1I{z < 0}), also known as the check function. In the censoring case,

however, directly fitting using the quantile loss results in a nonconvex optimization problem.

In addition, simply removing the censored observations results in loss of information and bias.

With such consideration, we borrow an algorithm from [WW12]. Specifically, we mimicked the

"locally weighted censored quantile regression" method, which is based on Efron’s redistribution

of mass idea. The method assigns different weights on censored data and non-censored data,

and avoids discarding all censored data, while maintaining partial information provided by the

non-censored ones.

The method redistributes the mass of each censored observation to some point far on

left, which is −∞ in the case of left censoring. Note that if xiβββ (τ)>Ci for all xi, then the left

censoring at Ci has no impact on our estimate of τ-quantile. This observation comes from the

fact that the quantile regression estimator is only determined by the signs of residuals, in another
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word, we only care about the order of the responses.

We now present the initial estimator β̂ββ , with the justification of the weights following.

β̂ββ = argmin
βββ

1
n

n

∑
i=1

[
wi(F0)ρτ(Yi−xiβββ )+(1−wi(F0))ρτ(Y−∞

i −xiβββ )
]
+λn

p

∑
j=1
|βββ j|,

where wi(F0) is defined as following, F0 being the distribution of Ti,

wi(F0) =


1 if δi = 1 or F0(Ci|xi)< τ

1− τ

F0(Ci|xi)
if δi = 0 and F0(Ci|xi)> τ

.

Notice that the additional penalty term is added, in order to accommodate the high-dimensional

setting. To make sense out of the weights, we begin from the objective function of the underlying

model under quantile loss,

Un(βββ ) =
1
n

n

∑
i=1

ρτ(Ti−xiβββ ).

Taking the derivative, we have the first order estimating equation

Dn(βββ ) =−
1
n

n

∑
i=1

x>i (τ−1I{Ti−xiβββ < 0}) .

The subgradient condition Dn(βββ ) = O p(1) depends only on 1I{Ti−xiβββ < 0} for each xi. Now fix

any βββ , if an observation is uncensored, then Yi = Ti is observed, and so is 1I{Ti−xiβββ < 0}. For

censored observations (Yi =Ci > Ti), if xiβββ >Ci, we immediately know Ti < xiβββ . The tricky case

is when xiβββ <Ci, we cannot determine the sign of Ti−xiβββ . Hence, we look at the expectation

E [1I{Ti−xiβββ > 0}|Ti <Ci] =
P(xiβββ < Ti <Ci)

P(Ti <Ci)
,
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where F0 is the distribution of Ti. When βββ = βββ
o(τ),

E
[
1I{Ti−xiβββ

o(τ)> 0}|Ti <Ci
]

=
P(xiβββ

o(τ)< Ti <Ci)

P(Ti <Ci)

=
F0(Ci|xi)− τ

F0(Ci|xi)
.

The observations above motivated us to assign weight wi(F0) = 1 to the first two scenarios,

when we have uncensored or F0(Ci|xi)< τ observations. Note that at the location xi, even when

a data point is censored, if we believe the quantile of interest is above the censoring level, we

still assign full weight to that data. Intuitively, we are only interested in estimating in quantile

τ . In terms of a specific data point, our only concern is whether it is above or below the

quantile line xiβββ
o. For censored and ambiguous scenarios which we cannot determine the sign of

Ti−xiβββ
o(τ), we assign weight wi(F0) = 1− τ

F0(Ci|xi)
. By assigning the complimentary weight to

any point below, such as (xi,−∞) or (xi,Y−∞

i ), the quantile fit remains unaffected. Without loss

of generality, we assume fixed censoring level Ci = 0 for all i.

Finally, using a consistent plug in estimator F̂n for F0, we have the initial estimator as,

Step 0: Initial estimator

β̂ββ = argmin
βββ

1
n

n

∑
i=1

[
wi(F̂n)ρτ(Yi−xiβββ ) (2.3)

+(1−wi(F̂n))ρτ(Y−∞

i −xiβββ )
]
+λn

p

∑
j=1
|βββ j|.

We delay the discussion of the estimator F̂n to Condition 1, where we will lay out the requirement

on such estimator.
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2.2.3 Bias Correction

With our inference objective, the estimator given in (2.3) needs improvement. As we

show later, the initial estimator is consistent. However, as other penalized estimators, our initial

estimator is also a biased one. Following classical one-step estimation framework, typically an

one-step improvement of the following form is considered. With appropriate estimators plugged

in as proxies, we have

Step 1: Bias correction

β̃ββ = β̂ββ − Θ̂ΘΘSn(β̂ββ , F̂n), (2.4)

where the vector Sn is the score and the matrix Θ̂ΘΘ is a proxy to the inverse Hessian matrix H−1.

H is defined as the subgradient of Sn.

We first define Sn, and then provide an explanation for the transition between Θ̂ΘΘ and H−1.

Sn(βββ ,F) :=−1
n

n

∑
i=1

x>i
[
wi(F)ψτ(Yi−xiβββ )+(1−wi(F))ψτ(Y−∞

i −xiβββ )
]

with ψτ(z) = τ−1I{z < 0} being the differential of ρτ(z). Note that Y−∞

i −xiβββ < 0 due to our

choice of Y−∞

i =−∞. Therefore, we have ψτ(Y−∞

i −xiβββ ) = τ−1 for all i, and hence

Sn(βββ ,F) = −1
n

n

∑
i=1

x>i [wi(F)ψτ(Yi−xiβββ )+(1−wi(F))(τ−1)]

= −1
n

n

∑
i=1

x>i [wi(F)1I{Yi−xiβββ ≥ 0}− (1− τ)] . (2.5)

Notice that Sn(β̂ββ , F̂n) depends on both the initial estimator β̂ββ and F̂n. This imposes an

additional challenge on the theory, which we address later in Lemma 8. As for (2.3) being a

consistent estimator, only consistency of the estimator F̂n is required. However, for inference

a slightly stronger convergence rate requirement on the error of the estimator F̂n needs to be

91



imposed, which is summarized in Condition 1.

As for the Hessian matrix H, we observe that the function ψτ is not everywhere differ-

entiable. Hence, we propose to consider another candidate for the subgradient of Sn. We first

compute the expectation of the score Sn(βββ ,F), and then compute its gradient. Thus, for the

simplicity of notation, the following expectations are taken with respect to Ti given x.

Proposition 12. Assuming the true distribution F0, we have

E[Sn(βββ ,F0)] = −1
n

n

∑
i=1

xi

(
τ−P(Yi < xiβββ )− τ 1I{F0(0|xi)> τ}1I{xiβββ ≤ 0}

)

=


−1

n ∑
n
i=1 xi (τ−P(Ti < xiβββ )) if xiβββ > 0

−1
n ∑

n
i=1 xi (τ− τ 1I{F0(0|xi)> τ}) if xiβββ ≤ 0

(2.6)

and hence the Hessian

H(βββ ) =
∂

∂βββ
E[Sn(βββ ,F0)] =

1
n

n

∑
i=1

x>i xi f0(xiβββ |xi)1I{xiβββ > 0} (2.7)

where f0 is the density function of Ti.

Remark 11. Note that E[Dn(βββ )] = −n−1
∑

n
i=1 xi

(
τ −P(Ti < xiβββ )

)
. Comparing to (2.6), we

know when xiβββ > 0, E[Sn(βββ ,F0)] = E[Dn(βββ )], and hence when βββ = βββ o, E[Sn(βββ o,F0)] = 0 since

E[Dn(βββ o)] = 0. Furthermore, 1I{F0(0|xi)> τ}= 1I{xiβββ o ≤ 0}, if F0 is strictly increasing, and

hence E[Sn(βββ o,F0)] = 0 when xiβββ o ≤ 0 as well. In summary, at the truth βββ o, the expectation of

our score estimator E[Sn(βββ o,F0)] is indeed zero.

Note that the matrix H(βββ ) is not invertible for general βββ when the number of parameters

p exceeds the number of observations n. In fact, with a little abuse of notation, we only assume

the existence of H−1, which is layed out as Condition 7 later in the text (here, the expectation is

with respect to xi). In the following section, we describe the details in obtaining the proxy Θ̂ΘΘ for

H−1.
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2.2.4 Inverse Hessian Estimator: Nodewise Lasso

Our Inverse Hessian estimator is inspired by the nodewise lasso method proposed in

[VdGBR+14]. For notation simplicity, we first rewrite (2.7),

H(βββ ) = n−1
n

∑
i=1

u>i ui = n−1X>
βββ

Xβββ ,

where ui := xi 1I(xiβββ > 0)
√

f0(xiβββ |xi), Xβββ = Wβββ X, and Wβββ is defined as

Wβββ = diag
(

1I(xiβββ > 0)
√

f0(xiβββ |xi)

)n

i=1
. (2.8)

That is, Xβββ is a new design matrix with i-th row to be ui, which can also be treated as the product

of weighted matrix Wβββ and X. Note that for fixed data, (Wβββ ) j j only depends on βββ .

Then we carry out nodewise lasso using Xβββ . Note that as we use the initial estimator β̂ββ as

the plug in for X
β̂ββ

, we also use a consistent estimator f̂n in place for f0 in (2.8). The discussion of

the estimator f̂n is delayed later to Condition 2. We have the nodewise lasso scheme as following.

For each j = 1, · · · , p, define

γ̂γγ j := argmin
γγγ∈Rp−1

(
n−1||(X

β̂ββ
) j− (X

β̂ββ
)− jγγγ||22 +2λ j||γ||1

)
, (2.9)

where (X
β̂ββ
)− j is the design submatrix without the j-th column. Note that (2.9) can be solved

using standard lasso regression. We further denote the components of γ̂γγ j ∈ Rp−1 as {γ̂γγ j,k : k =

1, · · · , p,k 6= j}. Then define

Ĉ :=



1 −γ̂γγ1,2 · · · −γ̂γγ1,p

−γ̂γγ2,1 1 · · · −γ̂γγ2,p
...

... . . . ...

−γ̂γγ p,1 −γ̂γγ p,2 · · · 1
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and

D̂2 := diag
(

d̂2
1 , · · · , d̂2

p

)
,

where for j = 1, · · · , p,

d̂2
j := n−1||(X

β̂ββ
) j− (X

β̂ββ
)− jγ̂γγ j||22 +λ j||γ̂γγ j||1. (2.10)

d̂2
j serves as an estimate to the noise level of the regression in (2.9). Finally, our proxy Θ̂ΘΘ is

defined as,

Θ̂ΘΘ := D̂−2Ĉ. (2.11)

In addition, we note that using the KKT conditions, we can show

||H(β̂ββ )Θ̂ΘΘ
>
j − e j||∞ ≤ λ j/d̂2

j , (2.12)

and

(
H(β̂ββ )Θ̂ΘΘ

>)
j j
= 1. (2.13)

Finally, we propose the novel High-dimensional Left-censored Quantile Regression in

Algorithm 1 and 2.

2.3 Theoretical Considerations

In what follows, we briefly discuss the preliminary theoretical results, along with the

conditions required. In the first subsection, we address the requirements for the distribution and

density estimators. Then we move on to conditions for acquiring consistency using the initial
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Algorithm 1 High-dimensional Left-censored Quantile Regression
1: procedure INITIAL ESTIMATION

2: Obtain an estimator F̂n

3: Plug in F̂n into (2.3) and obtain β̂ββ

4: end procedure
5: procedure ONE-STEP CORRECTION

6: Obtain estimator Θ̂ΘΘ, more details in Algorithm 2
7: Plug in initial estimator β̂ββ and F̂n for Sn(β̂ββ , F̂n) as in (2.5)
8: Obtain the one-step improved estimator β̃ββ as in (2.4)
9: end procedure

Algorithm 2 Inverse Hessian estimation Θ̂ΘΘ

1: Obtain an estimator f̂n

2: Plug in initial estimator β̂ββ and f̂n into (2.8)
3: for j = 1, . . . , p do
4: Obtain γ̂γγ j and d̂2

j as in (2.9) and (2.10) respectively
5: end for
6: Obtain Θ̂ΘΘ as described in (2.11)

estimator. We are inspired by the consistency result of the penalized censored least absolute

deviation estimator in [MvdG16]. Finally, we present the derivation of the normality result for the

improved one-step estimator, which follows from the sketch of [BG16]. Under the current context,

however, extra challenges surface as both score and inverse Hessian depends on distribution and

density estimator in addition to the parameter estimator β̂ββ .

2.3.1 Distribution and Density Estimators

We impose the following condition on the choice of distribution estimator.

Condition 1 (Distribution estimator condition). The estimator F̂n(t|x) is a consistent estimator

of the conditional distribution of T , F0(t|x), for all x. More precisely, for any t ∈ R,

sup
x∈Rp

∣∣∣F̂n(t|x)−F0(t|x)
∣∣∣= Op

(
δF̂

)
,
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where δF̂
p→ 0 as n→ ∞.

Note that the condition essentially only requires F̂n to be a consistent estimator. We have

selected the classical Kaplan-Meier estimator for analysis later in the paper. Likewise, we also

impose a consistency condition on the density estimator f̂n as following.

Condition 2 (Density condition). 1. The conditional density function f0(y|x) is a Lipschitz

function in y with a uniform Lipschitz constant L for all x.

2. There exists M > m > 0 such that m≤ f0(y|x)≤M for all y and x.

3. The conditional density estimator f̂n(y|x) is a consistent estimator of f0(y|x). To be precise,

∫ ∫ (
f̂n(y|x)− f0(y|x)

)2
dµ(x)dy = op (1) ,

where µ is a measure on the support of x.

4. limε→0+ P(|xβββ
o|> ε) = 1.

The two conditions above are not restrictive in their nature, though distribution and density

estimation in high-dimensional settings remains an active research topic. Nevertheless, we refer

one to [HY05], [Efr07] and [IL15] for more discussions on the topic.

2.3.2 Consistency of Initial Estimator

In the section, we present the consistency analysis for the initial estimator. For notational

simplicity, throughout this section, x and xi are row vectors. Also, we denote ŵ = w(F̂) and w0 =

w(F0). We also define the linear function fβββ (x) = xβββ , the reweighted loss function ρ f (x,y,w) =

wρτ(y− fβββ (x)) + (1−w)ρτ(y−∞− fβββ (x)), the risk Pρ f = Eρ f (x,y,w0), the empirical risk

Pnρ f =
1
n ∑

n
i=1 ρ f (xi,yi,w0

i ) at F0, and the empirical risk P̂nρ f =
1
n ∑

n
i=1 ρ f (xi,yi, ŵi) at F̂ .
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Then we define f ∗ as a linear functional such that for all x,

f ∗(x) = argmin
a

E
[
w0

ρτ(y−a)+(1−w0)ρτ(y−∞−a)
∣∣x].

In order for f ∗ to be uniquely defined, we need the following censoring condition Con-

dition 3. To see the necessity of this condition, let βββ
o be the true parameter. By the first order

property, E[w0ψτ(y−a)+(1−w0)(τ−1)|x] = 0. Hence, for all x,

E[w0 1I(y > a)|x] = 1− τ. (2.14)

By the definition of weight w0, if F0(0|x) < τ , (2.14) means F0(a|x) = τ , and hence, f0(x) =

fβββ
o(x). But if F0(0|x)> τ , then any a < 0 is a solution to (2.14). However, we require (2.14) to

hold for every x. So as long as not for all x, F0(0|x)> τ , then because of the linearity of f ∗, there

exists a unique solution.

Condition 3 (Censoring condition). Let µ be measure on X . There exists a set E ⊂X such

that µ(E)> 0 and F0(0|x)< τ for all x ∈ E. Furthermore, at the censoring level 0, there exists a

constant 0 < M0 < τ such that F0(0|x)≥M0 for all x.

Some additional conditions also need to be imposed.

Condition 4 (Error condition). The conditional error distribution function ν0(t|x) is continuously

differentiable for all x, and the first derivative ν̇0(t|x) satisfies Lipschitz condition with constant

L uniformly for all x, and is bounded from above and below. Furthermore, ν̇0(0|x) > 0 and∫
ε

0 (ε− t)dν0(t|x)> 0 for all ε > 0 and x.

The above condition is our only limitation on the error distribution. Even though we

require bounded first derivative for the error density, which excludes densities with unbounded

first moment, the condition still allows for a class of distributions much larger than the Gaussian.
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Next, we have a condition on the design. First, we denote γ j := argminγ E‖X j−X− jγ‖2
n, and

then X− jγ j is the projection of X j into X− j under the inner product 〈Xi,X j〉= EX>i X j/n.

Condition 5 (Design matrix condition). The design matrix X satisfies ‖X‖∞ = maxi, j |Xi, j| =

O(1), that is, every column ‖X j‖∞ = O(1). If furthermore, the projection X− jγ j is also bounded

for all j, i.e. ‖X− jγ j‖∞ = O(1), we say X is strongly bounded.

A bounded condition on design matrix entries Xi j is not uncommon in high-dimensional

settings [VdGBR+14]. In fact, in many cases, if X follows an unbounded distribution, one can

always approximate its distribution with a truncated one. The following is the same compatibility

condition introduced for linear models [BRT09], which is standard condition when applying lasso

estimators.

Condition 6 (Compatibility condition). There exists some φ0 > 0 and all βββ satisfying ||(βββ −

βββ
o)Sc

βββ
o ||1 ≤ 3||(βββ −βββ

o)S
βββ

o ||1 it holds that

||(βββ −βββ
o)S

βββ
o ||21 ≤

sβββ
o

φ 2
0
(βββ −βββ

o)E[xT x](βββ −βββ
o).

Denoting the excess risk as E ( f ) = Pρ f −Pρ f0 , and the sum of squares norm as

|| f ||2 = E f 2(x), in the linear case, || fβββ ||2 = E f 2
βββ
(x) = βββ

TE[xT x]βββ , we are now ready to present

the consistency result.

Theorem 13. Under Conditions 3 - 6 and define

λ (t) = 4KX

√
2log(2p)

n
+KX

√
32t
n

.

Then for λ ≥ 4λ (t) with t = 2log(p) and some constant C, with probability at least 1−

log2(8np2)/p2,

||β̂ββ −βββ
o||1 ≤

6Cλ sβββ
o

φ 2
0

, (2.15)
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(β̂ββ −βββ
o)TE[xT x](β̂ββ −βββ

o)≤
9C2λ 2sβββ

o

φ 2
0

. (2.16)

In other words, with λ �
√

log p/n, we have ||β̂ββ −βββ
o||1 = Op

(
sβββ

o

√
log(p)

n

)
and

n−1
∥∥∥X(β̂ββ −βββ

o)
∥∥∥2

2
= Op

(
sβββ

o
log(p)

n

)
.

Corollary 14. Under the assumption sβββ
o = o

(√
n/ log(p)

)
, we have consistency for the initial

estimator β̂ββ .

2.3.3 Asymptotic Normality of One-step Penalized Estimator

This section entails the delicate details of obtaining the asymptotic normality of the

improved one-step estimator, with imposed conditions as well as the preliminary lemmas. We

start the analysis with the following decomposition of (2.4),

√
n
(

β̃ββ j−βββ
o
j

)
=
√

n
(

β̂ββ j−βββ
o
j

)
︸ ︷︷ ︸

I

−
√

n
(

Θ̂ΘΘ jSn(βββ
o,F0)

)
︸ ︷︷ ︸

N

(2.17)

−
√

n
[
Θ̂ΘΘ j

(
Sn(β̂ββ ,F0)−ESn(β̂ββ ,F0)

)
− Θ̂ΘΘ j

(
Sn(βββ

o,F0)−ESn(βββ
o,F0)

)]︸ ︷︷ ︸
II

,

−
√

nΘ̂ΘΘ j

(
Sn(β̂ββ , F̂n)−Sn(β̂ββ ,F0)

)
︸ ︷︷ ︸

III

−
√

n
(

Θ̂ΘΘ j(ESn(β̂ββ ,F0)−ESn(βββ
o,F0)

)
︸ ︷︷ ︸

∆

where Θ̂ΘΘ j denotes the j-th row of Θ̂ΘΘ. With the help of this decomposition, our aim is to show that

part (N) converges to a Normal distribution, while the other terms converge to zero at a faster rate.

In order to characterize and bound each individual term, we have lemmas for results leading up to

Theorem 15 below. However, for the purpose of presentation, we defer the lemmas to Section 2.5.

Finally, we introduce the last condition we impose. One may also refer to this condition
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as the restrictive eigenvalue assumption, which requires the population Hessian to be at least

invertible. We note that even in linear models without censoring, this is an indispensable condition.

Condition 7. The smallest eigenvalue Λmin of E
[
XT

βββ
oXβββ

o/n
]

is strictly positive and 1/Λmin =

O(1).

We are now ready to present the main result.

Theorem 15. Under Conditions 1 - 7, with λ �
√

log p/n and λ j �
√

log p/n, and define s j :=∥∥∥ΘΘΘ
0
j

∥∥∥
0
=
∣∣∣{k 6= j : ΘΘΘ

0
j,k 6= 0}

∣∣∣, assuming Ks2
βββ

o log p/n∨ s1/2
βββ

o s1/2
j (log p/n)1/4∨K‖Θ̂ΘΘ j−ΘΘΘ

0
j‖1 =

o(1), where K =
√s j and in the strongly bounded case, K = 1. Let In =

(
β̃ββ j−an, β̃ββ j +an

)
an = zα

√
Θ̂ΘΘ jΩ̂ΩΩΘ̂ΘΘ

>
j /n, where

Ω̂ΩΩ =
1
n

n

∑
i=1

x>i xi

(
φ̂i + ψ̂i

)2
,

ψ̂i :=−
[
wi(F̂n)1I{Yi−xiβ̂ββ ≥ 0}− (1− τ)

]
and

φ̂i := τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Yi = 0)
1I(F̂n > τ)

F̂2
n

n

∑
l=1
l 6=i

Bnl(xi)

(
1− 1I(Yl = 0)

F̂n

)
.

The distribution estimator F̂n is chosen to be the classical Kaplan-Meier estimator,

F̂n(t|x) =
n

∏
j=1

(
1− 1

∑
n
k=1 1I(Yk ≤ Yj)

)η j(t)

, (2.18)

where η j(t) = 1I(Yj > t,δ j = 1). For j ∈ {1, . . . , p}, when n, p→ ∞, we have

P
(

βββ
o
j ∈ In

)
= 1−2α.

Remark 12. The quantity s j quantifies the sparsity nature of the underlying precision matrix ΘΘΘ
0,

which we aim to estimate with Θ̂ΘΘ. This is a standard assumption in high dimensional inference.
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Essentially, it restricts the column (Xβββ
o) j to be dependent with only s j number of columns in

(Xβββ
o)− j.

2.4 Numerical Experiments and Application

In this section, we present the application our proposed method in details, along with

simulation results under various settings and an application in real data study.

2.4.1 Further Details of Algorithm 1 and 2

We start with the definition of Y−∞. In practice, we have taken

Y−∞ :=−1000×‖Y‖∞ =−1000×max
i
|Yi|.

For the estimator of conditional distribution of Ti, as mentioned earlier, there are options

specifically tailored for distribution estimation in high-dimensions, we provide here a possible

estimator F̂n for line 2 in Algorithm 1 based on the ideas of Kaplan-Meier estimator, which is

defined as the following.

F̂n(t|x) =
n

∏
j=1

(
1−

Bn j(x)
∑

n
k=1 1I(Yk ≤ Yj)Bnk(x)

)η j(t)

, (2.19)

where η j(t) = 1I(Y j > t,δ j = 1). Choosing Bnk(x) = 1/n results in the classical Kaplan-Meier

estimator. We also note that the Nadaraya-Watson’s type weights for Bnk(x) is also a common

choice, which is

Bnk(x) =
K
(

x−xk
hn

)
∑

n
i=1 K

(
x−xi

hn

) , (2.20)
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where K is a density kernel function, and hn ∈ R+ is the bandwidth converging to zero as n→ ∞.

In the simulations, we have opted for the classical Kaplan-Meier estimator for simplicity. In

addition, we have the following density estimator for f̂n in line 1 in Algorithm 2. For a positive

bandwidth sequence ĥn,

f̂n = ĥ−1
n

n

∑
i=1

1I(xiβ̂ββ > 0)1I(0≤ Yi−xiβ̂ββ ≤ ĥn)

∑
n
i=1 1I(xiβ̂ββ > 0)

. (2.21)

This estimator is inspired by the estimator for error density at 0 presented in [BG16], which

translates to an estimation for density of Ti at xiβββ
o(τ). For the choice of ĥn, we also follow the

adaptive choice of the bandwidth sequence thereof. Let ui := yi− xiβ̂ββ ,

ĥn = c
{

s
β̂ββ

log p/n
}−1/3

median
{

ui : ui >
√

log p/n, xiβ̂ββ > 0
}
,

for a constant c > 0. Here, s
β̂ββ

denotes the size of the estimated set of the non-zero elements of

the initial estimator β̂ββ , i.e., s
β̂ββ
= ‖β̂ββ‖0.

An additional note is also in place for line 3 of Algorithm 1. Regarding the computation

procedure to obtain the initial estimator, we note that this boils down to a weighted quantile regres-

sion problem and is readily solvable using linear programming techniques. The penalty parameter

λ in (2.3) is chosen by the minimum of K-fold cross validation statistic, argminλ ∑
K
k=1 CVk(λ ),

and

CVk(λ ) := n−1
k ∑

i∈Fk

[
wi(F̂n)ρτ(Yi−xiβ̂ββ

k
)+(1−wi(F̂n))ρτ(Y−∞

i −xiβ̂ββ
k
)

]
, (2.22)

where Fk denotes the k-th fold of the n observations, nk is the number of observations in Fk, and

β̂ββ
k

is the parameter coefficients fitted on Fc
k observations. Likewise, the choice of λ j in line 4 of

Algorithm 2 is chosen in the same way, except in the cross validation statistic, the squared error

loss is used instead of the weighted quantile loss in (2.22).
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Table 2.1: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with True F0 and True f0

Distribution of the error term Simulation Setting for n = 200, p = 300

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.95 0.97 0.95 0.93
Student’s 0.95 0.94 0.95 0.92
Beta 0.90 0.93 0.91 0.93
Weibull 0.94 0.97 0.98 0.94

2.4.2 Simulation Data

We are now ready to present the simulation results. The size of the model settings are

chosen to be of n= 200 for the number of observations, and p= 300 for the number of parameters.

In addition, the sparsity of the underlying true parameter βββ
o, denoted as sβββ

o earlier in the text, is

set to be 5. We have also selected four different distributions for the error of the model: standard

normal, Student’s t with 4 degrees of freedom, Beta distribution with parameters (2,3) and

Weibull distribution with parameters (1,1). The design matrix X is generated from a multivariate

Normal distribution N (µ,ΣΣΣ), where µ is chosen to be the zero vector, and the covariance matrix

ΣΣΣ is taken to be the identity matrix or the Toeplitz matrix such that ΣΣΣi j = ρ |i− j| for ρ = 0.3. The

two quantiles of interest are chosen to be τ = 0.4 and τ = 0.7. In the case when τ-th quantile of

the error is not zero, we subtract off the τ-th quantile of the error distribution from the model.

The censoring level c is chosen such that the proportion of the censoring data is set at 10%. We

present simulation results for when the true F0 and f0 plugged in, and also when we use our

proposed rudimentary estimators F̂n and f̂n as described earlier in the section.

Table 2.1 and 2.2 summarize the average coverage probabilities of the constructed 95%

level confidence intervals for obtaining τ = 0.4 and 0.7 quantile regression estimators under

various settings. We report the signal and noise parameters separately, as the coverage of the signal

ones are known to be more difficult. In conjunction, we have also included box plots of interval
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Figure 2.1: τ = 0.4 comparative boxplots of the average interval length (with true F0 and true
f0). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and identity
design (bottom).
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Figure 2.2: τ = 0.7 comparative boxplots of the average interval length (with true F0 and true
f0). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and identity
design (bottom).
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Table 2.2: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with True F0 and True f0

Distribution of the error term Simulation Setting for n = 200, p = 300, τ = 0.7

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.94 0.97 0.92 0.97
Student’s 0.91 0.94 0.91 0.95
Beta 0.96 0.99 0.89 0.95
Weibull 0.92 0.94 0.87 0.91

widths under these settings (Figure 2.1 and 2.2). From the results of applying our methodology

with true F0 and true f0, it is observed that the coverage probabilities are approximately the same

and are close to the nominal values. In addition, we noticed that among the four chosen error

distributions, our method turns out to be most efficient, in terms of the confidence interval width,

when the error distribution is bounded. However, it is observed that our method is sensitive to

heavy-tailed distributions, such as the Student’s t distribution with degrees of freedom being 4.

The results of plugging in estimators F̂n and f̂n are summarized in Table 2.3 and 2.4 for

the two quantile settings τ = 0.4 and 0.7. In terms of coverage probability, we observe similar

results as the ones with true F0 and f0, as the probabilities are approximately the same and are

close to the nominal values. We notice that the interval widths almost tripled for the cases of

error being standard normal and Student’s t distribution as seen in Figure 2.3 and 2.4. However,

this is not unexpected as we using estimators instead of the true underlying values. With better

tailored estimators to the scenario, we believe that the width of the intervals in the two cases can

be reduced.

In addition, we have also examined the power of our estimator. Maintaining similar

settings as in previous simulations, that is n = 200 and p = 300, whereas sβββ
o is also set to be

5. We have our null hypothesis for the coefficients being 1 for the signals and 0 for the noises.

We test H0 : β̃ββ j = βββ
o
j versus H1 : β̃ββ j = βββ

o
j +h. While keeping the significance level at 0.05, we
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Table 2.3: τ = 0.4 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with Estimated F̂n and Estimated f̂n

Distribution of the error term Simulation Setting for n = 200, p = 300

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.95 0.97 0.97 0.94
Student’s 0.98 0.94 0.98 1.00
Beta 0.99 0.95 0.97 0.97
Weibull 0.99 0.92 0.96 0.95

Table 2.4: τ = 0.7 Coverage Probability for High-dimensional Left-censored Quantile Regres-
sion (HLQR) with Estimated F̂n and Estimated f̂n

Distribution of the error term Simulation Setting for n = 200, p = 300, τ = 0.7

Toeplitz design
ρ = 0.3

Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.89 0.99 0.96 0.97
Student’s 0.93 0.93 1.00 0.96
Beta 0.96 0.97 0.91 0.96
Weibull 0.95 0.95 0.99 0.96
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Figure 2.3: τ = 0.4 comparative boxplots of the average interval length (with estimated F̂n and
true f̂n). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and
identity design (bottom).
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Figure 2.4: τ = 0.7 comparative boxplots of the average interval length (with estimated F̂n and
true f̂n). Signal (left) and noise (right) variables, and Toeplitz design with ρ = 0.3 (top) and
identity design (bottom).
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Figure 2.5: Power curve of signal (left) and noise (right) variables under normal errors, H0 :
βββ

o
j = c versus H1 : βββ

o
j 6= c, where the true parameter βββ

o
j = c+h. The deviation from the null

hypothesis h ranges from 0 to 1.
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Figure 2.6: Power curve of signal (left) and noise (right) variables under normal errors, H0 :
βββ

o
j = c versus H1 : βββ

o
j 6= c, where the true parameter βββ
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increase the deviation from the null hypothesis h gradually from 0.1 to 1. We observe that both

the signal and noise variables converges to power of 1 quickly for various settings, which testifies

the effectiveness of our estimator. The results are summarized in Figure 2.5 and 2.6 below.

2.4.3 Real Data

In this section, we apply our High-dimensional Left-censored Quantile Regression

(HLQR) to a microarray dataset of cardiomyopathy in transgenic mice, kindly provided by

Professor Mark Segal, who also studied the dataset in [SDC03]. To study human diseases such

as chamber dilation and left ventricular conduction delay, a transgenic mouse model of dilated

cardiomyopathy was used.

Specifically, [RDK+00] proposed to control a G protein-coupled receptor, designated as

Ro1, through an inducible expression system. Thirty mice are used for the study, and are divided

into four experimental groups. Six transgenic mice expressed Ro1 for two weeks, which did

not show symptoms of disease. Nine other transgenic mice expressed Ro1 for eight weeks, and

exhibited cardiomyopathy symptoms. The recovery group consists of seven transgenic mice,

whose expression of Ro1 was on for eight weeks and off for four weeks. Finally, the control

group is made up of non-transgenic mice expressed Ro1 for eight weeks.

The goal is to identify genes involved in the Ro1 expression changes, which may provide

new diagnostic markers for cardiomyopathy. To this end, Affymetrix Mu6500 arrays were used

for the study, and the response of interest is Ro1, whereas the predictors are 6,319 microarray gene

expressions. The dimensionality of the model is then 30 observations (n = 30) and 6,319 features

(p = 6319). In order to verify the effectiveness of our High-dimensional Left-censored Quantile

Regression framework, we artificially created a 10% censoring on the response Ro1 value, and

fitted the dataset for five quantiles, τ = 0.5,0.75, and 0.9. The regularization parameter in the

initial estimator is chosen using a five-fold cross validation procedure as described in (2.22). The

gene expressions deemed to be significant by the confidence intervals are summarized in Table

111



Table 2.5: Gene expressions selected by High-dimensional Left-censored Quantile Regression
(HLQR) with 10% censoring in comparison with the ones selected by L1 norm QR model in
[LZ08] (L1QR) with no censoring

GeneBank τ = 0.5 τ = 0.75 τ = 0.9

HLQR L1QR HLQR L1QR HLQR L1QR

D31717 (97.68,97.92) X (97.65,97.96) X (97.61,97.91) X
U73744 (20.09,20.32) X (20.08,20.29) X (20.06,20.31) X
U25708 (46.61,46.82) X (46.60,46.83) X (46.60,46.90)
AA061310 (9.07,9.26) X (9.07,9.22) (9.05,9.29)
M30127 (−0.04,0.06) X (−0.03,0.05) X (−0.04,0.06) X
L38971 (20.36,20.54) X (20.35,20.54) (20.34,20.58)
Z32675 (25.07,25.28) X (25.03,25.15) (25.02,25.36)
W75373 (41.96,42.17) X (41.94,42.20) (41.94,42.16)
AA044561 (0.02,0.18) (−0.01,0.28) X (−0.05,0.33)
AA111168 (−0.12,0.22) (−0.10,0.17) (−0.13,0.21) X
M18194 (−0.04,0.10) (−0.12,0.15) (−0.04,0.09)

2.5. We also noticed that the same dataset has also been studied in both [LZ08]. Thereby, we

included real data results therein for comparison.

As one can see from Table 2.5, there are quite a few overlaps between the gene expres-

sions selected in [LZ08] and the ones selected by our High-dimensional Left-censored Quantile

Regression method, even with 10% of censoring introduced. In addition to merely identifying the

significant genes, our methodology is capable of providing a precise confidence interval for the

significant gene expressions. Moreover, we notice that the sets of selected genes by models across

various quantiles, i.e. τ = 0.5,0.75, and 0.9, using our HLQR are more consistent than the sets

reported for models with different quantiles from L1QR. In other words, our methodology tends

to agree on a common set of significant gene expressions across models with different quantile

levels.

The starkest contrast between the gene expressions reported can be seen in M30127

(Mouse MHC class I tum-transplantation antigen P35B gene), whose importance has been

noted consistently across quantiles in L1QR, whereas our HLQR procedure does not find the

expression significant. Instead, we do notice that our resulting confidence interval does suggest

the significance of another gene expression M20985 (Mouse MHC class I H2-Qa-Mb1 gene).
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The confidence intervals for M20985 is as following (91.14,91.32) in τ = 0.5, (91.14,91.30) in

τ = 0.75, and (91.11,91.35) in τ = 0.9. Whereas as of date the M30127 expression’s role in the

cardiomyopathy development is yet to be determined, [PSA+10] has confirmed that M20985 is

part of a locus that confers susceptibility of viral-induced chronic myocarditis. In such case, our

methodology has correctly identified a substantial gene candidate for further study of the disease.

Last but not the least, we would like to emphasize on the necessity of considering censoring

data cases. In fact, it is difficult to accurately measure absolute expression levels and reliably

detect low abundance genes [DKES06]. Thus, we believe our method would be a great asset for

researchers analyzing datasets, which have observations with lower detection limit.

2.5 Lemmas

The following result gives a bound on the estimation error of our inverse Hessian estimator

Θ̂ΘΘ j to the underlying population quantity ΘΘΘ
0
j .

Lemma 7. Under Conditions 1 - 7,

‖Θ̂ΘΘ
β̂ββ , j
−ΘΘΘβββ

o, j‖1 = Op(λ js j)+Op(K
√

λ sβββ
os j)+Op(K(λ sβββ

os2
j/n)1/4)+Op(

√
s jδ f ,nK),

where δ f ,n := n−1
∑

n
i=1

(
f̂ (xiβ̂ββ |xi)− f0(xiβββ

o|xi)
)2

. For bounded case, K =
√s j, and K = 1 in

the strongly bounded case.

Remark 13. In particular, in the bounded case, if we choose λ �
√

log(p)/n, λ j �
√

log(p)/n,

s2
jsβββ

o
√

log(p)/n = op(1), sβββ
os4

j

√
log(p)/n3 = op(1) and s j

√
δ f ,n = op(1), then

‖Θ̂ΘΘ
β̂ββ , j
−ΘΘΘβββ

o, j‖1 = op(1).

113



In the strongly bounded case, we only require λ �
√

log(p)/n, λ j �
√

log(p)/n,

s jsβββ
o
√

log(p)/n = op(1)

and s jδ f ,n = op(1).

Finally, we begin presenting preliminary results for each term in the decomposition (2.17).

We start with term (III), which measures the error of the one-step improvement quantity using the

estimator F̂n.

Lemma 8. Under Condition 1 - 7, for F̂n chosen to be as in (2.18)

III =−1
n

n

∑
i=1

Θ̂ΘΘ jx>i φi +Op

(
K
n
+K

(
logn

n

)3/4
)
,

where K =
√s j, and in the strongly bounded case, K = 1, and

φi := τ 1I
(
xiβββ

o ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

n

∑
l=1
l 6=i

Bnl(xi)

(
1I(Yl > 0,δl = 1)

F0(Yl|x)
−
∫

∞

max{0,Yl}

dF0(s|x)
F2

0 (s|x)

)
.

Furthermore,

1
n

n

∑
i=1

Θ̂ΘΘ jx>i φi
d→N

(
0,

σ2
φ

n

)
,

where σ2
φ
= EΘ̂ΘΘ jΩΩΩφ Θ̂ΘΘ

>
j and ΩΩΩφ := ∑

n
i=1 x>i xiφ

2
i /n.

Remark 14. Lemma 8 implies that an additional normality term results from using the classical

Kaplan-Meier estimator as a proxy for the true distribution F. Such a term can be understood as

the extra variability due to the missing information regarding underlying distribution.

In the following, we apply linearization on the term (∆) and then combine the term together

with (I), which then gives us the following Lemma. The rationale behind such arrangement is that
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the term (∆) describes the difference in the one-step correction with expectation of score using

initial estimator β̂ββ , whereas the term (I) is exactly the difference of β̂ββ and βββ
o.

Lemma 9. Under Conditions 1 - 7, when
∥∥∥Θ̂ΘΘ

β̂ββ , j
−ΘΘΘβββ

o, j

∥∥∥
1
= op(1),

|I−∆|= Op

(
Kλ jλ sβββ

o

)
+Op(Kλ

2s2
βββ

o),

where K =
√s j, and in the strongly bounded case, K = 1.

For part (II), we have the following lemma, which aims to bound the difference of a

empirical process.

Lemma 10. Under Conditions 1 - 7,

|II|= Op

(√
λ sβββ

os j/n
)
.

Last but not the least, we show the normality of the term
√

nΘ̂ΘΘSn(βββ
o) for part (N). The

lemma shows that the leading term of the Bahadur decomposition (2.17) follows a normal

distribution.

Lemma 11. Assuming Conditions 1 - 7,

N =−1
n

n

∑
i=1

Θ̂ΘΘ jx>i ψi
d→N

(
0,

σ2
ψ

n

)
,

where ψi =−
[
wi(F0)1I{Yi−xiβββ

o ≥ 0}− (1− τ)
]
, and σ2

ψ = EΘ̂ΘΘ jΩΩΩψΘ̂ΘΘ
>
j and

ΩΩΩψ :=
n

∑
i=1

x>i xiψ
2
i /n.
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2.6 Proofs of Lemmas

Proof of Lemma 7. Let wβββ be the diagonal of the weighted matrix Wβββ . Denote

Xβββ
o, j = Xβββ

o,− jγβββ
o, j +ηβββ

o, j, (2.23)

and

γ̂
β̂ββ , j

= argmin
γ

‖X
β̂ββ , j
−X

β̂ββ ,− j
γ‖2

n +2λ j‖γ‖1,

where γβββ
o, j = argminγ E‖Xβββ

o, j−Xβββ
o,− jγ‖2

n. Define

η j := X j−X− jγβββ
o, j, (2.24)

we can rewrite equation (2.23) as

Wβββ
oX j = Wβββ

oX− jγβββ
o, j +Wβββ

oη j,

and similarly by (2.24), we also have

W
β̂ββ

X j = W
β̂ββ

X− jγβββ
o, j +W

β̂ββ
η j. (2.25)

By the definition of γ̂
β̂ββ , j

,

‖X
β̂ββ , j
−X

β̂ββ ,− j
γ̂

β̂ββ , j
‖2

n +2λ j‖γ̂
β̂ββ , j
‖1

≤ ‖X
β̂ββ , j
−X

β̂ββ ,− j
γβββ

o, j‖2
n +2λ j‖γβββ

o, j‖1.
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Replacing X̂
β̂ββ , j

by (2.25) and rearranging terms, we get

‖X
β̂ββ ,− j

(γ̂
β̂ββ , j
− γβββ

o, j)‖2
n +2λ j‖γ̂

β̂ββ , j
‖1

≤ 2
n

(
W2

β̂ββ
η j

)>
X− j(γ̂

β̂ββ , j
− γβββ

o, j)+2λ j‖γβββ
o, j‖1

=
2
n

η
>
βββ

0, j
Xβββ

o,− j(γ̂β̂ββ , j
− γβββ

o, j)+2λ j‖γβββ
o, j‖1 +Rem,

where the remainder Rem=(2/n)
(
(W2

β̂ββ
−W2

βββ
o)η j

)>
X− j(γ̂

β̂ββ , j
−γβββ

o, j). Note that by Condition

5, ‖η j‖∞ ≤ ‖X j‖∞ +‖X− jγβββ
o, j‖∞ = Op(

√s j). In the strongly bounded case, we have the projec-

tion ‖Xβββ
o,− jγβββ

o, j‖∞ = Op(1), hence ‖η j‖∞ = Op(1). In the following, we write ‖η j‖∞ = Op(K)

where K =
√s j in general case, and K = 1 when data is strongly bounded.

We can bound the remainder term

|Rem| ≤ 2
n
‖(W2

β̂ββ
−W2

βββ
o)η j‖2‖X− j(γ̂

β̂ββ , j
− γβββ

o, j)‖2.

Therefore,
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n−1‖(W2
β̂ββ
−W2

βββ
o)η

βββ
0, j‖

2
2

≤ 1
n
‖η

βββ
0, j‖

2
∞

n

∑
i=1

(
w2

β̂ββ ,i
−w2

βββ
o,i

)2

=
1
n
‖η

βββ
0, j‖

2
∞

n

∑
i=1

(
f̂ (xiβ̂ββ |xi)1I(xiβ̂ββ > 0)− f0(xiβββ

o|xi)1I(xiβββ
o > 0)

)2

≤ 1
n
‖η

βββ
0, j‖

2
∞

{
n

∑
i=1

(
f̂ (xiβ̂ββ |xi)− f0(xiβ̂ββ |xi)

)2
+

n

∑
i=1

(
f0(xiβ̂ββ |xi)− f0(xiβββ

o|xi)
)2
}

+
1
n
‖ηβββ

o, j‖∞

n

∑
i=1

f0(xiβββ
o|xi)

2
(

1I(xiβ̂ββ > 0)−1I(xiβββ
o > 0)

)2

= δ f ,nOp(K2)+
1
n
‖X(β̂ββ −βββ

o)‖2
2Op(K2)+

1
n

n

∑
i=1

(
1I(xiβ̂ββ > 0)−1I(xiβββ

o > 0)
)2

Op(K2)

= O(δ f ,nK2)+Op(λ
2sβββ

oK2)+Op(K2)
1
n

n

∑
i=1

Bi(β̂ββ )

where δ f ,n = n−1
∑

n
i=1

(
f̂ (xiβ̂ββ |xi)− f0(xiβββ

o|xi)
)2

and Bi(βββ ) =
(
1I(xiβββ > 0)−1I(xiβββ

o > 0)
)2.

Observe that for any fixed βββ , Bi(βββ ) is Bernoulli random variable. Let P = P(Bi = 1). Note

that

max
i
|xiβββ −xiβββ

o|= ‖Xβββ −Xβββ
o‖∞ ≤ ‖X‖∞‖βββ −βββ

o‖1 ≤ KX‖βββ −βββ
o‖1,

and
1
n

n

∑
i=1

(xiβββ −xiβββ
o)2 = n−1‖X(βββ −βββ

o)‖2
2.

Therefore, P ≤ P(|xiβββ
o| ≤ KX‖βββ −βββ

o‖1) = O(‖βββ −βββ
o‖1) by the boundedness of density f0.

By Chernoff inequality,

∣∣∣∣∣1n n

∑
i=1

Bi(βββ )

∣∣∣∣∣= Op (P)+Op

(√
P(1−P)√

n

)
.
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Hence, we have ∣∣∣∣∣1n n

∑
i=1

Bi(β̂ββ )

∣∣∣∣∣= Op(λ sβββ
o)+Op


√

λ sβββ
o

√
n

 .

Therefore, for any δ > 0,

|Rem|= δ‖X
β̂ββ ,− j

(γ̂
β̂ββ , j
− γβββ

o, j)‖2
n +O(δ f ,nK2)

+Op(λ
2sβββ

oK2)+Op(K2
λ sβββ

o)+Op(K2
√

λ sβββ
o/n).

By the standard arguments, choosing λ j �
√

log(p)/n, we get

‖X
β̂ββ ,− j

(γ̂
β̂ββ , j
− γβββ

o, j)‖2
n = Op(λ

2
j s j)+O(δ f ,nK2)+Op(λ sβββ

oK2)+Op(K2
√

λ sβββ
o/n)

and

‖γ̂
β̂ββ , j
− γβββ

o, j‖1 = Op(λ js j)+O(
√

δ f ,nK
√

s j)+Op(K
√

λ sβββ
os j)+Op(K(λ sβββ

os2
j/n)1/4).

Using (2.24) again, we get

d̂2
β̂ββ , j
−d2

βββ
o, j = X>

βββ
o, j(Xβββ

o, j−Xβββ
o,− jγ̂β̂ββ , j

)/n−d2
βββ

o, j︸ ︷︷ ︸
(i)

+X>j (W
2
β̂ββ
−W2

βββ
o)(X j−X− jγ̂

β̂ββ , j
)/n︸ ︷︷ ︸

(ii)

.

By Theorem 2.4 in [VdGBR+14], we have (i) = Op(λ j
√s j). For the second part (ii), by

Condition 5,

(ii) = Op(K)
1
n

n

∑
i=1

∣∣∣ f̂ (xiβ̂ββ |xi)1I(xiβ̂ββ > 0)− f0(xiβββ
o|xi)1I(xiβββ

o > 0)
∣∣∣

= Op(
√

δ f ,nK)+Op(λ
√

sβββ
oK)+Op(K(λ sβββ

o/n)1/4).
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Therefore,

∣∣∣d̂2
β̂ββ , j
−d2

βββ
o, j

∣∣∣= Op(λ j
√

s j)+Op(
√

δ f ,nK)+Op(λ
√

sβββ
oK)+Op(K(λ sβββ

o/n)1/4).

Combining all previous results,

‖Θ̂
β̂ββ , j
−Θβββ

o, j‖1

≤ ‖γ̂
β̂ββ , j
− γβββ

o, j‖1/d̂2
β̂ββ , j

+‖γβββ
o, j‖1

(
1/d̂2

β̂ββ , j
−1/d2

βββ
o, j

)
= Op(λ js j)+Op(K

√
λ sβββ

os j)+Op(K(λ sβββ
os2

j/n)1/4)+Op(
√

s jδ f ,nK).

Proof of Lemma 8. We begin with expanding on the following difference,

Θ̂ΘΘ j

(
Sn(β̂ββ , F̂n)−Sn(β̂ββ ,F0)

)
= Θ̂ΘΘ j

∂Sn(β̂ββ ,F)

∂F

∣∣∣∣∣
F=F0

(
F̂n−F0

)
+

1
2

∂ 2Sn(β̂ββ ,F)

∂F2

∣∣∣∣∣
F=F̃

(
F̂n−F0

)2
,

(2.26)

for some F̃ between F̂n and F0. We then work on rewriting the terms in the summation of
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Sn (βββ ,F). Let Sn (βββ ,F) := n−1
∑

n
i=1 si (βββ ,F),

si (βββ ,F) =−x>i [wi(F)1I(Yi−xiβββ ≥ 0)+ τ−1]

=−x>i
[
1I(Ti ≤ 0)

(
τ−1+

τ

F
1I(xiβββ ≤ 0)1I(F > τ)

)
+1I(Ti > 0)(τ−1+1I(Ti ≥ xiβββ ))]

=−x>i
[
1I(xiβββ ≤ 0)

(
1I(Ti ≤ 0)(τ−1)+1I(Ti ≤ 0)

τ

F
1I(F > τ)+ τ 1I(Ti > 0)

)
+1I(xiβββ > 0)(1I(Ti ≤ 0)(τ−1)+1I(Ti > 0)(τ−1)+1I(Ti ≥ xiβββ ))]

=−x>i
[
1I(xiβββ ≤ 0)

(
τ−1I(Ti ≤ 0)+1I(Ti ≤ 0)

τ

F
1I(F > τ)

)
+1I(xiβββ > 0)(τ−1+1I(Ti ≥ xiβββ ))]

=−x>i
[
τ−1I(xiβββ ≤ 0,Ti ≤ 0)+1I(xiβββ ≤ 0,Ti ≤ 0)

τ

F
1I(F > τ)

−1I(xiβββ > 0)+1I(Ti ≥ xiβββ ,xiβββ > 0)] .

We derive the first derivative of Sn with respect to F at F0,

∂Sn(β̂ββ ,F)

∂F

∣∣∣∣∣
F=F0

= lim
ε→0
−1

n

n

∑
i=1

x>i τ 1I
(

xiβ̂ββ ≤ 0,Ti ≤ 0
)

× 1
ε(F−F0)

(
1I(F0 + ε(F−F0)> τ)

F0 + ε(F−F0)
− 1I(F0 > τ)

F0

)
=−1

n

n

∑
i=1

x>i τ 1I
(

xiβ̂ββ ≤ 0,Ti ≤ 0
)

× lim
ε→0

1
ε(F−F0)

(
1I(F0 + ε(F−F0)> τ)

F0 + ε(F−F0)
− 1I(F0 > τ)

F0 + ε(F−F0)

+
1I(F0 > τ)

F0 + ε(F−F0)
− 1I(F0 > τ)

F0

)
=

1
n

n

∑
i=1

x>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

,
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where the details of taking the limit is as the following.

lim
ε→0

1
ε(F−F0)

(
1I(F0 + ε(F−F0)> τ)

F0 + ε(F−F0)
− 1I(F0 > τ)

F0 + ε(F−F0)
+

1I(F0 > τ)

F0 + ε(F−F0)
− 1I(F0 > τ)

F0

)
= lim

ε→0

1
ε(F−F0)

(
1I(F0 + ε(F−F0)> τ)−1I(F0 > τ)

F0 + ε(F−F0)
− ε(F−F0)

F0(F0 + ε(F−F0))
1I(F0 > τ)

)
=−1I(F0 > τ)

F2
0

,

since F0 is bounded away from τ . Likewise, we have the second derivative of Sn with respect to

F at F̃ as

∂ 2Sn(β̂ββ ,F)

∂F2

∣∣∣∣∣
F=F̃

=−2
n

n

∑
i=1

x>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F̃ > τ)

F̃3
,

as for F close to F0, F̃ is also bounded away from τ .

Plugging the derivatives into (2.26), we have

Θ̂ΘΘ j

(
Sn(β̂ββ , F̂n)−Sn(β̂ββ ,F0)

)
=

1
n

n

∑
i=1

Θ̂ΘΘ jx>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

(
F̂n−F0

)
︸ ︷︷ ︸

(i)

− 1
n

n

∑
i=1

Θ̂ΘΘ jx>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F̃ > τ)

F̃3

(
F̂n−F0

)2

︸ ︷︷ ︸
(ii)

.

Following the framework of Theorem 1 of [LS86] and Theorem 2.3 of [GMCS94] that for the

classical Kaplan-Meier estimator F̂n as defined in (2.18), we have the following linearization.

F̂n(0|x)−F0(0|x) =
1
n

n

∑
l=1

ζ (Yl,δl,x)+Op

((
logn

n

)3/4
)

= Op

(
1√
n
+

(
logn

n

)3/4
)
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for some θθθ i between (x−xi)/hn and (x−xl)/hn, where

ζ (Yl,δl,x) =
1I(Yl > 0,δl = 1|x)

F0(Yl|x)
−
∫

∞

max{0,Yl}

dF0(s|x)
F2

0 (s|x)
.

In fact, for i 6= l, 1I(Ti ≤ 0)ζ (Yl,δl,x) are independent random variables with mean zero and

finite variances for any given x.

Replacing the term
(

F̂n−F0

)
with its linearization, and separating the terms of i = l from

i 6= l, for term (i), we have

(i) =
1
n2

n

∑
i=1

n

∑
l=1
l 6=i

Θ̂ΘΘ jx>i τ 1I
(
xiβββ

o ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

Bnl(xi)ζ (Yl,δl,xi)

+
1
n2

n

∑
i=1

n

∑
l=1
l 6=i

Θ̂ΘΘ jx>i τ

(
1I
(

xiβ̂ββ ≤ 0
)
−1I

(
xiβββ

o ≤ 0
))

(2.27)

×1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

Bnl(xi)ζ (Yl,δl,xi)

+
1
n2

n

∑
i=1

Θ̂ΘΘ jx>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

Bni(xi)ζ (Yi,δi,xi)

+

(
1
n

n

∑
i=1

Θ̂ΘΘ jx>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

)
·Op

((
logn

n

)3/4
)

=
1
n2

n

∑
i=1

n

∑
l=1
l 6=i

Θ̂ΘΘ jx>i τ 1I
(
xiβββ

o ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

Bnl(xi)ζ (Yl,δl,xi) (2.28)

+Op

(Kλ sβββ
o

n

)
+Op

(
K

n3/2

)
+Op

(
K
(

logn
n

)3/4
)
, (2.29)

where K =
√s j, and in the strongly bounded case, K = 1. The order in (2.29) results from the

condition that ‖Θ̂ΘΘ
β̂ββ , j
−ΘΘΘβββ

o, j‖1 = op(1), and similar arguments as in Lemma 7. For the other
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term (ii), we can bound it as following,

(ii) =

(
1
n

n

∑
i=1

Θ̂ΘΘ jx>i τ 1I
(

xiβ̂ββ ≤ 0
)

1I(Ti ≤ 0)
1I(F̃ > τ)

F̃3

)
·Op

(
1
n
+

(
logn

n

)3/2

+
log3/4 n

n4/5

)

= Op

(
K
n
+K

(
logn

n

)3/2
)
.

For convenience in notations, define random variables φi as following,

φi := τ 1I
(
xiβββ

o ≤ 0
)

1I(Ti ≤ 0)
1I(F0 > τ)

F2
0

n

∑
l=1
l 6=i

Bnl(xi)ζ (Yl,δl,xi).

Then {Θ̂ΘΘ jx>i φi}n
i=1 are i.i.d. mean zero random variables with finite variance. Thus, by the central

limit theorem, (2.28) d→N
(
0,σ2

1/n
)
, where σ2

1 = EΘ̂ΘΘ jΩΩΩ1Θ̂ΘΘ
>
j , and ΩΩΩ1 := ∑

n
i=1 x>i xiφ

2
i /n.

Lemma 12 (Preliminary Result for Lemma 9). By the construction of inverse matrix ΘΘΘ
0 and Θ̂ΘΘ,

we have 1/d̂2
j = O(1).

Proof of Lemma 12. First, we note that ΘΘΘ
0
j, j = 1/d2

j , which is a result of the KKT condition

following similar arguments as in 2.3.1 of [BG16]. Second, following the proof of lemma 5.3 in

[VdGBR+14], we can show d̂2
j = d2

j +op(1). Then the results follows from Condition 7.

Proof of Lemma 9. We will suppress F0 in the argument of Sn for the proof, and start by first

examining part of ∆. Denote H(b) = [∂ESn(βββ )/∂βββ ]
βββ=b,

ESn(β̂ββ )−ESn(βββ
o) = H(b)

(
β̂ββ −βββ

o)
= H(β̂ββ )

(
β̂ββ −βββ

o)+ (H(b)−H(β̂ββ )
)(

β̂ββ −βββ
o).
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Thus, we can rewrite ∆ as

∆ = Θ̂ΘΘ jH(β̂ββ )
(
β̂ββ −βββ

o)+ Θ̂ΘΘ j
(
H(b)−H(β̂ββ )

)(
β̂ββ −βββ

o).
Subtracting (∆) from (I), we have

I−∆ = β̂ββ j−βββ
o
j − Θ̂ΘΘ jH(β̂ββ )

(
β̂ββ −βββ

o)− Θ̂ΘΘ j
(
H(b)−H(β̂ββ )

)(
β̂ββ −βββ

o)
=

(
eT

j − Θ̂ΘΘ jH(β̂ββ )
)(

β̂ββ −βββ
o)︸ ︷︷ ︸

(i)

+Θ̂ΘΘ j
(
H(β̂ββ )−H(b)

)(
β̂ββ −βββ

o)︸ ︷︷ ︸
(ii)

Using the KKT condition described in (2.12), we could work out a bound for (i). In more

detail,

∣∣∣(eT
j − Θ̂ΘΘ jH(β̂ββ )

)(
β̂ββ −βββ

o)∣∣∣ ≤ ||
(
eT

j − Θ̂ΘΘ jH(β̂ββ )
)
||∞||β̂ββ −βββ

o||1

≤
λ j

d̂2
j

||β̂ββ −βββ
o||1

= Op(λ jλ sβββ
o)

where the last inequality is due to the consistency result of Theorem 13 and the fact that 1/d̂2
j is

bounded, which is shown in Lemma 12. Now for part (ii),

∣∣∣Θ̂ΘΘ j
(
H(b)−H(β̂ββ )

)(
β̂ββ −βββ

o)∣∣∣
≤

∣∣∣∣∣1n n

∑
i=1

Θ̂ΘΘ jxT
i ·xi

(
1I(xib > 0) f0(xib|xi)−1I(xiβ̂ββ > 0) f0(xiβ̂ββ |xi)

)(
β̂ββ −βββ

o)∣∣∣∣∣
≤

∣∣∣∣∣Ln n

∑
i=1

Θ̂ΘΘ jxT
i

(
xi(β̂ββ −βββ

o)
)2
∣∣∣∣∣+M

∣∣∣∣∣1n n

∑
i=1

Θ̂ΘΘ jx>i xi(β̂ββ −βββ
o)
(

1I(xib > 0)−1I(xiβ̂ββ > 0)
)∣∣∣∣∣

≤ L‖XΘ̂ΘΘ
>
j ‖∞‖X(β̂ββ −βββ

o)‖2/n+MKX‖XΘ̂ΘΘ
>
j ‖∞‖β̂ββ −βββ

o‖1
1
n

n

∑
i=1

∣∣∣1I(xib > 0)−1I(xiβ̂ββ > 0)
∣∣∣

= Op(Kλ
2sβββ

o)+Op(Kλ sβββ
o)

1
n

n

∑
i=1

Bi.

125



When ‖Θ̂ΘΘ j−ΘΘΘ
0
j‖1 = op(1), the term ‖XΘ̂>j ‖∞ is Op(K), where K =

√s j in the bounded case, and

K = 1 in the strongly bounded case. By similar argument in Lemma 7, n−1
∑

n
i=1 Bi = Op(λ sβββ

o).

Putting parts of (i) and (ii) together, we have

|I−∆|= Op

(
λ jλ sβββ

o

)
+Op(Kλ

2s2
βββ

o).

Proof of Lemma 10. Suppressing the argument F0 for simplicity of notation, define

Ξ(βββ ) = ΘΘΘ j
[
Sn(βββ )−Sn(βββ

o)
]
−ΘΘΘ j

[
ESn(βββ )−ESn(βββ

o)
]

= ΘΘΘ j
[
Sn(βββ )−Sn(βββ

o)
]︸ ︷︷ ︸

ξ̄ n

−EΘΘΘ j
[
Sn(βββ )−Sn(βββ

o)
]
,

where the expectation is with respect to response variables Ti and ΘΘΘ is any p by p matrix with

||ΘΘΘ j||= O(
√s j) (s j is still the j-th row cardinality of ΘΘΘ

o. So in another word, ΘΘΘ is any matrix

with the same row cardinality as ΘΘΘ
o). Then the term (II) is just Ξ(β̂ββ ) with ΘΘΘ = Θ̂ΘΘ. Note that

ξ̄ n =

√s j

n

n

∑
i=1

s−1/2
j ΘΘΘ jxT

i wi
[
1I(Yi ≥ xiβββ

o)−1I(Yi ≥ xiβββ )
]︸ ︷︷ ︸

ξ̃i

.

Now for any i, without loss of generality, assume xiβββ > xiβββ
o ≥ 0. Then ξi = ξ̃i/ΘΘΘ jxT

i wi is a

Bernoulli random variable

ξi =


1, if xiβββ

o ≤ Yi < xiβββ

0, elsewhere

and P(ξi = 1) = F0(xiβββ |xi)−F0(xiβββ
o|xi) = f0(xib|xi)xi(βββ −βββ

o) for some xiβββ
o < xib < xiβββ .

Therefore, Var(ξi)≤P(ξi = 1)=Op(‖βββ−βββ
o‖1) by Condition 2 and 5, and so is the variance of ξ̃i
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because ||s−1/2
j ΘΘΘ j(βββ )xT

i wi||∞ is bounded. Furthermore, it is easy to see that ξ̃i is a stochastically

bounded random variable, say |ξ̃i| ≤ a almost surely. Then Var(ξ̃i)/a = Op(‖βββ −βββ
o‖1) and this

holds true for all βββ . Invoking Bennett’s inequality and the fact ‖β̂ββ −βββ
o‖1 = Op(sβββ

oλ ), we have

Ξ(β̂ββ ) = Op(
√

λ sβββ
os j/n), and hence Lemma 10.

Proof of Lemma 11. We start by rewriting part of term (N), we note that

Sn(βββ
o,F0) = −1

n

n

∑
i=1

x>i
[
wi(F0)1I{Yi−xiβββ

o ≥ 0}− (1− τ)
]

=
1
n

n

∑
i=1

x>i ψi

where ψi =−
[
wi(F0)1I{Yi−xiβββ

o ≥ 0}− (1− τ)
]
. It is easy to show that, for each i,

E [ψi|xi] =−
(
τ−P(Yi < xiβββ

o)− τ(1I(xiβββ
o ≤ 0))2)= 0.

Furthermore, |ψi| ≤ 1. Then we can apply Lindeberg central limit theorem to random variable

{Θ̂ΘΘ jx>i ψi}n
i=1. We have

Θ̂ΘΘ jSn(βββ
o,F0) =

1
n

n

∑
i=1

Θ̂ΘΘ jx>i ψi
d→N

(
0,

σ2
ψ

n

)
,

where σ2
2 = EΘ̂ΘΘ j

[
n−1

∑
n
i=1 x>i xiψ

2
i
]

Θ̂ΘΘ
>
j = EΘ̂ΘΘ jΩΩΩψΘ̂ΘΘ

>
j and ΩΩΩψ := ∑

n
i=1 x>i xiψ

2
i /n.

Proof of Lemma 13. Assume fβββ (x) = a > 0. Let the distribution function of error at x be
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ν0(t|x) = P(ε ≤ t|x).

Pρ f |x = E[wρτ(y−a)+(1−w)ρτ(y−∞−a)|x]

=
∫

∞

a

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

+
∫ a

0

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

+
∫ 0

−∞

[
w(t)ρτ(t−a)+(1−w(t))ρτ(y−∞−a)

]
dF0(t|x)

=
∫

∞

a
τ(t−a)dF0(t|x)+

∫ a

0
(τ−1)(t−a)dF0(t|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−a)+

τ

F0(0|x)
(τ−1)(y−∞−a)

]
dF0(t|x)

= τ

∫
∞

0
tdF0−

∫ a

0
tdF0 +(τF0(0|x)− τ−F0(0|x))a+aF0(a|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−a)+

τ

F0(0|x)
(τ−1)(y−∞−a)

]
dF0(t|x).

Pρ f0|x = E[wρτ(y−xβββ
o)+(1−w)ρτ(y−∞−xβββ

o)|x]

= τ

∫
∞

0
tdF0−

∫ xβββ
o

0
tdF0 +(τF0(0|x)− τ−F0(0|x))xβββ

o +xβββ
oF0(xβββ

o|x)

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(t−xβββ

o)+
τ

F0(0|x)
(τ−1)(y−∞−xβββ

o)

]
dF0(t|x).
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Pρ f |x−Pρ f0|x =−
∫ a

xβββ
o
tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβββ

o)+aF0(a|x)− τxβββ
o

+
∫ 0

−∞

[
(1− τ

F0(0|x)
)(τ−1)(xβββ

o−a)

+
τ

F0(0|x)
(τ−1)(xβββ

o−a)
]

dF0(t|x)

=−
∫ a

xβββ
o
tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβββ

o)+aF0(a|x)− τxβββ
o

+(xβββ
o−a)(τ−1)

∫ 0

−∞

[
(1− τ

F0(0|x)
)+

τ

F0(0|x)

]
dF0(t|x)

=−
∫ a

xβββ
o
tdF0 +(τF0(0|x)− τ−F0(0|x))(a−xβββ

o)+aF0(a|x)− τxβββ
o

+(xβββ
o−a)(τ−1)F0(0|x)

=−
∫ a−xβββ

o

0
(t +xβββ

o)dν0(t|x)

+
(
τν0(−xβββ

o|x)− τ−ν0(−xβββ
o|x)
)
(a−xβββ

o)

+aν0(a−xβββ
o|x)− τxβββ

o +(xβββ
o−a)(τ−1)ν0(−xβββ

o|x)

=−
∫ a−xβββ

o

0
tdν0(t|x)+(a−xβββ

o)(ν0(a−xβββ
o|x)− τ). (2.30)
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Let z := a−xβββ
o, then:

(2.30) = −
∫ z

0
tdν0(t|x)+ z(ν0(z|x)− τ)

= −
∫ z

0
tdν0(t|x)+

∫ z

0
zdν0(t|x)

=
∫ z

0
(z− t)dν0(t|x)

=
∫ z

0
(z− t)ν̇0(t|x)dt

=
∫ z

0
(z− t)ν̇0(0|x)dt +

∫ z

0
(z− t)(ν̇0(t|x)− ν̇0(0|x))dt

≥
∫ z

0
(z− t)ν̇0(0|x)dt−

∫ |z|
0

(|z|− t)|ν̇0(t|x)− ν̇0(0|x)|dt

≥(i)
∫ z

0
(z− t)ν̇0(0|x)dt−L

∫ |z|
0

(|z|− t)tdt

=
1
2

ν̇(0|x)z2− 1
6

L|z|3. (2.31)

In (i), we use the Lipschitz condition of the density function of error. Because of (2.31)

and Condition 4, we can then use the Lemma in Stadler (2010) to conclude that there exists

C1 > 0 s.t. E ( fβββ )≥C2
1 || fβββ − f0||2.
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Proof of Lemma 14.

|γβββ (y,x)|= |wρτ(y−xβββ )+(1−w)ρτ(y−∞−xβββ )−wρτ(y−xβββ
o)− (1−w)ρτ(y−∞−xβββ

o)|

= |wρτ(y−xβββ )−wρτ(y−xβββ
o)+(1−w)ρτ(y−∞−xβββ )− (1−w)ρτ(y−∞−xβββ

o)|

= |w
(
ρτ(y−xβββ )−ρτ(y−xβββ

o)
)
+(1−w)(τ−1)x(βββ o−βββ )|

≤(i) w|max(τ,1− τ)x(βββ −βββ
o)|+(1−w)|(τ−1)x(βββ o−βββ )|

= {wmax(τ,1− τ)+(1−w)(1− τ)}|x(βββ −βββ
o)|

≤max(τ,1− τ)|x(βββ −βββ
o)|

≤max(τ,1− τ)||x||∞||βββ −βββ
o||1

≤(ii) max(τ,1− τ)KX ||βββ −βββ
o||1.

for all x, y, βββ in the range. The inequality (i) is from triangle inequality and property of loss

function ρτ , and (ii) is because of Condition 5. Therefore, we have

|γβββ (yi,xi)−Eγβββ (yi,xi)| ≤ 2max(τ,1− τ)||βββ −βββ
o||1KX .

Denote ci,βββ := 2max(τ,1− τ)||βββ −βββ
o||1KX , it is easy to show that

sup
||βββ−βββ

o||1≤M

n

∑
i=1

c2
i,βββ ≤

(
4max(τ,1− τ)2M2K2

X
)

n≤ 4M2K2
X n.

By the concentration theorem (Massart, 2000), we have

P(ZM ≥ EZM + t)≤ exp
(
− nt2

32M2K2
X

)
.

Therefore,

P

(
ZM ≥ EZM +MKX

√
32t
n

)
≤ e−t .
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By the contraction inequality (Lemma 14.20 in Buhlmann and van de Geer (2011)), we have

EZM ≤ 4MKX

√
2log(2p)

n
.

Consequently, for all t > 0 and M > 0,

P

(
ZM ≥ 4MKX

√
2log(2p)

n
+MKX

√
32t
n

)
≤ e−t .

Let

λ (t) = 4KX

√
2log(2p)

n
+KX

√
32t
n

, (2.32)

we have

P(ZM ≥Mλ (t))≤ e−t .

2.7 Proofs of Theorems

Proof of Theroem 13.

Lemma 13. Assuming Conditions 3 and 6, there exists some constant C1 such that

E ( fβββ )≥C2
1 || fβββ − f0||2.

Lemma 14 (Concentration inequality). Define

γβββ (y,x) := ρ fβββ (y,x,w)−ρ f
βββ

o (y,x,w),
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ZM := sup
||βββ−βββ

o||1≤M

∣∣∣∣∣1n n

∑
i=1

γβββ (yi,xi)−Eγβββ (yi,xi)

∣∣∣∣∣ ,
λ (t) := 4KX

√
2log(2p)

n
+KX

√
32t
n

.

Then we have

P(ZM ≥Mλ (t))≤ e−t .

The following argument follows Muller and van der Geer (2014). We start with bounding

the excess risk for f
β̂ββ

,

E ( f
β̂ββ
) = Pρ f

β̂ββ
−Pρ f0

= −(Pn−P)(ρ f
β̂ββ
−ρ f0) (2.33)

+P̂n(ρ f
β̂ββ
)+λ ||β̂ββ ||1−

(
P̂n(ρ f0)+λ ||βββ o||1

)
(2.34)

+λ ||βββ o||1−λ ||β̂ββ ||1 (2.35)

+Pn(ρ f
β̂ββ
)−P̂n(ρ f

β̂ββ
)+Pn(ρ f0)−P̂n(ρ f0). (2.36)

The plan is that, for equation (2.33), the empirical process part, we bound the term using

concentration inequality. While equation (2.34) is negative by the definition of β̂ββ , equation (2.35)

can be bounded using triangular inequality. Finally, for equation (2.36), it is negligible because

||w0− ŵ||∞ = op(1), which is shown in the proof of Lemma 8.

We then bound (2.33), (2.34), (2.35) separately. For (2.35), it is easy to show:

λ ||βββ o||1−λ ||β̂ββ ||1 ≤ λ ∑
j∈S(βββ o)

|β̂ j−β
o
j |−λ ∑

j∈Sc(βββ o)

|β̂ j|.

For (2.33), we have

−(Pn−P)(ρ f
β̂ββ
−ρ f0) =−(Pn−P)γ

β̂ββ
,
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and

ZM = sup
||βββ−βββ

o||1≤M
|(Pn−P)γβββ |.

Now define

Zδ
M := sup

||βββ−βββ
o||1≤M

|(Pn−P)γβββ |
||βββ −βββ

o||1∨δ
.
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We have

P(Zδ
M > 2λ (t)) = P

(
sup

||βββ−βββ
o||1≤M

|(Pn−P)γβββ |
||βββ −βββ

o||1∨δ
> 2λ (t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||βββ−βββ
o||1≤2− j

|(Pn−P)γβββ |
||βββ −βββ

o||1∨δ
> 2λ (t)

)

+P

(
sup

||βββ−βββ
o||1≤δ

|(Pn−P)γβββ |
||βββ −βββ

o||1∨δ
> 2λ (t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||βββ−βββ
o||1≤2− j

|(Pn−P)γβββ |
2− j−1 > 2λ (t)

)

+P

(
sup

||βββ−βββ
o||1≤δ

|(Pn−P)γβββ |
δ

> 2λ (t)

)

=
d− log2 δ−1e

∑
j=b− log2 Mc

P

(
sup

2− j−1≤||βββ−βββ
o||1≤2− j

|(Pn−P)γβββ |> 2− j
λ (t)

)

+P

(
sup

||βββ−βββ
o||1≤δ

|(Pn−P)γβββ |> 2δλ (t)

)

≤
d− log2 δ−1e

∑
j=b− log2 Mc

P
(
Z2− j > 2− j

λ (t)
)
+ e−t

≤
d− log2 δ−1e

∑
j=b− log2 Mc

e−t + e−t

= (d− log2 δ −1e−b− log2 Mc+2)e−t

= (dlog2 Me−blog2 δ +1c+2)e−t

≤ (dlog2 Me−dlog2 δe+2)e−t

≤ log2

(
8M
δ

)
e−t .

Therefore, for any βββ with ||βββ −βββ
o||1 ≤M, we have

|(Pn−P)γβββ | ≤ 2λ (t)
(
||βββ −βββ

o||1∨δ
)
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with probability at least 1− log2
(8M

δ

)
e−t .

It is easy to show that ||β̂ββ −βββ
o||1� n. Then let δ = p−2, t = 2log(p) we have

|(Pn−P)γ
β̂ββ
| ≤ 2λ (t)

(
||β̂ββ −βββ

o||1∨ p−2
)

with probability at least 1− log2
(
8np2)/p2.

If ||β̂ββ −βββ
o||1 ≤ p−2, trivially we have consistency.

If ||β̂ββ −βββ
o||1 > p−2, then because (2.34) is always non-positive by the definition of β̂ββ ,

we have

E ( f
β̂ββ
)≤−(Pn−P)(ρ f

β̂ββ
−ρ f0)+λ ||βββ o||1−λ ||β̂ββ ||1

≤ 2λ (t)||β̂ββ −βββ
o||1 +λ ||βββ o||1−λ ||β̂ββ ||1

= 2λ (t)

 ∑
j∈S(βββ o)

|β̂ j−β
o
j |+ ∑

j∈Sc(βββ o)

|β̂ j|


+λ

 ∑
j∈S(βββ o)

|β o
j |− ∑

j∈S(βββ o)

|β̂ j|− ∑
j∈Sc(βββ o)

|β̂ j|


≤ 2λ (t)

 ∑
j∈S(βββ o)

|β̂ j−β
o
j |+ ∑

j∈Sc(βββ o)

|β̂ j|

+λ

 ∑
j∈S(βββ o)

|β̂ j−β
o
j |− ∑

j∈Sc(βββ o)

|β̂ j|


= (2λ (t)+λ ) ∑

j∈S(βββ o)

|β̂ j−β
o
j |+(2λ (t)−λ ) ∑

j∈Sc(βββ o)

|β̂ j|. (2.37)

Since E ( f
β̂ββ
)≥ 0 and λ ≥ 4λ (t), from (2.37), we know

||β̂ββ Sc
o
||1 ≤

λ +2λ (t)
λ −2λ (t)

||(β̂ββ −βββ
o)So||1 ≤ 3||(β̂ββ −βββ

o)So||1 (2.38)

which allows us to use the compatibility and censoring conditions. And again by (2.37) and
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λ ≥ 4λ (t), we have

E ( f
β̂ββ
)≤ (2λ (t)+λ ) ∑

j∈S(βββ o)

|β̂ j−β
o
j |. (2.39)

By Lemma 13, equation (2.39), the censoring condition and the compatibility condition,

we have

(2λ (t)+λ )||(β̂ββ −βββ
o)So||1 ≥ C2

1 || fβ̂ββ
− f0||22

= C2
1(β̂ββ −βββ

o)TE[xT x](β̂ββ −βββ
o)

≥(i) C2
1

φ 2
0

sβββ
o
||(β̂ββ −βββ

o)So||
2
1 (2.40)

where (i) is from the compatibility condition.

By (2.40),

||(β̂ββ −βββ
o)So||1 ≤

sβββ
o(2λ (t)+λ )

C2
1φ 2

0
. (2.41)

Equation (2.38) implies that ||β̂ββ −βββ
o||1 ≤ 4||(β̂ββ −βββ

o)So ||1, and hence by (2.41),

||β̂ββ −βββ
o||1 ≤

4sβββ
o(2λ (t)+λ )

C2
1φ 2

0

≤
6λ sβββ

o

C2
1φ 2

0
. (2.42)

With C = 1/C2
1 , we have Theorem 13. Furthermore, by (2.40), we have

(β̂ββ −βββ
o)TE[xT x](β̂ββ −βββ

o)≤ 3λC
2
||β̂ββ −βββ

o||1. (2.43)
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Proof of Theorem 15. Following results from Lemmas 8 - 11, when
∥∥∥Θ̂ΘΘ

β̂ββ , j
−ΘΘΘβββ

o, j

∥∥∥
1
= op(1),

the representation (2.17) can be simplified as

√
n
(

β̃ββ j−βββ
o
j

)
=
√

n

(
1
n

n

∑
i=1

Θ̂ΘΘ jx>i ψi +
1
n

n

∑
i=1

Θ̂ΘΘ jx>i φi

)

+Op

(
Kλ jλ sβββ

o
√

n+Kλ
2s2

βββ
o
√

n+
√

λ sβββ
os j +

K√
n
+K

log3/4 n√
n

)

=
√

n

(
1
n

n

∑
i=1

Θ̂ΘΘ jx>i (ψi +φi)

)
+op(1).

The last line follows from assuming both λ and λ j are of order O(
√

log p/n), and Ks2
βββ

o log p/n∨

s1/2
βββ

o s1/2
j (log p/n)1/4 = o(1). Then we have that

√
n
(

β̃ββ j−βββ
o
j

)
d→N

(
0,σ2

j
)
,

where σ2
j = EΘ̂ΘΘ jΩΩΩΘ̂ΘΘ

>
j and ΩΩΩ := ∑

n
i=1 x>i xi(ψi +φi)

2/n.

The only missing part of the proof is the bound on the estimation error for σ̂2
j := Θ̂ΘΘΩ̂ΩΩΘ̂ΘΘ

>

from EΘ̂ΘΘ jΩΩΩΘ̂ΘΘ
>
j , where Ω̂ΩΩ = ∑

n
i=1 x>i xi

(
ψ̂i + φ̂i

)2
/n. We start with rewriting the estimation error,

∣∣σ̂2
j −σ

2
j
∣∣= ∣∣∣Θ̂ΘΘ jΩ̂ΩΩΘ̂ΘΘ

>
j −ΘΘΘ

0
jΩ̂ΩΩΘΘΘ

0,>
j

∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣ΘΘΘ0

jΩ̂ΩΩΘΘΘ
0,>
j −ΘΘΘ

0
jΩΩΩΘΘΘ

0,>
j

∣∣∣︸ ︷︷ ︸
T2

+
∣∣∣ΘΘΘ0

jΩΩΩΘΘΘ
0,>
j −ΘΘΘ

0
jEΩΩΩΘΘΘ

0,>
j

∣∣∣︸ ︷︷ ︸
T3

+
∣∣∣E(ΘΘΘ

0
jΩΩΩΘΘΘ

0,>
j − Θ̂ΘΘ jΩΩΩΘ̂ΘΘ

>
j

)∣∣∣︸ ︷︷ ︸
T4

For the term T1, we can further decompose it as

T1 ≤
∣∣∣(ΘΘΘ0

j − Θ̂ΘΘ j)ΩΩΩΘΘΘ
0,>
j

∣∣∣+ ∣∣∣Θ̂ΘΘ jΩΩΩ(ΘΘΘ0,>
j − Θ̂ΘΘ

>
j )
∣∣∣

≤ 2
∣∣∣ΘΘΘ0

jΩΩΩ(ΘΘΘ0
j − Θ̂ΘΘ j)

>
∣∣∣+ ∣∣∣(ΘΘΘ0

j − Θ̂ΘΘ j)ΩΩΩ(ΘΘΘ0
j − Θ̂ΘΘ j)

>
∣∣∣

≤ 2‖ΘΘΘ0
jΩΩΩ‖∞‖Θ̂ΘΘ j−ΘΘΘ

0
j‖1 +‖ΩΩΩ‖∞‖Θ̂ΘΘ j−ΘΘΘ

0
j‖2

1.
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Because
∣∣∣ΘΘΘ0

jx>i
∣∣∣ = O(K) and ‖xi‖∞ = O(1), we know ‖ΘΘΘ0

jΩΩΩ‖∞ = O(K) and ‖ΩΩΩ‖∞ = O(1).

Therefore, T1 = op(1) if K‖Θ̂ΘΘ j−ΘΘΘ
0
j‖1 = op(1). We note that term T4 can be bounded similarly.

For the term T2 +T3, denote ξ̂i = ψ̂i + φ̂i, then

T2 +T3 =

∣∣∣∣∣ΘΘΘ0
j

(
1
n

n

∑
i=1

x>i xi

(
ξ̂

2
i −ξ

2
i

))
ΘΘΘ

0,>
j

∣∣∣∣∣︸ ︷︷ ︸
T2

+

∣∣∣∣∣ΘΘΘ0
j

(
1
n

n

∑
i=1

(
x>i xiξ

2
i −Ex>i xiξ

2
i

))
ΘΘΘ

0,>
j

∣∣∣∣∣︸ ︷︷ ︸
T3

.

For term T3, since ‖X‖∞ = O(1) and |ξi| ≤ 1, by Hoeffding’s inequality, we have

1
n

n

∑
i=1

(
ΘΘΘ

0
jx
>
i xiΘΘΘ

0,>
j ξ

2
i −EΘΘΘ

0
jx
>
i xiΘΘΘ

0,>
j ξ

2
i

)
= Op

(
K2
√

n

)
.

Next, note that for T2∣∣∣∣∣1n n

∑
i=1

ξ̂
2
i −ξ

2
i

∣∣∣∣∣=
∣∣∣∣∣1n n

∑
i=1

(
ξ̂i +ξi)(ξ̂i−ξi

)∣∣∣∣∣
=

∣∣∣∣∣1n n

∑
i=1

(
ψ̂i + φ̂i +ψi +φi

)(
ψ̂i + φ̂i−ψi−φi

)∣∣∣∣∣
≤ 4

(∣∣∣∣∣1n n

∑
i=1

(ψ̂i−ψi)

∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

(
φ̂i−φi

)∣∣∣∣∣
)
.

For the first difference, we have

∣∣∣∣∣1n n

∑
i=1

(ψ̂i−ψi)

∣∣∣∣∣=
∣∣∣∣∣1n n

∑
i=1

(
wi(F̂n)1I(Yi−xiβ̂ββ ≥ 0)−wi(F0)1I(Yi−xiβββ

o ≥ 0)
)∣∣∣∣∣

≤

∣∣∣∣∣1n n

∑
i=1

(
wi(F̂n)−wi(F0)

)∣∣∣∣∣+
∣∣∣∣∣1n n

∑
i=1

(
1I(Yi−xiβ̂ββ ≥ 0)−1I(Yi−xiβββ

o ≥ 0)
)∣∣∣∣∣

= Op(1/
√

n)+Op(λ sβββ
o),
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following results in Lemma 8. In addition,

∣∣∣φ̂i−φi

∣∣∣≤ τ

∣∣∣∣∣∣∣
1
n

n

∑
l=1
l 6=i

1I
(

F̂n > τ

)
F̂2

n

(
1− 1I(Yl = 0)

F̂n

)
− 1

n

n

∑
l=1
l 6=i

1I(F0 > τ)

F2
0

(
1− 1I(Yl = 0)

F0

)∣∣∣∣∣∣∣
=

τ

n

∣∣∣∣∣∣∣
n

∑
l=1
l 6=i

1I
(

F̂n > τ

)
F̂2

n
− 1I(F0 > τ)

F2
0



+
n

∑
l=1
l 6=i

1I(F0 > τ)1I(Yl = 0)
F3

0
−

1I
(

F̂n > τ

)
1I(Yl = 0)

F̂3
n


∣∣∣∣∣∣∣

= Op
(
1/
√

n
)
,

which then gives that
[

1
n ∑

n
i=1 x>i xi(ξ̂

2
i −ξ 2

i )
]

j,k
= Op(1/

√
n+λ sβββ

o). Then we conclude that

T3 = Op(K2/
√

n+K2λ sβββ
o).

Finally, when Ks2
βββ

o log p/n∨ s1/2
βββ

o s1/2
j (log p/n)1/4∨K‖Θ̂ΘΘ j−ΘΘΘ

0
j‖1∨K2/

√
n∨K2λ sβββ

o =

o(1), we have that σ̂ j = σ j +o(1), which then completes the proof.
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Chapter 3

Testing Generalized Hypotheses for

High-dimensional Precision Matrix

3.1 Introduction

High-dimensional precision matrix arises in many areas of application, such as gene

network discovery in [SS05, WZV+04], brain connectivity analysis based on FMRI data in

[NVPT13], climate studies in [RPK14], as well as financial data mining and social network

analysis. As the precision matrix is often considered as a characterization of the network structure,

entailing information regarding the interaction among subjects of the network, it serves as a proxy

to a concise network depiction. Thus, it is often the case that an investigation of underlying graph

of the network can be transformed into a problem on precision matrix.

It is known that the (i, j) entry in the precision matrix corresponds to the partial correla-

tions between the variables i and j. In addition, the close connection between precision matrix

and Gaussian graphical model results in an even stronger property. Under Gaussian graphical

model setting, this further indicates conditional independence, see [Lau96]. In other words, if

the data follows a multivariate normal distribution, the (i, j) entry of the precision matrix is
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zero, if and only if variables i and j are conditionally independent given all other variables. In

terms of the graph, this indicates that there is no edge between i and j. Thus, establishing the

connection between a sparse graph and a sparse precision matrix. As often only few partial

correlations among the large number of variables are significant, sparse precision matrix is a

standard assumption high-dimensional setting.

We present here a testing framework for generalized hypotheses in high-dimensional

precision matrix, based on the projection pursuit method.

3.1.1 Related Work

Although there is not much results in inference for high-dimensional precision matrix,

its estimation problem has been extensively studied. In estimating the sparse precision matrix,

one of the major approaches is neighborhood selection, which was introduced in [MB06]. The

method estimates the zero entries of the precision matrix, by regressing each variable against

the rest with standard Lasso, and thus also the name nodewise regression. [Yua10] uses the

Dantzig selector to derive a precision matrix estimator under the nodewise regression framework,

whereas [SZ13] proposed an estimator with scaled Lasso. Alternatively, CLIME and its adaptive

version ACLIME, presented in [CLL11] and [CLZ+16], offer to solve the problem using a related

optimization framework, in place of regression setup.

Another major approach in estimating the precision matrix is through a penalized maxi-

mum likelihood estimator for the precision matrix. The method is named graphical Lasso, and is

considered more of a global approach than nodewise regression. As opposed to the column-wise

nature in the nodewise regression, this approach optimizes for an estimator to the precision

matrix in its entirety. [YL07] solved the optimization problem as a max-det problem, and showed

convergence result in low-dimensional case. [BGd08] accelerated the optimization process by

making use of duality, and solved the problem using semi-definite programming. [FHT08] further

improved the computation efficiency by connecting the optimization with Lasso, and hence the
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name graphical Lasso. Variants of graphical Lasso have also been proposed. [RBL+08] applied

penalty limited to off-diagonal entries, and specified the convergence rates under Frobenius norm

loss. [LF09] and [FFW09] explored the graphical Lasso with noncovex penalty functions, such

as SCAD and adaptive Lasso. In addition, various pseudo-likelihood based objective functions

have been proposed, for example, [FHT10, RZY08, KOR15, PWZZ09]. While these methods

preserved symmetry property of the precision matrix, only the CONCORD estimator in [KOR15]

is shown to guarantee convergence in optimization and asymptotic consistency.

Despite that precision matrix estimation has been extensively studied, not many works

have pursued in high-dimensional precision matrix inference problems. [Liu13] developed a

multiple testing procedure for conditional dependence in Gaussian graphical model, capable of

asymptotically controlling the false discovery rate. In [WKR+14], Berry-Essen type bounds on

the coverage confidence intervals on edge weights are provided, along with bootstrap confidence

intervals for certain high dimensional graphs. [RSZ+15] extended the scaled Lasso estimation

and nodewise regression. By regressing variables i and j against the remaining ones, a proxy for

the covariance matrix of the residuals results in an estimator for the (i, j) entry in the precision

matrix, and the inference result for such an estimator has been established. More recently,

[JVDG+15] and [JvdG17] have developed confidence intervals for entries in the precision matrix,

by de-sparsifying the graphical Lasso and nodewise Lasso estimator respectively, with the help of

de-biasing results in [VdGBR+14].

Nevertheless, existing literature has only considered inference for each entry in the

precision matrix. In fact, most existing work on inference in linear models, which is closely

related to precision matrix estimation, focused on testing hypotheses that specify parameters to be

given values [JM14a, VdGBR+14, ZZ14, ZB16]. With an initial Lasso estimator, [VdGBR+14]

proposed a bias correction estimator, in order to obtain confidence intervals, while [JM14a]

implemented a similar de-biasing procedure, but proposes a different scheme for estimating

the inverse covariance matrix required in the bias correcting step. Until recently, [ZB17] and
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[JL17] developed frameworks for testing general and complex hypotheses in high-dimensional

models. In this paper, inspired by [ZB17], we propose a projection pursuit framework in testing

generalized hypotheses for high-dimensional precision matrix.

3.1.2 Contributions

While the problem of testing general hypotheses remains wide open, there is a need

in practice for testing general hypotheses. For example, a common assumption in de-biasing

framework requires the precision matrix to be row sparse, see [VdGBR+14]. However, no

statistical testing procedure has been developed to check such an assumption. Another common

assumption, particularly in time series data, is that the precision matrix is banded, which translates

to decreasing values as the entries deviate from the diagonal. While bandedness testing in

high-dimensional covariance matrix has been studied [CJ+11, QC+12], there has been no testing

procedure devised for bandedness testing in high-dimensional precision matrix. Recently, [Bie16]

presented graph-guided banding, a more generalized notion of bandedness. Testing the graph-

bandedness of precision matrix can be appealing to researchers, who want to apply specific

domain knowledge on underlying variable interactions. The following work provides a viable

framework for testing a general hypothesis on high-dimensional precision matrix. We demonstrate

the framework through three testing hypotheses. In addition, extensive simulation studies and

real data analysis have been included.

3.1.3 Content

In Section 3.2, we introduce the projection pursuit approach for testing general hypotheses

regarding the precision matrix. In details, we demonstrate the method with concrete testing

hypotheses. As examples, we present hypotheses regarding row sparsity, minimum signal strength,

bandedness and generalized bandedness. A comprehensive simulation study with numerical
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experiment results can be found in Section 3.3. Finally, in Section 3.4, two real data application

are demonstrated. As this is still a work in progress, we only present here the methodology and

its empirical performance, along with preliminary Lemmas and their proofs in Section 3.5.

3.2 Methodology

Let the vector Yk = (yk
1,y

k
2, · · · ,yk

p)
>, k ∈ [n] be n i.i.d. observations, from a multivariate

distribution with mean 0 and covariance matrix Σ. We also denote Ω = Σ−1 =
(
(ωi j)(i, j)∈[p]×[p]

)
as the inverse covariance matrix. We denote the i-th row of a matrix X as Xi···, and the j-th column

as X··· j.

Often in the literature of high-dimensional statistics, row sparsity of Ω is assumed, namely,

max
i
‖Ωi ···‖0 = max

i
∑

j
1I
(
Ωi j 6= 0

)
≤ c.

Sometimes, we are also interested in testing for the minimum signal strength within the precision

matrix, i.e.

min
(i, j)∈supp(Ω)

∣∣Ωi j
∣∣≥ c,

where supp(Ω) = {(i, j) ∈ [p]× [p]|Ωi j 6= 0}. In addition, there are other interesting matrix

structures that one may be interested in testing, such as the bandedness of a matrix, or a bandedness

that is much more general than the conventional diagonally banded ones.

However, there has been no testing framework for such an assumption. We provide here

an extension to the projection pursuit framework in [ZB17] for testing row sparsity assumption of

the precision matrix Ω.
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3.2.1 Row Sparsity

Row sparsity has become a popular assumption for precision matrix in the literature,

especially in de-biasing frameworks for correcting the bias in high dimensional estimates, see

[VdGBR+14] for examples. For this reason, we are interested for testing such an assumption. We

formally state the hypothesis test for such an assumption. Let S0 = {S ∈Rp×p|maxi ‖Si ···‖0 ≤ c},

then we are interested in testing

H0 : Ω ∈S0 vs. H1 : Ω /∈S0.

For the initial estimator Ω̂, we use the CONCORD framework in [KOR15], which is

Ω̂ = argmin
S

L(Y,S)+P(S)

= argmin
((ωi j))1≤i, j≤p

−
p

∑
i=1

n logωii +
1
2

p

∑
i=1

∥∥∥∥∥ωiiYi +∑
j 6=i

ωi jY j

∥∥∥∥∥
2

2

+λ ∑
1≤i< j≤p

|ωi j|. (3.1)

The null H0 : Ω ∈S0 is equivalent to d(Ω,S0) = 0, where we define the measure of

deviation d(·) in this case as the Frobenius norm distance, i.e.

d(Ω,S0) = min
S∈S0
‖Ω−S‖F ,

or alternatively, the minimization of the infinity norm,

d(Ω,S0) = min
S∈S0
‖Ω−S‖

∞
.

Intuitively, this is a measure on deviation of Ω from the null set S0. However, as Ω is unknown,

we plug in the initial estimator for Ω. In order to obtain the deviation measure, we also need the

closest element to Ω̂ within the null set, which we denote with Ω̃. The following optimization
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gives us an estimator for Ω̃,

Ω̃ = argmin
S∈S0

∥∥∥Ω̂−S
∥∥∥

F
or Ω̃ = argmin

S∈S0

∥∥∥Ω̂−S
∥∥∥

∞

. (3.2)

The optimization results in the solution Ω̃, such that Ω̃i j = Ω̂i j 1I
(∣∣∣Ω̂i j

∣∣∣≥ ∣∣∣Ω̂i ···

∣∣∣
(c)

)
, for all

(i, j) ∈ [p]× [p], where
∣∣∣Ω̂i ···

∣∣∣
(c)

denotes the c-th largest entry of
∣∣∣Ω̂i ···

∣∣∣. Such a solution is justified

through Lemma 15 in Section 3.5.

Finally, for the test statistic, a possible choice is

max
1≤i, j≤p

∣∣∣Ω̂i j− Ω̃i j

∣∣∣ .
However, for high dimensional parameter estimation, we need to correct for the bias introduced by

the regularization during initial estimation, so that the test statistic is not driven by the difference

in bias in the initial estimator. For the bias correction, we follow the sample splitting approach

and de-biasing procedures as in [ZB17]. Assume for simplicity, we have an even number of

n samples, which we then split evenly into subsample A and B, each of size n/2. Define the

combined bias for Ω̂ and Ω̃ with,

δ̂ = (n/2)−1
n/2

∑
k=1

Θ̂M
(

Yk,Ω̂
)
− (n/2)−1

n

∑
k=n/2+1

Θ̃M
(

Yk,Ω̃
)
,

where M(Y,S) = ∇SL(Y,S) and Θ̂,Θ̃ ∈ Rp2×p2
are estimates for the population inverse Hessian

matrix Θ :=
(
∇2

Ω
EL(Y,S)

)−1 based on respective Ω̂ and Ω̃. The proposed test statistic is then

Tn =
√

n
∥∥∥vec

(
Ω̂− Ω̃

)
− δ̂

∥∥∥
∞

, (3.3)

where vec(·) denotes the operation of vectorizing a matrix by stacking the columns on top of one

another.
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In details, M(Yk,S) and Θ̂ are calculated. For the first derivative, we have

∂L(Yk,S)
∂ωil

=


(

ωiiyk
i +∑ j 6=i ωi jyk

j

)
yk

l , l 6= i

− 1
ωii

+
(

ωiiyk
i +∑ j 6=i ωi jyk

j

)
yk

i , l = i
.

For the second derivative, we have

∂ 2EL(Yk,S)
∂ωil1∂ωil2

=


Eyk

l1
yk

l2
, l1 6= i or l2 6= i

1
ω2

ii
+E

(
yk

i
)2
, l1 = l2 = i

.

Thus, the population second partial has a block diagonal structure. Define

U = [u1,u2, · · · ,up] =



1
ω11

1
ω22

. . .

1
ωpp


.

Then the blocks within the population second partial are Σ+uiu>i ∈ Rp×p,

∇
2
ΩEL(Y,S) =



Σ+u1u>1

Σ+u2u>2
. . .

Σ+upu>p


.

We take a look at the inverse of Σ+uiu>i in details. By Sherman-Morrison formula,

(
Σ+uiu>i

)−1
= Σ

−1− Σ−1uiu>i Σ−1

1+u>i Σ−1ui
= Ω− Ωuiu>i Ω

1+u>i Ωui
= Ω−

1
ω2

ii
Ω··· iΩi ···

1+ 1
ωii

= Ω− Ω··· iΩi ···
ω2

ii +ωii
.
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Thus, a good estimator Θ̂ takes the form of

Θ̂ =



Ω̂− Ω̂···1Ω̂1 ···
ω̂2

11+ω̂11

Ω̂− Ω̂···2Ω̂2 ···
ω̂2

22+ω̂22

. . .

Ω̂− Ω̂··· pΩ̂p ···
ω̂2

pp+ω̂pp


.

Finally, considering the difficulty to derive the actual distribution of the test statistic Tn,

we apply multiplier bootstrap to derive the critical value for the test statistic. Notice that under

the null hypothesis, Tn is set to approximate the quantity

√
n

∥∥∥∥∥−
(

2
n

n/2

∑
k=1

Rk−
2
n

n

∑
k=n/2+1

Rk

)∥∥∥∥∥
∞

, where Rk =


ΘM(Yk,Ω), 1≤ k ≤ n/2

ΘM(Yk,Ω), n/2+1≤ k ≤ n.

Then given a set of Gaussian multipliers {ξk}n
k=1, where ξk follows a p2-variate multivariate

standard normal distribution N (0, I), for 1≤ k ≤ n. The bootstrap statistic is defined as

T ∗n =
√

n

∥∥∥∥∥−
(

2
n

n/2

∑
k=1

(
R̂k− R̄A

)
ξk−

2
n

n

∑
k=n/2+1

(
R̂k− R̄B

)
ξk

)∥∥∥∥∥
∞

, (3.4)

where R̄A = (n/2)−1
∑

n/2
k=1 R̂k and R̄B = (n/2)−1

∑
n
k=n/2+1 R̂k, and

R̂k =


Θ̂M

(
Yk,Ω̂

)
, 1≤ k ≤ n/2

Θ̃M
(

Yk,Ω̃
)
, n/2+1≤ k ≤ n

.

The α-level critical value is taken to be (1−α) quantile of {T ∗n }, denoted as T ∗n,1−α
.
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3.2.2 Minimum Signal Strength

Minimum signal assumption is common for parameter estimation in high-dimensional

linear models. Here, we expand the idea, and test whether partial correlations among variables

have a minimum signal strength. For the hypothesis testing on minimum signal strength in a

precision matrix, we formally state the hypothesis. Let S0 = {S∈Rp×p|min(i, j)∈supp(S)
∣∣Si j
∣∣≥ c},

then we are interested in testing

H0 : Ω ∈S0 vs. H1 : Ω /∈S0.

While we still use the same initial estimator as in (3.1) and the same projection optimization to

acquire the closest estimator to the initial Ω̂ under the null, the solution to Ω̃, however, is changed

accordingly. Specifically, the optimization results in Ω̂ such that Ω̃i j = Ω̂i j 1I
(∣∣∣Ω̂i j

∣∣∣≥ c
)
+

c1I
(∣∣∣Ω̂i j

∣∣∣ ∈ (c/2,c)
)

. The solution is justified with Lemma 16 in Section 3.5. The rest of the

testing procedure follows as in the test for precision matrix row sparsity.

3.2.3 Bandedness

For sparse large matrices, often the bandedness assumption is imposed. The nonzero

entries of a banded matrix are confined to a diagonal band with certain bandwidth. It is a

well studied type of matrix structure for high-dimensional covariance matrix, see [BL08] and

[CZZ+10] for bandable covariance matrix. Defining such a banded structure is not only for

theoretic convenience, but it also has intrinsic meanings attached. Often in financial time series

and genomics data variables interact only with the ones in vicinity.

In this section, we present a testing framework for high-dimensional precision matrix

bandedness. Such hypothesis can be set up as the following. Let S0 = {S ∈ Rp×p|Si j =

150



0, for |i− j|> c}, we are interested in testing

H0 : Ω ∈S0 vs. H1 : Ω /∈S0. (3.5)

After obtaining the same initial estimator as in (3.1), following the Frobenius projection as in

(3.2) gives us Ω̃, such that Ω̃i j = Ω̂i j 1I(|i− j| ≤ c). Such a projection is justified by Lemma 17

in Appendix. The testing procedure then follows as in the test for row sparsity.

3.2.4 Generalized Bandedness

In addition to the conventional definition of bandedness as S0 defined in (3.5), we also

consider a more generalized banded structure. Recently, graph-guided banding presented in

[Bie16] expanded the traditional diagonal band, and redefined bandedness under the context

of graphs. In practice, this enables researchers to incorporate background information into the

testing problem, and test the progress in development from the original graph. We begin with the

definitions of generalized bandedness.

We denote a known graph G = ([p],E), where [p] denotes the p nodes and E denotes the

edges. The B-th power of a graph G, denoted as GB, connects nodes that are B hops of each other

in the original graph G. In other words, using an adjacency matrix A to describe GB, we have

Ai j 6= 0 for dG(i, j) ≤ B, where dG(i, j) denotes the distance between node i and j. Thus, G is

also referred as the seed graph. We formally define graph-guided bandedness with the following

two definitions.

Definition 1. A matrix Ω is b-banded with respect to a graph G, if supp(Ω) = E
(
Gb), that is

Ωi j 6= 0 ⇐⇒ dG(i, j)≤ b.

Definition 2. A matrix Ω is (b1, · · · ,bp)-banded with respect to a graph G, if Ωi j 6= 0 ⇐⇒

dG(i, j)≤max{bi,b j}.
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We also denote G (B1, · · · ,Bp) as the set of (b1, · · · ,bp)-banded matrices with respect to

G, where b1 ≤ B1, · · · ,bp ≤ Bp. The two definitions can be regarded as graphs with a global

bandwidth and a local bandwidth respectively. The latter one is more general, as one with a global

bandwidth can be seen as a special case to one with a local bandwidth. For our testing purposes,

we are interested in testing the bandedness based on a seed graph, i.e. given a seed graph G,

H0 : Ω ∈ G (B1, · · · ,Bp) vs. H1 : Ω /∈ G (B1, · · · ,Bp). (3.6)

Intuitively, the test utilizes the difference in sparsity pattern among graphs with different band-

widths. However, the change in sparsity patterns with B j stops when B j > diam j(G), where

diam j(G) denotes the diameter of the j-th node in graph G. Thus, given a seed graph G, the

generalized bandwidth test is only effective for testing hypothesis j-th node bandwidth less than

or equal to the j-th node diameter in the graph.

With the initial estimation as described in (3.1), we derive the Frobenius projection as in

(3.2), which gives us Ω̃i j such that Ω̃i j = Ω̂i j 1I
[
dG(i, j)≤max{Bi,B j}

]
. The testing procedure

then follows as in previous sections.

3.3 Simulations

We evaluate the empirical performance of the projection pursuit high-dimensional preci-

sion matrix testings with an extensive simulation study, which include numerical experiments of

all the precision matrix testing hypotheses mentioned in Section 3.2.

Three scenarios are considered, with dimensionality settings (n, p) as (100,200),

(200,300) and (300,400). Under each setting, we provide simulation results for precision matrix

test for row sparsity, minimum signal strength, bandedness and generalized bandedness. While

the significance levels for all tests are held at 0.05, we vary the alternative hypothesis and examine

the power performance of the testing method.
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The testing procedure is straightforward. Given generated dataset Y and the prespecified

significance level α = 0.05, our testing procedure is as following. We apply CONCORD algorithm

as in (3.1) to obtain an initial precision matrix estimator Ω̂. Then we derive the projection estimator

Ω̃ under the null hypothesis as in (3.2). The test statistic is calculated as (3.3), with bootstrap

iterations chosen to be 200. Finally, the α-level critical value results from the multiplier bootstrap

as in (3.4). The testing conclusion follows accordingly.

3.3.1 Row Sparsity

The underlying true precision matrix is chosen to be modified Toeplitz matrix, i.e.

Ωi j =
1
2

(
ρ
|i− j| 1I(|i− j|< t)+1I(i = j)

)
, (3.7)

where the Toeplitz parameter ρ = 0.9, and t = 4. The underlying true precision matrix has row

sparsity s0 = 2t−1 = 7. We test for the hypothesis that

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.8)

where S0 = {S ∈ Rp×p|maxi ‖Si ···‖0 ≤ c}, for c ∈ {1,3,5,7,9,11}. In total, we generate data Y

according to multivariate normal distribution N (0,Ω−1), and perform 100 iterations of the test.

Within each iteration, the test statistic using multiplier bootstrap is carried out with 200 bootstrap

iterations. The results under various dimensionality settings are summarized in Figure 3.1. As

the plot indicates, for the test in (3.8) with c = 7, the true underlying sparsity, the proportion of

rejecting the null hypothesis is close to the nominal level 0.05 for each of the three dimensionality

settings. Once the null deviates from the true sparsity, the power of our row sparsity test gains

power quickly.
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Figure 3.1: Power curves for precision matrix row sparsity test as in (3.8) under various
dimensionality settings. The underlying true precision matrix takes form of (3.7), with ρ = 0.9
and t = 4. The tested sparsity level c ∈ {1,3,5,7,9,11}, and the true sparsity is 7.

3.3.2 Minimum Signal Strength

For the minimum signal strength, we use the modified Toeplitz matrix structure as in (3.7)

for the underlying true precision matrix. The Toeplitz parameter ρ = 0.9. However, t = 17, in

order to provide a sufficient range for analysis in statistical power. The underlying true precision

matrix has minimum signal strength of 0.5×0.916 ≈ 0.0927. We test for the following hypothesis

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.9)

where S0 = {S ∈ Rp×p|min(i, j)∈supp(S)
∣∣Si j
∣∣≥ c} for c ∈

{
0.075× l +0.5×0.916}, where l is a

integer such that −1≤ l ≤ 4. The results under various dimensionality settings are summarized

in Figure 3.2. As the minimum signal of interest increases in the null hypothesis, we observe that

the proportion of rejecting the null increases with the increase of testing minimum signal.

154



●
●

●

● ● ●

●

●

● ● ● ●

●
●

●

●

● ●

0.00
0.05

0.25

0.50

0.75

1.00

0.02 0.09 0.17 0.24 0.32 0.39
c

P
ro

po
rt

io
n 

of
 R

ej
ec

tin
g 

H
0

settings ● ● ●n=100, p=200 n=200, p=300 n=300, p=400

Figure 3.2: Power curves for precision matrix minimum signal test as in (3.9) under various
dimensionality settings. The underlying true precision matrix takes form of (3.7), with ρ = 0.9
and t = 17. The tested sparsity level c ∈

{
0.075× l +0.5×0.916, l ∈N ,−1≤ l ≤ 4

}
, and the

true minimum signal is 0.5×0.916 ≈ 0.0927.

3.3.3 Bandedness

We demonstrate two examples for the conventionally defined banded matrices. In addition,

we compare our precision matrix test performance with the covariance matrix bandedness test of

[QC+12]. In order for the covariance matrix test to be comparable to the precision matrix test,

the underlying matrix structure of choice and the test hypothesis are set for the covariance matrix

and the precision matrix respectively.

We begin with an example matrix structure used in [QC+12]. In details, we generate the

precision matrix with a vector γ = (γ0,γ1, · · · ,γt). The precision matrix Ω is then generated as

the following,

Ωi j =


∑

t−| j−i|
k=0 γk× γ| j−i|+k, for | j− i| ≤ t

0, otherwise
. (3.10)

Specifically, we let γ = (1,0.4,0.4,0.4,0.4,0.4), resulting in an underlying precision matrix with
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bandwidth 5. This matrix structure corresponds to one used in the test of H0 : Σ = B5(Σ) with

γ1 = · · · = γ5 = 0.4 in [QC+12]. To make the two tests comparable, we specify (3.10) as the

precision matrix for precision matrix test, and (3.10) as the covariance matrix for covariance

matrix test. In other words, we take the inverse of (3.10) to generate data for the precision matrix

test, in contrast to using (3.10) directly for data generation.

We apply testing procedure as described in [QC+12]. We perform hypothesis test T1,

H0 : Σ ∈S0 vs. H1 : Σ /∈S0, (3.11)

where S0 = {S ∈ Rp×p|Si j = 0, for |i− j| > c}, for c ∈ {0,1,2,3,4,5,6}. In comparison, we

also apply our precision matrix bandedness test, using (3.10) as our underlying precision matrix

Ω and apply our precision matrix bandedness test, which results in the test T2,

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.12)

where S0 = {S ∈ Rp×p|Si j = 0, for |i− j| > c}, for c ∈ {0,1,2,3,4,5,6}. We summarize the

power curves of the two tests in Figure 3.3. As n increases, our precision matrix test gains

more and more statistical power in rejecting the null hypothesis when the alternative is true, and

becomes comparable to the performance of covariance matrix testing.

The second example is under the modified Toeplitz matrix setting, with parameter ρ = 0.9

and t = 4. The underlying true precision matrix thus has bandwidth 3. We perform the hypothesis

test T1 for covariance matrix bandedness,

H0 : Σ ∈S0 vs. H1 : Σ /∈S0, (3.13)

where S0 = {S ∈ Rp×p|Si j = 0, for |i− j| > c}, for c ∈ {0,1,2,3,4}. We also perform the
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Figure 3.3: Power curves for covariance matrix and precision matrix bandedness tests as in
(3.11) and (3.12) under various dimensionality settings. The underlying true covariance matrix
for T1 and precision matrix for T2 take form of (3.10), with γ1 = · · ·= γ5 = 0.4 and t = 5. The
tested bandwidth level c∈ {0,1,2,3,4,5,6}, and the true bandwidth is 5. Left: n= 100, p= 200;
Center: n = 200, p = 300; Right: n = 300, p = 400.

hypothesis test T2 for precision matrix bandedness,

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.14)

where S0 = {S∈Rp×p|Si j = 0, for |i− j|> c}, for c∈ {0,1,2,3,4}. The results are summarized

in Figure 3.4. In contrast to covariance matrix testing T1 as in (3.13), our testing procedure T2 for

precision matrix is more powerful in detecting small deviations from the null hypothesis.

3.3.4 Generalized Bandedness

For generalized bandedness, we generate a seed graph G by connecting two nodes with

0.0015 probability. To generate the underlying precision matrix, we let

Ai j =


1

dG(i, j)
1I
[
dG(i, j)≤max{Bi,B j}

]
, j 6= k

a, j = k
, (3.15)

where a is chosen to ensure the minimum eigenvalue of A is at least σ2 (σ = 0.01 throughout).

Finally, we standardize the diagonal of A, and Ω = (diag(A))−1/2 A(diag(A))−1/2. For graph-
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Figure 3.4: Power curves for covariance matrix and precision matrix bandedness tests as in
(3.11) and (3.12) under various dimensionality settings. The underlying true covariance matrix
for T1 and precision matrix for T2 take form of (3.7), with ρ = 0.9 and t = 4. The tested
bandwidth level c ∈ {0,1,2,3,4}, and the true bandwidth is 3. Left: n = 100, p = 200; Center:
n = 200, p = 300; Right: n = 300, p = 400.

guided banding with global bandwidths, we let the true bandwidth to be b = 3. A visualization of

the seed graph G and its global bandwidth 3 graph under various dimensionality settings can be

found in Figure 3.5.

To investigate the power performance, we vary the hypothesis,

H0 : Ω ∈ G (B1, · · · ,Bp) vs. H1 : Ω /∈ G (B1, · · · ,Bp), (3.16)

where B j = c, for all j ∈ [p], and we vary c ∈ {1,2,3,4}. The result is summarized in Figure 3.6

For graph-guided banding with local bandwidths, we generate random local bandwidths

according to the following distribution,

b j =


1, with probability 0.1

2, with probability 0.1

3, with probability 0.8

. (3.17)

Figure 3.7 offers a visualization of the locally banded graphs, in contrast to their seed graphs,

under various dimensionality settings.
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Figure 3.5: Visualizations of seed graphs and their globally banded graphs under various
dimensionality settings. Top: seed graph under various dimensionality settings; Bottom: global
bandwidth of 3 for respective seed graphs above. Left: p = 200; Center: p = 300; Right:
p = 400.
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Figure 3.6: Power curves for precision matrix graph-guided globally bandedness test as in
(3.16). The underlying true precision matrix of the seed graphs and their globally banded graphs
are visually presented in Figure 3.5. The tested bandwidth c ∈ {1,2,3,4}, and the true global
bandwidth is 3.

We investigate the power performance with the following hypothesis,

H0 : Ω ∈ G (B1, · · · ,Bp) vs. H1 : Ω /∈ G (B1, · · · ,Bp), (3.18)

where B j = b j−c×1I(b j = 3), and we vary c ∈ {2,1,0,−1}. The result is summarized in Figure

3.8.

3.4 Real Data

We also apply the methodology for two real datasets. Specifically, we compare the findings

of row sparsity test with the literature, and demonstrate that an estimation of the underlying

precision matrix row sparsity can be achieved through multiple tests by varying the alternative

hypothesis.
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Figure 3.7: Visualizations of seed graphs and their locally banded graphs under various di-
mensionality settings. Top: seed graph under various dimensionality settings; Bottom: local
bandwidths generated according to (3.17) for respective seed graphs above. Left: p = 200;
Center: p = 300; Right: p = 400.
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Figure 3.8: Power curves for precision matrix graph-guided locally bandedness test as in (3.18).
The underlying true precision matrix of the seed graphs and their locally banded graphs are
visually presented in Figure 3.7. The tested bandwidth perturbation parameter c ∈ {2,1,0,−1},
where the true bandwidth perturbation parameter is 0.

3.4.1 Riboflavin Data

The first dataset considered is riboflavin production by bacillus subtilis, and is readily

available from the R package hdi. The dataset contains n = 71 observations of genetically

engineered mutants of bacillus subtilis, while each observation is comprised of a record p = 4088

logarithms of gene expression levels. Instead of investigating the conditional independence

structure among the covariates, we are interested in determining the sparsity of such a structure.

Thus, we consider the top 500 covariates with the highest variances, and test the precision matrix

Ω as the following,

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.19)

where S0 = {S ∈ Rp×p|maxi ‖Si ···‖0 ≤ c} and 1≤ c≤ 10.

As we perform the row sparsity test by varying the parameter c, theoretically the observed

p-values stay below the nominal level 0.05 for c less than the true underlying row sparsity.
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Figure 3.9: P-values for precision matrix row sparsity test with riboflavin dataset as in (3.19).
The curves correspond to intact and permuted dataset respectively.

However, once the parameter c is larger than the true row sparsity, p-values of the tests start

increasing. Thus, we take the parameter c, after which the p-value begins increasing above

nominal level 0.05, as our estimate for the row sparsity. In order to achieve a stable p-value, we

set the number of bootstrap iterations to 1000. We estimate that the row sparsity of the precision

matrix of the riboflavin dataset to be 7.

In addition, we also independently permuted variables, in order to remove existing

conditional dependencies among the variables. As we performed the same testing procedures, it

is observed that the row sparsity of the precision matrix is 1, which indeed confirms the fact that

variables are conditionally independent after the permutation. For the same dataset, [JVDG+15]

identifies 5 edges as significant. Our finding is inline with [JVDG+15], if the 5 edges happen to

be related through a gene expression acting as a hub. Otherwise, our results may indicate there

are more significant edges. We summarize the test results in Figure 3.9.
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3.4.2 Breast Cancer Data

Our second real dataset originates from breast cancer research. After [HAS+06] first

analyzed the dataset, it was made available online at http://bioinformatics.mdanderson.

org. Due to its accessibility, the dataset has been examined in [FFW09], [CLL11], [ZL13] and

[WRG16] under the context of precision matrix estimation. The dataset consists of 133 subjects,

each with an observation of 22,283 gene expression levels. Among the 133 subjects, 34 of

them have obtained pathological complete response (pCR), which is associated with excellent

long-term cancer-free survival. On the contrary, the other 99 subjects have residual disease (RD).

In previous works, the problem has been regarded as a classification task, and the performance

depends on the estimation of the precision matrix. The common assumption for the problem is

that the gene expression data follows a multivariate normal distribution with different mean, but

the same covariance matrix, for the two groups.

As the methodology focuses on precision matrix testing, we decide to apply the methodol-

ogy and estimate the row sparsity of the precision matrix. We select 110 gene expressions that are

most statistically distinctive between the pCR and RD group of subjects, following procedures in

[FFW09]. We test the precision matrix Ω as the following,

H0 : Ω ∈S0 vs. H1 : Ω /∈S0, (3.20)

where S0 = {S ∈ Rp×p|maxi ‖Si ···‖0 ≤ c} and 1≤ c≤ 5.

Our estimate for the row sparsity of the precision matrix for the 110 gene expression

levels is at 2. We note that the gene networks constructed in [FFW09] exhibit a similar pattern,

where the edges among genes are very scarce. In addition, we also independently permuted

variables to remove existing conditional dependencies among the variables. Our method remains

valid, as the p-values stay at a level close to 1 throughout the choices of the sparsity parameter c.

We summarize the test results in Figure 3.10.
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Figure 3.10: P-values for precision matrix row sparsity test with riboflavin dataset as in (3.19).
The curves correspond to intact and permuted dataset respectively.

3.5 Proofs of Preliminary Lemmas

Lemma 15. Let X ∈ Rp×p and s0 be a nonnegative integer. Suppose that πi : {1, · · · , p} →

{1, · · · , p} are permutations such that
∣∣Xi,πi(1)

∣∣≥ ∣∣Xi,πi(2)
∣∣≥ ·· · ≥ ∣∣Xi,πi(p)

∣∣, for i = 1, · · · , p. Let

X̃ ∈ Rp×p, where

X̃i, j =


Xi, j, j ∈ {πi(1), · · ·πi(s0)}

0, otherwise
(3.21)

for i ∈ [p]. Then X̃ solves minS∈Rp×p ‖X−S‖F s.t. maxi ‖Si ···‖0 ≤ s0, and minS∈Rp×p ‖X−S‖
∞

s.t.

maxi ‖Si ···‖0 ≤ s0.
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Proof of Lemma 15. We fix an arbitrary S ∈ Rp×p, with maxi ‖Si ···‖0 ≤ s0. We have that

‖X−S‖2
F =

p

∑
i=1

p

∑
j=1

∣∣Xi j−Si j
∣∣2 (3.22)

=
p

∑
i=1

p

∑
j=1

∣∣Xi,πi( j)−Si,πi( j)
∣∣2 (3.23)

=
p

∑
i=1

(
∑

j∈supp(Si ···)

∣∣Xi,πi( j)−Si,πi( j)
∣∣2 + ∑

j/∈supp(Si ···)

∣∣Xi,πi( j)
∣∣2) (3.24)

≥
p

∑
i=1

(
∑

j/∈supp(Si ···)

∣∣Xi,πi( j)
∣∣2)≥ p

∑
i=1

(
min

J⊆[p],|J|≥p−s0
∑
j∈J

∣∣Xi,πi( j)
∣∣2) (3.25)

=
p

∑
i=1

p

∑
j=s0+1

∣∣Xi,πi( j)
∣∣2 = ∥∥∥X− X̃

∥∥∥2

F
, (3.26)

for an arbitrary S. In addition, since maxi ‖X̃i ···‖0 ≤ s0, X̃ is the minimizer. The proof for X̃ as the

minimizer for the optimization with infinity norm follows similarly.

Lemma 16. Let X ∈ Rp×p and r0 be a nonnegative integer. In addition, let X̃ ∈ Rp×p, where

X̃i j = Xi j 1I
(∣∣Xi j

∣∣≥ r0
)
+ r0 1I

(∣∣Xi j
∣∣ ∈ (r0/2,r0)

)
(3.27)

for 1≤ i, j ≤ p. Then X̃ solves

min
S∈Rp×p

‖X−S‖F s.t. min
(i, j)∈supp(S)

∣∣Si j
∣∣≥ r0,

and

min
S∈Rp×p

‖X−S‖
∞

s.t. min
(i, j)∈supp(S)

∣∣Si j
∣∣≥ r0.

Proof of Lemma 16. We fix an arbitrary S ∈ Rp×p, with min(i, j)∈supp(S)
∣∣Si j
∣∣≥ r0. Thus,

∣∣Si j
∣∣ ∈
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{0}∪ [r0,∞), for 1≤ i, j ≤ p. We can see that

∣∣Xi j−Si j
∣∣2 ≥ min

|t|∈{0}∪[r0,∞)

∣∣Xi j− t
∣∣2 = ∣∣∣Xi j− X̃i j

∣∣∣2 . (3.28)

Rewriting the Frobenius norm and summing up all the entries,

‖X−S‖2
F =

p

∑
i=1

p

∑
j=1

∣∣Xi j−Si j
∣∣2 (3.29)

≥
p

∑
i=1

p

∑
j=1

min
|ti j|∈{0}∪[r0,∞)

∣∣Xi j− ti j
∣∣2 (3.30)

≥
p

∑
i=1

p

∑
j=1

∣∣∣Xi j− X̃i j

∣∣∣2 = ∥∥∥X− X̃
∥∥∥2

F
, (3.31)

for an arbitrary S. In addition, since min(i, j)∈supp(S)

∣∣∣X̃i j

∣∣∣≥ r0, X̃ is the minimizer. The proof for

X̃ as the minimizer for the optimization with infinity norm follows similarly.

Lemma 17. Let X ∈ Rp×p and t0 be a nonnegative integer. In addition, let X̃ ∈ Rp×p, where

X̃i j = Xi j 1I(|i− j| ≤ t0) (3.32)

for 1≤ i, j ≤ p. Then X̃ solves

min
S∈Rp×p

‖X−S‖F s.t. Si j = 0, for |i− j|> t0,

and

min
S∈Rp×p

‖X−S‖
∞

s.t. Si j = 0, for |i− j|> t0.

Proof of Lemma 17. We fix an arbitrary S ∈ Rp×p, with Si j = 0 for |i− j|> t0. Thus, we have
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that

‖X−S‖2
F =

p

∑
i=1

p

∑
j=1

∣∣Xi j−Si j
∣∣2 (3.33)

= ∑
|i− j|≤t0

∣∣Xi j−Si j
∣∣2 + ∑

|i− j|>t0

∣∣Xi j−Si j
∣∣2 (3.34)

= ∑
|i− j|≤t0

∣∣Xi j−Si j
∣∣2 + ∑

|i− j|>t0

∣∣Xi j
∣∣2 (3.35)

≥ ∑
|i− j|>t0

∣∣Xi j
∣∣2 = ∥∥∥X− X̃

∥∥∥2

F
, (3.36)

for an arbitrary S. In addition, since X̃i j = 0 for |i− j|> t0, X̃ is the minimizer. The proof for X̃

as the minimizer for the optimization with infinity norm follows similarly.
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