
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Scalable Runtime Support for Edge-To-Cloud Integration of Distributed Sensing Systems

Permalink
https://escholarship.org/uc/item/1kf615bq

Author
Chien, Tingchou Hung Brett

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1kf615bq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Scalable Runtime Support for Edge-To-Cloud Integration of Distributed Sensing Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Tingchou Hung Brett Chien

Dissertation Committee:
Professor Pai H. Chou, Chair

Professor Nader Bagherzadeh
Professor Mohammad Al Faruque

2016

© 2016 Tingchou Hung Brett Chien

DEDICATION

To my wife, Ke-Yi Chu, and my daughter,
Mina.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Wearable Low Power Network-of-Things (NoT) 1
1.2 Problem Statement . 3

1.2.1 Lightweight and Portability . 5
1.2.2 Appropriate Programming Model . 5
1.2.3 Low Power with Bluetooth Smart . 6
1.2.4 Need for Data Support . 7

1.3 Contribution . 7

2 Enix: A Lightweight Dynamic Operating System for Tightly Constrained
Wireless Sensor Platforms 8

2.1 Related Work . 9
2.1.1 Programming Model . 9
2.1.2 Runtime OS support for WSN . 12
2.1.3 Virtual Memory . 13
2.1.4 File Systems for WSN . 14

2.2 Overview of Enix . 14
2.2.1 Runtime Kernel . 15
2.2.2 File System . 15
2.2.3 Dynamic Loading Library . 16
2.2.4 Utility Tools . 16
2.2.5 Code Size . 17

iii

2.3 Runtime Components in Enix . 17
2.3.1 Cooperative Threads and Scheduler . 18
2.3.2 Compiler-Assisted Virtual Memory . 21
2.3.3 Dynamic Loading and Run-time Reprogramming 23

2.4 From Enix to Current Proprietary Schedulers . 27
2.5 Evaluation and Results . 31

2.5.1 Experimental Setup . 31
2.5.2 Context Switch Overhead of Different Schedulers 33
2.5.3 Virtual Memory and EcoFS . 35
2.5.4 Efficiency of Enix Code Update Scheme 37

3 EcoCast: An Interactive Framework for Parallel Execution of Wireless Sensor Nodes
in Multi-Hop Networks 40

3.1 Related Work . 40
3.1.1 Remote Firmware Update . 40
3.1.2 Shell and Scripting Systems . 42
3.1.3 Routing protocols in WSNs . 43
3.1.4 Query systems . 44

3.2 System Overview . 44
3.2.1 Wireless Sensing Platform . 44
3.2.2 Execution Flow . 47

3.3 Scripting . 49
3.3.1 Scripting Language . 50
3.3.2 Esh Constructs . 54
3.3.3 Method Dispatching and Attribute Access 56

3.4 Compilation and Linking . 59
3.4.1 Compilation from C . 59
3.4.2 Compilation from Python . 60
3.4.3 Incremental Linking . 61
3.4.4 Version Control and Patching Scripts . 62

3.5 Reprogramming and Execution . 63
3.5.1 Execution Mechanism on the Node . 63
3.5.2 Group Reprogramming of Nodes . 64
3.5.3 Group Execution of Functions on Nodes 66
3.5.4 Background Job Management . 67

3.6 Python Bluetooth Low Energy Wrapper . 68
3.7 Evaluation . 74

3.7.1 Experimental Setup . 74
3.7.2 Functional Programming . 74
3.7.3 Multi-hop Networking . 78
3.7.4 Memory Footprint on the Node . 82
3.7.5 Discussion . 82

iv

4 A Modular Backend Computing System for Continuous Civil Structural Health
Monitoring 83

4.1 Background . 83
4.1.1 Event Triggered v.s. Continous Monitoring 83
4.1.2 PipeTECT system for SHM and Water Pipe Monitoring 84

4.2 System . 85
4.2.1 DuraMote Smart Sensor . 85
4.2.2 Backend System . 88

4.3 Evaluation . 94
4.3.1 Lessons from Field Experiments . 95
4.3.2 Data Traffic Optimization . 96
4.3.3 Long-Term Installation at UC Irvine . 98

5 BlueRim: Rimware for Enabling Cloud Integration of Networks of Bluetooth Smart
Devices 102

5.1 Related Work . 102
5.1.1 Cloud Systems . 103
5.1.2 HTTP Servers for Sensor Networks . 104
5.1.3 Application-Building Tools . 104
5.1.4 Device Management . 104

5.2 Concepts . 105
5.2.1 A Basic BLE Network of Things . 105
5.2.2 Rimware with Single Security Domain 106
5.2.3 Rimware with Multiple Security Domains 106

5.3 BlueRim: Cloud and Rimware . 108
5.3.1 Cloud Components in Rimware . 109
5.3.2 Integration of Rimware with Multiple Security Domains 112

5.4 BlueRim: Physical Subsystem . 113
5.4.1 Host-Program Builder . 113
5.4.2 NoT Firmware Support . 115

5.5 Case Studies . 115
5.5.1 Infant ECG . 115
5.5.2 Home Automation . 116

6 Conclusion 117

Bibliography 120

v

LIST OF FIGURES

Page

1.1 Enix reference applications. 4
1.2 Relationship between Generic Cloud, Rimware and Network of Things 6

2.1 Number of RF+MCU options for popular ISAs. 10
2.2 The block diagram of Enix. 15
2.3 An example Enix WSN application code: Sense and Transmit. 19
2.4 (a)-(c): Transformation and (d) support for position independent code. 25
2.5 Bridge library and Enix user programs. 26
2.6 Dispatcher on top on a existing schedulor. 27
2.7 Characteristic content format for memory operations. 28
2.8 Characteristic content format for function operations. 29
2.9 Access SFR and memory in the MCU. 29
2.10 Ram code: Upload and execute. 30
2.11 Calling existing function calls. 30
2.12 (a) EcoSpire node: 23×50 mm2; (b) EcoSpire simple node, 13×20 mm2. 31
2.13 Power measurement modules. 32
2.14 SD card reading using different block lengths. 37

3.1 System overview. 45
3.2 Execution Flow of EcoCast. 47
3.3 Reprogramming scenario . 65
3.4 Function execution sketch . 66
3.5 Profile handler skeleton and a default profile handler implementation. 69
3.6 PyBLE usage . 70
3.7 A simple perpheral is described by PyBLE. 71
3.8 An example implementation of a exisintg acceleration profile. 72
3.9 A BLE battery service hanlder implementation. 73
3.10 Reprogramming Latency . 76
3.11 Response time of ADC parallel execution of EcoCast 76
3.12 Response time of serial execution and parallel execution of EcoCast 77
3.13 Ratio of different phases to execution time of ADC via parallel execution of EcoCast. 78
3.14 Union of connectivity graphs . 79
3.15 (a) Latency of finding a path for each node, (b) Response time of calling LIGHTING

function. 80
3.16 The latency of adding functions . 81

vi

3.17 The latency of calling functions . 81

4.1 Gopher . 86
4.2 Accelerometer . 86
4.3 Roocas . 87
4.4 Overview of Our Backend System . 89
4.5 Campus . 92
4.6 Using Smartphone to show the monitoring system 92
4.7 Google Map Service Integration . 94
4.8 Locations of deployed sensors . 97
4.9 Engineering Tower . 98
4.10 Engineering Hall . 99
4.11 CALIT2 . 99
4.12 Engineering Gateway . 99
4.13 AIRB . 100

5.1 Relationship between Generic Cloud, Rimware and Network of Things 105
5.2 Customer, BlueRim and Vendors . 107
5.3 Components in Rimware . 108
5.4 Workflow of Host Program Builder . 114

vii

LIST OF TABLES

Page

1.1 Comparison between common sensor platforms 3

2.1 Market share of Microcontroller ISAs . 9
2.2 Comparison between WSNs operating systems. 10
2.3 Context switch overhead comparison between algorithms for selecting the next

running thread. Unit: µs. 33
2.4 Context switch overhead comparison between different scheduler implementation.

Unit: µs. 33
2.5 Context switch overhead comparison between Enix and µC/OS-II by averaging

60,000 context switches. 34
2.6 Code and data size comparison between different scheduler implementation. Unit:

bytes . 34
2.7 Code and data size comparison between Enix, FreeRTOS and µC/OS-II. Unit: bytes 35
2.8 I/O speed comparison between flash chips. Units: Kbytes/s. 36
2.9 The energy consumption comparison between different flash chips. unit: mJ. . . . 36
2.10 SD card comparison between manufacturers. 36
2.11 Runtime reprogramming code size with/without Enix. Unit: bytes. 39
2.12 Update code size using VCDIFF delta compression. Units: bytes 39
2.13 The energy consumption comparison between SD card and RF (Full Speed). Units:

mJ. 39

3.1 Comparison of partial image replacement techniques. 41
3.2 Comparison of scripting systems for WSN. 42
3.3 Scoping of symbols . 54
3.4 Summary of EcoCast commands . 57
3.5 Test cases of functional programming . 74
3.6 The Latency of topology discovery phase . 80
3.7 Comparison of Memory footprint (bytes) . 82

4.1 Improvements in Data Dissemination Subsystem 97

viii

LIST OF ALGORITHMS

Page
1 Fast algorithm to get the next running thread (Priority-Based). 21
2 Fast algorithm to get next running thread (Round-Robin). 21

ix

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisor, Dr. Pai H. Chou. My PhD
study would not be completed without his guidance and encouragment.

Secondly, I am grateful to have my committee members, professor Nader Bagherzadeh and pro-
fessor Mohammad Al Faruque. I am honored to have them in my committee. I also wish to send
my best regards to all my colleagues in Professor Chou’s group. It is a great pleasure to meet and
work with young and talented people from all around the world. I would like to say thank you to
all of you, Sehwan Kim, Eunbae Yoon, Chengjia Huo, Jun Luan, and Seung-Jae Lee.

The Works are also contributed from following people. In Enix project, Yu-Ting Chien has done
the first version of the implementation In EcoCast Yi-Hsuan Tu, Yen-Chiu Li are having the first
working prototype that I can improve base on their solid fundation.

I am truely blessed to have my family around me. Thanks for my parents to support me through
the study. Thanks for my family members in United States to let me never feel alone. Thanks for
my wife and daughter, they are my source of joy and supporting me through all these years.

This work was sponsored in part by a National Institute of Standards and Technology (NIST) Tech-
nology Innovation Program (TIP) Grant 080058, National Science Foundation (NSF) grant CBET-
0933694, a National Institute of Health (NIH) STTR contract 1R41HL112435-00A1 through a
subcontract from Pulsentry, Inc. (“ECG Device for LQTS Screening in Newborns, Phase I”), an
NIH SBIR contract 1R43HD074379-01 through a subcontract from Intelligent Optical Systems,
Inc. (IOS) (“Infant Sleep Environment Monitoring System (SEMS) for SIDS (Phase 1)”), an NIH
STTR contract 1R41HD079051-01A1 from IOS (“Pulse Oximeter for Newborn Screening”), and
an NIH STTR contract HL112435 through subcontract QT001 from QT Medical, Inc. (“ECG De-
vice for LQTS Screening in Newborns, Phase II”).

x

CURRICULUM VITAE

Tingchou Hung Brett Chien

EDUCATION

Doctor of Philosophy in Engineering and Computer Science 2016
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science and Information Engineering 2004
National Chiao-Tung University Hsinchu, Taiwan

RESEARCH EXPERIENCE

Graduate Research Assistant 2007–2012
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2009–2010
University name City, State

xi

REFEREED JOURNAL PUBLICATIONS

1. Chengjia Huo, Ting-Chou Chien, Pai H. Chou, “Middleware for IoT-Cloud Integration across
Application Domains,”, in IEEE Design & Test, Volume 31, Issue 3, June 2014. pp. 21–31.
doi: 10.1109/MDAT.2014.2314602.

REFEREED CONFERENCE PUBLICATIONS

1. Jun Luan, Ting-Chou Chien, Seungjae Lee, Pai H. Chou, “HANDIO: A Wireless Hand
Gesture Recognizer Based on Muscle-Tension and Inertial Sensing,” in Proceedings of the
Global Communications Conference: Selected Areas in Communications: E-Health (âĂŹGCâĂŹ
15 - SAC - E-HealthâĂŹ), San Diego, CA, USA, December 6-10, 2015.

2. Ting-Chou Chien, Chengjia Huo, Pai H. Chou, “A Modular Backend Computing System
for Continuous Civil Structural Health Monitoring,” in Proceedings of the Nondestructive
Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and
Homeland Security 2014 , Volume 9063, , March 9-13, 2014. doi: 10.1117/12.2045264

3. Marco Torbol, Sehwan Kim, Ting-Chou Chien, Masanobu Shinozuka, “Hybrid network-
ing sensing system for structural health monitoring of a concrete cable-stayed bridge”, in
Proc. SPIE 8692, Sensors and Smart Structures Technologies for Civil, Mechanical, and
Aerospace Systems 2013, 86920C (April 19, 2013); doi:10.1117/12.2009705

4. Sehwan Kim, Eunbae Yoon, Ting-Chou Chien, Hadil Mustafa, Pai H. Chou, Masanobu Shi-
nozuka, “Smart Wireless Sensor System for Lifeline Health Monitoring under a Disaster
Event”, in Proc. SPIE 7983, Nondestructive Characterization for Composite Materials,
Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011

5. Yi-Hsuan Tu, Yen-Chiu Li, Ting-Chou Chien, Pai H. Chou, “EcoCast: Interactive, Object-
Oriented Macroprogramming for Networks of Ultra-Compact Wireless Sensor Nodes,” in
Proc. the 10th International Conference on Information Processing in Sensor Networks
(IPSN 2011), Chicago, IL, USA, April 12-14, 2011. pp. 366–377.

6. Yu-Ting Chen, Ting-Chou Chien, Pai H. Chou, “Enix: A Lightweight Dynamic Operating
System for Tightly Constrained Wireless Sensor Platforms,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2010), Zurich, Switzerland,
November 3-5, 2010. pp. 183-196.

PATENTS

1. Meng-Shiuan Pan, Yen-Ann Chen, Ting-Chou Chien, Yueh-Feng Lee, and Yu-Chee Tseng,
“Automatic Lighting Control System And Method”, US 11/950,429

xii

ABSTRACT OF THE DISSERTATION

Scalable Runtime Support for Edge-To-Cloud Integration of Distributed Sensing Systems

By

Tingchou Hung Brett Chien

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Pai H. Chou, Chair

While Internet-Of-Things (IoT) has drawn more attention to researchers and the public, to build

a complete system from the edge sensing units to the cloud services requires massive amount

of efforts. Researchers with strong interests in collected information are often lost in various

technologies, including distributed sensing embedded systems, bridge devices between Internet

and local network, and data backend services.

This work takes a cross-system, script-based, and semantic-enhanced approach to address the prob-

lem of lacking suitable runtime supports. We proposed a threaded code runtime support for edge

sensing systems, a script based wrapper on Physical-to-Cyber bridges, and scalable middleware

into the backend services.

With proposed runtime supports, we are able to apply distributed sensing systems into real world

applications quickly and explorer insights from collected information. As a result, a building

structure monitoring system is installed and allow civil researchers to develop algorithms to prevent

disaster events. Body area sensing systems such as ECG monitoring, CO2 detection, and body

movement are developed. This enables baby screening and detect potential heart problems. The

results have shown that with proposed runtime supports applications can be realized quickly and

scalable.

xiii

Chapter 1

Introduction

The Internet of Things (IoT) has been receiving growing attention in recent years as the next wave

of computing revolution made possible by low-cost, miniature low-power systems-on-chip (SoC)

with computing and communication capabilities. Among many applications, we focus on wearable

medical devices, home automation, and personal tags as representative examples. Three recurring

themes in building IoT applications are low power, management, and data support.

1.1 Wearable Low Power Network-of-Things (NoT)

The term network-of-things (NoT) refers to a locally connected network of embedded systems with

(sensing, actuation) interfaces to the physical world, whereas the Internet of Things (IoT) refers to

the interconnected NoTs bridged by the Internet Protocol (IP). The NoT can also be refferenced as

Wireless Sensor Networks (WSN) in the early stage of NoT.

Figure 1.1 shows three scenarios that WSN researchers often encounter. The first issue is the size

and cost problem. Current WSN platforms, shown in Table 1.1, for example, Mica2 [29] and

MicaZ [1], have a development board with two AA batteries that may be “small” when compared

1

to a computer but are actually, big, heavy, and expensive to wear and embed for many real-life

wireless sensing applications. Wearable sensing system, including both human and animal worn

ones, impose possibly the most stringent constraints on the size and weight of the entire system, as

shown in Figure 1.1(a)

To enable better fitness to wearable applications, some ultra-compact wireless sensor platforms

have been developed [68, 87]. The Eco node, which uses an 8051/8052-compatible MCU core, is

only 1cm3 in volume and weighs under 2 grams, making it most competitive in terms of cost and

lightweight metrics. However, it is also highly constrained in terms of the amount of memory and

computing ability, which pose new challenges on the operating system design.

Besides the ultra compact wireless sensor platforms, a medical platfrom has been developed,

To provide effective management of tight constraints on hardware resources and to enable runtime

support of wireless sensor nodes, a lightweight system kernel that is designed specifically for WSN

has become increasingly important. Most of people think that an operating system may cause

additional overhead and power consumption especially for resource-constrained sensing systems.

However, an operating system may actually improve efficiency by supporting power management,

memory management, task management, and multi-threading.

Figure 1.1(c) shows typical capabilities of runtime operating systems. In addition to the basic

scheduling for event-driven or multi-threading models, several other types of runtime support are

also becoming important for wireless sensing applications. For example, virtual memory enables

the MCU to execute larger, more sophisticated programs than its physical memory alone allows.

Another important type of support is remote programming, as it may be nearly impossible to update

firmware of sensor nodes through wired interfaces after they have been deployed in large numbers.

For this reason, a loader that supports dynamic reprogramming becomes an important issue when

designing an operating system for WSNs. Users expect that firmware update can be done using a

host PC shell environment. Code image will be sent through RF to remote sensor nodes and loaded

2

Table 1.1: Comparison between common sensor platforms

EcoSpire EcoSpire Mica2 MicaZ Telos
simple node super node Rev.B

Size (incl. batt.) 2×1.3×0.8 cm 5×2.3×0.8 cm 3.2×5.7×1.5 cm 3.2×5.7×1.5 cm 3.2×8×2 cm
Microcontroller

Type NRF24LE1 NRF24LE1 ATmega128 ATmega128 MSP430
Frequency(MHz) 16 16 16 16 8
Data mem.(KB) 1 1 4 4 2
Code mem.(KB) 16 16 128 128 60

External Storage
Ext. mem. no SD card(2GB) Flash (512KB) Flash (512KB) Flash (512KB)

Communication
Radio NRF24L01+ NRF24L01+ CC1000 CC2420 CC2420

(Integrated) (Integrated)
Data rate 2Mbps 2Mbps 38.4Kbps 250Kbps 250Kbps
Protocol Enhanced Shock Burst Enhanced Shock Burst SmartRF Zigbee Zigbee
Antenna Build-in Build-in or External External External External

Power source
Type Li-ion Li-ion 2 AA 2 AA 2 AA
Capacity (mAh) 80 80 4000 4000 4000
Rechargeable yes yes no no no

Others
Sensors On-board Sensors On-board Sensors Separate module Separate module On-board Sensors

or Separate module or Separate module
Host & prog. i/f USB or UART USB or UART UART UART USB

by a dynamic program loader at runtime. Another issue that arises from remote reprogramming

is the size of the code image. In order to reduce the power consumption, sensor nodes should

reduce the RF transmission as more as possible; moreover, they should also avoid idle-listening,

since that consumes twice the power as the highest RF transmission. A good run-time system may

also provide an efficient mechanism to reduce the image size in remote reprogramming. Some

common schemes such as patch generation and compression can achieve the objective, but these

also increase the runtime overhead and consume considerable runtime memory. As a result, a

better solution to the problem must be presented.

1.2 Problem Statement

Our goal is to implement a new operating system for wireless sensor platforms. Specifically, we

target wireless sensor systems that are ultra-compact with a limited number of general-purpose

I/O (GPIO) pins and a small amount of code and data memory. Such platforms typically include

3

(a) Wearable sensor applications. (b) Severe sensing environments.

(c) Remote reprogramming and debugging.

Figure 1.1: Enix reference applications.

4

on-board sensors to collect data and exchange data through RF; common interfaces such as UART,

I2C, and SPI are also available. The external non-volatile memory such as serial flash and Micro-

SD card can be connected to the sensor device through SPI. In the following subsections, we list

the requirements of a WSN OS design.

1.2.1 Lightweight and Portability

The operating system should be lightweight and portable enough to run on some of the most

resource-constrained wireless sensor platforms with different MCU ISAs. Low memory and power

consumption must be achieved by utilizing only limited resources in order to increasing the life

time of wireless sensor devices. A portable interface and the reduction of assembly code imple-

mentation enable the operating system to be ported to other MCU ISAs.

1.2.2 Appropriate Programming Model

An appropriate programming model not only facilitates software development but also promotes

good programming practices. Event-driven programming model is widely used in WSN but can

be unstructured and difficult to use [25, 6, 85, 2]. Consequently, an easy-to-use threading struc-

ture that is applicable to event-based WSN applications with little runtime overhead is desired.

Context switching and the scheduling policy are the two main sources of run-time overhead of

multi-threaded programming; the efficiency of the scheduler must be improved by fast algorithms

instead of linear searching for the next running thread; the overhead of context switch can also be

reduced by simply storing the critical registers onto the stack and avoiding using the slow external

memory.

Several recent works are suggesting scripting as a new trend towards programming and control of

wireless sensor networks (WSN). Scripting languages started out as textual commands in shells,

5

Generic Cloud

Network of Things
Network of Things

Knowledgeable Adapter

Data Storage and Aggregator

Cloud Service Agent

BLE-enabled Device

Network of Things

Local Gateway

Rimware

Figure 1.2: Relationship between Generic Cloud, Rimware and Network of Things

or command-line interpreters (CLI), for interactive invocation of utility programs for everyday

tasks from file system manipulation and text editing to application-level programming and system

administration. Batch shell commands with the addition of control flow constructs evolved into

scripting languages, such as awk, perl, sh/csh, tcl, ruby, and many others. Scripting languages

have been credited for helping put together many pieces of the world-wide web, including news-

group servers, CGI scripts, PHP, and many graphical user interfaces. Ousterhout also demonstrated

that scripting can enable programmers to achieve 10× the productivity over system programming

languages such as C or Java [65].

1.2.3 Low Power with Bluetooth Smart

Low power consumption is a mandatory feature in IoT. Bluetooth Smart, also known as Bluetooth

4.0 Low Energy Technology (BLE), stands out as the lowest in average power consumption among

many wireless standards. A BLE node can last for one year on a CR2032 coin-cell battery. BLE

also enables users to interact with these IoT nodes using their smartmobiles directly without in-

frastructure support or dongles, which can be inconvenient. For these reasons, we believe BLE

deserves high-priority support in IoT.

6

1.2.4 Need for Data Support

IoT applications that may need support and automation for data handling include wireless sen-

sor networks (WSN) and medical devices. They act as data sources whose data may need to be

uploaded for post-processing, analysis, archive, and disseminated in a controlled way. However,

many of today’s IoT systems handle data in an ad hoc manner with many hardwired operations,

making them difficult to extend or generalize. A general framework is sorely needed for support-

ing these data operations in a systematic, secure, and access-controlled way. Data should be made

available as a service to support composition with other services.

1.3 Contribution

In this work, an edge-to-cloud runtime supports have been proposed from embedded system level

to Web services integration. In the embedded systems, a programming model based on threaded

code has been proposed and implemented. This model can be incorperated into other existing

scheduler used by SoCs. For the connectity programming in gateway devices, a python and swift

language to operate Bluetooth Smart has been implemented to wrap around the wireless transmis-

sion to allow users to focus on data. Than a backend integrated system has been implemented to

demostrate a possible medical sensing system can be intergrated to discover new possiblities for

remote healthcare infrastructure.

7

Chapter 2

Enix: A Lightweight Dynamic Operating

System for Tightly Constrained Wireless

Sensor Platforms

Enix is a lightweight dynamic operating system for tightly constrained platforms for wireless sen-

sor networks (WSN). Enix provides a cooperative threading model, which is applicable to event-

based WSN applications with little run-time overhead. Virtual memory is supported with the

assistance of the compiler, so that the sensor platforms can execute code larger than the physical

code memory they have. To enable firmware update for deployed sensor nodes, Enix supports

remote reprogramming. The commonly used library and the main logical structure are separated;

each sensor device has a copy of the dynamic loading library in the Micro-SD card, and therefore

only the main function and user-defined subroutines should be updated through RF. A lightweight,

efficient file system named EcoFS is also included in Enix. The code size and data size of Enix

with full-function including EcoFS are 8 KB and 512 bytes, respectively, enabling Enix to run on

many RF-enabled systems-on-chip that cannot run most other WSN OSs.

8

Table 2.1: Market share of Microcontroller ISAs

Co. Core Sh.

Intel 8051 19%
Renesas 740, H8/S,

M32R
17%

Freescale 68XX 15%
PIC PIC 12%
ARM ARM 10%

Co. Core Sh.

NEC V850, 78K0,
K3/K4

9%

ST Proprietary
8-b

6%

Atmel AVR 3%
Infineon C16X 3%
Others Others 6%

2.1 Related Work

Wireless sensor networks are composed of sensor nodes and base stations. A sensor node is typ-

ically small in physical size, low cost, small in code and data memory, and limited in comput-

ing capability and battery energy. Table 2.1 lists the instruction set architectures (ISA) of the

most popular MCUs. Some real-time operating systems (RTOS) that are able to run on such a

resource-constrained platform include µC/OS-II [52] and FreeRTOS [75], both of which support

preemptive multi-threading with round-robin or priority-based schedulers. These RTOSs are in-

deed lightweight and well designed, but they are not suited for wireless sensor networks due to the

lack of support for features such as runtime code update, power management, and resource control

capabilities. In response, researchers have proposed WSN OSs that provide support specifically

for WSN applications. Table 2.2 shows a comparison between existing OSs aimed at WSNs. How-

ever, it seems ironic that most WSN OSs to date are for either Atmel (3%) and MSP430 (a fraction

of 6% “Others”), leaving the most popular 8051 (19%) and most other ISAs unsupported. When

considering integrated RF-MCUs, the number of options for the 8051 dominates all other ISAs

combined by 4:1, as shown in Fig. 2.1.

2.1.1 Programming Model

TinyOS [54] is a widely used runtime system for WSNs. It uses a special language called nesC [22]

to describe the software components that form a sensor system with event-driven semantics. The

application code and the runtime library are then compiled into one monolithic executable. Several

9

Table 2.2: Comparison between WSNs operating systems.

OS Enix TinyOS SOS Contiki MANTIS OS t-kernel RETOS LiteOS Nano-RK
Platform Nordic ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L ATmega128L

nRF24LE1 &MSP430 & MSP430 & MSP430
Programming Thread Event Event Event Thread Thread Thread Thread Thread
Model & Thread
Real-time Support 4 1 4 © © © © © ©
Dual Mode Operation9 © © © © © © ©
Remote Update © 4 © © © © ©
Dynamic Loading © 2 4 © 2 © 3 © 3 © 3

Protection10 4 ©
Virtual Memory © 4 4 © 5

File System © 4 ©
Network Abstraction11 © 4 © ©
Code Size (Bytes) 6 8,138 20,924 8 20,464 3,874 14,000 28,864 20,394 30,822 10,000
Data Size (Bytes) 7 512 597 1536 512 512 512 945 1,633 2,000

1 4 means optional components.
2 achieved using PIC.
3 achieved using runtime relocation.
4 supports code virtual memory only.
5 supports both code and data paging.

6 The code size including the basic kernel and the
© components, excluded4s.

7 lists the smallest data memory required to startup
OS, at least one thread in multi-threaded model.

8 TinyOS code size is compiling from v1.1.15, with

various sensor drivers and a network module, but
excluding storage system and remote programming.

9 means the kernel code is not writable by user code
10 threads are protected from each other’s access
11 OS provides layers of API

8051
MSP430

PIC
AVR

ARM
HCS08

0 5 10 15 20 25 30

802.15.4 Shockburst CC1xxx
BTLE4.0 Z-Wave other UHF

CC1110F{8,16,32}
CC1111F{8,16,32}

nRF{24,9}E1
nRF24L{E,U}1

CC251{0,1}F{8,16,32}
CC2{4,5}30F{32,64,128}

CC2431, MG245{0,5}

Figure 2.1: Number of RF+MCU options for popular ISAs.

event-driven runtime-support systems have been developed for wireless sensor networks and appli-

cations with similar characteristics, including SOS [27] and Contiki [20]. The processes of these

OSs are implemented as event handlers that run to completion without preemption. Therefore,

event handlers in event-driven models may share the same stack to reserve insufficient memory

space. Event-driven programming is based on cooperative multitasking, which may be good for

tiny, single-processor embedded devices, but users have to perform stack management manually,

and as a result, the code can become difficult to read and maintain. Some WSN OSs provide pre-

emptive multi-threading [6, 24, 20, 11, 10, 46]. Multi-threaded programming models can be easier

10

to learn compared to event-driven ones, and the code can be more readable and maintainable. In

severely memory- and power-constrained environments, however, a multi-threaded model has sev-

eral disadvantages. For example, it occupies a large part of the memory resources, spends more

CPU time and consumes more battery energy due to context-switching overhead.

Preemptive multi-threading extensions [17] to TinyOS have been proposed to avoid long-running

tasks. Various concurrency methods has been considered, including preemptive tasks, fibers and

virtual machine threads. Later, TinyOS v2.x incorporated the multi-threading concept in TOSThreads

[46]. They consist of kernel threads and application threads. Only application threads can be pre-

empted, while kernel threads are non-preemptible since they are for blocking system calls. Kernel

threads are activated only through message passing.

Protothreads [21] allow users to write event-driven programs in a threading style, with the memory

overhead of two bytes per Protothread. The concept is similar to C co-routines [47] in that they

implement “return and continue” by using C-switch expansion. Protothreads are limited in that

auto variables or local states cannot be stored across a blocking wait, and the C-switch implemen-

tation may lead to increased code size in the form of a table lookup and a jump, which also incur

overhead at runtime. The runtime complexity is proportional to the number of yield points in a

Protothread.

Our Enix OS emphasizes cooperative threading, which guarantees that no thread will have to yield

control unexpectedly [25], and Enix threads work similarly to co-routines but they are implemented

in a mix of C and assembly for smaller code size and better execution efficiency. Swapping be-

tween threads in Enix is a real context-switch operation, not just a C-switch. It provides automatic

stack management and incurs little runtime overhead compared to preemptive multi-threading. In

addition to cooperative threading, Enix also supports lightweight preemptive multi-threading for

real-time scheduling. For the power consumed by context switches, it has been shown for MANTIS

OS that multi-threading and energy efficiency need not be mutually exclusive when an effective

sleeping mechanism is used to reduce context-switching overhead [6, 17].

11

2.1.2 Runtime OS support for WSN

In real-world wireless sensor networks, the deployed sensor nodes must have the abilities to man-

age the tasks and resources at run-time. Run-time reconfiguration and reprogramming also become

important issues in WSN OS design. TinyOS, as mentioned before, produces a single image in

which the kernel and applications are statically linked. Thus, updating code means whole-system

image replacement. To support efficient runtime remote reprogramming for TinyOS, a virtual

machine named Maté [53] has been proposed. Using Maté or other virtual machines for WSNs

[49, 60], code can be distributed and configured at run time. The drawbacks of running a virtual

machine on a sensor node include runtime overhead of the virtual machine interpreter and higher

energy consumption.

SOS [27] is another event-driven OS but consists of dynamically loaded modules and a common

kernel. The modules are position independent code (PIC) binaries that implement specific tasks or

functions. This modularized design is quite flexible, but the interaction between modules may incur

high runtime overhead, and the module must be implemented in a fixed format, which increases

the overall code size on SOS.

Contiki [20], RETOS [11] and LiteOS [10] provide dynamic loading by runtime relocation, rather

than relying on position independence. The application binary to be combined with relocation

information must be relocated or linked at runtime [18] before loading into the program memory.

Thus, a sizable data buffer is required in order to relocate in space.

Our Enix OS supports dynamic loading using kernel-supported PIC, which is easy to port to other

platforms. The dynamic library is pre-linked to the kernel with minor modification. Hence, our

runtime overhead and additional buffer are reduced compared to the runtime relocation approach.

12

2.1.3 Virtual Memory

To fully utilize the memory of a tightly constrained wireless sensor platform, some researchers

propose software virtual memory on MMU-less embedded systems. One approach is code mod-

ification by either using a compiler or constructing an additional converter. SNACK-pop [67]

provides a framework for compiler-assisted demand code paging with static call graph analysis

and optimization. The input Executable and Linking Format (ELF) [37] file is analyzed and trans-

lated into an executable image such that every call/return is modified to call the page manager.

Choudhuri and Givargis [13] showed that data segments have a greater need to be paged than code

segments, and therefore they propose a data paging scheme with an adjustable page size based on

an application-level virtual memory library and a virtual memory-aware assembler. The t-kernel

[24] is the first WSN OS that provides virtual memory for both code and data segments with ad-

ditional memory protection. Besides software virtual memory approach, MEMMU [5] proposes a

new software-based on-line memory expansion technique [4] that requires no secondary storage.

Therefore, it improves performance and minimizes power consumption comparing to the above ap-

proach. However, MEMMU introduces about 4 KB of code size overhead and requires at least 512

bytes of data memory. Besides dynamic loading, Enix also supplies software segmented virtual

memory by code modification, and uses a Micro-SD card as secondary storage for the convenience

of installing virtual code segments using a host PC without requiring a specialized programmer.

Enix does not provide virtual memory for data segments because of the high runtime overhead,

but it does support a data memory allocation scheme to fully utilize the limited data memory. Fur-

thermore, VM support in Enix consumes only 886 bytes of code memory and 256 bytes of data

memory.

13

2.1.4 File Systems for WSN

LiteFS, a subsystem of LiteOS [10], provides a hierarchical, Unix-like file system that supports

both directories and files. General-purpose file systems such as FAT, Ext2 may be interoperable

but may be unsuitable for WSNs due to the relatively large code size and a great deal of data

memory space used to store the hierarchical data structures. A more severe problem is the poor

performance: in our own experience, a popular FAT file system was able to log at most 35 samples

per second on a Telos-class node. Another issue is that the general file format becomes insufficient

to store WSN data due to the absence of fast query support.

Some file systems or databases have been customized for WSNs. ELF [16] uses NOR flash to

implement a log-structured file system. MicroHash [90], TinyDB [57] and FlashDB [62] use a

lightweight index structure or database that works on wireless sensor nodes. Due to supporting

high-performance indexing and searching capabilities, overhead of in-memory data structures is

inevitable on these systems.

The Coffee file system adopted in ContikiOS is a log-structured, flash-based file system [84]. Cap-

sule [59] covers the abilities mentioned above. It provides the abstraction of typed storage objects

to applications, including streams, indexes, stacks, and queues. The composition of different ob-

jects may satisfy various requirements of WSNs. However, the high capacity parallel NAND flash

used by Capsule makes use of many general-purpose input/output (GPIO) ports, and therefore it

does not work on small-sized MCUs with few available I/O ports.

2.2 Overview of Enix

Fig. 2.2 shows the block diagram of Enix, which currently runs on a wireless sensor platform

called EcoSpire [12]. The Enix OS contains four major components: runtime kernel, file system,

14

Figure 2.2: The block diagram of Enix.

dynamic loading library, and utility tools. Although the file system is one of the modules in the

runtime kernel, it provides more support for WSN applications. Consequently, we separate the file

system as an individual component of Enix.

2.2.1 Runtime Kernel

The first component of Enix is the runtime kernel, which manages hardware resources and sup-

ports run-time reconfiguration. With a cooperative thread scheduler, developers can write multi-

threaded programs instead of being limited to single-threaded programming. A wireless code

image update manager and a dynamic loader are also included to enable remote reprogramming,

so that the deployed sensor nodes can be easily updated over RF.

2.2.2 File System

EcoFS, the file system of Enix, is a configurable and lightweight storage system using a Micro-SD

card or an MMC card as the storage medium. Generic file abstraction may not be well suited for

WSNs. We realized that only few types of data need to be saved, and we divide EcoFS according

15

to the different usage patterns: code data, preferences, network data, and sensed data. The code

data block stores the binary code segments that can be loaded efficiently by the runtime loader into

the code memory on demand. The preferences are the key-value pairs for storing the node’s status

and settings. The requirement of preferences is fast searching with modifications enabled. Because

of the limited data memory and the wish to provide a simple network abstraction, the routing table

may be maintained in EcoFS. Network data such as routing tables or the roles of the adjacent

nodes must be enumerable and may be changeable if the network topology is dynamic. Last but

not least, the sensing data block is used for logging collected data in harsh environments when

real-time transmission is not viable. This append-only storage type must be fast, power-efficient,

and reliable to meet the requirements of high-sampling-rate WSN applications.

2.2.3 Dynamic Loading Library

The third component of Enix is the dynamic loading library called ELIB. ELIB is a special li-

brary that is preprocessed by the host PC tools. Most of the commonly used library functions are

collected and transformed into segments that comprise ELIB. Each segment corresponds to the

position-independent code of a function with a unique virtual address, namely where the segment

is located in the secondary storage. Due to the constrained memory resource of compact wireless

sensor devices and the high energy consumption of the RF transceiver, making use of ELIB en-

ables software virtual memory and reduces the transmission size of runtime reprogramming. A

full ELIB library now takes 28K (12KB without standard C library).

2.2.4 Utility Tools

The last part of Enix is the host PC’s utility tools, including a wireless reprogramming and debug-

ging shell, a file system parser shell, complier and linker. With the host PC’s assistance, heavier

computation and compiling tasks can be done on the host PC to reduce the runtime overhead on

16

tightly constrained nodes. Rather than processing delayed linking at run-time as ELF does, the

ELIB building tool constructs a position-independent library at link-time. Therefore, the run-time

loading burden on the MCU of these compact sensor nodes is reduced significantly, and no addi-

tional code is required. Another tool is the file system shell, called the EcoFS Shell, which provides

an interactive environment for users to manipulate specially formatted data of EcoFS simply and

conveniently. This assistance saves the user from wasting time on troublesome tasks such as read-

ing, modifying, and writing secondary storage devices directly.

2.2.5 Code Size

The non-swappable part of the system takes around 8KB of compiled code, including the thread

scheduler, low-level drivers for SD and RF, file system driver, remote programming, the main

function, and some basic library needed by above objects. Other utility library code can be saved

in ELIB on the SD card and are loaded on-demand. A detail breakdown for Enix compiled code is

as follows:

Enix Scheduler 1023

Enix Storage and RF driver 1696

EcoFS 2316

Remote reprogramming 660

Essential C library 1130

+) User logical structure 203

Total 7028 bytes

2.3 Runtime Components in Enix

This section describes the kernel components in Enix. They are the cooperative threads with the

run-time scheduler, compiler-assisted virtual memory, and dynamic loading and runtime repro-

gramming support.

17

2.3.1 Cooperative Threads and Scheduler

The cooperative threading model has the characteristic that a context switch occurs only when the

current running thread calls a yield or sleep function. Thus, the overhead of context switching

and stack usage are lower than that of preemptive multi-threading and is more appropriate for

tightly constrained wireless sensor platforms. Here, we describe an efficient way to implement

cooperative threads with low context-switching overhead and that consumes little code and data

memory. In addition, two popular scheduling policies, namely priority-based and round-robin, are

also presented to provide the adaptive abilities of Enix for supporting different WSN applications.

Multi-points Setjmp/Longjmp

The system calls setjmp and longjmp are commonly used for jumping between subroutines. To

achieve the inter-subroutines jump, the setjmp function stores the program counter and stack

pointer into a jump buffer. When longjmp function is called from another subroutine, the data in

the jump buffer is restored, and then the program returns to the previous setjmp point. It is worth

mentioning that the used registers are pushed on the stack before the setjmp function is called, and

therefore the local variables can also be restored after setjmp. However, this approach does not

support jumping forward or backward between multiple functions as required by coroutines. First,

it provides a single-direction jump only from the longjmp point to setjmp point according to the

jump buffer; second, stack overwriting happens while the previous setjmp point calls the cascaded

function that may modify the stack data of later setjmp points.

To achieve cooperative threading, the ideas of setjmp and longjmp are taken. Each never-returned

subroutine represents a cooperative thread, which has its own stack and context buffer for stor-

ing critical data. A cooperative thread may yield at any specific point to invoke the scheduler

and resume another cooperative thread. Each yielding call automatically pushes the local vari-

ables on the stack and records the program counter and stack pointer in the context buffer. The

18

extern xdata char* malloc_ptr_1;
extern unsigned char gb;
//thread 0 control LED and init everything
ENIX_THREAD(thread0) {

EA = RF = 1; //init RF
//init 3-axes
epl_acc_init(ACC_8G_SCALE,

ACC_DATA_RATE_100HZ);
//malloc 3 bytes
malloc_ptr_1 = (xdata signed char *)

eco_kernel_mem_req(3);
gb = 0; //init flag
while(1) {

LED0 =̂ 1;
LED1 =̂ 1;
enix_kernel_thread_sleep(10);

}
ENIX_THREAD_END();

}

//thread 1 sensed data from 3 axes
ENIX_THREAD(thread1) {

while(1) {
if (gb || !epl_acc_data_is_ready())

break;

malloc_ptr_1[0] = epl_acc_read_X();
malloc_ptr_1[1] = epl_acc_read_Y();
malloc_ptr_1[2] = epl_acc_read_Z();
gb = 1; //set flag
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

//thread 2 transmit sensed data
ENIX_THREAD(thread2) {

pdata unsigned char *packet;
packet = enix_kernel_get_tx_buf();
enix_kernel_rf_start_tx(1234);

while (1) {
if (gb) {

packet[0] = malloc_ptr_1[0];
packet[1] = malloc_ptr_1[1];

packet[2] = malloc_ptr_1[2];
enix_kernel_rf_send();
gb = 0; //clear flag

}
enix_kernel_thread_sleep(1);

}
ENIX_THREAD_END();

}

int main() {
LED0 = LED1 = OFF;
//add thread
enix_kernel_add_thread(0, ENIX_DEFAULT_INIT,

thread0, LOW_POWER_ON);
enix_kernel_add_thread(1, ENIX_DEFAULT_INIT,

thread1, LOW_POWER_OFF);
enix_kernel_add_thread(3, ENIX_DEFAULT_INIT,

thread3, LOW_POWER_OFF);
//run kernel, never return
enix_kernel_set_timer_period(0);
enix_kernel_start();
return 0;

}

Figure 2.3: An example Enix WSN application code: Sense and Transmit.

resuming process simply restores the saved data from the context buffer and the stack. As long

as the context-switching point is determinable, only necessary data will be stored on the stack.

Therefore, the per-thread stack does not require much memory and is adaptive to the number of

threads. The maximum number of cooperative threads is seven in the current implementation of

Enix. This approach to cooperative threads allows subroutines to suspend and resume execution

at specific locations without being concerned with stack and thread states. Moreover, semaphores

and functions such as yield , sleep, suspend and resume are also provided to enable thread control.

These primitives are intended for users familiar with threads programming and their implications.

For more advanced applications where the execution time may be data dependent, such as com-

pression algorithms, proper selection of the yield points will be important, or else the system may

prevent other threads from execution and decrease system reliability. One standard solution is to

use timer watchdogs to regain control from misbehaving threads; another is to enable preemptive

multi-threading support.

Fig. 2.3 shows a sample application written in the cooperative threading model in Enix. This

application is to sense triaxial acceleration and then wirelessly transmit the sensed data to a receiver

with ID 1234. There are three cooperative threads in this program: thread0 first initializes the

hardware modules and global variables and then blinks the LED periodically; thread1 senses the

data while the sensor is ready and the previous sensed data has already been transmitted; thread2

transmits the sensed data to the remote sensor node and then clears the global flag to enable the

19

next sensing task in thread1. The main function adds the threads to the Enix kernel and then calls

enix_kernel_start to invoke the scheduler, which never returns to main().

Priority-Based and Round-Robin Schedulers

Enix provides two scheduling policies: priority-based scheduler and round-robin scheduler to de-

termine the next thread to run based on the thread’s priority or registration sequence, respectively.

The scheduling policy in Enix is replaceable to provide flexibility for development of WSN appli-

cations.

The list of runnable threads is represented as an array of bitmaps to enable quickly finding the next

runnable thread. The thread with priority n is runnable only if the nth bit in the bitmap is set; thus,

by checking the bitmap, the next running thread can be found. For the priority-based scheduler,

the first set bit in the bitmap indicates the next running thread. More powerful ISAs such as ARM

support instructions for finding the first set bit in a 32-bit word. Simpler ISAs such as 8051, AVR,

or MSP430 do not support such powerful instructions. So, we use a table-lookup implementation.

The number of threads is limited by the size of the bitmap.

Algorithm 1 shows the pseudo code for finding the highest-priority runnable thread by table

lookup, where nextPrioTbl is a byte array with 16 elements, each of which indicates the index

of the first set bit in the corresponding element of the array, and rdylst is a bitmap list. Each bit

represents a cooperative thread with a different priority. By looking up the index of the first set bit,

the next running thread can be found as shown in the algorithm.

To implement a round-robin scheduler, we propose another efficient table-lookup algorithm (Algo-

rithm 2). By rotating the rdylist to the right for currentPrio+1 bits and looking up the table, which

is the same as Algorithm 1, the next running thread can be easily found. These two algorithms

consume additional 16 bytes of code memory for the immutable table but reduce the total code

size and improve the performance significantly, as will be shown in Section 5.5.

20

Algorithm 1 Fast algorithm to get the next running thread (Priority-Based).
if nextPrioTbl[rdylst & 0x0F] 6= 4 then

return nextPrioTbl[rdylst & 0x0F]
else

return 4 + nextPrioTbl[rdylst >> 4]
end if

Algorithm 2 Fast algorithm to get next running thread (Round-Robin).
if rdylst = 0 then

return 7
end if
t← RIGHTROTATE(rdylst,(currentPrio+1))
r← bitmap_lookup(t)� pass t as rdylist to Algorithm 1
x← r + currentPrio + 1
if x > 7 then

return x−8
else

return x
end if

2.3.2 Compiler-Assisted Virtual Memory

Virtual memory is widely used in OSs to support a larger memory space than provided by the

physical memory. In this section, we describe the implementation details of compiler-assisted

virtual memory in Enix.

Demand Segmentation

Virtual memory is achieved in Enix via demand segmentation without any hardware support. The

code memory of the wireless sensor platform is divided into swappable and non-swappable ar-

eas. The Enix kernel and the user-defined logical structures such as the main function are non-

swappable. The swappable area utilizes the rest of code memory managed by the virtual memory

manager of Enix.

To reduce the runtime overhead in Enix, a library called ELIB is proposed. ELIB consists of binary

code segments that are preprocessed on the host PC and is pre-installed on the Micro-SD card, the

21

secondary storage medium natively supported in Enix. Each segment in ELIB represents the binary

code of a function in a position-independent way. That is, a unique virtual address is assigned to

each code segment to indicate its location in the Micro-SD card. Calls to ELIB functions from the

user program will be translated at compile time into calls to a special run-time loader routine in

Enix kernel using a technique called source code refinement, to be described in the next section.

Therefore, the demanded segments will be loaded into code memory and executed at run-time. The

current memory allocation scheme in Enix is first-fit.

It takes three passes to construct ELIB. In the first pass, the common functions are collected into

a file named ELIB.LIB, which is passed to the library parser to get the binary code size of each

function; and then a virtual-address allocator is called to allocate a unique virtual address to each

function. The second pass is code modification: a library function may call another library function

that does not exist in code memory, and therefore such code must be modified. The purpose of code

modification is to translate ELIB functions to run-time position-independent code. When the code

modification is done, the ELIB is compiled and linked to create the file named ELIB.HEX, the hex

image that consists of the HEX representation of ELIB functions. The final pass splits ELIB.HEX

into separated HEX files, each of which is called a code segment, that is, the HEX representation of

a function. Next, the EcoFS installer program installs the code segments onto the Micro-SD card

according to their virtual addresses. The procedure above can be done automatically by a shell

script. After this procedure, the Micro-SD card is available for loading and executing.

Memory Compaction and Garbage Collection

All virtual-memory systems have the common problem of fragmentation. External fragmentation

occurs when the remaining free memory blocks are not consecutive. Since the dynamic loading li-

brary ELIB is runtime position-independent, fragmentation can be solved by memory compaction.

A garbage collector routine executes periodically to observe the memory usage and compact mem-

ory if necessary.

22

Another problem arises when the garbage collector reclaims those segments that will be executed

after the return of the current running segment. This is called the cascaded call problem: it oc-

curs when the code memory is out of use, and the caller is garbage-collected while the callee is

executing, such that the callee returns to the caller that has been evicted, thereby causing the sys-

tem to crash. There are some solutions to fix the cascaded call problem. For example, additional

checking code can be inserted before callee returns, and thus the absent caller would be reloaded

back before it is returned to. Enix solves this problem by restricting the garbage collector to only

non-swappable code.

2.3.3 Dynamic Loading and Run-time Reprogramming

Run-time reprogramming and dynamic loading are important issues in WSN OS design. Deployed

sensor nodes need remote reprogrammability for the purpose of bug fixing and firmware updating.

Enix supports run-time reprogramming and dynamic loading, and user programs can be updated

through RF.

Run-time Position-Independent Code

To achieve fast runtime loading, Enix uses Position-Independent Code (PIC). Traditional PIC is

machine dependent, and thus not every architecture supports PIC. We propose an efficient way

to generate PIC code without hardware support. With the assistance of run-time kernel via code

modification, the code becomes position-independent at run-time. This modification is also applied

to the function segments in ELIB as mentioned before. Fig. 2.4 shows the code modification details

in Enix. Three types of code are position dependent in general Enix user programs.

First, kernel calls in the user program do not have to be modified, due to the separation between

the kernel and user programs. The linker redirects these kernel calls to the appropriate addresses

23

by a linker script as shown in Fig. 2.4(a).

The second type of position-independent code covers the library calls as shown in Fig. 2.4(b). We

redirect this kind of absolute calls to the special kernel function via code modification. The kernel

function finds the address of target function at run-time and then jumps there. If the target does not

exist, then the loader is invoked to do the same work as mentioned in the virtual memory section.

The last type is for local absolute jumps, as shown in Fig. 2.4(c). In most cases, local jumps are

relative jumps except for those jumping from the beginning of a large logical structure to the end.

We convert a long jump instruction into a relative jump routine by calculating the relative size from

the source to the target at compile time, get the current program counter at run-time, and then add

the program counter and the relative size to get the target address at run-time.

In addition, Fig. 2.4(d) also shows two key functions in the Enix kernel to support run-time PIC.

The function enix_getpc gets the program counter at run-time and stores it into the DPH1:DPL1

register pair (an alternative pair of the Data Pointer High/Low registers in the 8051 ISA). Since

the lcall instruction will push the return address onto the stack, we can call enix_getpc to read the

program counter from the stack. enix_fake is another kernel function that checks the existence of

the target function and redirects the lcall instruction to the target function address at runtime. If

the target function does not exist in the code memory, then it will be loaded from the Micro-SD

card according to the virtual address passed into enix_fake function.

Source Code Refinement

In order to hide the details of the run-time loader from the flow of user program development

and to reduce the amount of code modifications, a source code refinement technique is applied.

Fig. 2.5(a) shows a simple Enix user application sending a string of data through UART. For

the include files of Enix user program, the function definitions are removed, and C macros are

applied as shown in the Fig. 2.5(a). By using macros and varargs.h support for the C language,

24

(a) Kernel Call (unchanged)
enix_fs_get_pref("LPOW") ⇒enix_fs_get_pref("LPOW")

(b) Library Call: mapped enix_fake
epl_uart_putchar(’a’) ⇒enix_fake(0x1220,(uint8_t)’a’)

(c) Local LJMP: converted to relative jump

__asm
ljmp __300107

__endasm; ⇒
__asm
lcall _enix_kernel_rd_getpc
mov DPTR,#(__300107 - .)
mov A, _DPL1
clr C
add A, DPL
mov DPL, A

mov A, _DPH1
addc A, DPH
mov DPH, A
clr A
jmp @A+DPTR

__endasm;

(d) Enix Kernel: support routines

void enix_getpc() {
__asm
mov A, R0
mov R0, SP
mov _DPH1, @R0
dec R0
mov _DPL1, @R0
mov R0, A
ret

__endasm;
}

uint16_t enix_fake(
unsigned int addr,...){
__asm
clr _EA
push _ALL
; get virtual addr
mov R0, _SPX
dec R0
movx A, @R0
mov DPH, A
dec R0

movx A, @R0
mov DPL, A
mov _SPX, R0
lcall _enix_rd_cr
; restore XSP
inc _SPX
inc _SPX
POP _ALL
setb _EA
ret

__endasm;
}

Figure 2.4: (a)-(c): Transformation and (d) support for position independent code.

25

User Program

extern xdata char* malloc_ptr_1;
int main() {

LED0 = LED1 = OFF;
epl_uart_init(UART_BAUD_57K6);
epl_uart_putstr("test uart\n");
return 0;

}

Source Code Refinement

extern xdata char* malloc_ptr_1;
#define_EPL_UART_PUTSINT 11776 //size:145
#define_EPL_UART_PUTSTR 14336 //size:110
#define _EPL_UART_INIT 14848 //size:95

#define epl_uart_init(a) \
enix_fake(_EPL_UART_INIT, \
(unsigned char)a)

#defineepl_uart_putchar(a) \
enix_fake(_EPL_UART_PUTCHAR,\

(unsigned char)a)
#define epl_uart_putstr(a) \

enix_fake(_EPL_UART_PUTSTR, \
(unsigned char*)a)

(a) Source code refinement.

C Source
file

Compiler

Kernel
Bridge
Library

Fake functions
with empty body
implementation

Compile stage

Object file

Linker
Kernel
Bridge
Library

Relocated kernel
function address

Link stage

HEX file
(linked w/

kernel)

(b) Bridge library.

Figure 2.5: Bridge library and Enix user programs.

each library function call in the user program is redirected to a special function named enix_fake.

This vararg-style function allows variable numbers and types of parameters, and therefore every

function prototype can work with this refinement with additional type casting. Furthermore, the

source code refinement technique can be used to achieve system configuration. For example, a

general library function SendPacket can be called by the user program to send a byte buffer through

different interfaces, such as RF, UART, I2C and SPI. It is easy to provide a configuration interface

for users to choose the transmission interface of SendPacket library function by using the source

code refinement technique. Hence, different hardware modules of wireless sensor devices can be

easily configured.

26

Figure 2.6: Dispatcher on top on a existing schedulor.

2.4 From Enix to Current Proprietary Schedulers

While modern node devices such as EcoBT, EcoBTmini are providing industrial standard wireless

communication protocol, BLE. It is inevitable to use vendor provided proprietary scheduler in

order to use the integrated protocol stack.

We propose a way to integrate a dispatcher on top of proprietary scheduler by using threaded code

concepts. A task is composed by multiple actors. An actor is an executable code snippet that can

be execute in the existing schedulor. For example, in CC2541, TI has provided a OSAL schedulor,

a software event driven schedulor. This threaded code dispatcher can be integrated as shown in

Figure. 2.6. In the executiong loop, each time a dispatcher event is triggered, an actor is executed

and finished parts of a task. After several triggered events, a task is completed. This can avoid a

long execution task jeoparize underlying scheduler with running protocol stack.

An actor can be a function exists in the firmware image, or a newly uploaded code snippest and

executed from ram. We also design two characteristics for memory access and function execution

in EcoBT. To access to memory blocks in EcoBT, developers can use address and length to get the

content of the requested memory block. The format is shown in Figure. 2.7.

27

Figure 2.7: Characteristic content format for memory operations.

Upon receiving requests in EcoBT, an actor load the content from the memory block and save in

ram area that can be diliver to the user in the next actor. As for executing functions on EcoBT,

if a user try to excute an existing function in EcoBT, a tool is used to parse the source code and

compiler generated map to get target address in flash. With the target function address, the user

can request EcoBT to execute the function with the function execution characteristic in Figure. 2.8.

User can also upload a compiled code in hex format into EcoBT and execute.

With memory accessing and function execution capabilities, We can have the EcoBT works like

the EcoSpire with EcoCast.

With the PyBLE description in 3.6, we build a EcoBT wrapper. With the wrppaer, we can directly

access to EcoBT’s internal memory as shown in Figure. 2.9.

In current implementation, not only the data memory can be accessed. The SFRs such as Px,

PxDIR can be access and modified over the memory BLE characterisitc. A user can do simple

GPIO control over this and achieve some automation control. This also equipts the user to develop

28

Figure 2.8: Characteristic content format for function operations.

Figure 2.9: Access SFR and memory in the MCU.

29

Figure 2.10: Ram code: Upload and execute.

Figure 2.11: Calling existing function calls.

a tool that can inspect the state of EcoBT. Before, a developer can only insepct the state of the

MCU with directly connected programmers. Now we can use this memory accessing capability to

do primitive edge device monitoring.

For the function execution capability, user can have more complicated operations executed on

EcoBT. In Figure. 2.10 and Figure. 2.11, we show how to execute ram code and existing functions

in the image.

We use the threaded code concept of actors and use it to implement a dispatcher on top on a existing

scheduler in EcoBT. In this way, we can still utilize vendored provided BLE protocol stack and

build a application to allow flexibility to access memory and execute functions on EcoBT.

30

Figure 2.12: (a) EcoSpire node: 23×50 mm2; (b) EcoSpire simple node, 13×20 mm2.

2.5 Evaluation and Results

This section shows the efficiency of Enix as a lightweight dynamic WSN OS. We first describe

our experimental setup, including our hardware platform and software tools. Second, we compare

the context switch overhead and the code and data memory footprints of different multi-threaded

scheduler implementations to show that the cooperative threads model of Enix has the lowest

overhead. We also compare the power consumption of loading code segments over RF and Micro-

SD cards. We evaluate our code updating scheme against other methods to show that we reduce

runtime overhead significantly in terms of the size of the uploaded code.

2.5.1 Experimental Setup

This section describes the hardware platform and software tools for Enix.

Sensor Platform

EcoSpire [12] is our experimental platform. As shown in Fig. 2.12, EcoSpire refers to the larger

version for prototyping and application development, and a compact version called the “simple

node” is more suitable for field deployment. This platform consists of an MCU with an integrated

RF transceiver, a chip antenna, a triaxial accelerometer, power circuitry, and an expansion inter-

31

(a) Current sensor. (b) Battery fuel gauge.

Figure 2.13: Power measurement modules.

face. The MCU core runs at 16 MHz by default and comes with 16KB program flash and 1KB data

RAM. EcoSpire’s nRF24LE1 RF-MCU contains an on-chip radio that implements the Enhanced

ShockBurst protocol, which is the core of the newly finalized Bluetooth 4.0 Low Energy Technol-

ogy standard. A 32-Mbit on-board flash memory and Micro-SD expansion capability are included

for nonvolatile data storage. This configuration is actually quite representative of many integrated

RF-MCUs made by TI (CC2430, CC2510) and Z-Wave ones, all with integrated 8051 cores, and

they comprise well over 90% of the RF-MCUs on the market. Most WSN OS cannot fit into this

limited platform and are thus not easily comparable.

To measure the energy consumption of Enix, we developed two power measurement modules as

shown in Fig. 2.13. One is the current sensor module for measuring the instantaneous current of

another EcoSpire in execution. The other module is the battery fuel gauge, which allows EcoSpire

to measure the power and battery capacity itself at run-time.

Software Tools

The software for EcoSpire includes an IDE and graphical user interface tools (GUI) on the host

computer, system software on the sensor node and the base station, and utility tools for image

uploading and RF debugging. We built our IDE with Eclipse by creating a plugin for EcoSpire

32

Table 2.3: Context switch overhead comparison between algorithms for selecting the next running
thread. Unit: µs.

RR Priority-Based
Conventional Linear Check 48.925 55.2
Our Fast Table Lookup 16.325 11.9

Table 2.4: Context switch overhead comparison between different scheduler implementation. Unit:
µs.

RR Priority-Based
C-Coroutines 16.325 11.9
ASM-Coroutines 8.25 8.475
Preemptive 13.45 23.3

development. With this plugin, we provide a fully GUI-based programming environment. This

lowers the burden for programmers to memorize commands and enables them to focus on the

software development process, from editing, compiling, and linking to firmware programming.

2.5.2 Context Switch Overhead of Different Schedulers

To evaluate the context-switch overhead of our cooperative threads in Enix, we implement both

round-robin (RR) and priority-based schedulers with different algorithms that may affect the context-

switching time.

Table 2.3 shows the results of using our fast table-lookup algorithms versus straightforward linear

search to find the next running thread from the runnable queue. We measure the execution time

by taking the average of 60,000 context switches. It is clear to observe that our fast algorithms

significantly improve both RR and priority-based schedulers by cutting the execution times down

to a quarter of the original linear search implementation.

Table 2.4 shows a comparison of context-switch overhead between different multi-threaded mod-

els for both RR and priority-based scheduler. Preemptive multi-threading has the highest context-

switch overhead due to the unpredictable preemption time, and therefore all of the registers must

33

Table 2.5: Context switch overhead comparison between Enix and µC/OS-II by averaging 60,000
context switches.

OS Enix µC/OS-II
policy Coop.-th. Preemp.-th. default
Overhead (µs) 8.47 23.3 250

Table 2.6: Code and data size comparison between different scheduler implementation. Unit: bytes

Model C-Coroutines Cooperative Preemptive
Scheduler RR Prio. RR Prio. RR Prio.
Code Size 918 897 1140 1051 1688 1559
Data Size 79 79 70 69 97 91

be saved and restored during context switch. We implement C-coroutines using C-switch state-

ments and add the priority-based and RR schedulers to it. C-coroutines and cooperative threads

have the feature that context switching occurs only when the running thread calls yield or sleep

functions, and thus they have lower context-switch overhead. The implementation of C-coroutines

uses C-switch statements, and this means that every context switch results in several comparisons

of variables and an absolute jump. Consequently, a context switch of cooperative threads is simply

a replacement of the program counter, stack pointer, and some global variables, and thus it has the

lowest overhead.

To compare Enix with a real-world OS, we ported µC/OS-II to EcoSpire. It is widely used in

industry, whereas no other WSN OSs are known to run on the 8051. Table 2.5 compares the

context-switch overhead of µC/OS-II and our work. The reason why µC/OS-II has high context-

switch overhead is that it uses external memory to store both the per-thread stack and registers,

thus incurring great overhead from many external memory movements.

Table 2.6 shows a comparison of the code and data memory usage between different scheduler

implementations. The preemptive ones consume the most memory for the same reason mentioned

before. Other scheduler implementations require about 1KB of code memory, which is frugal

compared to other regular RTOSs such as µC/OS-II and FreeRTOS, as shown in Table 2.7.

34

Table 2.7: Code and data size comparison between Enix, FreeRTOS and µC/OS-II. Unit: bytes

Enix(Scheduler) FreeRTOS µC/OS-II
Code Size 918 7560 10294
Data Size 79 719 488

2.5.3 Virtual Memory and EcoFS

This section shows the speed and power consumption of SD cards and other serial flash memories

on EcoSpire. The results confirm the reason that the Micro-SD card was chosen for the main

nonvolatile storage, as discussed in Section ??.

Tables 2.8 and 2.9 compare the speed and power consumption of a Micro-SD card with three

other different on-board serial flash memories. These flash memories and the Micro-SD card are

connected to EcoSpire through a common SPI bus. The SD card has fast sequential read and

sequential write properties but poor random access speed due to the characteristics of NAND flash

memory used by the SD card. Most of the routines in EcoFS use sequential reads and sequential

writes such as code data and sensed data. For the other preferences types and network data, their

access unit is a sector, and therefore the access time is equivalent to sequential access. Thus,

the slow random access speed does not affect EcoFS. For the power consumption, the on-card

controller of the SD card causes the highest power consumption among all flash memories. In

fact, the data shown in Table 2.9 is the active power consumption of the SD card, that is, when

the chip-select (CS) signal is asserted. When CS is de-asserted, the power consumption of the SD

card is low. Accordingly, the appropriate usage of the SD card may reduce the total energy cost of

sensor nodes. EcoFS is designed such that once the SD card is selected by CS, it will finish the I/O

operations as soon as possible.

Fig. 2.14 shows the time and energy cost of the sensor node performing 1MB of sequential read

with different block sizes. Due to the requirement of a start command before each sequential read

and sequential write operation, the highest performance and lowest energy cost happen while the

maximum block size of 512 bytes is applied. EcoFS tries to use the largest possible block size

35

Table 2.8: I/O speed comparison between flash chips. Units: Kbytes/s.

SST25 SST25 Pm25 SanDisk
VF512A VF032B LV020 MicroSD

Sequential read 170.7 170.7 176.6 170.66
Sequential write 46.5 71.1 54.8 92.75
Random read 46.4 39.4 43 2.18
Random write 20.9 23.1 17.3 0.11

Table 2.9: The energy consumption comparison between different flash chips. unit: mJ.

SST25 SST25 Pm25 SanDisk
VF512A VF032B LV020 MicroSD

Energy Write 1MB 397.866 501.564 481.404 976.794
Energy Read 1MB 146.454 103.656 85.638 517.314

and reduce the number of random-access operations in order to overcome the power and speed

bottlenecks of the SD card. Owing to the different approaches by SD card manufacturers, we

have tried seven 2GB SD cards made by different manufacturers. We measure the speed and

power consumption of sequential read and sequential write operations shown in Table 2.10. This

comparison enables the user to make price/performance trade-offs.

We also evaluated the delay and energy of the virtual memory. They are 6.328ms / KB and 505.2µJ

/ KB, respectively.

Table 2.10: SD card comparison between manufacturers.

Speed (KB/s) Power Consumption (mW)
Seq. Read Seq. Write Seq. Read Seq. Write

Toshiba 170.7 51.2 133.9 82.8
Kingston 170.7 37.9 145.5 76.7
SanDisk 170.7 92.8 81.4 86.2
TOPRAM 113.8 51.2 150.1 121
Team 73.1 73.1 105.9 108
Silicon Power 128 53.9 154 118.8
Transcend 93.1 92.8 98.2 117.8

36

100 200 300 400 500 600
Number of Bytes Read for Each Read Command

0

1000

2000

3000

4000

5000

6000

T
im

e
 o

f
S

e
q

u
e
n

c
ia

l
R

e
a
d

 1
 M

B
 B

y
te

s
 (

s
)

0

2000

4000

6000

8000

10000

12000

P
o
w

e
r

o
f

S
e
q

u
e
n

c
ia

l
R

e
a
d

 1
 M

B
 B

y
te

s
 (

m
J)

Differenct Access Size While Reading Micro SD Card

Time
Power

Figure 2.14: SD card reading using different block lengths.

2.5.4 Efficiency of Enix Code Update Scheme

The key concept of Enix is the separation of user-defined logical structures and commonly used

library functions. By storing the dynamic loading library ELIB on the Micro-SD card, only the

user-defined logical structures need to be remotely programmed through the RF. Hence, the number

of RF packets for run-time reprogramming is reduced.

We develop five WSN applications compiled with and without Enix. The first three applications

are general WSN tasks:

(1) sense and transmit data to the base station through RF,

(2) sense and log data onto the Micro-SD card,

(3) receive and forward packets to other sensor nodes through RF.

(4) EcoNet Transmit, and

37

(5) EcoNet Receive.

EcoNet is a simple multi-hop network composed of several EcoSpire sensor nodes. The unique ID

and the adjacent nodes are all recorded on the Micro-SD card of each sensor node. Every sensor

node can invoke the EcoFS API to enumerate its adjacent sensor nodes. The fourth application,

EcoNet Transmit, collects the sensor data with a random number and transmits them to the neigh-

boring sensor nodes by enumerating the network data block of EcoFS. The last application EcoNet

Receive receives the sensed data from neighboring sensor nodes and checks the duplication of

random numbers of sequential RF packets, and forwards the valid packets to the base station.

Table 2.11 compares the uploaded image sizes of the above five WSN applications with and without

Enix. The WSN applications without any OS support have binary image sizes larger than 6KB on

average. Due to the large code size of the RF library, only the second application has a code

size less than 3KB. By comparing the same applications that use Enix as the OS, the sizes of

the program images to be transmitted through RF are reduced significantly. These applications

produce 500 bytes of binary image on average except for the fourth application, EcoNet Transmit,

which generates random numbers without calling any kernel or ELIB functions, and therefore it

produces about 1KB of program image.

Most of the run-time reprogramming schemes use the VCDIFF tool to generate the patch between

two binary code images, and the patch will be applied by the sensor node. Table 2.12 shows the

results from running VCDIFF for each of the two different WSN applications mentioned above.

Although the average binary image size is reduced to 4KB, it is still larger than the applications

written on top of Enix.

Table 2.13 compares the energy cost of 1MB data transfer with an SD card and over RF. As the

table shows, reliable RF transmission and reception consumes the highest energy. Thus, for code

swapping purposes, it is more energy efficient to swap code from an SD card on demand than to

swap over RF. In short, by applying Enix as the operating system, sensor nodes can save energy

38

Table 2.11: Runtime reprogramming code size with/without Enix. Unit: bytes.

application Sensing & Sensing RF Tx EcoNet EcoNet
binary size RF Tx & Log & RF Rx Tx Rx
no OS 4825 2903 7646 8233 7770
on Enix 474 673 514 1027 442

Table 2.12: Update code size using VCDIFF delta compression. Units: bytes

Xdelta -9 Sens.& Sens. RF Tx EcoNet EcoNet
RF Tx &Log & Rx Tx Rx

Sensing&RF Tx X 3148 2834 2663 2810
Sensing&Log 2920 X 1937 1921 1936
RF Tx & Rx 4509 4730 X 3168 3226
EcoNet Tx 4927 5201 3760 X 3847
EcoNet Rx 4523 4753 3246 3291 X

and time while becoming capable of efficient remote reprogramming due to the reduced binary

image size.

Table 2.13: The energy consumption comparison between SD card and RF (Full Speed). Units:
mJ.

Reliable RF RF SD Card
Read/Rx 1MB 1540 1306 517
Write/Tx 1MB 1342 450 977

39

Chapter 3

EcoCast: An Interactive Framework for

Parallel Execution of Wireless Sensor Nodes

in Multi-Hop Networks

3.1 Related Work

3.1.1 Remote Firmware Update

Code swapping over the air can be considered a special form of remote firmware update, which

means modifying the firmware image over a wireless communication link. The techniques can be

divided into full vs. partial image replacement. One may completely replace old binary image with

a new one and reboot, and this has been done for single-hop [15] and multi-hop [80, 50] networks,

including epidemic protocol [33] for rapid dissemination. However, full image replacement is

costly, and partial image replacement techniques have been proposed, by transmitting a diff script

or an edit script containing patching commands. Proposed techniques use diff [76], block-level

40

Table 3.1: Comparison of partial image replacement techniques.

work platform data code approach
[76] EYES 2KB 60KB diff-based edit script
[39] Mica2 4KB 128KB Rsync algorithm diff
[48] Mica2 4KB 128KB remote linking / deltas
this nRF24LE1 1KB 16KB host-assisted loading

comparison [39], by finding fixed-size shared blocks [83], or by leveraging higher-level program

structure to generate more concise scripts (called deltas) that exploit the program structure to gener-

ate more concise scripts [48]. However, even a small script can lead to much memory perturbation

due to shifting memory content, leading to wear and tear in addition to high energy consumption

[42]. Moreover, these are not interactive techniques, and they require rebooting after a new pro-

gram image has been installed or patched. Program states will be lost under such circumstances

and thus they are not suitable for interactive style of execution. Moreover, there is no bound on

when the reprogramming will be completed, and there is no confirmation back to the host at all.

An alternative to program image replacement is to use loadable modules for reprogramming. Load-

ing a module entails resolving references to symbols and can be divided into pre-linking [20] and

dynamic linking [19, 58] dynamic loading [11, 27]. Pre-linked modules are smaller in size and re-

quire less information to be transmitted and less complex to load, while dynamic linking requires

less effort to maintain program image consistency in case of physical address conflicts. Mantis OS

(MOS) [?] implements a lightweight POSIX threads and supports remote reprogramming by im-

plementing a command server on the node. Remote reprogramming is limited to modify constants

via the command server, but general function replacement, are not supported.

A shell is an interactive command-line interpreter for a scripting language, while a scripting lan-

guage is a “gluing” language whose primitives consist of higher-level functions or programs rather

than low-level instructions. Scripting languages need not be executed interactively but may be

executed in batch. They can be divided into systems whose interpreter runs on either the node or

on the host computer.

41

Table 3.2: Comparison of scripting systems for WSN.

Scripting Interpreter Turing Weight
System resides on Complete

SensorWare Tcl[64] node yes very heavy
TinyScript[54] node yes above Maté+TinyOS

LiteOS shell[10] node+host no medium
Tapper[86] node no light
Rappit[26] host no light

EcoExec[31] host yes light

Among systems that run the shell on the node, SensorWare [8] handles a subset of the Tcl [64]

language but requires essentially a PDA-class system, too costly for most sensor nodes. Several

other systems also support shell on the nodes, including Mantis, Contiki, and TinyOS. These are

useful for users to invoke commands interactively, but they occupy a significant part of the program

and data memory. To fit in very small memory, Tapper [86] is a lightweight scripting engine

that is optimized for parsing predefined keywords and values in a simple syntax and invoking the

corresponding primitives. While useful for simple command invocation, it does not support general

programming. BerthaOS running on the PushPin wireless sensor nodes can handle Pfrags [55],

which are limited-sized (2KB) program fragments that can be dynamically loaded and executed to

achieve interactivity. However, the host-side interface appears more limited.

3.1.2 Shell and Scripting Systems

One solution to overcome the resource limitation on the nodes is to run the shell on the host

computer, rather than on the node. LiteOS [10] provides LiteShell, a command-line interpreter

that supports unix-like commands and file system naming convention for invoking commands and

updating firmware on the nodes in reachable WSNs. The commands are also available as APIs for

developing user applications on the host PC. EcoExec [31] also runs a wireless shell on the PC,

except it uses Python, a dynamically typed, object-oriented scripting language instead of a unix-

like CLI. Moreover, it also involves the compiler in the loop by dynamically generating optimized

42

code fragments and swapping code to the nodes on demand, although the user needs to write it

in C. For interacting with multiple nodes, EcoExec relies on either iterative constructs (for-loop,

while-loop etc) or using Python’s built-in functional programming constructs (map, reduce, filter)

but these would be executed serially. The runtime scales linearly, and this is considered inefficient

as much of the communication and execution can be parallelized or pipelined. Another issue is

synchrony: nodes may take a different amount of time to finish executing a function, or the results

may be invoked at different times due to the different number of hops that the packets may need

to travel. Whether it is necessary to synchronize the nodes before the next command is allowed

to proceed becomes an important consideration in such a parallel language. EcoExec with its

serial semantics by default assumes synchronous (fully blocking) semantics, which is the most

conservative and at the same time slowest.

3.1.3 Routing protocols in WSNs

Routing protocols can be classified by how the source node finds a path to the destination node:

proactive, reactive, hybrid, and hierarchical. Proactive protocols [70, 14, 63, 61] need to compute

routes in advance, while reactive protocols [71, 41] compute routes on demand. The former incurs

more overhead in ensuring updating and maintaining routing tables and may be slower to respond

to changes in the network, but once the routes are established, then communication can be efficient.

The latter is more adaptive to changes in the network (e.g., node failure, moving) but pays high

cost in terms of packet flooding. Hybrid schemes are possible by starting with proactive routes and

then reactive flooding on demand, by localizing the control messages to a small set of nodes near

the change [69, 3]. However, a hybrid scheme is not necessarily more scalable, since more packets

can be dropped when the number of sources increases [9]. Hierarchical routing schemes basically

rely on local cluster heads or nodes of another tier to more evenly distribute the work [40, 28].

In this paper, we present a multi-hop scheme that is similar to proactive routing protocols, but

43

nodes do not maintain any routing table since topology information is maintained by the Network

Manager that resides on the host side. We also incorporate reactive routing because route are

computed on demand.

3.1.4 Query systems

Query-like interfaces have been proposed for WSN [7, 78, 88], including an SQL-like interface

[57] for retrieving data from the network of nodes. The query syntax follows that of the SQL

language and is fully interactive. However, they are not for supporting reprogramming. In our

work, we not only can query data from nodes but also can upload programs in native code.

3.2 System Overview

EcoCast refers to the software architecture that ties together a wireless sensing platform. This

section describes a specific platform that we used to demonstrate the feasibility of the proposed

idea, plus how the different subsystems interact with each other.

3.2.1 Wireless Sensing Platform

The three main subsystems the wireless sensing platform that we use are the nodes, base stations,

and the host. An overview of these subsystems is shown in Fig. 3.1.

Nodes

Unlike what the name suggests, EcoCast actually does not currently use the Eco ultra-compact

wireless sensor nodes. Instead, it uses a compatible platform based on the Nordic nRF24LE1

44

Application

Handlers

Device Driver

Multi-hop
mechanism

User Interface

Script Engine

Network Topology

Python Interpreter

Application

Handlers

Device Driver

Multi-hop
mechanism

User
Interface

Network topology
manager

Python Interpreter

command

Centralized surrogate
resource manager

Host Node

Mass command handler

Figure 3.1: System overview.

45

MCU, which contains an 8051-compatible core, the nRF24L01 radio in the 2.4 GHz ISM band,

a multi-channel analog-to-digital converter, and general-purpose I/O pins. The hardware supports

reliable communication, including auto-ack and auto-retransmit. This is one of the smallest com-

mercially available platform to date, available in 4×4 to 6×6 mm2 packages with 1 KB of data

RAM and 16 KB of flash. Other platforms in this class include the TI CC2510F16 with an IEEE

802.15.4-compliant radio instead. The nodes are assumed to perform sensing, actuation, relaying,

or any other function just as any embedded system.

Base Station

We chose a base station with Fast Ethernet for its ability to support high-speed transfer and net-

working over TCP/IP, although EcoCast does not depend on any specific interface. The base sta-

tion hardware here is built by connecting a Nordic nRF24L01 2.4 GHz RF transceiver module to

a Freescale DEMO9S12NE64 evaluation board over its 40-pins expansion port. It is programmed

to relay packets between Ethernet and the RF side.

Host Computer

The host subsystem runs on a conventional PC that can communicate with the nodes via the base

station(s). The host computer runs the wireless shell that enables programmers to interact with the

nodes over the air. The host also maintains a suite of tools that help the shell keep track of the state

of the nodes as well as code generation and optimization. The tools include the compiler, linker,

runtime estimator, node database, and version control. These tools are invoked automatically and

transparently to the user as the type commands into the shell. The execution sequence is explained

next.

46

Packet Processing

Network Processing

EcoExec Node

EcoExec Host

Mass Command Handler

Esh
Command

script
User

interface

Type
Marshalling

Mass
Programming
PreProcessing

function
installed?

Generate
Message

Incremental
Linking

Binary
Image

Extract, diff

Type
Demarshalling

Mass
Programming

PostProcessing

Routing
Processing

PacketizingDepacketizing Depacketizing

Relay to
next hopDestination

?

Packetizing

Update
?

Store
handler

Execute
handler

Generate
Feedback

Host subsustem Node subsustem

new to
EcoCast

based on
EcoExec

Legend

Figure 3.2: Execution Flow of EcoCast.

3.2.2 Execution Flow

The user can either type in a command interactively or run an application program (script) written

in Python to call our API library. In either case, the same command is invoked, and EcoCast han-

dles them in exactly the same way. The steps in the execution are node handle creation, command

processing, and message issuing. The flowchart of EcoCast is shown in Fig. 3.2.

47

Joining and Leaving a Network

When the host system starts up, it first searches for available sensor nodes to join the network.

We assume every node has a unique id out of factory. On power-up, a node which has not been

bound yet tries to bind to a host system if there is any or it waits for the host to do pairing while

a bound node tries to find the host it used to bind to before it preforms the same procedure. A

bound node is also capable to pair to a new host system actively. Once a node and a host agree

to connect, the host constructs a node handle object in Python with the unique ID of node and

creates a new entry for it in the node database. Subsequently, all operations on the node, including

function invocation, code update, configuration changes, etc, are all done through the node handle

object. This idea is analogous to the concept of file handles used by most programming languages

for reading and writing files, except these calls translate into wireless communication messages

between the host and the node. A node is leaving the network if the host cannot access it and the

host system removes the relevant node handle object and information in database. A timeout based

method is used to decide when to delete a node.

Language Wrapping

Similar to other language wrappers for middleware systems, our wrapper also performs type mar-

shalling and demarshalling when translating between Python code and the node’s native code.

This requires that the host side know about the architecture profile of the target MCU (endian,

word size, etc) and interface to the function prototype (in C), including the types of the parameters

and return value. EcoCast handles the checking and conversion, by raising exceptions if necessary.

48

Demand Paging and Dynamic Compilation

EcoCast is much more than just a language wrapper for function invocation and type marshalling. It

also performs many OS functions on the host on behalf of the nodes, the most important of which

is host-assisted demand paging. Dynamic compilation is also performed as a step if necessary.

Before invoking a function, EcoCast checks the state of the node’s firmware image to see if the

target function is in memory. If not, then it attempts to swap in the code first, if the binary exists.

If the binary does not exist, then it attempts to compile and link the code from either library source

code or even Python code fragments. It needs to perform incremental linking on the new function

to produce a new binary image.

Communication and Synchronization

Ultimately, everything the host needs to do to a node is done by sending messages via the base

station that the node is associated with. Messages from the host can either specify that new code be

installed or a target function be invoked. A single command in Python may turn into commands to

multiple nodes and gathering results from their invocations. EcoCast not only attempts to optimize

such communication patterns by broadcasting and scheduling, but also supports several different

user-specifiable semantics, including fully blocking and nonblocking execution styles.

3.3 Scripting

This section describes the details of interactive execution involving the host-side scripting environ-

ment.

49

3.3.1 Scripting Language

EcoCast provides a scripting environment as the primary way for users and application programs

to interact with the sensor nodes. It consists of a class library at a higher level for the user to access

the sensor network, a shell called Esh for interactive access, and a class library at a lower level for

runtime support.

Python language

We use Python 1 as our scripting environment for its clean syntax and rich feature support. It

can be run two ways: interactive mode and batch mode. In interactive mode, users can enter

commands as Python statements directly into the prompt on-the-fly. Variables in Python need not

be declared before they are used, and they track the references to objects that are self descriptive

(and thus considered dynamically typed). Typing the name of a variable in interactive mode causes

the object to be “rendered” in its string representation. Thus, in interactive mode,

>>> x = 3 # no need t o d e c l a r e x

>>> x # d i s p l a y s i t s v a l u e as t e x t

3 # i n t e r p r e t e r c a l l s i n t ’ s _ _ r e p r _ _ method

>>> x + 2

5

The runtime system keeps track of the types of the objects dynamically and enforces their consis-

tent use. One direct advantage is that the same code is thus reusable over a wide range of types

without templates (C++) or interfaces (Java). This enables Python’s built-in list data structure to

contain objects of any type, simply by enclosing them in square brackets, such as [" hello ", 3, 2.95].

Python is also object-oriented with its support for classes, inheritance, method invocation, and
1We mean Python 2.6 as of this writing, instead of Python 3.0, which is an intentionally backwards incompatible

release.

50

instantiation. Objects may be instantiated simply by calling the constructor with the parameters, in

the syntax of function calls.

Node Handles

A node handle is a data structure through which the program can access the node, analogous

to a file handle. To create a node handle object in EcoCast, one instantiates the ecNode class

with the statement var_name = ecNode(id), where var_name is the variable name that represents

this node instance, and id is the node’s network address. Subsequently, an application program

can access the node by making Python method calls on the node handle object. Operations on

attributes of such a node-handle object will have the same effect as directly manipulating them in

the application program during runtime. One can use the object .method() and object . attribute

syntax to invoke functions on the node and to access (get and set) attributes on the node. These

accesses are translated into a sequence of actions on the host, ultimately reaching the nodes, and

getting response back, as explained in Section 3.2.2. By treating nodes as objects, programmers

can build complex applications such as graphical user interface or data analysis programs very

easily without getting bogged down with the details of WSN programming.

For interactive mode, an expression is rendered to give the user instant feedback. For built-in

types such as int and string, the values are rendered in the literal form such as 3 and " hello ". For

user-defined types (namely classes), this rendering can be accomplished by defining the special

__repr__ method, which returns a string representation for the object’s value. In our case, we

render it as the constructor syntax with the value of the ID. For example,

>>> x = ecNode (1 2 3) # i n s t a n t i a t e a node h a n d l e

>>> x # p r i n t s t h e s t r i n g r e t u r n e d by

ecNode (1 2 3) # t h e x . _ _ r e p r _ _ () s p e c i a l method

>>>

51

Group Handles

In EcoCast, a group handle is used to construct a group of nodes. The ecGroup class is instanti-

ated with the statement var_name = ecGroup(L) where L is a list of node IDs. The nodes in the

group listen to a specific channel, and each node is assigned a group ID. The ecGroup is useful in

functional programming constructs (Section 3.3.1), since a given group can be reused in several

functional programming constructs without having to reconstruct a new group each time.

Functional Programming Constructs

Python provides map, filter , reduce as constructs for functional programming. EcoCast provides

the corresponding functions for sensor nodes.

map(f, A) is equivalent to [f (A[0]), f (A[1]), f (A [2])...] , that is, forms a new list with the

return values of calling function f on every element of the list A. A more general form of map

takes multiple lists and is equivalent to calling f with arguments taken from the corresponding

elements of the lists, e.g., [f (A[0], B[0], C [0]), f (A[1], B[1], C [1]), ...] .

filter (f , L) returns a new list of members x of L such that f (x) evaluates to true.

reduce(f , L) performs a binary operation f on the first two members of L, and applies the f

operator on the result value with the subsequent member of L for the rest of the list. For example,

if L has five elements, then it evaluates to f (f (f (f (L[0], L [1]), L [2]), L [3]), L[4]). If the

optional third parameter Init is provided, then L[0] in the expanded expression is replaced with

f (Init , L[0]) instead.

Functional programming constructs frequently make use of lambda expressions for defining anony-

mous functions for convenience. For instance, lambda x,y: x+y is an anonymous function that

returns the sum of its two arguments. It can be passed in place of f to the reduce example above

52

to compute the sum of the list members.

We extend the same concept to operating on a list of nodes. Note that in the ecMap operator, f

actually refers to a method rather than a function; both filter and reduce can be used instead of

the mass version though much less efficient due to the lack of parallelism.

ecMap(f, NH) is equivalent to [NH[0].f (), NH[1].f (), ...] , that is, the list of return values

from calling function f on every sensor node whose handle is in the list NH. A more general form

of ecMap() takes additional lists whose members are passed as parameters to the calls.

ecFilter (f , NH) constructs a list from those elements NH[i] of NH for which f (NH[i]) returns

true.

ecReduce(f, NH) calls function f on two arguments cumulatively on the node handle list NH

from left to right, so as to reduce the list to a single value. An optional initializer can be passed to

serve as an initial value.

In the these commands, the node handle list NH can be replaced by a group instance ecGroup to

make it more efficient by reducing the time of automatically constructing a group corresponding

to NH during the execution. We show a simple example using the commands above.

1 >>> l i s t A l l ()

2 [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15]

3 >>> NH = ecGroup ([1 , 2 , 4 , 5 , 7 , 9]) # c r e a t e s group based on i d

4 >>> NH

5 ecGroup ([1 , 2 , 4 , 5 , 7 , 9])

6 >>> ecMap (readTemp , NH)

7 [2 5 . 5 , 2 5 . 3 , 2 5 . 3 , 2 5 . 5 , 2 5 . 2 , 2 5 . 3]

8 >>> e c F i l t e r (lambda x : x . readAdc () < 2000 , NH)

9 [ecNode (1) , ecNode (2) , ecNode (4) , ecNode (9)]

53

Table 3.3: Scoping of symbols

Statement Host scope Node scope Meaning
n = ecNode(id) n, id instantiate node han-

dle whose address is
id. call it n

x = n.readADC() x readADC call readADC function
on node n, assign re-
turn value to x

10 >>> ecReduce (lambda x , y : x + y . readTemp () , NH, 0)

11 177 .5

In line 1, the function listAll () lists the all IDs of nodes which are found and bound to the

host during the start up process of host system. Line 3 construct a group NH of nodes with ID

[1,2,4,5,7,9] . If the user tries to access a node whose ID does not exist, an exception will be

raised by EcoCast. Line 6 obtains readTemp function on each node in list NH to read the temper-

ature and return a list of the results. Line 8 constructs a list of nodes from list NH whose result

of readADC function is less than 2000. In line 10, the ecReduce command cumulatively adds the

result of readTemp function from every node in list NH and gets the summary of temperature.

3.3.2 Esh Constructs

EcoCast provides a command line interpreter named Esh (for “EcoCast shell”). It accepts the full

Python syntax in interactive mode, plus extended syntax for the purpose of mass programming

(Section 3.5) and source-code inlining. Although users can directly load the class library and run

everything from the Python prompt, the reason for this additional layer is to intercept constructs

that must be processed before invoking the underlying Python interpreter. Specifically, inlined C

code can be extracted and preprocessed this way. The rest of the classes can be used directly by

any other Python program without going through Esh.

54

Job Management in Esh

Esh supports running background jobs while executing interactively. The followings are associated

commands.

To run a job in the background, the user simply types the command as usual, followed by &,

similar to most Unix-like shells. The jobs command can then be used to list the command names,

execution status, and the result of all the background jobs. The getResult (id) command returns

the execution result of a specific background job with id. For example:

>>> n . readTemp () &

>>> j o b s

2 Background Job(s)

No. Command Status Result

==

1 n.readADC() Done 2344

2 ecMap(readTemp, nodes) Running None

>>>

Scoping commands

Esh provides commands that change the default scoping of the symbols so that those inside a

designated node can be visible and accessed directly without having to qualify them with the node

instance first. These can be very useful for executing a series of commands associated with a node

or a list of nodes.

scope[node instance | list of node instances | ecGroup instance]

list of statements

55

end

When user enter the scope command followed by a node instance or a list of node instances, all

the functions or variables in the commands entered later are mapped to the attribute resided on the

sensor nodes.

While inside a scope block, The extern [variable name] command enables access to a variable in

the global scope. Here is an example:

1 >>> t = 0 # g l o b a l

2 >>> n = ecNode (1)

3 >>> scope n # s e t scope t o n

4 . . . e x t e r n t # a c c e s s g l o b a l

5 . . . t =readTemp () # n . readTemp ()

6 . . . t

7 2 5 . 4

8 . . . readADC () # n . readADC ()

9 2433

10 . . . end

11 >>>

Line 1 initializes a global variable t. From line 5 to 10, all symbols except t refer to those inside

node n, as specified by the scope statement on line 4 and extern t on line 5. Both readTemp() and

readADC() on lines 6 and 9 refer to functions on node n and are equivalent to n.readTemp() and

n.readADC(), respectively, without the scope command. Note that if n on line 4 is replaced with a

list then each statement in the scope block turns into a map of the function to the elements (nodes)

of the list.

3.3.3 Method Dispatching and Attribute Access

EcoCast performs three tasks as the language wrapper: type marshalling, code wrapping, and code

swapping.

56

Table 3.4: Summary of EcoCast commands

Command Type Meaning
listAll () EcoCast API list IDs of found nodes
listNei () EcoCast API list all the node IDs and the neighbors

of each node
broadcast () EcoCast API find the network topology
path(s ,d) EcoCast API return a route from the source to the

destination
getNodes() EcoCast API obtain a list of node instances

ecNode EcoCast class open connection to one node
ecGraph() EcoCast class open the graph to the network
ecGroup() EcoCast class open group connections to nodes
ecMap() EcoCast Functional

programming API
map function for nodes

ecFilter () EcoCast Functional
programming API

filter function for nodes

ecReduce() EcoCast Functional
programming API

reduce function for nodes

& Esh qualifier run a command as a background job
jobs Esh command show the information of background

jobs
scope ... end Esh block set symbol scope to node or nodes

extern Esh qualifier enable access global variable in sym-
bol scope of node or nodes

Type Marshalling

Marshalling is the task of ensuring that the sender or caller’s data type is properly matched with the

recipient or callee’s, by conversion at runtime if necessary. EcoCast has access to all the prototype

information for the functions and global variables, and it also can look up the architecture model

for information such as the endian, word size, and their mapping to Python ones. Every native type

of every architecture can be modeled as a Python class with the proper conversion operators. For

instance, EcoCast can provide an unsigned, 16-bit, big-endian integer class as follows:

1 c l a s s U I n t 1 6 b i g : # u n s i g n e d 16− b i t , b ig−en d i an i n t

2 def _ _ i n i t _ _ (s e l f , n) : # c o n s t r u c t o r

3 i f (type (n) == type (1)) : # t y p e o f 1 i s i n t

4 # e n s u r e s v a l u e i n range or throw e x c e p t i o n

5 # s t o r e i n s e l f . _rawData

6 e l i f # o t h e r t y p e s

57

7 # h an d l e o t h e r t y p e s

8 def _ _ i n t _ _ (s e l f) : # t y p e c a s t t o b u i l t −i n i n t

9 # form i n t from s e l f . _rawData and r e t u r n

Note that by representing MCU data types this way in Python on the host, the underlying Python

interpreter automatically invokes the proper type conversion operator accordingly. In the example

of UInt16big, any value going to the node can be specified using just a generic int in Python; and

any returning value automatically can be cast into the proper type, all without burdening the user

with having to know all the type variants. For instance,

1 >>> n . s e t S a m p l e s P e r S e c (2 0)

2 >>> n . b i t R e s o l u t i o n

3 12

4 >>> n . readADC ()

5 15

The user does not need to be concerned with whether the samples per second parameter is repre-

sented as an 8-bit, 16-bit, or 32-bit signed or unsigned int, or even 12-bit or 14-bit words on some

PIC MCUs. If the value is not one that can be handled by the underlying hardware, then the user

gets an exception. Conversely, the user also does not need to worry about the data type returned by

the readADC function – it automatically gets cast into the proper type as needed.

Code Wrapping

Code wrapping is a way for the node-handle object to abstract away implementation details as to

where the code associated with a node object is implemented. Some code and attributes may be

maintained (or “cached”) on the host and therefore can be executed efficiently without incurring

expensive wireless communication. In the example above, the setSamplesPerSec and readADC

functions reside on the node, but both may be locally intercepted and optimized. This is because if

there was a previous call to setSamplesPerSec with the same value, and no other host has altered the

58

samples per second attribute, then EcoCast can simply return without actually making the remote

call. Similarly, if readADC is called five times within one second, but it had been configured to

be sampling at once per minute, the user has the option of returning the cached value without

communication. These are all analogous to how standard file I/O performs buffering on general-

purpose computer systems.

Another form of abstraction is the support of convenient syntax for attribute access. If n. bitResolution

is used as an R-value (i.e., on the right-hand-side of an assignment, or passed (by-value) as a param-

eter), then the underlying Python interpreter automatically calls the special method n. __getattr__ (" bitResolution ")

to compute the value. Similarly, if n. bitResolution is used as an L-value (i.e., in the context of

n. bitResolution = 12), then Python calls the special method n. __setattr__ (" bitResolution " , 12)

automatically instead. This mechanism enables the node handle to appear as if it were the node

itself.

3.4 Compilation and Linking

EcoCast performs compilation on two types of code for the node: C source code and Python code.

C programs are written in a style that is native to the node’s MCU architecture. Python code is

normally interpreted in the context of the shell on the host PC itself, but the user can also write

limited Python code to be executed on the node. EcoCast would rewrite the Python code into C

and invoke the C compiler. Then, EcoCast processes the map file to perform linking incrementally

so that a small patch file can be generated.

3.4.1 Compilation from C

C code can be written for low-level code such as device drivers, interrupt handlers, and accessing

many hardware-specific features. C code can also be written for higher-level application features,

59

such as packet formatting, data filtering, etc. EcoCast does not actually compile the code; instead,

it simply invokes whatever compiler is configured for this purpose. This way, the user has access

to the entire C language and the library as supported by the chosen compiler.

In this implementation, we use the Keil compiler for 8051. The supported data types in C as of this

writing include char (1 byte), int (2 bytes), long, float (4 bytes), and pointers (1, 2, and 4 bytes).

For 8051, bit type is supported by hardware with the C (Carry) flag and bit-addressable registers,

including GPIO ports. The EcoCast incremental linker generates directives to control the layout of

the symbols, as explained in Section 3.4.3.

3.4.2 Compilation from Python

Instead of going to C language, the user can actually write restricted Python functions and expres-

sions that are then translated into C to be compiled to run on the node. This is especially useful

for specifying conditions such as threshold or triggering conditions, and these functions are often

passed as the first parameter to a functional programming construct. We currently support named

functions, anonymous functions (lambda), and bounded loops. A named function is defined as

def f u n c t i o n _ n a m e (p a r a m e t e r _ l i s t) :

s t a t e m e n t s

re turn exp r

whereas a lambda expression represents an anonymous function as explained in Section 3.3.1.

One problem is that Python parameters are dynamically typed and cannot be easily inferred. Our

solution is to require the use of naming convention to encode the types of the parameters and the

function. We put a prefix before parameter name to indicate the datatype:

Prefix C_ UC_ I_ UI_ F_

C Type char unsigned char int unsigned int float

60

The types of all local variables are automatically inferred and so as the return value. To facilitate

type inference, we requires that the type of a variable to remain constant.

Arbitrary for-loops are not supported. However, simple for-loops over range are supported and are

converted into efficient C counter-parts. Here is an example of Python-to-C translation.

Python C

f o r i in range (5) :

s t a t e m e n t s

f o r (i n t i = 0 ; i < 5 ; i ++) {

s t a t e m e n t s

}

3.4.3 Incremental Linking

Linking is the step of assigning addresses to symbols after the program source code has been

compiled into object code. To minimize the size of the patching script, linking should be performed

incrementally by considering the way the program has been linked in the previous version. For each

node, EcoCast maintains a directory of the source files, memory map file, and command script of

the node.

The map file contains information on memory usage, list of function segments, segment sizes and

locations in program memory, and the symbol table. The function call tree is also assumed to be

available with the proper compiler directives. Information obtained from the memory map file

can only reveal the size and address of each function but not the actual function name, function

parameters or return value. The information extracted from the map files are used by EcoCast for

type marshalling and dispatching.

To minimize the size of the patching script, the incremental linker attempts to keep these assigned

addresses unchanged between versions. The addresses include not only code but also data, con-

stants, and library routines. If the linker can determine that two pieces of code are never invoked

61

together, then it may consider overlaying them when necessary to fit in the very limited amount

of program memory while reducing the reference patching. Each code segment is given a priority

based on the call tree generated by Keil C LX51 linker. The higher the priority, the smaller the

number, starting from 1 (Priority 0 is assigned to driver code segments.) For each segment, the

larger its call depth, the higher its priority. This ensures that segments that are least referenced be

overlaid first. A least recently used (LRU) replacement algorithm is used to select among segments

with the same priority.

3.4.4 Version Control and Patching Scripts

Conceptually, the host subsystem maintains a database entry for keeping track of the memory

layout and source files of each sensor node. However, it is inefficient and not scalable to a large

number of nodes, because we expect some or most nodes to have identical memory layouts. To

eliminate redundant entries, we maintain the information according to the firmware version. Nodes

with the same version share the same entry, and a new entry is created when functions are installed

or updated, resulting in distinct memory layouts. This organization makes it efficient to re-compile,

re-link, and updating code to a group of nodes at a time. Moreover, to encourage experimentation

EcoCast integrates version control for the node firmware to enable roll back to any previous version

of the firmware as simply as a simple “undo” command.

Upon generation of a new program image, binaries of the new function are extracted while pre-

existing segments that are updated are diff ed with the original binaries to generate the patching

binaries. These patches are then wrapped into store messages for installation or update on the

target node.

62

3.5 Reprogramming and Execution

One user command on the host subsystem can be expanded into a sequence of actions on the host

as described in the previous section. Then, they turn into messages that are received and executed

by the nodes. The host first sends patching scripts to a node if necessary, and then sends the

message to invoke the user’s desired function. Moreover, EcoCast supports interaction with not

only a single wireless sensor node but also an entire group of nodes. It attempts to parallelize

their communication and execution as much as possible. This section first describes how the

node handles messages, followed by group reprogramming over the air, and group invocation of

functions with specific discussion on synchrony issues.

3.5.1 Execution Mechanism on the Node

The Node subsystem consists of two software components: store and execute. These two main

components make use of the same underlying messaging mechanism for wireless communication.

Store Component

The store component is responsible for processing incoming data to the node. This happens during

function installation or variable updates. A store message contains a 2-byte target address, 1-byte

nonvolatile flag, a 1-byte length field, and the data payload. The nonvolatile flag indicates whether

the data should be stored in nonvolatile memory such as EEPROM or flash, or if it should be written

to RAM only. The difference is that the RAM content is lost when the device is rebooted. It is

up to the programmer to decide whether the program is to be permanently updated or temporarily

changed. In our case, lambda expressions are kept in RAM only.

63

Execute Handler

The execute component carries out programmer designated function, plus basic functions for mem-

ory access. It contains a set of get handlers that return memory content at a given address, and this

mechanism can be further extended as a debugging utility. Unlike EcoExec, which assumes that

the code must be copied from external EEPROM into on-chip RAM before it can execute, EcoCast

assumes execute-in-place (XIP) model for program memory, although it is also possible execute

from RAM for code that is meant to be run temporarily and discarded, such as most lambda ex-

pressions. In any case, the firmware is structured such that no need for rebooting. We achieve this

by setting the highest priority on the code segment for the EcoCast runtime support such that it

cannot be modified at run time.

3.5.2 Group Reprogramming of Nodes

To reprogram (patch) a set of nodes as opposed to an individual node, EcoCast performs the fol-

lowing steps, as shown in Fig. 3.3. In Step 1, the host individually sends JOIN message to ask the

nodes that need to be reprogram to join the group. This group of nodes (the nodes with green spot

shows in Fig. 3.3(b)) would listen to a specific channel and every member node keeps a bitmap

to track packet loss. In Step 2, the host broadcasts the DATA messages via the specific channel on

which only the group member can receive, as shown in Fig. 3.3(b). The DATA message includes

the code data and the memory address to store the code. Each time a node receives a DATA mes-

sage, it stores the code to the specific memory location and sets the corresponding bit of bitmap.

After all DATA messages are sent, the host broadcasts a REQ message (Fig. 3.3(c)) in Step 3, and

all the member nodes reply with a BMP message containing their bitmap to the host to indicate

missing DATA messages. (Fig. 3.3(d)). A simple TDMA technique is applied to the BMPs from

the nodes, where each node waits until its time slot as determined by its group ID and sends the

BMP back to the host. The host rebroadcasts the lost DATA packets according to the BMPs and

64

Unicast msg from host

Broadcast msg from host

Msg from nodes

Nodes in a specific set

Other nodes

Figure 3.3: Reprogramming scenario

65

Wait the execution
time analyzed by host

Wait a short period of
time

All nodes start execute
specific function

Leader node

A set of nodes in WSN

Host

Broadcast message from host

Unicast message from host

Message from leader node

Message from other nodes

Figure 3.4: Function execution sketch

repeats the steps above until all members are reprogrammed correctly, unless the user decides to

abort.

3.5.3 Group Execution of Functions on Nodes

To ask a node to execute a function, the host just needs to send an EXEC message to the node and

wait until the node replies with the result. To ask multiple nodes to execute a function, such as the

case with map, it would be inefficient to simply iterate over the nodes one at a time. Instead, the

following protocol is used, as sketched in Fig. 3.4. Initially, the host broadcasts an EXEC message,

and the nodes execute the specified function. However, at this point the nodes should not reply as

soon as they are done, because it is likely to run into collision if not coordinated. The host is not

blocked but may send a PROBE message to see if a node has completed the previous call. Instead

of sending a PROBE to each node, the host sends it to only the node acting as the leader, since it

is expected that all nodes would complete execution around the same time. The leader replies with

66

either a WAIT if it is still running and the host repeats; or the leader replies with a READY if it has

finished. Then, the host broadcasts a REQ message and all the nodes return their execution results

similar to the group reprogramming in Section 3.5.2. The nodes reply with RESULT message in a

simple TDMA scheme, instead of the bitmap.

One question is how long the host should wait until it tries a PROBE. The overhead for the leader

is high if we probe the leader too often, but if time interval between each probe is too long, the

response latency increases. For this reason, a timing analysis tool named Bound-T [82] is used to

give assistance. Bound-T computes an upper bound on the worst case execution time (WCET) of a

program. EcoCast use Bound-T to analyze function execution time in order to perform a efficient

probing scheme.

3.5.4 Background Job Management

To handle a background job, the interpreter assigns a thread to execute the command in the back-

ground, and the background jobs manager records the command, execution status and the informa-

tion of the corresponding thread. When multiple jobs exist in the system, EcoCast is responsible

for mapping the incoming packets from the nodes to the associated jobs on the host. Since every

incoming packet is related to a node instance on the host system, the associated job is in charge of

the packet. Note that we apply a locking scheme where an attribute of a node instance that resides

on node can be access only by one job at a time to make the node preform the correct execution

process. The jobs command is provided by EcoCast for the user to monitor the execution status

and access the result after the background job is done.

67

3.6 Python Bluetooth Low Energy Wrapper

Base on what we have done in the EcoCast, python language does provide a more expressive way

of development for these edge devices. There are still some improvements can be done in terms of

better language binding. Also, when more and more edge devices are using BLE as their wireless

communication protocol, it would be suitable to have python binding for the BLE.

Here we developed a new python base BLE peripheral wrapper called PyBLE. With the BLE data

structure in mind, we have corresponded class design for the peripheral, service, and characteris-

tics. A skeleton of profile can be described in Figure. 3.5. In a profile handler, the basic operations

for a characteristic can be handled. Basic operations are

• Read

• Write

• Notification

The linkage of a profile hanlder and a profile on the BLE peripheral devices is done by assiging

the UUID of the profile handler. Similar to the BLE structure design, profiles and characteristics

are identified by UUIDs. This numerical identification scheme is not easy for people to compre-

hend, thus a naming scheme is also provided in PyBLE. When a peripheral is connected, we can

use string to identified the profiles and enhence the readability of the source code as shown ing

Figure. 3.6.

In EcoCast design, we basically describe the connected node into a programming language in-

stance. we also bring in functional programming constructs to allow macroprogramming. In Py-

BLE, since the Python language has all features above and support natively, to have a fully Python

compatible design is prefered. With a compatible python design, grouping, funciton programming

constructs can be done in the scriting language level. Instead of mapping edge devices into in-

68

Figure 3.5: Profile handler skeleton and a default profile handler implementation.

69

Figure 3.6: PyBLE usage

70

Figure 3.7: A simple perpheral is described by PyBLE.

stances, the PyBLE is to describe a type of pheripheral as a class. When a peripheral is connected,

user can map the connected pheripheral into a pheripheral class and instantiate the class. When

disconnecting, the instance is destroyed. Then in the cyber world, the actual peripherals can be

represented correctly. The peripheral class can also be reused. A simple implmentation of a actual

peripheral is shown in Figure. 3.7.

Another advantage of using PyBLE is that composability of profiles and peripheral. The profile

design is describe how a peripheral provides some data no matter what actual MEMs sensors are

used in the system design level. So a peripheral can register multiple profiles to present what

kinds of capabilities that this peripheral can provide. For example, a 3-axisal acceleration profile

is impelmented in Figure. 3.8. All peripherals that provides this 3-axisal capability can be easily

linked during the initialize phase. If an user wants to have a slightly different implmenetation such

as different data processing, he can always inheret this acceleration profile and build their own

handlers.

PyBLE comes with all SIG defined services and profiles in the library. Such as Heart Rate profile

and battery profiles and ...etc.

71

Figure 3.8: An example implementation of a exisintg acceleration profile.
72

Figure 3.9: A BLE battery service hanlder implementation.

73

Table 3.5: Test cases of functional programming

Name Description Size1 Iterative command Functional programming

TEMP Read the output of temperature sensor and return to host. 202
bytes

g = ge tNodes ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
f o r n in g :
n . readTemp ()

g = ecGroup ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
ecMap (readTemp , g)

ADC Reads the output value for the digitalized output of triaxial
accelerometer return to host.

212
bytes

f o r n in g :
n . readADC ()

ecMap(readADC,g)

ADC_1MIN Samples the output value of triaxial accelerometer in 25Hz
for one minute and return the average of the outputs.

372
bytes

No iterative version ecMap(readADC1Min,g)

LIGHTING Control the switch of the light(on/off) 12
bytes

n=Node(id)
n.turnOn ()/ n. turnOff () No Functional programming

DOORMON Monitor the status of the door in eight seconds 417
bytes

n=Node(id)
n.DoorMonitor() No Functional programming

1 The uploaded size is the size of patching binary generated by diff’ing the original binary with the new binary.

With PyBLE, a peripheral can be represented by some profile handlers. This allows users to repli-

cate pheripherals in the gateway devices and reused on another gateway devices.

3.7 Evaluation

3.7.1 Experimental Setup

Our setup consists of a PC acting as the host connected through an Ethernet base station to ten

nodes as described in Section 3.2.1. The nodes are all equipped with an on-board triaxial ac-

celerometer, and different nodes have their output pins connected to actuators for lighting control.

At the beginning, all nodes have been programmed with only the essential drivers, including SPI,

flash memory, and RF, but no application code. Each application is incremental linked and up-

loaded by EcoCast on demand.

3.7.2 Functional Programming

Three applications are created and the details are shown in Table 3.5. All the nodes are in the

single-hop range and the RF transmission power is 0dBm. We use these applications to evaluate

the performance of parallelizing remote reprogramming and function execution of EcoCast. In this

section, we evaluate the performance of functional programming constructs of EcoCast in terms of

74

reprogramming latency and detailed breakdown of round-trip command latency.

Reprogramming Latency

EcoCast performs group reprogramming to reduce the reprogramming latency while reprogram-

ming multiple nodes. Fig. 3.10(a) shows the comparison of latency between sequential repro-

gramming and group reprogramming by EcoCast for installing the ADC application on-the-fly.

Installation of a new application entails several steps, including linking, diff binary, uploading, and

group forming if reprogramming a group of nodes. We demonstrate the reprogramming latency of

applications TEMP, ADC and ADC_1MIN by group reprogramming of EcoCast where the size of

group is 10 nodes. The applications are uploaded in sequence. Fig. 3.10(b) shows the latency of

different steps. Note that ADC and ADC_1MIN do not have time of forming group because they

can reuse the same group. The linking time of ADC_1MIN is longer since EcoCast tries to keeping

the shared functions of the two ADC applications at the same locations. On average, it takes about

6.15 ms to upload on byte and write it into flash memory. In our experiments, the compilation-

linking-installation-confirmation procedure require less than 4 seconds total for 10 nodes, which

is acceptable. Several other wireless reprogramming schemes actually do not confirm if the nodes

have been programmed successfully.

Round-Trip Command Execution Latency

The round-trip command execution latency, also called the response time, is defined from issuing

the command to receiving the results back on the host. We measure the response time of TEMP

and ADC by serial execution iteratively (i.e., for-loop) and in parallel (using ecMap) over a range

of group sizes from 1 to 10. We execute each application 50 times and record the average response

time. The result is shown in Fig. 3.12.

As measured in experiment, the runtime scales linearly for serial execution. For parallel execution,

75

0

7.5

15.0

22.5

30.0

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Nodes

EcoCast Parallel Reprogramming
Normal Reprogramming

(a) Reprogramming time of ADC.

TEMP

ADC

ADC_1MIN

0 1 2 3 4

Time(s)

Linking Diff Binary Forming group
Uploading

(b) Ratio of different steps of latency in reprogramming 10
nodes

Figure 3.10: Reprogramming Latency

60.200

60.275

60.350

60.425

60.500

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

(a) Response time

0

1

2

3

4

20 40 60 80 100

ti
m

e
(s

)

Number of Sensor Nodes

Forming Group Execution & Probing
Collecting Results

59

60

61

62

63

(b) Ratio of different phases

Figure 3.11: Response time of ADC parallel execution of EcoCast

76

0

0.15

0.30

0.45

0.60

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Normal For-loop Execution
EcoCast Parallel Execution

(a) TEMP

0

0.15

0.30

0.45

0.60

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Normal For-loop Execution
EcoCast Parallel Execution

(b) ADC

Figure 3.12: Response time of serial execution and parallel execution of EcoCast

we plot the worst case that includes the additional phase of group forming before execution, even

though for the common case the same group can be reused. With this assumption, The response

time of serial execution exceeds that of parallel execution for group sizes of 6 and higher in both

TEMP and ADC applications. This means the group overhead can be amortized even for a modest

number of nodes even for very short execution delays. Fig. 3.13 shows the breakdown of parallel

(ecMap) execution times of ADC into three phases: forming group, execution and probing, and

collecting results. The group formation time can be eliminated by reusing the same group, while

the execution and probing phase remain nearly constant. The collecting results phase would still

grow linearly but at a much lower slope. For applications with long execution times, the times of

forming group and collecting results phases become negligible. The measured result of ADC_1MIN

shows in Fig. 3.11(a). By following the TDMA schedule, we estimate the response time with large

group sizes according to the trend of Fig. 3.11(a) and show the time of different phases in Fig.

3.11(b). We observe that forming group phase and collecting results phase take only 1.18s in a

group with 100 nodes and represents a small portion of the total response time.

77

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

)

Number of Sensor Nodes

Forming Group Execution & Probing Collecting Results

Figure 3.13: Ratio of different phases to execution time of ADC via parallel execution of EcoCast.

3.7.3 Multi-hop Networking

In this section, we show the evaluation results of our multi-hop networking method. Topology

discovery was done by calling broadcast() on nodes in breadth-first order. A distributed scheme is

possible, but we perform a centralized BFS on the host as a test case along with lighting control

and door monitoring to demonstrate interactive command issuing over the multi-hop network.

LIGHTING is for lighting control and supports commands for turn on/off a light. DOORMON is for

door monitoring by checking if the door is open or closed. We evaluate their performance in terms

of the latency.

Network Establishment

To stress test topology discovery, we spread out the ten nodes about 30 cm apart while setting the

RF transmission to the minimum level of −20 dBm. The rather low signal-to-noise ratio (SNR)

result in more bit errors in the RF transmission. We test many rounds when finding the topology

information, and Table 3.6 shows six rounds. The union of the connectivity graphs is shown in

Fig. 3.14. Due to packet loss, it is necessary to continue retrying finding neighbors a number

of times to wait for ACKs before giving up, and we set the timeout to 1 second. It takes 9.5 to

78

Figure 3.14: Union of connectivity graphs

20.7 seconds, depending on the specific RF condition. With higher SNR and shorter timeout, the

topology discovery time can be reduced by an order of magnitude. The maximum number of hops

in all discovered topologies is five.

Reprogramming Latency

The nodes did not have the application code for LIGHTING or DOORMON in the firmware before

deployment. Upon invoking the turnOn() and turnOff () functions for LIGHTING, EcoCast pre-

pares the binary for the functions, each of which is six bytes, and transmits two packets to the target

node, which patches its own firmware and executes. As shown in Fig. 3.16(a), it takes 35.9 ms to

relay a packet and reprogram the node that is one hop away from the host, with an average of 2 ms

for each additional hop. For the DOORMON application, the code size is 417 bytes, which must

be divided into 30 packets to the nodes and must be fully acknowledged. As Fig. 3.16(b) shows, it

takes 1.99 seconds to reprogram a node that is one hop away and 2.31 seconds for five hops away.

Round-Trip Execution Latency

The total response time is the sum of delays for selecting a multi-hop path, generating the payload,

relaying a packet, executing the handlers, and transmitting the reply packet back, as shown in Fig.

79

(a) (b)

Figure 3.15: (a) Latency of finding a path for each node, (b) Response time of calling LIGHTING

function.

Table 3.6: The Latency of topology discovery phase

Round Latency(sec) Neighbors of each node
1 20.789 0: [1, 2], 1: [0, 2], 2: [0, 1, 5], 3: [], 4: [], 5: [2,

4, 6, 8, 9], 6: [4, 5, 8, 9], 7: [3, 9], 8: [5, 6, 9], 9: [3, 5, 6, 7, 8]
2 9.534 0: [1, 2], 1: [0, 2], 2: [0, 5], 3: [], 4: [1, 5], 5: [2,

4, 6, 8, 9], 6: [4, 5, 8], 7: [3, 9], 8: [5, 6], 9: [5, 7]
3 17.694 0: [1, 2], 1: [0, 2, 5], 2: [0], 3: [], 4: [5, 7, 8, 9], 5:

[1, 4, 6, 8, 9], 6: [5, 9], 7: [3, 4, 5], 8: [], 9: [4, 6, 8]
4 17.713 0: [1, 2, 5], 1: [0, 2, 5], 2: [0, 1, 5], 3: [], 4: [3, 5, 7, 8],

5: [0, 2, 4, 6, 8, 9], 6: [5, 8, 9], 7: [3, 4], 8: [4, 5, 6, 9], 9: []
5 15.537 0: [1, 2], 1: [0, 2, 5], 2: [0, 1, 5], 4: [], 5: [1, 2, 4, 6,

8, 9], 6: [4, 5, 8, 9], 8: [4, 5, 6, 9], 9: []
6 12.368 0: [2], 1: [0, 2, 5], 2: [0, 1, 5], 4: [5, 6, 7, 8], 5: [1, 2,

4, 6, 8, 9], 6: [4, 5, 8, 9], 7: [4, 5], 8: [4, 5, 6, 9], 9: [5, 8]

3.15(b). To invoke the turnOn() function in the LIGHTING example, it takes 16.6 ms to find a path,

10 ms to generate the payload, and 28.40 ms to relay the packet and execute the handler on the

node. That is, the response time is dominated by the transmission and execution latency, especially

as the hop-count increases. While it is possible to continue increasing the hop count, the user may

want to consider the practicality aspect and whether the added latency is acceptable when lowering

the transmission power level.

80

(a) Light control (b) Door monitoring

Figure 3.16: The latency of adding functions

(a) Light control (b) Door monitoring

Figure 3.17: The latency of calling functions

81

Table 3.7: Comparison of Memory footprint (bytes)

OS or Runtime Program memory Data memory
Maté[53] 39746 3196
SOS core[27] 20464 1163
TinyOS with Deluge[33] 21132 597
LiteOS[10] 30822 1633
Mantis OS[?] ≈ 14000 ≤ 500
EcoCast ≈ 5200 ≈ 300

3.7.4 Memory Footprint on the Node

EcoCast can be configured with or without multi-hop and drivers. The core occupies 1550 bytes

of program memory and 200 bytes of data memory. With the drivers, EcoCast takes about 4000

bytes of program memory and 250 bytes of data memory, still significantly smaller than other

works. The multi-hop takes 1200 bytes of program memory and 58 bytes of data memory. Table

3.7 shows a comparison of memory footprint.

3.7.5 Discussion

The experimental results show parallel execution of functional programming constructs to work

well on single-hop network; the performance is adequate for a modest-sized multi-hop network,

but there is plenty of room for optimizations. One way to speed up is pipelined execution, although

this is much more difficult in practice than in theory due to wireless communication. Another way

is to explore asymmetric routes. If some nodes are not part of the targeted group for function

invocation, then perhaps they can play more of a relay role, and reply packets need not take the

reverse routes as request ones. The more even distribution of workload may also have energy

efficiency benefits. Many more optimizations are possible for filter and reduce constructs in a

multi-hop network. The contribution of this work is not so much the relatively simple multi-hop

protocol but the interactive execution framework, on which we hope many innovative ideas at these

higher levels can be implemented quickly and put into practice.

82

Chapter 4

A Modular Backend Computing System for

Continuous Civil Structural Health

Monitoring

4.1 Background

4.1.1 Event Triggered v.s. Continous Monitoring

Sensor systems for structural health monitoring (SHM) can be categorized into event-triggered

and continuous monitoring systems. An event-triggered one wakes up sensors to collect data in

the presence of some pre-defined events, such as earthquakes and heavy winds. In contrast, a con-

tinuous monitoring system collects all data samples. In general, SHM systems require sampling

rates on the order of 1000 Hz and can be considered continuous monitoring systems. However,

Depending on the response time and battery-life requirement, the system may perform undersam-

pling, i.e., by sampling at the full 1000 Hz rate only for a few minutes per day and sampling at

83

50 Hz or lower at other times. One such system is Pakzad[66] which has deployed a total of 64

nodes on the Golden Gate Bridge in San Francisco, California to test the scalability and perfor-

mance of the wireless sensor network. Each node is based on the commercially available MicaZ

platform with two accelerometers and one temperature sensor. Ho[30] deployed a solar-powered

vibration and impedance sensor based on the iMote2 on the cable-stayed Hwamyeong Bridge in

Busan, South Korea and evaluated hybrid SHM capability, solar-powered operation, and wireless

communication.

4.1.2 PipeTECT system for SHM and Water Pipe Monitoring

In our previous papers[79][45][44], we have developed a continuous monitoring system called

PipeTECT to monitor disaster events on water pipelines. The smart sensors, called DuraMotes,

perform noninvasive monitoring on the exterior of the water pipes by measuring its vibration at

1000 Hz. The same sensing mechanism can be applied to civil structure health monitoring as well,

such as buildings and bridges. The PipeTECT system has a backend computing system for con-

trolling sensing system, storing acquired data, data post-processing, and data dissemination. We

have design the backend system to provide a web service for users. This makes the system accessi-

ble on regular personal computers and also modern mobile devices with Internet connectivity. As

with many experimental systems, the massive amount of data generated by our sensing systems

on pipelines and other civil structures were archived on our backend server as files. To discover

a sudden disaster event in time domain, continuous monitoring was necessary, since events could

not be readily detected by the sensors themselves without a global analysis of data from different

sensors in the network. Due to the limited number of accessible locations (e.g., manholes or fire

hydrants) for noninvasive water pipe monitoring, the sensors cannot be densely deployed but are

often kilometers apart, one of the fundamental tasks is rupture localization, which is to pinpoint

where rupture occurs. Unlike triangulation, which can be done as collaborative event detection,

the backend server collects vibration data from sensors deployed over the entire city and computes

84

the pressure change gradient on a hydraulic model. Subsequently, the system must trigger a noti-

fication to administrator for how to respond to the event if rules for automatic response have not

been defined.

One issue with the backend is how data are stored and handled. The web server is the universal way

for the dissemi- nation of all types of data, including sensor data, and the natural way is to organize

the data as files whose names encode the date, time, location, and other metadata. The data may

even be in human-readable text for manual inspection. Also, if plain text files are used instead of

self-descriptive formats such as XML, then the processing algorithm may need to load in different

parsers specific to each fileâĂŹs data format or risk incorrect data interpretation. However, it can

be inefficient to search the very large volume of data, and the text representation can also be space

requirement. Although text files are easy to compress, it will only exacerbate the search problem.

4.2 System

Our PipeTECT monitoring system can be divided into sensing and backend subsystems. The nodes

in our sensing subsystem form a tiered network, where the sensing tier is wired for underground

operation, and the aggregation tier is wireless for above-ground operation. Our backend system is

further divided into three subsystems base on functionality: mudular kernel, data collection and

storage, and data dissemination. We briefly review our sensing system first and then describe our

backend system.

4.2.1 DuraMote Smart Sensor

DuraMote is the name of our tiered networked sensing system. The two tiers are the sensing tier

and the aggregation tier. Because the system was originally designed for water pipeline monitoring,

and most water pipes are underground, the sensing tier must be able to transmit data and power in

85

Figure 4.1: Gopher

Figure 4.2: Accelerometer

underground settings. Therefore, a wired network solution is used for the sensing tier. Multiple

sensors in a sensing tier can be connected to a data aggregator node at the sensing tier, whose

nodes can collaborate to route data to or from an Internet uplink. Because the data aggregators

are far apart from each other, a wireless network is more practical in terms of ease and cost of

deployment. To support this tiered network operation, we design two types of nodes: a sensing

node named Gopher and an aggregator node named Roocas.

A Gopher node as shown Figure. 4.1 is the wired smart sensor to be deployed directly on the exte-

rior of pipelines or on civil structures for non-invasive monitoring. It contains up to three uniaxial

86

Figure 4.3: Roocas

MEMS accelerometers (SD1221L-002) as shown in Figure. 4.2, where the Z-axis accelerometer

is soldered on-board while the X and Y axes ones are of removable type. The main board also

includes a tilt sensor and expansion sockets for connecting other sensors, such as humidity, pres-

sure, and gas. The sensor signals are digitized by the QuickFilter chip (QF4A512), which contains

a 4-channel, 16-bit analog-to-digital converter with digital signal conditioning functions. It can

be configured as a band-pass filter for different applications and generate different sampling rate

accordingly. The Gopher nodes support Controller Area Network (CAN) as its primary data com-

munication interface in daisy-chain topology in the sensing tier. One end of the daisy chain is a

data aggregator for Internet uplink. The sensor nodes transmit sensing data via CAN bus upstream

through the data aggregator, which has the option of logging data in its own memory card and pro-

cessing before forwarding the data to the backend. Data can also travel downstream for commands

and system administration.

A Roocas node as shown in Figure. 4.3 is a data aggregator node without sensors. It contains

communication interfaces for downstream, upstream, and in-tier communication. The primary

downstream interface to Gophers is CAN, which is used for both data communication and power.

The primary in-tier and upstream interface is Wi-Fi (802.11n, up to 250 m) by default, although

Ethernet is also an option. In addition, the Roocas board contains expansion interfaces for other

87

wireless modules, including XBee (up to 1 km range), XStream (by Digi, up to 64 km range), and

Bluetooth Low Energy (BLE). The XBee and XStream can serve as the protocol for the aggregation

tier, whereas BLE is more suitable for downstream, but there are no inherent limitations. Another

common use of the Roocas is data logging onto a Secure Digital (SD) flash memory card when

an uplink to the backend is unavailable. We use the RJ-9 modular connector commonly used for

telephones as the wires for our CAN bus. As RJ-9 cables contain four conductors in a bundle, we

use two of the wires for data and two for power distribution. Each Roocas node can connect up

to 4 Gopher nodes in daisy-chain topology due to bandwidth limits of 1 KHz sampling rate, even

though CAN itself can support a much larger network. The length of cable is up to 25 m between

Roocas and Gopher, mainly due to cable resistance. If a longer length is desired, then cables of

better quality or an extra cable must be used to reduce the voltage drop. This design enables a

Gopher node to reach an underground pipeline covered by a metal lid or sealed confined spaces

while the Roocas is deployed aboveground with a steady power supply and Internet uplink.

4.2.2 Backend System

We started out our backend system design with following goals in mind: cross-platform, universal

accessibility, dynamic software module loading, fast data storage service, visual representation,

and service mashup capability. Our backend system can be viewed as a next-generation supervisory

control and data acquisition (SCADA) system, but instead of being implemented in native code

only for one operating system, our backend system is executable on Windows, Linux, and Mac

operating systems. We achieve the cross-platform interoperability by implementing most backend

features with the Python programming language, which runs on most operating systems. On the

front end, we build our user interface as a web application to be access from multiple devices

with minimum effort. We now describe the subsystems in the backend, including the kernel, data

collection and storage, and data dissemination.

88

Networking Task

Packet
Reciving

Packet
Parsing

Data Processing Task Information Dissemination Task

Data
Conversion

Event
Detection

Picture
Generation

JSON WebSocket

Post
Processing

DataBaseFile

File
Compression

Data Processing and
Storage Task Data Dissemination Task

Figure 4.4: Overview of Our Backend System

Kernel

The kernel subsystem is responsible for coordinating the flow of data in our backend system by

dispatching the associated tasks in each stage, as illustrated in Figure. 4.4. The basic tasks are

networking, data collection and storage, and data dissemination, while additional tasks can also

be loaded by the dispatcher as needed. The kernel dispatches the networking task to receive data

packets from the sensing subsystem. Then, the kernel dispatches the data collection and storage

task to process the received data and store the results. Once the data or results are available, the

data dissemination task renders them in different forms as requested.

Each task is a standalone process and communicates with another task through message queues.

Unlike a process (in operating systems) that needs to be spawned and is destroyed upon completion,

tasks (in our kernel) always exist in the system and are awaiting messages. In a task, there are one

or more software components. These components are loaded when a new message received by the

task. The execution sequence of these software components is either sequential or parallel base on

the sequence of execution. Sequential software components can be grouped as a thread.

89

When a data is placed on the message queue, the dispatcher will check if the recipient task exists in

the system and loads those that will be needed. Upon receiving a message, the task process loads

all registered software components on the fly. This dynamic loading into the plugin system of the

kernel is accomplished by Python’s metaclass[81]. With the plugin system, new tasks and software

components will be loaded dynamically without requiring system reboot. The plugin system also

checks if updated tasks exist by checking the object hash of the task and components. While

software components are loaded when needed, It takes more time to fully replace a task on the fly

and may not be fast enough for a continuous monitoring system. Thus, the updated tasks would

be invoked first and start handling incoming data, and the dispatcher would first disconnect the

message queue to the old task. The old task would continue to exist after current data is handled.

Data Collection and Storage

The data collection and storage subsystem is divided into two tasks: network communication and

data processing. The former interfaces with the sensor network, while the latter handles data

storage as well as applying algorithms on the data.

The kernel dispatches the networking task when a data packet is received on the backend sys-

temâĂŹs network interface from the PipeTECT sensing subsystem. The data packet is first cached

in the message queue before a computation unit becomes available in the networking task. Then,

the networking task parses the packet into multiple data records according to the pre-defined for-

mat and puts them in the outgoing message queue to the next task, so that they are ready for

further processing. There may be multiple network interfaces with different message formats and

communication protocols, but usually only one networking task exists in the backend system.

The data-processing task inputs a set of received data records and applies processing algorithms

to extract higher-level knowledge about the structure being monitored such as its structural health,

remaining service lifetime, residual payload capacity, or the rupture location. The task can also

90

store the raw or processed data on the backend computer’s disk space or send them to the dissem-

ination task, which can render the data in different forms to users on other computing systems.

The data processing task first converts the data records into the appropriate unit before sending

data records to other tasks or other software components in the task. The converted data may be

sent directly to the data dissemination task for visual rendering, to the file logging component, or

to the event-detection component to see if a warning message need to be issued to administrators.

Data processing in a task can be executed in parallel depending on the knowledge distilled from

the collected data.

Data Dissemination

The data dissemination subsystem is responsible for not only making raw and computed data avail-

able for download but also for handling queries into the data sets and rendering them for visual

presentation. For a continuous monitoring system, the raw data should be archived and made

available to researchers and future investigators, and in the most extreme cases, the data should be

made available in entirety. However, most of the time, the user may be interested in only selected

segments that satisfy the filtering criteria; in fact, even with filtering, the number of data records

may still be too large to show in the raw form. However, limiting the data to a small subset may

be insufficient for detecting long-term trends. Today, most such visualization systems are imple-

mented today as a standalone window-system application. In contrast, we start our dissemination

system as a web service, which is readily accessible by all systems with a browser.

The first generation of our graphical user interface is based on HTML and static image files gen-

eration. Generated files can be put on a existing web server and be ready for viewing by users.

Figure. 4.5 show example screenshots of static PNG images generated by the data dissemination

process using the matplotlib[34] Python library to visualize the sensing data collected by Gopher

nodes. The generation time of an image depends on the size of the collected data and resolution of

the result image. However, a web-based image presentation may not be suitable for mobile devices

91

Figure 4.5: Campus

Figure 4.6: Using Smartphone to show the monitoring system

due to the limited screen size. For a smoother user experience, the visual presentation needs to

be manually adjusted based on the web page’s refresh rate, the amount of sensing data, and the

resolution of the generated image, but this manual tuning process is time-consuming. An accept-

able configuration is to have a 5-second refresh time interval, 30 seconds of sensing data, and an

800 X 600 image resolution for a 1024 X 768 web page. User could also view the content on a

mobile device such as smart phones or tablet, but the configuration is not optimized for this kind of

usage in Figure. 4.6. In any case, the first generation suffers from a rough user experience, because

images fetched from a browser cannot be perfectly synchronized with frequent image generation.

92

The second generation of the system improves the user experience by means of dynamically gen-

erated web contents instead of static files. That is, the backend system serves as a content provider

rather than a static file generator, and much of the data rendering is done locally by the user’s

browser. We use the Python Tornado Web Server and enable picture generation by the user’s

browser using a Javascript library named Flot[38] instead of static image generation. Because

each browser knows its own size, it can render the image size and layout accordingly for the best

viewing experience. The webpage would refresh every 5 seconds, request new sensing data from

the backend system, then generate the new image locally on user’s personal computer, laptop, or

mobile phone. The browser needs to fetch enough sensing data in each request of sensing data for

image generation. When Internet is slow or unstable, the display will be delayed, but local manipu-

lation will still be responsive. Although our second-generation system has solved the problem with

static file generation of the first generation, it still suffers from high data traffic in every webpage

refresh.

Our third-generation data dissemination subsystem tries to reduce the redundant data traffic pulled

by the browser in each refresh. The local browser can keep a data window that caches the received

data and update only the most recently sensed data from the server. Upon each data request, the

browser pulls only the newly added data since the last data request. The amount of transferred data

is reduced by about two orders of magnitude, from thousands of bytes to several tens of bytes in

average.

In addition to pulling, we can also push newly added data from backend system to connected

browsers using a new technology, websocket, introduced along with HTML5. We further improve

the user experience by converting fixed-rate data pulling by the browser to data pushing by the

backend server. Pushing enables the backend to control the web page content based on the incom-

ing data rate and is more bandwidth-efficient. This also eliminates the problem of sudden massive

simultaneous requests to the backend server, which can overwhelm the server. In addition to the

data traffic improvement, we also create mashup services by integrating existing web servics such

93

Figure 4.7: Google Map Service Integration

as Google Map[23]. We can use the latest and scalable map information instead of fixed image. A

sample monitoring system is shown as Figure. 4.7.

After the above improvements in the data dissemination subsystem of our backend system, the

system was upgraded from a file provider to a data provider and then to a content source provider

through the Tornado web server. Now the content provided by our backend system, i.e., the ac-

celeration data from Gophers, can be subscribe to by not only our own dynamic web pages but

also other HTML5 clients in general. All these web message exchange are in JavaScript Object

Notation (JSON) as a widely used format.

4.3 Evaluation

We have performed multiple short-term and long-term experiments with our PipeTECT system.

Short-term experiments are mostly to validate the capability and stability of the DuraMote smart

sensor system. Our test sites include

94

• Vincent Thomas Bridge in Long Beach, California

• Hwamyeong Bridge in South Korea

• A miniature pipeline model

• Buildings at University of California, Irvine

• Fire hydrant at a fresh water facility

Experimental results on the collected data have been presented in our previous papers. The experi-

ence from the short-term experiments provided feedback for us to further developing our backend

system. We also installed our PipeTECT system in several buildings at the University of California,

Irvine for our long-term experiment.

4.3.1 Lessons from Field Experiments

From the field experiments, we have learned lessons about the scalability, system stability, and

network performance. The weakest links and bottlenecks have been identified in all different

subsystems.

Initially, our system was not built with scalability in mind. In our short-term experiments, we

deployed only several DuraMote sensors and backend system worked well, but our experiments

on the Hwamyeong Bridge in Busan, South Korea, revealed our performance bottlenecks, where

communication speed, bandwidth, and computation delay can all limit the number of sensing units

that a backend system can serve. Each Gopher node sampled at 450Hz and generated 3.6 KB of

data per second. The 802.11n Wi-Fi infrastructure provided sufficient network speed and band-

width for the 14 Gopher nodes that generated a total of 50.4 KB of data needed to be handled per

second. However, the computation delay turned out to be a performance bottleneck. The system

was failing due to insufficient processing time for the networking task in our original design. It

95

combined networking and data processing, which took too much time to process the data and could

not keep up with the incoming packets. As a result, the backend system exhausted all available

memory and crashed.

In Hwamyeong Bridge deployment, we made the in-field backend system to provide collected data

through web service for our centralized backend system located in University of California, Irvine

to access. Although the data could be delivered to the centralized backend, the amount of data

traffic was more than the cross-Pacific network bandwidth, this led to poor visual presentation

performance and unstable network connections. We have overcome this bottleneck by converting

to websockets.

In these short-term experiment, we stored all data as files. The file-based storage lacked an efficient

query interface for later data dissemination, and we have since converted it to MySQL and SQLite

database storage as our data logging engine. The SQLite database is a relative simple database

compared to MySQL. Since SQLite database can be found on mobile devices, our mobile version

of backend system uses SQLite for logging and local browsing at hand. MySQL is a more powerful

database that provides a fast query interface. When searching for a certain time epoch of data in

all stored data, it outperforms the file-based storage.

4.3.2 Data Traffic Optimization

This subsection shows quantitative results of data traffic improvement by upgrading our data dis-

semination task from static files to dynamic web content to websockets, as described in Section

5.5. As shown in Table 4.1, the data traffic improvement was three-fold while the image genera-

tion time reduced slightly. At the same time, the modular plug-in system implementation enabled

seamlessly software upgrade. The transmitted data size has also reduced.

For the baseline, our graphical user interface generated static files using the Matplotlib Python

96

Table 4.1: Improvements in Data Dissemination Subsystem

System Types Image gen. method Image gen. time Transmitted data
Static file Matplotlib(Python) 0.69 s 64 KB

Dynamic web content Flot(Javascript) 0.56 s 1.5 KB
Incremental content update Flot(Javascript) 0.56 s >20 B

Figure 4.8: Locations of deployed sensors

library. The backend system creates new image files as new sensing data arrive, but to avoid a

surge of the image files that all need to be created within a short period, image generation process

of each Gopher is separate by time. As a result, the average image generation time is 0.69 second,

but the delay can easily add up to several seconds if the backend system needs to take care of more

PipeTECT sensing systems. The generated image size is nontrivial and takes about 64 KB in 800

X 600 resolution. User can feel the delay when the web page is refreshing. A Javascript-based

solution has been developed to solve these problems, as the image generation process is now run

in the browsers for more responsiveness.

The size of transmitted data from backend to browse is almost 43 times less then before. To view

the result of collected data is much smoother not but still not ready for a larger monitoring system.

When more then 17 PipeTECT systems exists, the communication delay happens due to too much

data need to be sent from backend system. To further improve our system, an incremental update

97

Figure 4.9: Engineering Tower

concept has brought in. The transmitted data is cached locally and the backend system only sent

newly added data to browser. Only then the browser requests for a full set of data for display

then big chunk of data is transmitted. The transmitted data is now no more than 20 bytes for a

single PipeTECT system shown on the web page. We also make the incremental update only occur

with viewed PipeTECT system. Third is the load on backend has been alleviated due to the image

generation now moves to browsers. Backend system only is responsible of data transmission and

the browser do the heavy image generation. This enables the backend to focus on data processing

and leave all other display tasks to the actual viewing devices.

4.3.3 Long-Term Installation at UC Irvine

We have installed DuraMote smart sensors in several buildings and on utility pipes at the University

of California, Irvine to evaluate our proposed backend system. Wi-Fi infrastructure is available for

direct Internet connectivity. The proposed backend system is implemented on an Intel Pentium-4

3.0 GHz desktop PC with 4 GB of memory and installed with Ubuntu Linux operating system

version 11.10. This non-server class PC is utilized to show our backend system does not required

tremendous computing power.

98

Figure 4.10: Engineering Hall

Figure 4.11: CALIT2

Figure 4.12: Engineering Gateway

99

Figure 4.13: AIRB

The monitored area covered by this deployment is approximately 200 m2. Five nodes were in-

stalled on five different buildings inside the engineering quad of UCI campus. Figure. 4.8 shows

all the monitored buildings in covered area. The locations of the nodes are

• Basement of Engineering Tower

• Fourth floor of Engineering Hall

• Fourth floor of Engineering Gateway

• Roof of CalIT2 building

• Fourth floor of AIRB building

as shown in Figure. 4.9 to Figure. 4.13. The backend server is placed on the ground floor of the

AIRB building, where the laboratory is located.

All DuraMote sensors are connected to the campus Wi-Fi and send collected data directly to the

server in the AIRB building. Most Gopher nodes are configured for a sampling rate of 150 Hz,

while the one in the basement of Engineering Tower is configured for 1000 Hz to monitor a utility

pipe. The deployed nodes have been monitoring since 2012 for more then a year and a half. It

successfully demonstrates that our backend system is ready for permanent installation.

100

During the installation, several software upgrades were necessary to improve the performance and

functionality of our backend system. Due to the modular design, we were able to avoid reboot-

ing, which would have affected the network connection of these deployed sensor and disrupt the

monitoring process.

101

Chapter 5

BlueRim: Rimware for Enabling Cloud

Integration of Networks of Bluetooth Smart

Devices

5.1 Related Work

Cloud support for IoT systems can be divided into domain-specific and general-purpose systems.

As cyber-physical systems (CPS), different IoT-Cloud combinations may emphasize more cyber

or more physical aspects. We also review related work on application-building and management

tools for edge nodes of IoT.

102

5.1.1 Cloud Systems

Domain-Specific IoT Cloud

Cloud systems have been supporting IoT applications in domain-specific ways. In particular, sports

and fitness devices such as heart-rate monitors, pedometers, and wireless personal-area network

(WPAN) products connect to smartphones that upload data to the user account in the domain-

specific cloud. The uploaded data can be composed with other services including social networks

and map services for the users to share their sports activity updates with their friends. These

edge nodes perform minimal or no access control, and the cloud supports domain-specific data

management but no device management.

General-Purpose Cloud Systems

Besides the domain-specific cloud, which is usually provided as Software as a Service (SaaS),

other types of cloud systems serve general computing purposes. Infrastructure as a Service (IaaS),

such as Amazon EC2, Microsoft Azure, and OpenStack, offers virtual machines together with

physical computing resources such as CPU, memory, and disk storage for users to deploy applica-

tions the same way as on their local machines. Platform as a Service (PaaS), such as Openshift,

CloudFoundry, and Heroku, allow users to choose the platform components including the oper-

ating system, programming language runtime environment, web server, and database engine for

building their online/offline application while automatically managing the underlying computing

and storage resources for availability and scalability.

103

5.1.2 HTTP Servers for Sensor Networks

Kurschl 2009[51] set up a computer as a gateway and HTTP server on behalf of a network of

nodes. In contrast, Rajesh et all 2010[74] assumes powerful nodes that are capable of HTTP, rather

than relying on a gateway node. Similarly, Sensor-Cloud Computing[56] assumes smartphones as

sensor nodes, which can connect directly to the Internet without requiring a gateway, but these

nodes may be too powerful or costly to serve as IoT edge nodes. In either case, HTTP alone

primarily serves as a transport rather supporting data handling and management, but they do not

address access control or security concerns in sensor-cloud systems[72].

5.1.3 Application-Building Tools

At the lower level, TI’s BTool[36] is a Windows program that works as a protocol analyzer: it can

snoop, parse, extract BLE packets, and form and transmit packets interactively by following the

profiles. BTool can emulate a BLE master or slave node before it is ready. LightBlue [73] is an

iOS app that serves a similar purpose to BTool in that it understands profiles and enables users to

send and receive BLE packets as defined by profiles. They are powerful for building applications

on the physical (sensors/actuators) side, but they do not support Internet connectivity and cloud

integration.

5.1.4 Device Management

In IoT, nodes can be dynamically added, removed, or replaced in the system with the same type of

device or a different type but similar capability. Whole or partial image re-programming at runtime

is needed to configure the node for replacement [43, 32]. A sensor profile service can configure

newly added nodes and provide compatible data [77].

104

Generic Cloud

Network of Things
Network of Things

Knowledgeable Adapter

Data Storage and Aggregator

Cloud Service Agent

BLE-enabled Device

Network of Things

Local Gateway

Rimware

Figure 5.1: Relationship between Generic Cloud, Rimware and Network of Things

5.2 Concepts

This section explains concepts of rimware for IoT-cloud integration as shown in Figure. 5.1. The

term network of things (NoT) refers to a locally connected network of nodes with (sensing, actua-

tion) interfaces to the physical world, whereas the Internet of Things (IoT) refers to the intercon-

nected NoTs bridged by the Internet Protocol (IP). We first provide a background on BLE for NoT

(local device-to-device) communication, which can operate without rimware. Second, we explain

how a security domain can be defined by associating NoTs with a slice of rimware. Third, we show

rimware serving as the delegate of any NoT to different cloud domains.

5.2.1 A Basic BLE Network of Things

The services of a BLE device are represented as a profile, which consists of a collection of related

characteristics that represent the functionality of that service in terms of one or more descriptors

in a human-readable way. To communicate with a BLE device without hardwired knowledge,

a host application must discover and load the device’s services and characteristics dynamically.

Our first approach is to build the knowledge layer in rimware based on different types of BLE

devices and separate the knowledge layer from the host application, as described in Section 5.3.

105

Our second approach, as described in Section 5.4.1, is to enhance the descriptors in BLE to capture

this knowledge without relying on the rimware to maintain the knowledge base. We describe our

auto-adaptive way for building a host application with or without the knowledge layer for BLE

devices, where in rimware the host application works as the uplink/downlink gateway for the NoT.

5.2.2 Rimware with Single Security Domain

A security domain is defined by a set of networked devices and applications that agree to use

a common security token for authentication, authorization, or session management [89]. In NoT,

there may be no strict security-checking phase by default upon connecting and pairing with devices,

except for possibly simple PIN input in most situations. This means anyone can potentially connect

to devices via its NoT-level protocol, even if one is not permitted to access its services. Rimware

serves as the agent between any user and NoT devices and checks the user’s access privilege

before the user can access the devices. In addition, rimware secures the communication when

a user is accessing any NoT device through rimware. Moreover, rimware also takes care of the

security checking when a user is accessing any NoT device through NoT-level protocol without

the connectivity to the rimware through Internet.

5.2.3 Rimware with Multiple Security Domains

Rimware can integrate multiple security domains that the users and NoT devices may belong to.

Although users and devices may have unique IDs within their own domains, these IDs may not be

universally unique across domains unless combined with the domain ID somehow. However, users

may not want to give out their global identifier because it compromises their privacy and exposes

them to identity theft and other risks. For these reasons, we proposed the concepts of identifier and

cyptonym in rimware to support better privacy.

106

An identifier is a string of data for addressing an entity within a name space. Four types of identifier

are (1) A device identifier di and (2) a user identifier u j are those of device i and user j in some

domain Dk they respectively belong to. (3) a domain identifier is that of a security domain, and

(4) a global identifier is one that can address a a user, a device, a domain, or any entity within or

across domains that are integrated by rimware. Device and user identifiers can be made global by

composing with the domain identifier, such as (Dk,di) and (Dk,u j). While all these identifiers are

in clear text with variable length, rimware fixes the length of domain identifier and global identifier

using hash function before exchanging them within rimware as well as across different domains.

Sharing identity across domains can also be described by identifier as a tuple. For example, sharing

the identity of device i from domain j to user k from domain m can be described (g j
i ,g

m
k), where

g j
i ,g

m
k are the global identifiers of the user and device, respectively. To protect privacy, the tuple

of shared identity is encrypted using an irreversible hash function. We call the hashed tuple as

cyptonym. The cyptonym guarantees that user or device’s identity will not be exposed outside their

own domains.

BlueRim

Security Token
{BlueRim:VendorA}

Vendor B

Vendor A

Cryptonym

Security Token
{BlueRim:VendorB}

Customer

Cryptonym
{BlueRim:VendorA}

Cryptonym
{BlueRim:VendorB}

Identifier

Figure 5.2: Customer, BlueRim and Vendors

An example in Figure. 5.2 that can take advantage of cryptonyms is active tracking of consumer

shopping behavior using BLE tags when approaching vending machines or shops. Instead of giving

out one single identifier to every vendor, a safer option is to give out a different cryptonym to each

107

Communication against NoTs

Adapter
Knowledgeable Adapter on RimWare

State Monitor Data Cache

Knowledge Base

Communication against Cloud

Data Streamer
Data Storage

Access Controller

Resource Locator

Data Aggregator
Remote Controller

API Call From Generic Cloud

Network of Things

Knowledge-less Adapter on Gateway

Rimware

Figure 5.3: Components in Rimware

vendor (security domain), as one cryptonym is meaningless in the context of another security

domain. In case of tag replacement, the consumer’s rimware can re-associate the new hardware

with the consumer. Additional enforcements rules, such as at most one tag may be associated with

a particular user, may also be enforced.

The next two sections provide more details of our rimware design with BlueRim and its use in

bridging BLE-enabled NoTs and cloud services.

5.3 BlueRim: Cloud and Rimware

Our approach to cloud for IoT is the separation between rimware and the generic cloud that pro-

vides much of the computation and storage functionality. Rimware, however, is more than a

108

“pass-through” of functionality to the cloud: it duplicates core cloud functionality to enable the

NoT to continue operating even during loss of Internet connectivity. This section first describes

these cloud-like components in the rimware, followed by a description of how these components

in rimware can be replicated and distributed to integrate with different security domains and to

provide high availability. The overview of components in rimware is as shown in Figure. 5.3.

5.3.1 Cloud Components in Rimware

The cloud-like components in rimware present a service abstraction for not only functionality on

NoT devices but also any static resources such as logged data from these devices.

Knowledge Base and Knowledgeable Adapter

Rimware can serve as the knowledge base for mapping between the abstract actions (i.e., what the

user wants to achieve) and the concrete action commands (i.e., the actual message formats needed).

Each instance of the mappings as maintained by each registered device in the rimware is called a

knowledgeable adapter. The mappings include standard ones defined by Bluetooth SIG as well

as custom ones defined by developers, and more mappings can be added later by either the device

vendor or the administrator systematically.

When a gateway program discovers a nearby BLE device, it collects and submits the device’s

service/characteristic profile to BlueRim. From matching in the knowledge base, BlueRim recog-

nizes the device type and creates a knowledgeable adapter for it. The knowledgeable adapter can

detect changes to the firmware specification by making adjustments accordingly by consulting the

knowledge base. The knowledge base also aids crash recovery and state restoration. It keeps the

firmware image of any registered device as well as what state should be monitored. In case of a

crash that requires hardware replacement, BlueRim can easily restore the image by retrieving it

109

from the knowledge base.

BLE allows the functionality of any characteristic profile to be stated in a human-readable way

using descriptors. We plan to define a structured way to make descriptors whose semantics can be

further utilized to assist with maintaining the knowledge base without the participation of device

vendors or administrators.

State Monitor

The state monitor in rimware consists of a collection of active tables that monitor the state of those

NoTs registered in the rimware. The state monitor take snapshots of the state on both the gateways

and devices by periodically sending pull requests to all gateways. The state table is indexed by

both the gateway identifier and device identifier. The state to monitor on the gateways includes

on/off state, the list of connected devices (in terms of their identifiers), geo-location, etc. The state

to monitor on the devices depends on how the type of the device is modeled in the knowledgeable

base. Besides providing the state information to the users, the state monitor can also restore a

device to its latest snapshot of state when the device has crashed and must be reset.

Data Cache

A data cache in rimware is an in-memory cache. It caches the data transmitted from the gateways

before putting them into the data storage for archive. It also serves as the engine of any real-time

monitor request from the end user against any device(s). The data cache keeps only the latest data

not yet written to the data storage or not pushed to real-time request.

110

Remote Controller

As the representation layer of the knowledgeable adapter, the remote controller in rimware receives

the user’s action request and sends it to the knowledgeable adapter to take action on the correspond-

ing device. Similar to a knowledgeable adapter, a remote controller has a 1-to-1 relationship with

each registered device.

Data Storage and Data Aggregator

The data storage in rimware is for archiving short- and long-term logged data from any device.

Data in data storage is normally stored in relational database tables for general user queries. For

queries against large amounts of historical data for analysis purposes, we use a data aggregator

to pre-process the data from an Online Analytics Processing (OLAP) engine [35]. A data aggre-

gator is a data warehouse where data in relational tables are moved and re-organized into a multi-

dimensional structure according to the dimension attributes such as time, geo-location, device type,

etc. Data in different dimensions are pre-aggregated hierarchically. For example, in time dimen-

sion, data can be aggregated according to month, quarter, or year. These pre-aggregating rules are

defined by the system, and new rules can be added from data analytics.

Data Streamer

A data streamer is the representation layer of the data cache. It takes the user’s real-time monitor-

ing request and returns the latest data received from the device. The data streamer is 1-to-1 related

to the user’s request for real-time streaming.

111

5.3.2 Integration of Rimware with Multiple Security Domains

Rimware also can integrate multiple security domains with Access Controller and Resource Loca-

tor components.

Access Controller

The access controller is to interpret privileges for a local NoT device to a cloud service. When a

user accesses a device locally through the NoT gateway, his/her privileges are recognized by the

local gateway. Rimware bridges between different NoTs and also with cloud service. The user

retains the same privileges when accessing through rimware.

For example, consider an NoT with two accounts: guest and administrator. The administrator can

change parameters of a sensor in the device and view the data, but a guest is allowed to view

collected data only. A user from the cloud side will be mapped to either a guest or an administrator

to the NoT.

Resource Locator

Resource locator is to resolve the communication path between user and targeted devices with

given tags. A tag is a user named label which is associated with cryptonyms mentioned in Section

5.2. In rimware, an action is represented in a URL-like format using our own protocol in the form

of rim://tag/action/action_type. When a user issues actions, the resource locator

determines the cryptonyms and communication path, and the knowledgeable adapter converts the

actions into pure BLE commands and asks the corresponding gateway to send the commands to

the device. Without resource locator, a user can communicate with the targeted devices by using

cryptonyms.

112

rim://tag/action/action_type

5.4 BlueRim: Physical Subsystem

The physical subsystem of the BlueRim can be divided into two parts. The first part is the gateway,

which bridges the local NoT and the Internet. The second part consists of the nodes in local

NoTs. To assist developers with building up a BLE NoT to be integrated with our BlueRim, we

provide a host-program builder. For the firmware on the nodes, some required features need to be

implemented on the nodes to work with BlueRim.

5.4.1 Host-Program Builder

Our host-program builder currently targets BLE. On the firmware side, operations on a BLE device

are essentially read/write against the device’s characteristic profiles. An abstract action, e.g., turn-

ing on the light, may involve one or a series of read/write operations against different characteristics

on a lighting-control device. To control a BLE device, the same structure of service/characteristic

profiles should be established in the host program so that it can map to the structure on the firmware

side and send or receive the respective action commands. The host program builder can help build

the mapping in two ways: by scanning profile information on a connected BLE device or from

user’s direct input. The host-program builder provides three basic interfaces for each characteris-

tic: read, write, and onDataReceived. The onDataReceived function is a callback function used to

catch events caused by either a notification from the device side or a return of a read request sent

from the host side. Through provided interfaces, developers can specify action commands against

characteristics. It helps developers further build a knowledge layer by creating mappings between

abstract actions and action commands.

As we mentioned in Section 5.3, in our design, the knowledge layer is taken care of by rimware,

which does not exist on gateway program. The gateway program only adapts to the newly con-

nected BLE device by establishing a service/characteristic structure for sending action commands

113

Host program for general purpose NoTHost program on gateway for BlueRim

Building Host
Program

Knowledge-less Adapter

Getting user's
input

Scanning profile
after connection
is established

Host Program Builder

UUID
Service

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Service

...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

Read()
Write(input_data)

onDataReceived(received_data)

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

UUID
Type

Characteristic

descriptor
descriptor
...

Read()
Write(input_data)

onDataReceived(received_data)

Knowledge Layer

... ...

Stop ECG
recording

write(00) on
characteristic A

Read ECG data

abstract action

Write(00) on
characteristic C

write(01) on
characteristic A

Write(11) on
characteristic C

data received from
onDataReceived
from characteristic
B with notification/
indication type

Stop Reading
ECG data

action command

Start ECG
recording

Read lead-off
status

User's Input
{for general NoT host only}

UUID
Service

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

UUID
Service

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

...

Firmware on BLE device
(for both BlueRim gateway and general NoT host)

UUID
Service

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

UUID
Service

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

descriptor
descriptor ...

UUID
Type

Characteristic

...

Figure 5.4: Workflow of Host Program Builder

114

to the device. This process is done automatically. The workflow of the host-program builder for

building BlueRim gateways and general-purpose NoT host programs is shown in Figure. 5.4.

5.4.2 NoT Firmware Support

The BLE nodes in the NoT also follow the service/characteristic profile structure. The communi-

cation is done with characteristic read/write operations. A BlueRim service profile is needed in the

NoT firmware. This profile contains the characteristics to hold BlueRim-assigned global identifier

and provides device signatures for the identifier-generation step. When there is no Internet con-

nectivity, edge gateways to BlueRim can cache collected data from connected NoT devices using

global identifier. This profile support enables the BlueRim edge gateway to update its data cache

periodically instead of requiring constant connection.

5.5 Case Studies

5.5.1 Infant ECG

One of our driving examples is an infant ECG (electrocardiogram) for studying the long-QT syn-

drome. It includes a pre-positioned flexible electrode strip placeable by minimally trained parents

on infants to digitize and record ECG signals onto a flash memory card. Afterwards, it uploads the

data wirelessly via a BLE-enabled smartmobile or PC to the server.

BlueRim acts as the data repository, user interface, user management, and device administration

tool. It enforces access privileges for the parents, doctors, and administrators of the data and ECG

devices, and it supports device configuration (data upload, erase, ID setting, sampling rate setting,

firmware update) automatically constructed using our custom BLE profiles. For a small-scale

115

study, a single machine with an Internet connection may be sufficient to run BlueRim. Additional

machines at different sites can be added to the same security domain. BlueRim also supports plug-

ins for ECG data filtering, segmentation by heart beat, QT analysis, and running statistics on the

analyzed data. With BlueRim, these features only need to be enabled and parameterized rather

than re-implemented, making it very quick to and reliable to build a new application.

5.5.2 Home Automation

Our home automation application involves light switches and appliance outlets whose on/off action

may be triggered by a physical button on the wall, by an occupancy sensor wirelessly connected

to the switch, a button that is wirelessly connected to multiple switches (e.g., upstairs/downstairs

switches to control the same light), a smartphone, or a computer. In addition, we also support over-

the-Internet status observation, on/off control, and integration with cloud services such as Google

Calendar. BLE as the local-area wireless protocol has the advantage of direct compatibility with

smartphones such as iPhone 4S and later as well as Windows 7.

The main issues highlighted by this application include robustness to central point of failure, access

control, and multiple security domains. First, the light switches and appliances should continue to

work from local control (button press or smartphone control) even if the gateway loses connectivity

or fails. Second, only certain users are allowed to control a subset of the lights or even observe

their status. For example, adjacent offices may belong to the same security domain but may not to

share control; Adjacent apartments may actually belong to different security domains even if their

RF ranges overlap. In contrast, with most WiFi-based remote controls, anyone who can join the

WLAN often gains unlimited access to the system.

116

Chapter 6

Conclusion

In this work, we have propose various runtime supports from edge devices to cloud services. For

edge devices, while modern intergraded RF-MCUs, we first propose Enix makes several contri-

butions in the WSN OS area. First, the cooperative threads programming model enhances the

performance by decreasing context-switch overhead, making it two times faster than the tradi-

tional preemptive multi-threaded programming model. This cooperative threading model is easy

to learn compared to the event-driven model. Moreover, the local states can be saved and restored

automatically during context switches without burdening the programmer with manual state sav-

ing in some other programming models. Second, Enix provides code virtual memory to overcome

the shortage of on-chip code memory via host-assisted demand segmentation, which most WSN

OSs do not support. To achieve virtual memory, the ELIB is built on the host PC composed of

PIC segments and is loaded to code memory on-demand by the run-time loader of Enix. Third,

remote reprogramming is also available in Enix. Due to the pre-stored ELIB on the Micro-SD

card, the size of the binary image of the user program to be wirelessly updated is reduced signifi-

cantly during the remote reprogramming stage. Finally, the code and data footprints of Enix with

full-function including EcoFS are at most 8KB and 512 bytes, respectively, which are the smallest

compared to other WSN OSs. Only ten percent of code is machine-dependent, while the rest is

117

written in C language, and thus it is easy to port to other wireless sensor platforms.

While BLE are getting more popular, vendor provided schedulor with BLE stack is used. We

also develop a dispatcher on top of existing vendor scheduler that we can use vendor supported

communication stack and build a unified dispatching framework.

As for runtime support in the gateway devices, we bring the elegance and power of Python to

enabling interactive programming of resource-constrained wireless sensor networks. Interactivity

encourages experimentation by beginners, by providing instant feedback to functions of interest

while being forgiving by supporting undo with an underlying revision control system. As Python

is not just a “beginner’s language” but is actually used by expert programmers in production-quality

systems due to support of constructs at a much higher-level of abstraction, we expect EcoCast to

also boost the productivity of expert programmers in a similar way.

While BLE has impacted the Network-Of-Things, based on EcoCast, PyBLE is developed to

present any existing pheripherals. PyBLE provides constrcuts for users to build their own pe-

riphrals from basic profiles and characteristics. With BLE, it enables user to focus on data process-

ing instead of data communications.

Another important functionality of these gateway devices is that they can perform some basic

data processing. We describe our modular design of a backend computing system for continuous

monitoring of civil structures and water pipelines. Its use of the Python programming language

enables different software components to be developed in a modular way, and the kernel system

loads the required modules accordingly using the internal plugin system. The downtime of the

backend system is minimized since the software module loading is seamless without affecting

the rest of the system. Based on our experience with deploying our smart sensors, we improved

our backend system by enhancing the data logging facilities with fast data query. and optimizing

the data display for reduced network traffic by two orders of magnitude, making the backend

system much more scalable. We also create mashup services by integrating Google Map overlaid

118

on our data visualizer. One direction for future work is to integrate even more services such as

earthquake and weather information to enable cross references of collected data for discovering

more knowledge about these structures being monitored.

Finally, to bridge the cyber and the physical world, base on runtime supports we developed from

in edge and gateway devices. We have introduced the concept of rimware for the integration of the

Internet of things and the cloud to form a very powerful cyber-physical system. Our specific im-

plementation, called BlueRim, can scale from isolated networks of things (NoT) to the global IoT.

BlueRim provides services for systematic data handling and dissemination, device management

and access control, and device roaming within and across multiple security domains. In addition,

we provide an application builder that exploits Bluetooth Smart’s attribute profiles to enable sys-

tematic construction of new IoT applications. The effectiveness of these fundamental features have

been validated in several real-world applications that with different access patterns while retaining

their ability to consume very low power. We believe that our approach represents an important

technology in taking IoT closer to realizing the full potential.

119

Bibliography

[1] MicaZ. http://www.xbow.com/Products/productdetails.aspx?sid=
164.

[2] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative task manage-
ment without manual stack management. In ATEC ’02: Proceedings of the General Track of
the annual conference on USENIX Annual Technical Conference, pages 289–302, Berkeley,
CA, USA, 2002. USENIX Association.

[3] S. H. Amer and J. A. Hamilton, Jr. DSR and TORA in fixed and mobile wireless networks.
In ACM-SE 46: Proceedings of the 46th Annual Southeast Regional Conference, pages 458–
463, New York, NY, USA, 2008. ACM.

[4] L. S. Bai, L. Yang, and R. P. Dick. Automated compile-time and run-time techniques to
increase usable memory in MMU-less embedded systems. In CASES ’06: Proceedings of
the 2006 international conference on Compilers, architecture and synthesis for embedded
systems, pages 125–135, New York, NY, USA, 2006. ACM.

[5] L. S. Bai, L. Yang, and R. P. Dick. MEMMU: Memory expansion for MMU-less embedded
systems. ACM Trans. Embed. Comput. Syst., 8(3):1–33, 2009.

[6] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torg-
erson, and R. Han. Mantis os: an embedded multithreaded operating system for wireless
micro sensor platforms. Mob. Netw. Appl., 10(4):563–579, 2005.

[7] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Mobile Data
Management, pages 3–14. Springer, 2001.

[8] A. Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation of a framework
for efficient and programmable sensor networks. In The First International Conference on
Mobile Systems, Applications, and Services (MobiSys), May 2003.

[9] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance comparison
of multi-hop wireless ad hoc network routing protocols. In MobiCom ’98: Proceedings of the
4th annual ACM/IEEE international conference on Mobile computing and networking, pages
85–97, New York, NY, USA, 1998. ACM.

120

http://www.xbow.com/Products/productdetails.aspx?sid=164
http://www.xbow.com/Products/productdetails.aspx?sid=164

[10] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The LiteOS operating system: Towards
unix-like abstractions for wireless sensor networks. In IPSN ’08: Proceedings of the 7th in-
ternational conference on Information processing in sensor networks, pages 233–244, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[11] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon. RETOS: resilient, expandable,
and threaded operating system for wireless sensor networks. In IPSN ’07: Proceedings of the
6th international conference on Information processing in sensor networks, pages 148–157,
New York, NY, USA, 2007. ACM.

[12] C. Chen, Y. Chen, Y. Tu, S. Yang, and P. Chou. EcoSpire: an application development kit for
an Ultra-Compact wireless sensing system. Embedded Systems Letters, IEEE, 1(3):65–68,
2009.

[13] S. Choudhuri and T. Givargis. Software virtual memory management for MMU-less em-
bedded systems. Technical report, Center for Embedded Computer Systems, University of
California, Irvine, Nov 2005.

[14] T. Clausen and P. Jacquet. RFC3626: Optimized Link State Routing Protocol (OLSR). RFC
Editor United States, 2003.

[15] Crossbow Technology. Mote in-network programming user reference version 20030315.
http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf, 2003.

[16] H. Dai, M. Neufeld, and R. Han. ELF: an efficient log-structured flash file system for micro
sensor nodes. In SenSys ’04, pages 176–187, New York, NY, USA, 2004. ACM.

[17] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan. Adding preemption to TinyOS. In EmNets
’07: Proceedings of the 4th workshop on Embedded networked sensors, pages 88–92, New
York, NY, USA, 2007. ACM.

[18] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking for reprogram-
ming wireless sensor networks. In SenSys ’06, pages 15–28, New York, NY, USA, 2006.
ACM.

[19] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic linking for reprogram-
ming wireless sensor networks. In SenSys ’06: Proceedings of the 4th international con-
ference on Embedded networked sensor systems, pages 15–28, New York, NY, USA, 2006.
ACM.

[20] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible operating system
for tiny networked sensors. In LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, pages 455–462, Washington, DC, USA, 2004.
IEEE Computer Society.

[21] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: simplifying event-driven pro-
gramming of memory-constrained embedded systems. In SenSys ’06, pages 29–42, New
York, NY, USA, 2006. ACM.

121

http://www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

[22] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language:
A holistic approach to networked embedded systems. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation, pages 1–
11, New York, NY, USA, 2003. ACM.

[23] I. Google. Google maps apis.

[24] L. Gu and J. A. Stankovic. t-kernel: providing reliable os support to wireless sensor networks.
In SenSys ’06, pages 1–14, New York, NY, USA, 2006. ACM.

[25] A. Gustafsson. Threads without the pain. Queue, 3(9):34–41, 2005.

[26] J. Hahn, Q. Xie, and P. H. Chou. Rappit: framework for synthesis of host-assisted scripting
engines for adaptive embedded systems. In (CODES+ISSS’05), pages 315–320, September
2005.

[27] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic operating system
for sensor nodes. In MobiSys ’05: Proceedings of the 3rd international conference on Mobile
systems, applications, and services, pages 163–176, New York, NY, USA, 2005. ACM.

[28] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In HICSS ’00: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 8, page 8020, Washington, DC, USA,
2000. IEEE Computer Society.

[29] J. Hill and D. Culler. Mica: a wireless platform for deeply embedded networks. volume 22,
pages 12–24, 2002.

[30] D.-D. Ho, P.-Y. Lee, K.-D. Nguyen, D.-S. Hong, S.-Y. Lee, J.-T. Kim, S.-W. Shin, C.-B. Yun,
and M. Shinozuka. Solar-powered multi-scale sensor node on lmote 2 platform for hybrid
shm in cable-stayed bridge. Smart Structures and Systems, 9(2):145–164, 2012.

[31] C.-H. Hsueh. EcoExec: A highly interactive execution framework for ultra compact wireless
sensor nodes. Master’s thesis, National Tsing Hua University, 2009.

[32] C.-H. Hsueh, Y.-H. Tu, Y.-C. Li, and P. Chou. EcoExec: An Interactive Execution Framework
for Ultra Compact Wireless Sensor Nodes. pages 1 –9, jun. 2010.

[33] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network
programming at scale. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 81–94, New York, NY, USA, 2004. ACM.

[34] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering,
9(3):90–95, 2007.

[35] S. Ikeda, P. C.-Y. Sheu, and J. P. Tsai. A Model for Object Relational OLAP. International
Journal on Artificial Intelligence Tools, pages 551–595, 2010.

[36] T. I. Incorporated. BTool from TI’s BLE stack.

122

[37] Intel. Portable Formats Specification, Version 1.1.

[38] IOLA and O. Laursen. Flot: Attractive javascript plotting for jquery.

[39] J. Jeong and D. Culler. Incremental network programming for wireless sensors. In Sensor
and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual
IEEE Communications Society Conference on, pages 25–33, Oct. 2004.

[40] M. Jiang, J. Li, and Y. Tay. Cluster based routing protocol (CBRP). IETF MANET Working
Group, Internet-Draft, August 1999.

[41] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. In
Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

[42] J. Kim and P. H. Chou. Remote progressive firmware update for flash-based networked
embedded systems. In Proc. International Symposium on Low Power Electronics andDesign
(ISLPED), pages 407–412, San Francisco, CA, USA, August 19-21 2009.

[43] J. Kim and P. H. Chou. Remote progressive firmware update for flash-based networked
embedded systems. In Proceedings of the 14th ACM/IEEE international symposium on Low
power electronics and design, pages 407–412, San Fancisco, CA, USA, 2009. ACM.

[44] S. Kim, M. Torbol, and P. H. Chou. Remote structural health monitoring systems for next
generation scada. Smart Structures and Systems, 11(5):511–531, 2013.

[45] S. Kim, E. Yoon, T.-C. Chien, H. Mustafa, P. H. Chou, and M. Shinozuka. Smart wireless
sensor system for lifeline health monitoring under a disaster event, 2011.

[46] K. Klues, C.-J. M. Liang, J. Paek, R. Musăloiu-E, P. Levis, A. Terzis, and R. Govindan.
TOSThreads: thread-safe and non-invasive preemption in TinyOS. In SenSys ’09, pages
127–140, New York, NY, USA, 2009. ACM.

[47] D. Knuth. Fundamental Algorithms, Third Edition., chapter Section 1.4.2: Coroutines, pages
193–200. Addison-Wesley, 1997.

[48] J. Koshy. Remote incremental linking for energy-efficient reprogramming of sensor networks.
In Proceedings of the second European Workshop on Wireless Sensor Networks, pages 354–
365. IEEE Press, 2005.

[49] J. Koshy and R. Pandey. VMSTAR: synthesizing scalable runtime environments for sensor
networks. In SenSys ’05, pages 243–254, New York, NY, USA, 2005. ACM.

[50] S. S. Kulkarni and L. Wang. Mnp: Multihop network reprogramming service for sensor
networks. In Proceedings of the 25th International Conference on Distributed Computing
Systems (ICDCS, pages 7–16, 2005.

[51] W. Kurschl and W. Beer. Combining cloud computing and wireless sensor networks. In
Proceedings of the 11th International Conference on Information Integration and Web-based
Applications & Services, iiWAS ’09, pages 512–518, New York, NY, USA, 2009. ACM.

123

[52] J. J. Labrosse. MicroC/OS-II, The Real-Time Kernel 2ND EDITION. CMP Books, 2002.

[53] P. Levis and D. Culler. Maté: a tiny virtual machine for sensor networks. In ASPLOS-X:
Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems, pages 85–95, New York, NY, USA, 2002. ACM.

[54] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler. TinyOS: An operating system for sensor networks.
Ambient Intelligence, pages 115–148, 2005.

[55] J. Lifton, D. Seetharam, M. Broxton, and J. Paradiso. Pushpin computing system overview:
A platform for distributed, embedded, ubiquitous sensor networks. In Pervasive, pages 139–
151, 2002.

[56] Y.-H. Liu, K.-L. Ong, and A. Goscinski. Sensor-Cloud Computing: Novel Applications and
Research Problems. In R. Benlamri, editor, Networked Digital Technologies, volume 294
of Communications in Computer and Information Science, pages 475–486. Springer Berlin
Heidelberg, 2012.

[57] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: an acquisitional query
processing system for sensor networks. ACM Transactions on Database Systems (TODS),
30(1):173, 2005.

[58] P. J. Marron, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rothermel. FlexCup:
A flexible and efficient code update mechanism for sensor networks. In EWSN ’06: Pro-
ceedings of the third European Workshop on Wireless Sensor Networks (EWSN 2006, pages
212–227, 2006.

[59] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Capsule: an energy-optimized object
storage system for memory-constrained sensor devices. In SenSys ’06, pages 195–208, New
York, NY, USA, 2006. ACM.

[60] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for sensor networks. In EuroSys
’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007, pages 145–158, New York, NY, USA, 2007. ACM.

[61] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless networks.
Mob. Netw. Appl., 1(2):183–197, 1996.

[62] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for NAND flash. In IPSN
’07, pages 410–419, New York, NY, USA, 2007. ACM.

[63] R. Ogier, F. Templin, and M. Lewis. Topology dissemination based on reverse-path forward-
ing (TBRPF), February 2004.

[64] J. K. Ousterhout. Tcl: An embeddable command language. In Proceedings of the USENIX
Winter 1990 Technical Conference, Berkeley, CA, 1990. USENIX Association.

124

[65] J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE Computer,
31(3):23–30, March 1998.

[66] S. N. Pakzad, G. L. Fenves, S. Kim, and D. E. Culler. Design and implementation of scal-
able wireless sensor network for structural monitoring. Journal of Infrastructure Systems,
14(1):89–101, 2008.

[67] C. Park, J. Lim, K. Kwon, J. Lee, and S. L. Min. Compiler-assisted demand paging for
embedded systems with flash memory. In EMSOFT ’04, pages 114–124, New York, NY,
USA, 2004. ACM.

[68] C. Park, J. Liu, and P. H. Chou. Eco: an ultra-compact low-power wireless sensor node for
real-time motion monitoring. In IPSN ’05, page 54, Piscataway, NJ, USA, 2005. IEEE Press.

[69] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wire-
less networks. In INFOCOM ’97: Proceedings of the INFOCOM ’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Driving the Information
Revolution, page 1405, Washington, DC, USA, 1997. IEEE Computer Society.

[70] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector rout-
ing (DSDV) for mobile computers. In SIGCOMM ’94: Proceedings of the conference on
Communications architectures, protocols and applications, pages 234–244, New York, NY,
USA, 1994. ACM.

[71] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance vector routing. Mobile Comput-
ing Systems and Applications, IEEE Workshop on, 0:90, 1999.

[72] N. Poolsappasit, V. Kumar, S. Madria, and S. Chellappan. Challenges in Secure Sensor-Cloud
Computing. In W. Jonker and M. Petković, editors, Secure Data Management, volume 6933
of Lecture Notes in Computer Science, pages 70–84. Springer Berlin Heidelberg, 2011.

[73] L. Punch Through Design. LightBlue.

[74] V. Rajesh, J. M. Gnanasekar, R. S. Ponmagal, and P. Anbalagan. Integration of Wireless
Sensor Network with Cloud. In Recent Trends in Information, Telecommunication and Com-
puting (ITC), 2010 International Conference on, pages 321–323, 2010.

[75] Real Time Engineers, Ltd. FreeRTOS: Free, portable, open source, royalty free, mini real
time kernel. http://www.freertos.org/, 2010.

[76] N. Reijers and K. Langendoen. Efficient code distribution in wireless sensor networks. In
WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor net-
works and applications, pages 60–67, New York, NY, USA, 2003. ACM.

[77] N. Reijers, K.-J. Lin, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu. Design of an intelligent middle-
ware for flexible sensor configuration in M2M systems. SENSORNETS, 2013.

[78] M. Samuel, J. Michael, M. Joseph, and H. Wei. Tag: A tiny aggregation service for ad-hoc
sensor networks. In OSDI, volume 2, pages 9–11, 2002.

125

http://www.freertos.org/

[79] M. Shinozuka, S. Lee, S. Kim, and P. H. Chou. Lessons from two field tests on pipeline
damage detection using acceleration measurement, 2011.

[80] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism for wireless
sensor networks. Technical report, UCLA, Los Angeles, CA, USA, 2003.

[81] Talin. Metaclasses in python 3000, March 2007.

[82] Tidorum Ltd. Bound-T user guide. http://www.tidorum.fi/bound-t/manuals/
user-guide.pdf, April 2009.

[83] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD thesis, Australian
National University, 2000.

[84] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling large-scale storage in sensor networks
with the coffee file system. In IPSN’09, pages 349–360, Washington, DC, USA, 2009. IEEE
Computer Society.

[85] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-concurrency
servers). In HOTOS’03: Proceedings of the 9th conference on Hot Topics in Operating
Systems, pages 4–4, Berkeley, CA, USA, 2003. USENIX Association.

[86] Q. Xie, J. Liu, and P. H. Chou. Tapper: A lightweight scripting engine for highly constrained
wireless sensor nodes. In Proceedings of the fifth international conference on Information
processing in sensor networks(IPSN ’06), April 2006.

[87] S. Yamashita, T. Shimura, K. Aiki, K. Ara, Y. Ogata, I. Shimokawa, T. Tanaka, H. Kuriyama,
K. Shimada, and K. Yano. A 15 × 15 mm, 1 µA, reliable sensor-net module: enabling
application-specific nodes. In IPSN ’06, pages 383–390, New York, NY, USA, 2006. ACM.

[88] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor net-
works. SIGMOD record, 31(3):9–18, 2002.

[89] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fredette, P. Helinek, P. Krishnan, A. Jackson,
D. Mankins, M. Shepard, and S. Kent. Domain based internet security policy management.
In DARPA Information Survivability Conference and Exposition, 2000. DISCEX ’00. Pro-
ceedings, volume 1, pages 41–53 vol.1, 2000.

[90] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A. Najjar. Microhash: an
efficient index structure for fash-based sensor devices. In FAST’05: Proceedings of the 4th
conference on USENIX Conference on File and Storage Technologies, pages 3–3, Berkeley,
CA, USA, 2005. USENIX Association.

126

http://www.tidorum.fi/bound-t/manuals/user-guide.pdf
http://www.tidorum.fi/bound-t/manuals/user-guide.pdf

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Wearable Low Power Network-of-Things (NoT)
	Problem Statement
	Lightweight and Portability
	Appropriate Programming Model
	Low Power with Bluetooth Smart
	Need for Data Support

	Contribution

	Enix: A Lightweight Dynamic Operating System for Tightly Constrained Wireless Sensor Platforms
	Related Work
	Programming Model
	Runtime OS support for WSN
	Virtual Memory
	File Systems for WSN

	Overview of Enix
	Runtime Kernel
	File System
	Dynamic Loading Library
	Utility Tools
	Code Size

	Runtime Components in Enix
	Cooperative Threads and Scheduler
	Compiler-Assisted Virtual Memory
	Dynamic Loading and Run-time Reprogramming

	From Enix to Current Proprietary Schedulers
	Evaluation and Results
	Experimental Setup
	Context Switch Overhead of Different Schedulers
	Virtual Memory and EcoFS
	Efficiency of Enix Code Update Scheme

	EcoCast: An Interactive Framework for Parallel Execution of Wireless Sensor Nodes in Multi-Hop Networks
	Related Work
	Remote Firmware Update
	Shell and Scripting Systems
	Routing protocols in WSNs
	Query systems

	System Overview
	Wireless Sensing Platform
	Execution Flow

	Scripting
	Scripting Language
	Esh Constructs
	Method Dispatching and Attribute Access

	Compilation and Linking
	Compilation from C
	Compilation from Python
	Incremental Linking
	Version Control and Patching Scripts

	Reprogramming and Execution
	Execution Mechanism on the Node
	Group Reprogramming of Nodes
	Group Execution of Functions on Nodes
	Background Job Management

	Python Bluetooth Low Energy Wrapper
	Evaluation
	Experimental Setup
	Functional Programming
	Multi-hop Networking
	Memory Footprint on the Node
	Discussion

	A Modular Backend Computing System for Continuous Civil Structural Health Monitoring
	Background
	Event Triggered v.s. Continous Monitoring
	PipeTECT system for SHM and Water Pipe Monitoring

	System
	DuraMote Smart Sensor
	Backend System

	Evaluation
	Lessons from Field Experiments
	Data Traffic Optimization
	Long-Term Installation at UC Irvine

	BlueRim: Rimware for Enabling Cloud Integration of Networks of Bluetooth Smart Devices
	Related Work
	Cloud Systems
	HTTP Servers for Sensor Networks
	Application-Building Tools
	Device Management

	Concepts
	A Basic BLE Network of Things
	Rimware with Single Security Domain
	Rimware with Multiple Security Domains

	BlueRim: Cloud and Rimware
	Cloud Components in Rimware
	Integration of Rimware with Multiple Security Domains

	BlueRim: Physical Subsystem
	Host-Program Builder
	NoT Firmware Support

	Case Studies
	Infant ECG
	Home Automation

	Conclusion
	Bibliography

