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Abstract

In certain applications of structural reliability, it is required to find points
on the limit-state surface with minimal distance to the origin of a standard
space. This problem can be formulated as a constrained optimization program
and can be solved by several standard algorithms. In this report, six con-
strained optimization methods are investigated to determine their applicability
for solving the structural reliability problem. These include primal methods,
penalty methods, dual methods, Lagrange methods, and two algorithms previ-
ously used in reliability analysis. The underlying concepts of each method are
introduced and its performance is investigated with due consideration to the
properties of the algorithm and the structure of the reliability problem. Four
criteria are proposed to serve as the bases of comparison: generality, robust-

ness, efficiency, and capacity.

Among the algorithms studied, the gradient projection method {a primal
method) is found to satisfy all four criteria. One widely used algorithm is shown
to lack robustness in certain situations. A modification to this algorithm is
introduced to enhance its stability. This modified version, although not globally
convergent, is found to be more efficient than the gradient projection method in

several examples studied.
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1. Introduction

In the analysis of structural reliability, it is common to define a set of basic
random variables, X = (X,,Xz. - - - .X, )7, to describe uncertain guantities of a
structure, such as loads, properties of materials, and dimensions. For each
specific failure mode of the structure, a performance function g (X) is formu-
lated such that for an outcome X = x, the structure fails if g(x) < 0 and it sur-
vives if g(x) > 0. The boundary between the two sets, g(x) = 0, is known as the
limit-state surface. Accordingly, the probability of failure of the structure in

the specified mode is

Py = f Fx(x)dx (1)

g(x)<0

where fx{(x) denotes the joint probability density function of X. For n greater
than 2 or 3, it is impractical to use numerical integration to evaluate Eq. 1.

Therefore, approximate reliability methods have been developed.

In the most widely used reliability method [10], approximations are made
in the space of standard, uncorrelated, normal variates, Y, obtained from a
transformation of the basic variables
Y = T(X) ®)
where the transformation T is determined in terms of the distribution of X [7].
In the space of Y, denoted as the standard space, approximations to p, are
obtained by replacing the limit-state surface
g (T (1)) = G(z) = 0 ()
" with first or second-order approximating surfaces. These surfaces are fitted to
the limit-state surface at point(s) with minimal distance to the origin, known as
the design point(s). In particular, in the first-order reliability method, the
limit-state surface is replaced with its tangent hyperplane at the globally

minimal distance point and the first-order approximation to p, is



pr1=871(-p) (4)

where &(.) is the standard normal cumulative probability, and 8, known as the
reliability index, is the distance from the origin to the design point, as shown in
Fig. 1. Better approximations are obtained by fitting a higher-order surface at
the design point or by multiple fitting at the locally minimal distance points.

See Ref. [10] for further details.

Although the concept of the above approximate reliability method is sim-
ple, it may not be easy to find the minimal distance points on the limit-state
surface. This is because in real applications the size of X can be very large and
the performance function often is difficult to compute, as it may require algo-
rithmic routines, such as finite element analysis, eigenvalue solutions, or
numerical integrations. The determination of the design point involves the solu-
tion of the following constrained optimization problem:

P1: minimize F(y)
subject to  G(y) =0 (5)

where F(y) = %yTy is the objective function. There are many algorithms avail-

able in the literature that can solve this problem. Each algorithm has its
advantages and disadvantages, which depend on the attributes of the algorithm
and the structure of the problem. The purpose of this report is to examine and
compare several existing algorithms and determine their relative merits for use
in structural reliability applications. For the purpose of this report, it is

assumed that the constraint, G(y) = 0, is continuous and twice differentable.

Before introducing the algorithms, some well-known definitions in optimiza-

tion are reviewed for the convenience of later discussion.

2. Necessary Conditions for Local Minima

Consider the optimization problem P1 defined in Eq. 5. The Lagrangian

associated with this optimization program is defined as [9],



U(y.A) = F(y) + AG(y) (8)

where A is a constant. The tangent plane M of the limit-state surface G(y)=0 at
the optimal point y* is given by

M={y:VG(y*)(y-y*) = 0} (7)
Using these definitions, the necessary conditions for an optimal point of P1 can

be stated as follows [9]:

Necessary Conditions: -- Suppose y* is a local minimum point of P1 subject
to the constraint G{y)=0. Then, there is a A*, called the Lagrange multiplier of
P1, such that

Vi(y*.A*) = y*T + A*VG(y*) = 0 (8)
Also the Hessian of the Lagrangian

VRi(y* . A*) = 1+ V2G(y*) (9)
is positive semidefinite on M, i.e., y7 V2 (y*,A*)y = 0 for all y on M.

The above conditions are called the second-order necessary conditions for
a local minimum point. Eq. 8 alone is known as the first-order necessary condi-

tion for a local minimum point.

3. Line Search

Almost all iterative algorithms discussed in this report have the same
structure: From a starting point, y,, one determines a direction of search, dg

and then searches for a new point along the direction,

Yes1 = Ye t o di (10)

which minimizes the objective function. Although the new point is the optimal
point along d,, it may not be the optimal point of the entire feasible set. Hence,
at the new point this process is repeated until the point satisfies the optimality
conditions. The main difference between various optimization algorithms is the

rule by which the search direction is selected.



-4-

The process of searching for the minimum point along a direction is called
a line search. Important line search schemes include the Newton method, qua-
dratic fitting, cubic fitting, the False Position method, and the Armijo rule [9].
The first four methods are based on curve fitting. In these methods, the values
or gradients of the objective function at selected points along the direction are
calculated. A curve complying with these data is then obtained and its
minimum determined. If this minimum point is not the true minimum of the
objective function along the direction of movement, the value or gradient of the
objective function at this point is computed and a new curve is fitted using the

new data.

In practice, in order to reduce the total computation time, an ideal line
search is seldom carried out. Instead, a criterion is used to terminate the line
search before the exact minimum is found. The criterion ensures that the step
size q, is neither too large nor too small. Armijo’s rule [9] is a popular criterion
for terminating the line search. According to this rule, a step size a, is accept-
able if it satisfies the following conditions:

F(ye + o dp) < F(y,) + 20 VF(y, ) dye (11)

F(y, +nog de) > F(yi) + enae VF(ye) di (12)
where 0<e£<1and > 1, and ¢ = 0.2 and 7 = 2 are often used. A very simple

line search scheme can be constructed using this rule. First, an arbitrary o, is
selected. If the new point satisfies Eq. 11, the value of o, is replaced with na,
and the process is repeated until the largest o, satisfying both Egs. 11 and 12 is
vfound. If the new point does not satisfy Eq. 11, o, is replaced by «,/ 7 and the
process is repeated until Egs. 11 and 12 are both satisfied. Although Armijo’s
rule may not be as efficient as the curve fitting schemes, it is very easy to imple-

ment.
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4. Global and Local Convergence Properties

An iterative algorithm is said to be globally convergent if for any starting
point it is guaranteed that the sequence of points will converge to a solution.
Zangwill [17] developed four convergence theorems which define the conditions
under which the global convergence of an algorithm is ensured. These condi-
tions will not be introduced here since the proof of global convergence is not

the focus of this report.

Local convergence properties are a measure of the ultimate speed of con-
vergence and are generally used to determine the effectiveness of an algorithm.
The speed of convergence of an iterative scheme is usually measured by its
order of convergence. Let the sequence of vectors {y, ] converge to y* and F be
a non-negative error function satisfying £(y*) = 0. The order of convergence of

{¥: ] is usually defined as the supermum of the non-negative number p satisfying
[0]

lim E(chﬂ)
k= E(y, )P

If for the same sequence {y,},

< oo (13)

E(Yi+1) _

lim =p<1 (14)

k-~ E(y)
the sequence is said to converge linearly to y* with a convergence ratio p. A
linearly convergent algorithm is efficient if the convergence ratio is small. Most

algorithms discussed in this report converge linearly. Hence, the convergence

ratio p will be the basic measure of the convergence rate of each algorithm.

5. Program Structure

In addition to the global and local convergence properties of an algorithm,
the structure of the problem also plays an important role in the performance of

the algorithm.
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The optimization program P1 consists of two parts: the objective function
and the equality constraint. The objective function is half the inner product of
the vector y. This objective function has several advantageous properties. For
instance, it is of pure quadratic form, it is convex, and its gradient is simply y.
Because of the simplicity of this function, it does not dominate the choice of the
minimization algorithm.

As for the constraint part, this problem is simple since it has only one
equality constraint, G{y) = 0. This constraint is assumed to be smooth and
twice differentiable, but not necessarily convex. However, the value of G(y) is
usually difficult to obtain for two reasons: First, the inverse transformation T-!
often is not available in closed form and, consequently, the performance func-
tion G(Y) is not an explicit function of Y. Second, even when the inverse
transformation is available in closed form, the performance function g (X) may
not be an explicit function of X. For example, g(X) may be defined in terms of
stresses, which themselves are implicit functions of loads. Hence, for most
problems of interest, G(y) is not an explicit function and its computation
requires considerable effort. For the same reasons, the gradient vector VG (y)
usually cannot be obtained analytically. If a finite difference method is used to
approximate VG(y), at least n+1 computations of G(y) are necessary. Since in
real applications the size of X can be as large as several hundred, the computa-
tion work needed to obtain VG(y) can be overwhelming. Obviously, algorithms
that require the computation of the Hessian matrix V?*G(y) should be considered

impractical for this application.

6. Comparison Criteria
The criteria to test the performance of an algorithm should be formulated

such that both the problem structure and the characteristics of the optimiza-

tion scheme are taken into account. Following Lootsma [8], four criteria are
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proposed here to evaluate the performance of various nonlinear optimization

algorithms for application to structural reliability problems:

Generality -- The generality of a method refers to the types of problems
that can be solved by the method. Certain constrained optimization algorithms
are restricted to specific types of problems. For example, some methods
require that the feasible set of the problem be convex. These methods are
rejected by the generality criterion, since {y: G(y) = 0} is usually not a convex
set. Other methods require the Hessian of the constraint, which may be difficult

to compute in structural reliability applications.

Robustness -- Robustness refers to the power of a method to solve prob-
lems with required accuracy. It incorporates the global convergence properties

of an algorithm.

Efficiency -- The efficiency of a method is measured by the effort that it
requires to solve a problem. This criterion requires that the algorithm have as
high a convergence rate as possible. Also the number of computations of G(y)

should be as few as possible.

Capacity -- The capacity of a method refers to the maximum size of basic
random variables that can be solved by the method. This criterion demands
that the storage needed be as small as possible.

Six nonlinear optinﬁzation algorithms are discussed in the following sec-
tions; namely, primal methods, penalty methods, dual methods, Lagrange
methods, and two methods specifically designed for the reliability problem. The
basic ideas of these algorithms are introduced and their performance is

evaluated using the four criteria proposed above.

7. Primal Methods

A primal method is an iterative algorithm that solves the original problem



-8-

directly (in contrast to other types of methods) by generating a sequence of
points which converge to the optimal solution. Each point in the sequence lies
in the feasible domain, and the values of the objective function associated with

these points decrease monotonically.

There are three commonly used primal methods; namely, the feasible
direction method, the gradient projection method, and the reduced gradient
method. It can be shown that, for the present problem, the gradient projection
method is actually a special case of the reduced gradient method. In spite of
this, the two methods are introduced separately, since their underlying con-

cepts are different.

7.1. The Feasible Direction Method

The feasible direction method generates a sequence of points according to

the rule [9]
Ye+1 = Ve + 0 dg (15)
where d; is a feasible direction at y,, i.e., there exists an a such that y, + ad,
is feasible for all a, 0 < a < &. The positive scalar o, is chosen to minimize the

objective function along the direction of search.

Since the constraint G{y) = 0 is usually nonlinear, the feasible direction
generally does not exist. Hence, this method is not applicable to the reliability

problem.

'7.2. The Gradient Projection Method

The gradient projection method, originally developed by Rosen [14], is the
modified version of the widely known steepest descent method for uncon-
strained optimization. In the unconstrained case, the steepest descent method
generates a new point by a line search along the negative gradient direction at

each iterative step. For constrained problems, since each point must remain in
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the feasible domain, the moving direction d, is taken to be the projection of the
negative gradient of the objective function onto the tangent plane of the feasi-
ble set (see Fig. 2). Hence, for program P1, the new search direction d; should
satisfy VG(y,)d, = 0 and VF(y,)d, < 0, where VF(y,) = y/. From these condi-

tions, d,; is expressed as

_ [ ve(y)Tv6()!
d""[" VGGl |

Because the constraint may not be linear, the new search point could be

) /3 (18)

infeasible. Therefore, a Newton-type correction is often used to pull the point

back to the feasible set (see Fig. 2).
A cycle of the gradient projection method can be summarized as follows:
(1) Choose a feasible initial point y; and set k = 0.
() Compute VG(y,)-
(3) Calculate d, according to Eq. 16.
(4) 1f d; = O, stop. Otherwise, seti = 0, then
i) calculate
Yo = Ve toude a7
ii) Repeatedly use the following formula until G(yi{}) =0 is satisfied

within the required accuracy:

_ G(Yl‘;+1)
VG (ye) 12

(5) Set Y& to ¥4, and k to k+1, and return to (2).

yitl = vin VG(ye)T (18)

Theoretically speaking, the step size g, in Eq. 17 should be obtained by exact
line search such that F(y,,) (after the Newton-type correction) is a minimum
along that direction. However, it is extremely time-consuming to do exact line
search in a nonlinearly constrained problem. Hence, the step size is usually

selected based on a simple rule, such as Armijo’s rule [9] described earlier.



-10-

The gradient projection method is applicable to the structural reliability
problem since it solves general constrained optimization problems. When
applied to this problem, the gradient projection method is globally convergent,
since only one equality constraint exists. Hence it satisfies both the generality
and robustness criteria. In addition, because the gradient projection method
uses only the first derivative information of P1, only a few n-dimensional vec-
tors, such as y, and VG(y,), should be stored during the solution phase. Com-
pared with methods that require the storage of the n xn Hessian matrix, the

gradient projection method has a much larger capacity.

To investigate the efficiency of this method, the local convergence proper-
ties should be examined. Since this method is the constrained version of the
steepest descent method, it can be shown that this method converges linearly

and its asymptotic convergence ratio is [9]

2
ps[’”‘i] (19)

where 7y is the condition number, i.e., the ratio of the largest to the smallest

eigenvalue, of the Hessian of the Lagrangian at the optimal point restricted to
the tangent subspace M. It is clear that the convergence is slowed as 7y
increases. The asymptotic convergence ratio, though usually not computed,
serves as a theoretical tool to compare various methods. According to the
study of Lootsma [B8)], the gradient projection method is rated as the most
efficient method among several general constrained optimization techniques.
‘Hence, the gradient projection method satisfies all the proposed criteria and is

appropriate for solving the structural reliability problem.

7.3. The Reduced Gradient Method

The reduced gradient method was originally proposed by Wolfe [16] to solve

problems with linear constraints. It was later extended by Abadie and Carpen-
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tier [2] to handle nonlinear constrained problems. Its main idea follows from
the simplex method [11] where the variables y are partitioned into dependent
variables y, of dimension m and independent variables y, of dimension n —-m,
where m is the number of constraints. Here, m =1. The definitions of depen-
dent and independent variables are generalized in the reduced gradient

method. A vector t, similarly partitioned, is defined at point y as

t, =uG(y)
t,a = 'VTy - v (20)

where u is a constant, vis an arbitrary n —1 vector, and Vis an n—1Xxn matrix
so selected that its row vectors and VG(y) span the whole space at point y.
Thus, ¢, is the residual of the constraint G(y) = 0, which must be zero if the con-
straint is satisfied, and t, is the reduced set of {n-1) unconstrained, or indepen-

dent, variables.

Starting from a feasible point, the reduced gradient method first defines t,
then takes a steepest-descent step in the reduced space while keeping £, fixed.
This process is repeated until convergence is achieved. Note that t is intro-
duced here to illustrate the concept of the algorithm; it is not really calculated.

The entire procedure is carried out in the y-space rather than the t-space.

There are several ways of defining matrix V. Each leads to a different ver-
sion of the reduced gradient method. One of the more popular ways is to select
V such that the t-coordinates form an orthonormal system. If the orthonormal
transformation is adopted, it can be shown that the reduced gradient method is
in fact identical to the gradient projection method. Even for a different choice
of V, these two methods have similar properties. Hence, the performance

analysis will not be repeated here.

8. Penalty Methods

Penalty methods are a class of optimization algorithms which transform a
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constrained problem into an unconstrained problem by adding a penalt-y term
c P(y) to the original objective function, where c is a positive penalty parameter
and P(y) is a penalty function which satisfies P(y) = 0 in the feasible region and
P(y) > O elsewhere. If the standard quadratic penalty function is adopted, the
unconstrained penalty problem takes the form

P2: minimize gq(y) (21)

where

1 1
9(y) = ¥’y + 3¢ GOP (22)
Suppose the penalty parameter ¢ approaches infinity. The minimization pro-

cess will force the solution to satisfy G(y) = 0 and minimize %yry at the same

time. Thus, P1 and P2 should yield exactly the same solutions. In real imple-
mentation, where it is not possible to have ¢ = «, the solution of P2 may still be

a good approximation to that of P1 if ¢ is sufficiently large.

Once the penalty problem is set up, one can use any unconstrained optimi-
zation techniques to solve the problem. The only difference between the
penalty problem and general unconstrained problems is that ¢ does not neces-
sarily remain constant throughout the solution phase. The value of c is often
chosen to be a small number at the beginning of the analysis and then

increased in the subsequent steps.

If the second-order Newton's method is used to solve P2, the sequence {y;}
converges gquadratically. However, it is very difficult to calculate the Hessian of
the objective function in reliability analysis. Therefore, only first-order algo-
rithms can be used. Here, first-order algorithms refer to those methods in
which only the first derivatives of the objective function and the constraint are
computed. If the steepest descent method is applied, the convergence ratio is

governed by [9]
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ps[""l]a (23)

Tp+1

where 7, is the condition number of the Hessian of the Lagrangian at the
optimal point,

Ve (y*) =1+ c G(y*)V*G(y*) + c VG(y*)T VG(y*) (24)
Note that in Eq. 24, the third term on the right-hand side is a rank one matrix,
and the second term is approximately zero at the solution point. Accordingly,
V3g(y*) has n —1 unity (or nearly unity) eigenvalues and one large eigenvalue
whose magnitude is proportional to ¢. This matrix is, thus, ill-conditioned since
the condition number 7, is very large. It follows that the steepest descent
method converges very slowly. To avoid the poor convergence rate, an

accelerating technique should be used.

Luenberger [9] proposed an algorithm which combines the penalty function
method with the idea of the gradient projection method. To illustrate the com-
bined method, two subspaces are introduced first. Let M(y,) be the subspace
tangent to the surface S, = {y: G(y)= G(y,)} at y; and N(y, ) be the orthogonal
complement of M(y,). In the present case, N(y,) is the rank one subspace
spanned by VG(y,) and M(y,) = {y: VG (¥e) (y-ye) = 0.

The combined method contains two steps in each cycle. The first step is to
apply Newton’s method over the subspace N(y,) to obtain a point of the form

W, = ¥ + 7 VG(¥e) (25)
where 7, is the step size. The second step is to take an ordinary steepest des-
éent step from w;, to obtain y,,,. These two steps are illustrated in Fig. 3. If w;
is a local minimum point of g in the subspace N(y, ), Vg(w,) would be orthogonal
to VG(y,). And if G(y) is not highly nonlinear, VG(w, ) is approximately parallel
to VG(y,). Consequently, one could expect Vg{w,) to be approximately orthogo-

nal to VG(w,). Furthermore, from Eq. 22, wJ = Vg(w,) — ¢ G(w,)VG(w,). It fol-
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lows that Vg(w,) is approximately equal to the projection of the gradient of

1

> y’y onto M(w,). Therefore, the second step is similar to a step in the gra-

dient projection method except that w; is not a feasible point.

To execute Newton’s step, g(w,) is first approximated by its Taylor expan-

sion around y, up to the quadratic term,

1
g(w.) ~ g(y) + 7 Vg (7 ) VG{y,) + X YEVG(ye) V2q (7 ) VG (e )T (286)
d
Then, w, is calculated by setting da(w) to zero. For large values of ¢, Vg (y,)

dy
can be closely approximated by ¢ VG(y,)? VG(y,). Hence, V2¢q(y,) need not to be
calculated in the implementation. In summary, a cycle of the combined method

is as follows:

(1) Calculate

d;, = - VG(ye) Vg (7 )T VG (ye)T (27)

1
c |VG(y:)|*
(2) Perform a line search to find 7y, which minimizes g(y, +7v,d,); then set

Wi = Yi + Yede.

(3) Calculate Vg(w,).
(4) Perform a line search to find o, which minimizes g (w, — oy Vg {(w;)), and set

Yee1 = W — akVQ(‘fk)-

The combined method eliminates the effect of the ill-conditioned Hessian
matrix and converges at the same rate as the gradient projection method. It
‘also avoids the computational difficulty associated with the requirement of
remaining feasible. Furthermore, as far as the capacity criterion is concerned,
the combined method is attractive since it does not require the storage of an
n X matrix, which is necessary in Newton's method or its variants. Since the
combined penalty method is applicable to general nonlinear optimization prob-

lems, it satisfies the generality requirement. Finally, the combined method is
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globally convergent. Having all these advantages, this method is suitable for

the reliability problem.

Nevertheless, this method is not perfect. In first-order reliability analysis,
the failure probability is sensitive to the distance between the origin and the
design point. Unfortunately, if the penalty method is adopted, the solution is
never exact unless the penalty parameter ¢ approaches infinity. Hence, one
may not obtain a solution with required accuracy by the penalty method, and

this method may not be as robust as the gradient projection method.

9. Dual Methods

As in linear optimization problems, the constrained problem P1 can also be
solved by solving its associated dual problem. Algorithms which solve the dual
problem instead of the original problem are called dual methods. The dual
problem corresponding to Pl is [9]

D1: mazimze ¢(A) (28)

where
¢(A) = minimum [1(y.\)] (29)
According to the Local Duality Theorem [9], the dual problem D1 and the
primal problem P1 would have the same local solution if the primal problem has
a local solution at y* with Lagrange multiplier A*, and the Hessian of the
Lagrangian, VRl(y*,\*), is positive definite. There is no guarantee, however,
that in reliability problems the Lagrangian is convex near the solution of P1.
VHence, unless some modification is made, the dual method cannot be applied to

the reliability problem.

The augmented Lagrangian method [9,5], or the multiplier method, is a
dual method which incorporates the concept of the penalty method to eliminate
the limitation on the dual method. Instead of solving D1, the augmented

Lagrangian method solves the associated dual problem of the following
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program:

P3: minimze F(y)+ %—c G(y)?
subjectto G(y) =0 (30)
Note that this problem is equivalent to P1, since the optimal solution is not
altered by the addition of the penalty term. It can be shown that there exists a

c* such that for all ¢ > ¢*, the augmented Lagrangian

L(y.A*) = F(3) + A G(3) + 3o G()? (31)
has a local minimum at y*. In other words, if ¢ is sufficiently large, the Lagran-
gian associated with P3 is made convex by the addition of the penalty term, and
hence the dual method can be applied. Another important feature of this
method is that it only requires ¢ to be greater than c* to obtain an exact solu-
tion. Accordingly, the ill-conditioning of the Hessian of the Lagrangian is

resolved in comparison with the standard penalty method.

To use the augmented Lagrangian method, first choose an initial point yg,
an initial penalty parameter ¢, and an initial multiplier A;. Then, set £ to 1 and

execute the following steps.
(1) Solve the unconstrained problem
e (\e) = minimum [1(y.\) ] (32)
and set y, to be the associated optimal point.

(2) Modify A, according to the following formula
Aer1 = N + ¢ G(Ye) (33)
(3) Increase c if the constraint violation has not decreased sufficiently from
Yi-1 to yi.
(4) Setk to k+1 and repeat steps (1) - (4) until optimality is achieved.

Note that the updating process in Eq. 33 is simply a steepest ascent iteration

with a constant step size ¢ for maximizing the augmented dual function g¢,.
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The augmented Lagrangian method is globally convergent in application to
the reliability problem. It is more efficient than the standard penalty method,
as mentioned earlier, and if the steepest descent method is used to solve Eq. 32,
its capacity is about the same as the combiﬂed penalty method. Therefore, it is
applicable to the reliability problem. However, this method is difficult to apply,
because users have to make initial estimates on ¢ and A, and these initial values
may influence the performance of the algorithm. Hence, for users that are not
familiar with optimization schemes, the augmented Lagrangian method may not

be appropriate.

10. Lagrange Methods

Consider again the constrained problem P1 defined in Eq. 5. The optimal
point y* must satisfy the first-order necessary conditions as well as the equality
constraint. In other words, y* must be a solution of the following simultaneous
equations:

y? + AVG(y) =0
G{y)=0 (34)

The idea of the Lagrange method is to find y* by solving the above equations
instead of the original optimization problem. The use of this method for solving

the reliability problem was suggested by Shinozuka [15].

Many standard algc;rithms for solving systems of nonlinear equations are
available to solve the Lagrange equations. Unfortunately, as pointed out by
Luenberger [9], all these methods have their disadvantages. For instance, the
first-order method may converge to an infeasible point; Newton's method
requires second-order information; the quasi-Newton method and the modified
Newton method require the solution of n simultaneous linear equations in each
step to determine the direction of search. All these difficulties suggest that the

Lagrange method may not be a good optimization technique for the reliability
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problem.

11. The HL-RF Method

A method, originally proposed by Hasofer and Lind [8] for second-moment
reliability analysis and later extended by Rackwitz and Fiessler [13] to include
distribution information, is currently used in most applications to solve the
optimization problem in structural reliability. For brevity, this method is
denoted herein as HL-RF method. Unlike the previous methods, the HL-RF
method is a specific iterative scheme rather than a class of algorithms, and it

only solves problems having the form P1.

The best way to explain this method is through a geometrical interpreta-
tion. First consider the special case in which G(y) = b + a”yis a linear function
of y. The optimization program P1 is now equivalent to computing the shortest
distance from the hyperplane b + a’y = 0 to the origin. Using the conditions
that the solution y* lies on the hyperplane and the vector y* is orthogonal to

the hyperplane, the optimal point y* is expressed as

. :
y. = |a12 [aTYO - G(YO)]a (35)
where yg is the starting point. Fig. 4 shows how the optimal point is obtained in

the bivariate case. In this figure, the vertical axis represents the value of G(y)-

Now extend this cc;ncept to the general case in which G(y) is nonlinear. The
HL-RF method approximates the hypersurface z = G(y) by its tangent plane at
_the trial point y,, as shown in Fig. 5. Then an improved point is obtained in
parallel to the linear case as if G(y;) + VG(¥x)(y—¥x) = O were the constraint.
Hence, one step of the nonlinear version of the HL-RF method is expressed as

follows:

1

Ye+1 = W[VG(Yk)Yk - G(y) IVG(ye)T (38)
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In the nonlinear case, the above formula is applied repeatedly until the

sequence {y; } converges.

The HL-RF method has the advantage that, in comparison with other
methods, it requires the least amount of storage and computation in each step.
In addition, experience shows that for most situations this method not only con-
verges but also converges fast. However, this method may fail to converge in
some situations. This is best illustrated for a single-variable case. In that case,
using the HL-RF method to find the design point on the limit-state surface
amounts to using the Newton-Raphson method to find the root of G(y) = 0. Itis
well known that the Newton-Raphson method may fail to find the roots of a
function in certain circumstances. Fig. 6 shows one example in which the
sequence of points generated by the Newton-Raphson method get further and
further away from the solution point. It is obvious that the HL-RF method will
never converge in this case. In the multi-variate case, there are other situa-
tions in which the HL-RF method breaks down. For example, suppose the perfor-
mance function is G(y) = ¥,¥2—d, and the starting point is [a,b]7. Then, the
HL-RF method will generate points that go back and forth between [a,b]7 and
[6.a]7. if [a,b]7 falls on either of the two ellipses y? +y§ +y,y,+d =0 and
y?+y% -y,y2—d =0, as shown in Fig. 7. These facts indicate that the HL-RF

method may not be a suitable algorithm for the optimization problem.

There are several variations of the HL-RF method. Parkinson [12] derived
a scheme for second-moment reliability analysis which is similar to the method
by Hasofer and Lind [6] except that Eq. 36 is expressed in the original space,
i.e., in terms of x and Vg(x), and each new point is adjusted along one coordi-
nate to lie on the limit-state surface. It can be shown that this method under
certain conditions is not stable. Rackwitz, et al. [1] proposed two modified algo-

rithms to improve the stability of the HL-RF method. In one algorithm the
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modified point is obtained between points W, and y,,, in Fig. 5 according to the
rule ye4y = ¥ ¥4, + (1 —v)w,, where v, v<1, is a preselected step size. The sta-
bility of this modified algorithm for a selected v is not guaranteed. The second
modified algorithm involves two sub-iterations: one that uses a pure Newton
search to locate a point on the limit-state surface, and another to search along
a tangent direction to find a point whose position vector is as parallel as possi-
ble to its gradient. No indication as to the convergence properties of this algo-
rithm is given in Ref. [1]. However, it is expected to require more computations

than the gradient projection method which is globally convergent.

One possible way to improve the HL-RF method is to introduce a merit
function m(y) to monitor the convergence of the sequence. The merit function
should be chosen such that it has a global minimum at the solution point of P1
and its value decreases in each iteration step. Recall that a local minimum

T
point of Pl must satisfy G(y*)=0 and y* + AVG(y*) =0, where A =

VG{y*

- VG(y*)|2 . From these conditions, a non-negative merit function can be con-
y

structed as

.
m) = 51y - LBV + Lo Gly» (37)

where ¢ is a positive constant. Obviously, all minimum points of P1 are global
minimum points of m(y). With this merit function incorporated, a cycle of the

" modified HL-RF method is as follows:

(1) Compute the direction vector

1
= ———[VG -G VG(y)T - 38
d; IVG(Yk)|2[ (¥e) Y (y:)1VG(y) 3 /1 (38)
(2) Perform line search along d, until a sufficient decrease in m(y) is achieved.
(3) Check if y,,, satisfies the optimality conditions. If not, repeat steps 1-3.

The above merit function is a convenient guide to decide the step size at

each iteration, as it is in terms of quantities which are already known. However,
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it may not behave well. Specifically, the function may have local minima which
are not the solution points of P1, and d, may not be a descent direction of
m(y). Therefore, the global convergence of this modified algorithm may not be
guaranteed. Nevertheless, the modification is expected to greatly improve the

stability of the original HL-RF method.

12. The Linear Regression Method

The linear regression method, proposed by Ditlevsen [4], is a specific algo-
rithm which solves only the optimization problem in reliability analysis. This
method was constructed by observing that y* is a design point if and only if

y* = E[Y|VG(y*)(Y-y*) = 0] (39)
where E[Y].] denotes the conditional mean of Y. In order to find a point y*

that satisfies Eq. 39, the linear regression method iterates as follows:
(1) Start from a point y, on the limit-state surface.

(2) Determine the value of u such that

Ye+1 = E[Y|VG(y,) (Y-y,) =] (40)

lies on the limit-state surface.
(3) Check if y;,, satisfies Eq. 39. If not, repeat the process from y,,;.

This iterative scheme is illustrated in Fig. 8. It should be mentioned that the
scheme proposed in Ref. [4] works in the original space. The advantage of
expressing this scheme in the standard space is that one can see the parallel-
ism between this method and the gradient projection method by comparing
Figs. 2 and 8. In fact, the linear regression method is equivalent to the special
case of the gradient projection method in which the step size is always taken to
be unity, i.e.,, no line search vis done. Because of this, one could expect the
linear regression method to fail to converge in some cases. Take, for example,

G(y) =y,y2 —d. It can easily be shown that the linear regression algorithm will
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never converge for this example.

13. Numerical Examples

Based on the analysis in the previous sections, the gradient projection
method, the combined penalty method, and the augmented Lagrangian method
appear to be rather promising in solving the reliability problem. The modified
HL-RF method still needs test to verify its usefulness. The original HL-RF
method, though not very stable, is also compared in the examples, since it is
widely used to solve the reliability problem. These five algorithms are coded
into a computer program so that their performance can be further investigated

through numerical examples.

Three examples are used to examine the performance of the above algo-
rithms. Because of the limited number and type of examples, the results may
not be representative of the overall performance of the algorithms. However,
by way of this limited comparison, one still gains some insight into their relative

merits.

13.1. Example 1

This example is taken from the reliability analysis of a pipeline where the
limit-state surface was generated by least-square fitting. Four statistically
independent basic random variables S, W, P, and E are included. The statistical
properties of these variables are listed in Table 1. The performance function is

g(S,W.P,E) =1.1 —0.00115S W + 0.001572 W2 + 0.001175 §?
+ 0.01347 WP — 0.07047 W — 0.005340S — 0.01495S P

—0.06105WE + 0.07172 S £ — 0.2259 P + 0.03335 P?
—0.5585PF + 0.9976 F — 1.339 £% (41)

Starting from the mean point, all algorithms converged, except the HL-RF
method which after 100 steps exhibited no trend of convergence. The other

four algorithms converged to the same point, y* =[1.318, 0.0137, 0.3252,
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0.04378]7, and the first-order failure pfobabilities of the pipeline calculated by
these methods are identically p,, = 0.087. Table 2 lists the number of iteration
steps, the number of computations of the performance function (including
those required for computing the gradient vectors with central finite difference
formulation), and the CPU time {on VAX 11/750 computer) spent by these four
methods. The results in Table 2 are based on a value of ¢ = 2x10° for the com-
bined penalty method, an initial value of ¢ = 10 augmented Lagrangian method,
and ¢ = 1 for the modified HL-RF method. However, all three methods were also
tested for other values of c. The combined penalty method was very efficient
for ¢ less than 2x10%; however, it yielded solutions with required accuracy only
for ¢ greater than 10%. The augmented Lagrangian method was efficient when
the initial value of ¢ was taken to be less than 400. The efficiency and accuracy
of the modified HL-RF method only varied slightly for ¢ ranging from 1 to 1010,
It is apparent that the performance of the combined penalty and the aug-
mented Lagrangian methods might be sensitive to the selected value of c. This
is very undesirable since the optimal value of ¢ varies from problem to problem
and is usually unknown.

Table 2 shows that, for the present example, the modified HL-RF method is
more efficient than the other three methods. It is noted that the solution time
listed in Table 2 may not be meaningful because of the small size of the prob-

lem.

13.2. Example 2

In some applications, the performance function g{x) may contain noise,
which may arise from errors in numerical routines, such as integration, eigen-
solutions, or finite element analysis. To examine the performance of the five

algorithms for such an unfavorable situation, the performance function

g(X)=X1+2X2+2X3+X4_5X5_5X8



-24 -

+ 0.001[sin(100X,) + sin(100X;) + sin(100 Xg)
+ sin{100 X,) + sin{100X;) + sin(100 Xg) ] (42)

is selected which has high-frequency, artificial noise. The six random variables

are statistically independent with the properties listed in Table 3.

Starting from the mean point, only the gradient projection method and the
modified HL-RF method converged to a solution, y* = [-0.189, —0.353, —0.353,
-0.189, 1.90, 1.268, 1.28]. The other three algorithms failed to converge after
100 iteration steps. The reliability index and the first-order estimate of the
failure probability are § = 2.348 and p,, = 0.00943. To check whether the solu-
tion obtained is a globally minimum point, the problem was reanalyzed with the
noise terms removed. All solutions using different starting points converged to
the same point as the case with noise. Hence, it is believed that the solution

obtained is a global minimum point.

The required computations by the gradient projection and the modified
HL-RF methods for solving the above problem are shown in Table 4. For the
latter method, ¢ = 10 was selected. The modified HL-RF method appears to be
more efficient than the gradient projection method for this problem. However,
this result is dependent on the selected value of ¢. Further investigation with
the modified HL-RF method revealed that the efficiency of the method was best
for 6=<c¢ <35, which by coincidence included the selected value of c. For values
of ¢ outside this range, the convergence of the modified HL-RF method slowed
down considerably. For example, for ¢ = 5, the method required 15 steps to
‘converge. For this reason, a definitive statement as to the relative efficiency of

the two methods cannot be given for this problem.

13.3. Example 3

The reliability of a three-span, five-story, frame structure subjected to hor-

izontal loads is examined (see Fig. 9 and Table 5). There are a total of 21 basic
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variables: 3 applied loads, 2 Young’s moduli, 8 moments of inertia, and 8 cross-
sectional areas. Tables 8 and 7 list the statistical properties of these variables.
It is assumed that the structure fails if the horizontal displacement », of the
top floor exceeds 0.2 foot. Thus,

g(X) = 0.2 —u,(X) (43)
The relation for u, in terms of X is given in matrix form using standard struc-
tural analysis techniques. In contrast to the first two examples, where the gra-
dients were computed using a finite-difference scheme, explicit matrix expres-

sions for the gradients were used in this example [3].

The five methods were used to analyze this problem. Starting from the
mean point, the combined penalty method and the augmented Lagrangian
method failed to converge after 500 calculations of the performance function.
The other three methods (with ¢ = 50 for the modified HL-RF method) con-
verged within 10 steps to the same point, as shown in Tables 8 and 9. The
required computations by the three methods are shown in Table 8. The gra-
dient projection method appears to be less efficient than the other two methods
in terms of the CPU time or the number of computations of the performance
function. Further investigation revealed that the modified HL-RF method con-
verges very slowly for ¢ < 1; but for ¢ > 11 its efficiency is almost invariant to

the value of c.

14. Summary

In certain applications of structural reliability, it is required to find points
on the limit-state surface with minimal distance to the origin of a standard
space. This problem can be formulated as a constrained optimization program
and can be solved by several standard algorithms. The objective of this report
is to ekamine and compare the attributes of several existing algorithms, consid-

ering the specific structure of the reliability problem.
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Six constrained optimization methods are discussed in this report: primal
methods, penalty methods, dual methods, Lagrange methods, and two algo-
rithms specifically designed for the reliability problem; namely, the HL-RF
method and its modifications, and the linear regression method. The underlying
concepts of each method are introduced and its performance is investigated
with due consideration to the properties of the algorithm and the structure of
the reliability problem. Four criteria are proposed to serve as the bases of

comparison: generality, robustness, efficiency, and capacity.

Among the algorithms studied, the gradient projection method (a primal
method), the combined penalty method, and the augmented Lagrangian method
(a dual method) all theoretically satisfy the stated criteria. The HL-RF method,
although lacking robustness, possesses several desirable properties. A modified
version, therefore, is proposed to improve its stability. The linear regression

method is shown to be a special case of the gradient projection method.

The three general optimization algorithms and the HL-RF method and its
modification are examined by way of three numerical examples. The results
indicate that the gradient projection method and the modified HL-RF method
are superior techniques for use in structural reliability analysis. Furthermore,
for a smooth limit-state surface, the modified HL-RF method appears to be more
efficient than the gradient projection method, and its performance is almost

invariant to the value of parameter c.

Because a limited number of examples are tested in this study, the results
reported might be biased. The best algorithm will stand out only through con-

tinued application of the proposed algorithms.
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Table 1 Statistical Data of Example 1

Variable Distribution Mean Standard Deviation
S type-1l largest value | 10. 5.
W normal 25. 5.
P normal 0.8 0.2
E lognormal 0.0625 0.0625

Table 2 Comparison of Methods for Example 1

Method No. of steps | CPU (sec) | No. of G(y)
Gradient Projection 21 2.4 335
Combined Penalty 21 2.7 452
Augmented Lagrangian 22 2.4 338
Modified HL-RF 15 2.2 261

Table 3 Statistical Data of Example 2

Variable | Distribution | Mean | Standard Deviation
X, lognormal 120. 12.
Xz lognormal 120. 12.
X3 lognormal 120. 12.
X, lognormal 120. 12.
X5 lognormal 50. 15.
Xe lognormal 40. 12.

Table 4 Comparison of Methods for Example 2

Method No. of steps | CPU (sec) | No. of G(y)
Gradient Projection 14 3.1 354
Modified HL-RF 4 2.5 234
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Table 5 Frame Element Properties

Element | Young’s Modulus | Moment of Inertia | Cross Section Area
B, E, Iio As
B, E, Iy A
Bs E, Iz Ago
B, E, 5is Az,
G, Es Ig Arg
Ce Es I Ajs
Cs Eg Is Asg
Cy Es Iy Ay

Table 8 Statistical Data of Example 3
Variable | Distribution Mean Standard Deviation

P, rayleigh 30.00 9.00
P, rayleigh 20.00 8.00
Ps rayleigh 16.00 6.40
Ey normal 454000.00 40000.00
Eg normal 497000.00 40000.00
Ig normal 0.94 0.12
Iy normal 1.33 0.15
Ig normal 2.47 0.30
Iy normal 3.00 0.35
Lo normal 1.25 0.30
I normal 1.63 0.40
Iz normal 2.69 0.85
ILis normal 3.00 0.75
A, normal 3.36 0.60
A;ss normal 4.00 0.80
Agg normal 5.44 1.00
Aqq normal 6.00 1.20
Aia normal 2.72 1.00
Ajg normal 3.13 1.10
Agg normal 4.01 1.30
Az, normal 4.50 1.50

Note: The units of P;, E;, I, and 4, are kips, kips/ft?, ft*,

and ft2, respectively.
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Method No. of steps | CPU (sec) | No. of G(y) | No. of VG(y)
Gradient Projection 6 65.8 15 6
HL-RF 4 38.4 4 7
Modified HL-RF 7 38.8 7 7

Table 9 Solutions of Example 3

Basic Variables | Design Point | Basic Variables ] Design Point
P, 7.665e+01 Iz 2.102e+00
Py 3.637e+01 Iis 2.690e+00
Pg 2.842e+01 Aia 3.166e+00
E, 4.208e+05 Ais 3.691e+00
Es 4.850e+05 Agg 4.991e+00
Ie 9.010@‘01 A17 55498+00
I 1.271e+00 Ag 2.190e+00
Ig 2.333e+00 Alg 2.118e+00
Iy 2.867e+00 Azg 2.880e+00
I 1.088e+00 Az, 3.890e+00
I, 1.248e+00
[ 2.968 P, 0.0015

Note: The units of P, E;, ;, and A; are kips, kips/ft?, ft*,

and ft?, respectively.
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Fig. 1 First-Order Reliability Analysis
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Fig. 2 Gradient Projection Method
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Fig. 3 Combined Penalty Method
Gy 1
b G(y)=b +aTy
R G(yo)
a y Yo
()
B b+aly=0
y’

Fig. 4 HL-RF Method - Linear Performance Function
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z = G(y:) + VG(¥:) (7~ ¥&)

z = G(y)
“ G(¥e)
vG(y.) '
‘ Yea
Yk
) ’ W, G(ye) + VG(yi)(y-¥e) =0
Y +1
Y
Fig. 5 HL-RF Method - Nonlinear Performance Function
G(y) |
yof | ¥ y’
Yol |Y2 Ya y

Fig. 6 Example in Which the Newton-Raphson Method Diverges
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Fig. 7 Example in Which the HL-RF Method Fails
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Fig. 8 Linear Regression Method
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Fig. 9 Frame Configuration



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



