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Learning Lexical Knowledge in Context:
Experiments with Recurrent Feed Forward Networks

Steven L. Small

Department of Neurology
University of Pittsburgh

Abstract

Recent work on representation in simple recur-
sive feed forward connectionist networks suggests
that a computational device can learn linguistic be-
haviors without any explicit representation of lin-
guistic knowledge in the form of rules, facts, or pro-
cedures. This paper presents an extension of these
methods to the study of lexical ambiguity resolution
and semantic parsing. Five specific hypotheses are
discussed regarding networkarchitectures forlexical
ambiguity resolution and the nature of their perfor-
mance: (1) A simple recurrent feed forward network
using back propagation canlearn to predict correctly
the object of ambiguous verb “take out” in specific
contexts; (2) Such a network can likewise predict a
pronoun of the correct gender in the appropriate
contexts; (3) The effect of specific contextual features
increases with their proximity to theambiguous word
or words; (4) The training of hidden recurrent net-
works for lexical ambiguity resolution improves
significantly when the input consists of two words
rather than a single word; and (5) The principal
components of the hidden units in the trained net-
works reflect an internal representation of linguistic
knowledge. Experimental results supporting these
hypotheses are presented, including analysis of net-
work performance and acquired representations. The
paper concludes with a discussion of the work in
terms of computational neuropsychology, with po-
tential impact on clinical and basic neuroscience.

1. Introduction

Connectionist approaches to the study of lan-
guage, vision, and memory have led to altered per-
spectives on the nature of cognition [Churchland and
Sejnowski, 1987]. In particular, this work has meant
the rethinking of the computer metaphor for the

Full Address: Department of Neurology, University of
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mind, such thathuman memory does not necessarily
have to be a “place” to “store” information and
human knowledge can be more than “facts” and
“inference rules”. These computational concepts can
be rejected (or at least questioned) without giving up
the metaphor of human mental computation
[Feldman, 1989].

Parsing hasalways played a prominentrolein the
computational study of human language. One rea-
son for this, of course, was the engineering impor-
tance of parsing to early researchersin artificial intel-
ligence; their goal was to access newly devised infor-
mation resources using “natural” language. Cogni-
tive scientists have also focused on parsing issues,
with connectionist approaches contributing increas-
ingly to thisattention [Cottrell and Small, 1983; Waltz
and Pollack, 1985].

Recent work on linguistic representation in con-
nectionist models [Elman, 1989] has profound sig-
nificance for the psycholinguisticand computational
study of human language. In this work, Elman con-
structs a feed forward connectionist network [Ru-
melhart, et al., 1985] with only one (easily imple-
mented) recurrent structure [Cottrell and Fu-Sheng,
1989], and trains it to analyze sentences. For each
word presented in a particular sequence, the network
must predict thenext word expected. When the train-
ing has been completed, the network has acquired
the ability to perform the desired task. Furthermore,
in analyzing (statistically) the nature of the acquired
“knowledge”, Elman found that similar words, both
semantically and syntactically, clustered together.
He subsequently used his technique to build a net-
work to learn to predict subject/ verb agreements in
sentences with relative clauses (differing in number).

This work succeeds for the first time at accom-
plishing a task that has been attempted a number of
times in the recent history of cognitive science [Small
and Rieger, 1982] without as much success. This
work demonstrates (toalimited, but notinsignificant
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degree) that a computational device can
learn linguistic behaviors without any ex-
plicit representation of linguistic knowl-
edge in the form of rules, facts, proce-
dures, or other symbolic schemes. Fur-
thermore, it does so using a simulation
technique that has much closer analogies
to the human neurobiological substrate
(i.e., neurons and their connections) than
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doany symbol processing approaches. Of

I
—

EOANRE

course, thereare greatdifferencesbetween
connectionist networks (of all kinds) and
biological neural “networks”, and there
are important contributions to cognitive
scientific knowledge available from the

Input Layer
(Two Words)

Figure 1: Hidden Recurrent Net with Double Input Buffer

Context Layer

study of logical representations. However,
the ability of a simple network of impoverished
computational units toacquire linguistic knowledge
is important.

2. Lexical Ambiguity Resolution

Representation of semantic and pragmatic con-
text for lexical disambiguation has been a difficult
problem, especially in contexts involving more than
one sentence. In the work described here, a simple
recurrent feed foward network (as in Figure 1) was
trained to predict the next word in a sequence of
lexical inputs. The correct desired output word de-
pends on the semantic context of the previous sen-
tence. A set of two sentence “stories” constituted the
basic input to the system. Sentence 1a is an example

“story” of this type.
(1a) “A man fights. He takes out the assailant.”

As partof the experimental method, two simplifying
assumptions were made initially, one of which was
subsequently lifted. Throughout all of the experi-
ments, the sentences have been simplified by re-
moval of thearticles. Sentence 1b shows the example
story in the form actually used.

(1b) “Man fights. He takes out assailant.”

A further simplification of the experimental method
is the merging of “take” and “out” intoa single word
“take-out”. Note that this was done in some but not
all of the experiments, and constitutes an interesting
part of the experimental design. Sentence 1c shows
this input form of the example story.

(1c) “Man fights. He takes-out assailant.”

This change simplifies the problem by (a) decreasing
the number of total input words and thus the width
of the input vector; and (b) decreasing the distance
between the contextually importantantecedent word
and the ultimate ambiguity resolution task word (i.e.,
predicting the next word after “take out”).

Theinput to the system on any experimental trial
included sequences of three or four stories. On each
trial, some textual feature or computational parame-
ter was investigated. The two experimental end-
points consisted of the ability of the network to learn
the task (i.e., convergence) and the number of trials
needed to learn the task. Text comprehension fea-
tures investigated included the following:

(a) Pronominal gender agreement;

(b) Equivalent contexts for different objects;

(c) Different contexts for the same objects;

(d) Distance between contextual prime and
ambiguous word; and

(e) Size of the input buffer.

Computational manipulations were alsostudied,and
aspects that could affect convergence included:

(a) Network learning parameters;
(b) Training instance presentation; and
(c) Network architecture.

The ability of the networks to find solutions to the
problems presented suggesta number of thingsabout
human linguistic representations, as noted by Elman
[1989]. Inaddition, the waysin which these networks
are manipulated to effectuate or improve learning
may have implications for language teaching, espe-
cially in second language learning or in language
learning following damage to the nervous system.
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3. Hypotheses and Experiments

All experiments were conducted with feed for-
ward networks and learning by back propagation of
error [Rumelhart, et al., 1985].

Five hypotheses motivated the work:

(1) Asimplerecurrent feed forward network
using back propagation can learn to pre-
dictcorrectly the object of ambiguous verb
“take out” in specific contexts;

(2) Such a network can likewise predict a
pronoun of the correct gender in the ap-
propriate contexts;

(3) The effect of specific contextual features
increases with their proximity to the
ambiguous word or words;

(4) Thetrainingofhiddenrecurrentnetworks
forlexical ambiguity resolution improves
significantly when the input consists of
two words rather than a single word; and

(5) The principal components of the hidden
units in the trained networks reflect an
internal representation of linguisticknowl-
edge.

The experiments were done with networks of
threelayers, using simple recurrence of hidden units,
as shownin Figure 1. The distinct input words were
eachencoded asif they were orthogonal vectorsinan
n-dimensional space, where n is the total number of
words in the trial (i.e., with six

The use of one hidden layer (rather than two or
three) and the ideal number of hidden units (gener-
ally 3 to 4 times the number of coded input units)
were empirically determined through many experi-
mental trials. The learning rate (nu or epsilon) was
generally kept at 0.6 and the momentum (alpha) at
1.0. Changes in these values had little effect on con-
vergence of the experimental network configura-
tions. No attempt was made to minimize conver-
gence time, and convergence was defined as achiev-
ing the correct binary output values for all inputs,
with a value < 0.4 defined as zero, a value > 0.6
defined as one, and anything in between undefined,
as per the suggestions of Fahlman [1988].

Experiments were conducted with three or four
sentence pairs (which we call “stories”), along the
lines of those shown above. The training sets pre-
sented the inputdata one word ata time (inputbuffer
size=1) or two words ata time (inputbuffer size = 2).
Examplesof both training instance types for Sentence
1b are shown in Figure 2. Example stories to study
bothambiguity resolutionand pronoun gender agree-
ment are shown below. These sentences (2a-d) were
presented in several different ways during the ex-
periments. The presentations involved either (a) the
first three stories or all four stories; (b) a single “take-
out” word or two separate words; and (c) either one
input word at a time or two input words ata time (as
seen in the example training set of Figure 2).

(2a) “Man fights. He takes out assailant.”
(2b) “Woman cleans. She takes out garbage.”
(2¢c) “Man loves. He takes out licence.”

(2d) “Woman eats. She takes out supper.”

distinctinput words, the firstone

would beencoded as 000001, the INPUT |OUTPUT INPUT BUFFER | OUTPUT
second as 000010, and so forth). _ #1 #2 WORD
When the input consists of more ;‘_‘a;t Elghts

thanone word (e.g., twowords), Hghis fioh *

each word is encoded as before, he Em:ts :g B he

but with multiple buffer posi- he takes )& " s
tions, each one consisting of the takes out € ARER
vector for one word (e.g., the out 3ssa11ant he takes out
input vector width for inputs of assailant takes | out . assailant
two words becomes 2n). Out- _ out | assailant '

puts are encoded separately, Single Word Input -

with one bit position for each Training Set T Word Input Training fet
possible outputitem(i.e., words,

concept representations, or case Figure 2: Example Training Sets with One or Two Input Words
frame data).
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Note that capital letters are not represented, but end
of sentence periodsare included (as the asterisk in the
example training set of Figure 2).

4. Experimental Results

Approximately one hundred experiments were
conducted, and some general conclusions are pos-
sible on the basis of what was learned empirically
from those studies. Fourteen experiments, restricted
to three and four story sequences, are summarized in
Table 1, and labelled Experiments 1-14. Several para-
meters that were not varied in these fourteen experi-
ments are not listed in the table, including the num-
berofhiddenlayers(1), thelearningrate (0.6),and the
momentum (1.0).

The information included in the table consists of
the following: The input buffer width is the number
of vectors, each representing asingle word, that were
input to the network; the networks were presented
with either one or two word inputs. The words “take
out” were represented in some experiments as a
single word “take-out” and in others as two separate
words. The input of a “clear signal” (a vector of all
zeros) after each epochaided convergence, as per the
empirical observations of Blumenfeld [1989]. The
hidden layer fraction is the ratio of hidden layer
width to input layer width (before recurrence). A
network was considered to converge if it produced
the correct results for the training set. This was al-
ways true when the mean squared error of the net-

work wasless than 0.1. A network was considered to
be monotonic when its mean squared error never
increased during training. The number of trials shown
consists of epochs (complete presentations of the
training set).

The hypotheses enumerated above proved to be
mostly correct. It was possible to construct feed for-
ward hiddenrecursive networks to predict the object
of the verb “take out” in context (Hypothesis 1).
Experiments using the same numberof contexts (e.g.,
“fights”) asambiguous verbs (e.g., “takesout” mean-
ing “knock out with a punch”) converged the most
readily (these experiments are shownin Table 1). Ex-
periments with more contexts than ambiguous verbs
also converged, but notas readily. Experiments with
a greater number of ambiguous verbs than distinct
contexts did not converge. Experiments including
both maleand female agents converged more readily
than did experiments in which all the stories con-
tained male agents only. The networks were notonly
able to predict the correct pronoun in context (Hy-
pothesis 2), butactually improved their performance
by having this additional nonredundant element of
context to use in forming their internal (hidden unit
vector) encodings.

By using “take out” as two words in some experi-
ments but as a single word in others, the distance
between the contextually relevant antecedent word
and the ambiguous word was varied. Better conver-
gence was obtained when it was encoded as one

EXPERIMENT # 1 2 3 4 8

PARAMETERS

# of stories 3 3 3 3 4

# of “take out” words 1 1 2 2 1

Input buffer width 1 1 1 1 1

Gendersrepresented M M M M M
# of priming verbs 3 3 3 3 4

# of direct objects 3 3 3 3 4

Clear eachepoch? N Y N Y N
Input width 10 10 11 11 12
Hidden width 40 40 44 44 48
Output width 10 10 11 11 12
Hidden fraction - < 4 4 4

RESULTS

Convergence? Y Y N Y N
Monotonic? N N N N N
# of trials (epochs)

887 1294 1160 896 4232 1047 495 3874 611

Table 1: Summary of Fourteen Prototypical Experiments

6 7 8 9 10 11 12 13 14
4 4 4 4 4 4 4 4 4
1 1 2 2 2 2 2 2 2
1 1 1 1 2 2 2 2 2
M MF M M/FM/FM/F M M M
- 4 - 4 4 4 4 4 4
4 4 4 4 4 - 4 4 4
Y Y Y Y N Y Y Y Y
12 14 13 15 30 30 26 26 26
48 56 52 60 45 45 39 65 78
12 14 13 15 14 14 12 12 12
4 4 4 4 15 15 15 25 3

Y Y N Y Y Y N N Y
Y Y N N N N N N N
855 659 2207 2078 1662
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word thanas two words (Hypothesis 3), though most
networks were able to perform adequately when
each word was represented separately. The input
buffer width had a significant effect on network per-
formance (Hypothesis 4), with two word input ex-
periments converging more consistently and faster
than one word input experiments. Hypothesis 5 con-
cerns the nature of the hidden unit vectors following
training, and whether or not they constitutea “repre-
sentation” of linguistic knowledge. This will be ad-
dressed in the next section.

5. Network Analyses

Principal components analysis and contribution
analysis, a variation suggested by Sanger [1989]
specifically for evaluating feed forward networks,
were used to analyze the hidden unit vectors. The
goal of this analysis was to determine if the hidden
unit layer acquired a “representation” of the linguis-
tic knowledge as it learned enough about the struc-
ture of the presented stories to predict their outcomes
(i.e., thedirectobjectof the context-dependent verbs).

Principal components analysis (PCA) consists of
several steps, explained briefly in Fukunaga [1972],
aimed at determining a coordinate system for a col-
lection of vectors that maximally separates them, i.e.,
that organizes them into “components”. In a feed
forward network with hidden units, these compo-
nentscanbeviewed asan encodingof the distributed
information acquired by the network in training and
used by the network to produce desired outputs for

particular inputs. The steps of PCA are as follows:

(1) Compute the hidden unit vector corre-
sponding to each input vector;

(2) Compute the covariance matrix of this

array of hidden unit vectors;

(3) Determine the eigenvectors of the covari-

ance matrix; these vectors constitute the

new coordinate system;

(4) Sorttheeigenvectorsby their correspond-

ing eigenvalues;

(5) Translate each hidden unit vectorinto the

new coordinate system.

Contribution analysis simply requires that the
hidden unit activations computed in step (1) be ad-
justed by selected weights between the hidden layer
and the output layer of the network. The numerical
analysis text by Press et al [1989] includes several of
the algorithms required to perform eigenvector
computation.

Analyses were performed on the hidden unit
layer from Experiment 9 (see Table 1): This experi-
mentinvolved the collection of the four stories shown
in Sentences 2a-d, in which the verb “take out” takes
four direct objects, which are primed by the semantic
contextina previoussentence,and in which themain
actor is either male or female. Traditional principal

components analysis was per-

formed, as was a contribution

Figure 3: Ninth Principal Component

e analysis focussing on thedistrib-
0.6 . uted hidden unitresponsibilities
] toward particular output words.

04
Three of the most interest-
0.2 ing components discovered in
this analysis derive from the
0.0 + hidden unit contributions to the
output word “garbage”, which
02 4 is one of the primed objects of
04 “take out” that the network
o learns to predict based on con-
06 BNt B A I T tl-(_;xt. Thesde are}:hefcomymnents
o QP  * Eot gPS Or Cor gt g Snt gns b illustrated in the figures. Note
E.‘:E'D ‘C% g £ £ § "‘J% g E’ £ % .:%é £ £5 ﬁ% 3 § that a constant has been added
& Y% 59 7 5 ~— 0 & S = 5| totheraw valuestoimprove the

@ graphic presentation.

Figure 3 consists of a bar
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the disambiguation task, and

0.2

0.0
-0.2
-04
-0.6
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-1.0

can be seen in a number of the
principal components, which
themselves appear to encode
different information. Figure 5
illustrates this pointina princi-
pal component that superfi-
cially appears to represent the
word “out”,a word with no se-
mantic role in the experimental
stories used here. Significantly,
the value of the principal com-
ponent is maximal when the
word “out” occursinasentence

she |
out |
garbage |

out
takes |

man |
assailant

fights_
he
takes |

he
takes
woman
man
loves

cleans

out |
licence |

Figure 4: Thirty-Sixth Principal Component

with a female subject. The net-
work predicts the next word of
the input stream by accumulat-
ing contextual information; in
this case, a readily predictable
word that precedesa highly un-

eats |
she
takes
out
supper

woman |

graph illustrating the contribution of the ninth prin-
cipal component to the decision task of the network.
This component discriminates between nouns and
other words (i.e., verbs and the periods at the end of
sentences). Many of the principal component vectors
discriminate among words and word types, and
suggest learned linguistic representations (appro-
priate to the simplelinguistic task performed). Other
principal componentsappear not to represent typical
linguistic concepts, representing instead heuristically
useful information for performing the requested task.
In the analyses performed for Experiment 9, for ex-
ample, one principal compo-

predictable one (context ex-
cluded) becomes a carrier of contextual information.

As expected, the knowledge gained by these
networks, when presented with particular linguistic
samples, pertains directly to those samples. The net-
work thushasaninherently heuristic nature; the gen-
eralizations (are they representations?) acquired are
usefuland/or necessary for performing one particu-
lar task. Naturally, results based on experiments in-
volving such small corpora of textual samples cannot
necessarily be extrapolated to the entirety of human
linguistic knowledge and processing.

nent vector seemed torepre- | (4

sent a category of pronouns
and objects, another repre-
sented the words “woman”
and all occurrences of the
word “take” except the first
one,and another thelastword
of each sentence.

0.2

00

Figure 4 shows that one
of the principal components
encodes the direct objects of
the ambiguous verb “take

out". Note that the gender of
the sentence subject is subtly
represented in these data in
the magnitude of the compo-
nent. The representation of
gender contributes to the
network’s ability to perform

man |
out
assailant

fights
he
takes

Figure 5:
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6. Discussion

Much attention has been devoted to the effects of
context on human comprehension of sentences and
collections of sentences. The relevant context has in-
cluded local syntactic and semantic features as well
asbroader elements of textual information. The sub-
jectof lexicalambiguity resolution [Small, etal., 1988]
hasbeena productivedomain for studies of this type,
since understanding the syntacticrole and semantics
of a word requires knowledge of context at many
different levels [Small, 1980].

Linguistshaveattended to the structural features
of sentences and texts that bear on the unambiguous
interpretation of subsequent linguistic fragments.
Psychologists have employed lexical decision tasks
[Tanenhaus, etal., 1979] and auditory evoked poten-
tials [van Petten and Kutas, 1988] to gain information
about the temporal sequence of steps performed by
the brain to perform word or sentence understand-
ing. While much of this work has been conducted in
(presumably) normal users of language, some work
has also been done in subjects with language dys-
function, suchas Broca’saphasia [Batesand Wulfeck,
1989; Friederici and Kilborn, 1989] or Alzheimer’s
Disease [Nebes, et al., 1986].

In the current work, a simple recurrent feed for-
ward connectionist network learned to interpret
correctly the intended meaning of the words “take
out” in context. Asnoted by ElIman [1989], the distrib-
uted connectionist approach leads to linguistic per-
formance without explicit rules. Furthermore, the
syntacticand semantic structures of language (albeit
the very simple examples studied so far) are repre-
sented in a distributed non-symbolic form. While in
alllikelihood, the brain does notemploy back propa-
gation learning, it does appear that human learning
takes place by weight changes in response to input
stimuli (if chemical changes at synapses are viewed
as weight changes), and that repetition of stimuli
potentiates learning [Lynch, 1986].

7. Conclusions and Future Work

Computational network architectures can learn
to perform certain linguistic tasks without any ex-
plicitly coded pre-existing linguistic knowledge. In
these experiments, simple networks were shown to
gain internal linguistic representations sufficient to
interpretambiguous words in context. Furthermore,
they were shown to improve performance with (a)
shorter distance between contextually important
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antecedent word and ambiguous word; and (b) in-
creased input buffer size from one word at a time to
two words ata time. Both of these processing charac-
teristics have a direct bearing on understanding
human performance.

The linear algebraic technique of principal com-
ponents analysis was used to demonstrate that the
network gained adistributed internal representation
of various heuristically useful concepts. These con-
cepts include the linguistic notions of “noun” and
“direct object”, the interesting and useful notion of
“the word ‘out’ in the context of a female agent”, and
other potentially useful heuristic concepts such as
“last word in a sentence” and “period at the end of a
contexually important sentence” (i.e., a two word
antecedent sentence in one of the simple stories).

Finally, such networks have significant neuro-
logical importance. People are subject to a variety of
neurological adversities, and the pathophysiology of
many are unknown. Computer models of language
thatcanbe disrupted to producedeficitsanalogousto
those present in human disease, such as acquired
dyslexia [Hinton and Shallice, 1989; Mozer and
Behrmann, 1989], may lead to better understanding
of these disease processes. Inaddition toillness, such
as stroke and dementia, which produce numerous
speaking and understanding (and reading and writ-
ing) problems, normal aging alsoinvolveschangesin
linguistic processing. Perhapsa “computational neu-
ropsychology” can shed some light on questions that
have been unanswered since Broca [1861].
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