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Abstract

Fine-grained sedimentary rocks – namely mudrocks, including their laminated fissile 

variety — shales – make up about two thirds of all sedimentary rocks in the Earth's 

crust and a quarter of the continental land mass. Organic-rich shales and mudstones 

are the source rocks and reservoirs for conventional and unconventional hydrocarbon 

resources. Mudrocks are relied upon as natural barriers for geological carbon 

storage and nuclear waste disposal. Consideration of mudrock multi-scale physics and 

multi-scale spatial and temporal behavior is vital to address emergent phenomena 

in shaleformations perturbed by engineering activities. Unique physical characteristics 

of shales arise as a result of their layered and highly heterogeneous and anisotropic 

nature, low permeability fabric, compositional complexity, and nano-scale confined 

chemical environments. Barriers of lexicon among geoscientists and engineers impede 

the development and use of conceptual models for the coupled thermal-hydraulic-

mechanical-chemical-biological (THMCB) processes in mudrock formations. This 

manuscript reviews the THMCB process couplings, resulting emergent behavior, and 

key modeling approaches. We identify future research priorities, in particular 

fundamental knowledge gaps in understanding the phase behavior under nano-scale 

confinement, coupled chemo-mechanical effects on fractures, the interplay between 

physical and chemical processes and their rates, and issues of non-linearity and 

heterogeneity. We develop recommendations for future research and integrating multi-

disciplinary conceptual models for the coupled multi-scale multi-physics behavior of 

mudrocks. Consistent conceptual models across disciplines are essential for predicting 

emergent processes in the subsurface, such as self-focusing of flow, time-dependent 

deformation (creep), fracture network development, and wellbore stability.
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1. Introduction: shale architecture, heterogeneity, and coupled processes

1.1. Significance of mudrocks, and laminated mudrocks — shales

Sedimentary rock containing more than 50% (by weight or volume) of particles less than

62.5 μm in size is known variously as shale, siltstone, claystone, mudstone, and is 

cumulatively referred to as mudrocks (Folk, 1980, Milliken, 2014, Tucker, 2009). Some 

workers apply “shale” narrowly to refer to the visibly laminated, fissile variety of this 

sedimentary rock, but in this paper we apply this term as the overall name for the broad 

class of fine-grained layered sedimentary rocks, and, where appropriate, use it 

interchangeably with the term “mudrock” (Boggs, 2006). Shale constitutes around two-

thirds of the sedimentary record of planet Earth (Garrels and Mackenzie, 1969, Blatt, 

1982), and a quarter of the continental land mass (Jin et al., 2014). In some portions 

of sedimentary basins, distant from the principal axes of sediment transport, the 

abundance of mudrocks may approach 90% of the local sediment volume (Galloway et 

al., 1982). Shalesare volumetrically dominant in both marine and terrigenous 

successions, and host significant portions of the fluid-rock interactions controlling fate 

and transport of elements in the upper crust (Milliken, 2004), and atmosphere – 

e.g., chemical weathering of shale has been shown to serve as a long-term global sink 

for carbon dioxide (CO2) (Jin et al., 2014). Thus, shale properties are key controls on 

interactions of the atmosphere, hydrosphere and sedimentary lithosphere in many 

contexts, and are crucial reservoirs for unconventional oil and gas production, top seals 

for conventional hydrocarbontraps and geological CO2 storage (GCS), and isolation of 

nuclear and other high-level wastes.

In each case, shales are of interest both as barriers to fluid flow (seals) and as rock 

units that support flow of their contained fluids (reservoirs). Accelerated growth of 

information on Earth's most abundant sedimentary rock highlights key gaps in our 

understanding of this rock type. The development of conceptual models for the coupled 

thermal-hydraulic-mechanical-chemical-biological (THMCB) processes in shale 

formations presents a major scientific challenge. In this paper we assess outstanding 

and fundamental issues in shale science that present obstacles to practical 

management of shales as seals, reservoirs, and source rocks. We develop 
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recommendations for future research and integrating multi-disciplinary data for models 

appropriate for multi-scale, multi-physics coupled processes in shale.

1.2. Key physical and chemical characteristics of shales

The physical and chemical properties of shales are controlled by their depositional 

environment, post-depositional diagenetic history, and engineering activities. In general 

terms, shales are commonly distinguished by their layered low-permeability fabric and 

composed of fine-grained minerals. One of the primary components of source rock 

shale is organic matter (e.g., kerogen). Porosity and pore sizes of shale are variable; 

however, nano-pores comprise a large fraction of the total porosity (Ross and Bustin, 

2009, Loucks et al., 2009, Chalmers et al., 2012, Nelson, 2009).

Historically, shales have been strongly identified by their clay mineral content because 

clay minerals are a component that controls the physical behavior of shale at scales 

ranging from field and laboratory to the nano-scale (Potter et al., 2005). Although most 

shales contain at least a few volume percent of clay minerals, petrographic inspection 

by high-resolution methods shows that non-phyllosilicate minerals such 

as quartz, feldspar, and calcite dominate in many shale lithologies and that organic 

components contribute additional complexity (Cook and Sherwood, 1991, Dean et al., 

1985, Aplin and Macquaker, 2011). Compositional classification of shales has not, to 

date, benefited from a level of community consensus that is analogous to the widely 

applied classifications of sandstones and limestones (Milliken, 2014, Lazar et al., 

2015, Bourg, 2015). It is clear however, that shales display a range of mineralogical 

compositions that encompass that of sandstones and limestones in addition to actual 

clay-mineral-rich rocks (Milliken, 2014).

Recent advances in understanding shale heterogeneity at many scales have been 

founded, in part, on a heightened appreciation of the nature of fundamental components

(grains, cements, and grain replacements) as revealed by high resolution 

electron microbeam imaging (Wawak et al., 2013). Both observational (Lazar et al., 

2015) and experimental (Schieber et al., 2007) approaches demonstrate that the 

physical sedimentology of fine-grained sediments entails a complex set of advective 

transport mechanisms as well as gravity settling, leading to distinctive textural and fabric

characteristics at the bed scale that can be used to infer depositional conditions (Lazar 

et al., 2015). In this paper we use the term “texture” (rock microstructure) to refer to the 

combination of properties, including maturity, pore characteristics, fragment 

shape, roughness, composition, sorting, and diagenetic features — matrix and cement 

(Vernon, 2004).
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Pores in shale manifest at a variety of sizes within kerogen (organic material), the 

inorganic mineral matrix, and fractures formed during natural processes or engineering 

activities (Akkutlu and Fathi, 2012, Saraji and Piri, 2015). The structures of pores 

reflect depositional processes and also the chemical and mechanical diagenetic 

processes associated with burial. In organic-rich shales, thermal maturation results in 

kerogen cracking and production of liquid hydrocarbons and gas, which also modifies 

the nature of porosity within organic components associated with these rocks.

Pore waters comprise approximately 20% by volume of most sedimentary basins 

(Mondol et al., 2007, Kharaka and Hanor, 2014). The salinity of pore waters 

in petroleum reservoir rocks, including values reported for shale and tight reservoirs 

with in situ temperatures of ~ 20–150 °C and fluid pressures of ~ 100–1000 bar, varies 

widely from approximately 1000 mg L− 1 to over 400,000 mg L− 1 total dissolved solids 

(TDS) (Kharaka and Hanor, 2014). Detailed inorganic and organic chemical analyses, 

together with measurements of stable and radioactive water and solute isotopes have 

shown that the formation waters in sedimentary basins are dominantly of local meteoric 

or marine connate origin. However, bittern — residual evaporated seawater, geologically

old meteoric water, and especially waters of mixed origin are important components in 

most sedimentary basins (Kharaka and Hanor, 2014). During diagenesis, the original 

waters of deposition evolve to Na–Cl, Na–Cl–CH3COO-, or Na–Ca–Cl-type waters by a 

combination of several processes including (1) dissolution of evaporites, 

especially halite; (2) diffusion and advection, especially in and near salt domes; (3) 

reflux and incorporation of bitterns; (4) dissolution, precipitation and transformation of 

minerals other than evaporites; (5) interaction with clay minerals, principally mudrocks 

(and shales) behave as geologic membranes and have high ion exchange capacities; 

(6) interactions with organics, including petroleum and solid organic matter, as well as 

bacteria that can survive in sedimentary basins at temperatures of up to ~ 80 °C; and 

(7) mixing of different waters. The important processes responsible for the chemical 

evolution of water in each basin can be identified using chemical markers and isotopic 

tracers (Kharaka and Hanor, 2014, Hitchon et al., 1971, Hanor, 1994, Kharaka et al., 

1987, Capo et al., 2014).

The significant compositional and textural heterogeneity that arises from the integrated 

effects of depositional, biologic, and diagenetic processes in shales is observed on the 

scale of nanometers (Macquaker et al., 2010, Schieber, 2004) to meters (Lazar et al., 

2015) to kilometers. Methods to honor this multi-scale heterogeneity in models that 

predict the response of shales to natural and induced physical and chemical changes is 

one of the key challenges of shale science.
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1.3. Why is THMCB process coupling important for shale?

The compositional and textural complexity of shale (Fig. 1) is manifested in non-linear 

progression of physical and chemical processes, and hard-to-predict response to 

natural and anthropogenic perturbations. The time-dependence and the interplay of 

chemical, mechanical, and transport processes have been directly observed, in 

particular in engineered systems. These coupled processes develop in highly nonlinear 

fashion and can range across length scales from nanometers to kilometers (Fig. 1), and 

across time scales from geological time scale to nano-seconds. The two-way process 

coupling in shale is presented in Table 1. There are numerous unknowns about how 

THCMB processes in shale are coupled and at what spatial and temporal scales.
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Fig. 1. Structures, processes, and the relevant length scales for shale formations.

Table 1. Two-way coupling of thermal, hydraulic, mechanical, chemical, and biological processes relevant 

to natural and engineered shale.

Process Thermal

Hydraulic Changes in fluid 
buoyancy and 
viscosity, change in 
fluid phase – 
evaporation and 
condensation. Thermal 
diffusion and fluid 
flow. Heat convection 
by moving fluid.

Hydraulic

Mechanical Conversion of 
mechanical energy into
heat; thermal stress and
thermal expansion, 
damage and 
deformation.

Stress-deformation-
damage controls on 
porosity and 
permeability, and 
fracture network 
dynamics; aperture-
pressure-stiffness of 
fracture as a function 
of matrix effective 
stress; capillary and 
swelling pressure-
relative saturation.

Mechanical

Chemical Temperature control on
chemical reaction rates 
and mineral stability 
fields; heat release 
from exothermal 
chemical reactions, 
involving inorganic 
and organic 
components.

Fluid pressure, 
velocity and saturation
effects on solid and 
gas solutions, 
precipitation reactions 
and consumption of 
solute. Chemical 
control on 
permeability.

Mechanical 
processes control 
transport paths – 
deformation, 
damage and 
fracturing. Rock 
strength and 
damage due to 
chemical 
reactions.

Chemical

Biological Thermal effects on 
metabolism of 
microorganisms.

“Plugging” – changes 
in permeability due to 
cell growth within 
pore networks.

Microbially-
induced 
chemical 
changes; 
Chemical 
stimulation or 
inhibition of 
microbial 
growth.

Diagenesis is one of the classic examples of process coupling in shale. A volumetrically 

important diagenetic reaction is the transformation of mixed layer clays (MLC), 
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containing smectite layers, to MLCs containing increasing proportions of illite (Hower 

and Mowatt, 1900). This diagenetic reaction is often accompanied by a volume change 

and is the source of significant dissolved silica that results in quartz cementation of 

proximal reservoir sands (Towe, 1962, Lynch et al., 1997), and possibly, the shales 

themselves (Thyberg et al., 2010). This reaction also produces significant volumes of 

water that can cause the development of geologic overpressures (Osborne and 

Swarbrick, 1997, Rask et al., 1997). The absolute value of volume change during the 

transformation of smectite to illite is not a constant, and depends on the chemical 

pathway. Osborne and Swarbrick (1999) calculated the volume change associated with 

10 possible smectite to illite reaction pathways (Osborne and Swarbrick, 1999). The 

volume change ranges from an increase of 4.1% to a decrease of 8.4% depending on 

reactants and products (see also Swarbrick et al., 2001). A positive volume change and 

developed overpressure may cause a decrease of horizontal stress and induce 

fracturing in cases where the fluid pressures exceed the local minimum principal stress. 

Shale fracturing takes place anisotropically, resulting in irreversible changes in shale 

fabric (Gale et al., 2014), and increases, also anisotropically, the permeability by orders 

of magnitude. Shale architecture shaped by diagenesis controls the preferential 

flow across scales.

As indicated by Dusseault, 2004, shale is the only “common” rock type, where all four 

(Darcian, Fickian, Fourier and Ohmic) diffusion processes can co-exist as processes of 

first-order importance (Dusseault, 2004). Presence of the nano-channel and nano-pore 

structures in shale, as well as mixed wettability (e.g. water- and oil-wetting) networks 

control transport behavior (Javadpour, 2009), while reactive transport in turn affects the 

pore structures (Milliken and Curtis, 2016, Milliken and Day-Stirrat, 2013). Additionally, 

the combined effects of high salt content and large proportion of water bound at 

interfaces (water films) relative to free water, result in the overall low chemical potential 

(limited activity) of water, and chemical behavior differing from the bulk-phase behavior.

In coupled processes, observed in shale formations, one of the key variables is volume 

change (Osborne and Swarbrick, 1999, Swarbrick et al., 2001). Microscopic processes 

of swelling and shrinking of clay minerals results in macroscopically observed 

expansion and contraction of shale beds. Volume changes control the state of stress, 

which leads to yield (shearing and fracturing) and changes in geometry of pore 

and fracture networks, and resulting changes in permeability and diffusivity (Milliken and

Curtis, 2016). Understanding the THCMB process coupling and feedbacks necessitates 

quantifying the volume changes, governing processes and their rates and incorporating 

them into numerical models.
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Chemical controls on fractures are common for various rock types, including shale. 

Most commonly, chemically-induced fracturing in shale is due to (1) cation-exchange 

reactions involving swelling clay minerals, which may result in positive or negative 

volume change (Dusseault, 2004), (2) mineral phase transformations, also resulting in 

volume change, and (3) chemical weakening of the silica- or metal-oxygen bonds due to

the chemical attack (by water, proton or hydroxyl) on the accessible substrates – 

mineral grain surfaces and cements – contributing to fracture initiation and growth 

(Dove, 1995).

In some cases, biologic interactions in fine-grained systems can be profound 

(Macquaker et al., 2010, Schieber, 2004, Petsch et al., 2005). They are, however, 

limited by the “tightness” of the rocks: it has been shown that in shale with pore throat 

sizes < 0.2 μm, biological activity is limited (Fredrickson et al., 1997). However, in 

perturbed shale systems – for example, in gas wellsin the Barnett shale – significant 

biological activity, manifested as biogenic sulfide production and microbially-

induced corrosion, have been documented (Struchtemeyer et al., 2011). These 

introduced microorganisms in oil and gas fields can cause reservoir plugging, decline in 

the resource quality, and corrosion of metal-containing equipment (Struchtemeyer et al.,

2011).

Coupled THCMB processes in engineered, or perturbed, systems are of particular 

interest in various applications ranging from wellbore stability, to performance of 

geological CO2 storage reservoirs, and repositories for used nuclear fuel (UNF). In these

applications, removal (oil and gas production, construction of wellbores or underground 

repository shafts) or emplacement (CO2, nuclear waste packages) of materials interfere 

with the original either true or pseudo- steady-state, or, local equilibrium conditions of 

the system. For example, when CO2 is injected into a geologic formation, some of the 

CO2 dissolves in the pore brine and forms carbonic acid, lowering the brine pH, initiating

geochemical re-equilibration through mineral dissolution and re-precipitation (Ilgen and 

Cygan, 2016, Kharaka et al., 2006). Other examples of process coupling during 

engineering activities are: (1) when a stainless steel UNF waste package is placed in a 

repository, gas generation from the canister corrosion can cause fracturing of the porous

media, contributing to the positive feedback loop in the coupled fracture-transport 

(Olivella and Alonso, 2004); and (2) borehole instability, which has been observed for 

both smectite-rich shales with porosities in excess of 10%, as well as in low-porosity 

(less than 10%), highly fractured, quartz/illite-rich shale (Dusseault, 2004). These types 

of shale are common and are encountered in most deep drilling operations. The 

borehole instability is largely attributed to process coupling – when volume is added or 
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withdrawn as occurs with swelling clay minerals in smectite-rich shale, the state of 

stress around the borehole is modified, creating the potential for further yield, 

channeling and dilation (Choi et al., 2004). The dynamic volumetric dilation is 

manifested all the way to the processes occurring at the pore throats (Choi et al., 2004).

Quantitative predictive models are limited and still under development due to the 

complexity of coupled processes and their manifestations over the large range of length 

and temporal scales. The contemporary challenge is to understand process couplings 

and emergent phenomena such as preferential flow path development, time-dependent 

deformation, fracture network development, and wellbore stability across spatial and 

temporal scales in natural as well as in perturbed systems. We suggest that the 

complexity of the THCMB process coupling in shale requires a systematic approach 

involving a broad range of disciplines. This systematic approach could create a 

foundation for a common language that could be used by the various disciplines that 

study or engineer shale. In the following sections we review the state-of-the-art 

methodologies used to address key subsets of coupled processes across the THCMB 

spectrum.

2. Methods

The selection of primary literature for this systematic review was based on whether the 

full range or any combination of the THCMB coupled processed is specifically 

addressed. Given the multi-scale multi-process nature of this review, we included both 

experimental, field, and theoretical studies. Only literature in English is included. We 

have identified the physical, chemical, mechanical, and geological properties 

of shale that distinguish it from other rock types. We reviewed the methodologies 

developed to address process coupling at various time and length scales, and 

synthesized the data to outline recommendations for future research on coupled 

processes and data integration.

3. Methodologies applied to coupled processes in shale

3.1. Post-depositional physical and chemical processes in shale (diagenesis)

Post-depositional changes cause further heterogeneity in fine-grained sediments and 

encompass a similar range of chemical and mechanical processes as are observed in 

the diagenesis of other sedimentary rocks. Compaction (Mondol et al., 2007, Schneider 

et al., 2011), cementation by carbonate, quartz, and other minerals (Milliken and Day-

Stirrat, 2013), pressure solution (Evans, 1990), and grain replacement such 
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as albitization of feldspars (Milliken, 1994) are all observed in shales. The details of 

these processes in mudrocks are, however, still poorly understood compared to similar 

processes observed in sandstones and limestones.

The transformation of smectite layers in MLC with increasing temperature is the key 

diagenetic reaction in shale in sedimentary basins, including the northern Gulf of Mexico

basin (Kharaka and Hanor, 2014, Lynch et al., 1997, Boles and Franks, 1979). Due to 

the large volumes of clay minerals, the water and solutes released and consumed by 

the MLC transformation are major factors shaping the hydrogeochemistry 

and petroleum resources of these basins (Lynch et al., 1997). Several incongruent 

reactions conserving aluminum (Al) or maintaining a constant total volume have been 

proposed for this transformation (Rask et al., 1997, Boles and Franks, 1979). The 

reaction of Eq. (1) (Kharaka and Hanor, 2014) conserving both Al and Mg, and 

precipitating chlorite, quartz, and illite is probably a closer approximation based on the 

composition of formation water observed in the northern Gulf of Mexico basin.

(1)10.8H++3.81K+

+1.69KNaCa2Mg4Fe4Al14Si36O100OH20•10H20⇔K5.5Mg2Fe1.5Al22Si35O100OH20+1.59M

g3Fe2AlSi3O10OH8+24.4SiO2s+22.8H2O+1.69Na++3.38Ca2++2.06Fe3+

Ferric iron (Fe3 +) in reaction (1) will be reduced by organic matter to Fe2 +and some may 

precipitate as pyrite or ankerite. The overall reaction consumes large amounts 

of potassium (K+) and protons (H+) and adds calcium (Ca2 +), sodium (Na+) and some iron

(Fe2 +) to the pore water.

Diagenetic illite and quartz are also the major pore-occluding cements in the petroleum 

reservoirs of North Sea (Bjørlykke et al., 1995) and Saudi Arabia (Franks and 

Zwingmann, 2010). Illite and quartz in these basins are formed from reactions of K-

feldspar and kaolinite as depicted in reaction (2). Illitization of existing kaolinite is 

postulated to occur isochemically at a threshold temperature of ~ 140 °C (Bjørlykke et 

al., 1995).

(2)KAlSi3O8+Al2Si2O5OH4⇔KAl3Si3O10OH2+2SiO2s+H2O

As detailed in Kharaka et al. (2016), the salinity and chemical and isotopic 

compositions of pore waters from conventional and unconventional reservoirs from the 

same basin/sub-basin and pressure and temperature conditions appear comparable, 

indicating that diagenetic pathways experienced by fine-grained sediments are similar to

the processes in coarser sediments (Haluszczak et al., 2013, Rowan et al., 2015).

Basin modeling and basin petroleum system modeling (BPSM) represent integrated 

approaches to recreate the diagenetic evolution of sedimentary basins, the latter 

focusing explicitly on hydrocarbon systems (Al-Hajeri et al., 2009). The traditional goal 
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of BPSM is to quantify the history of hydrocarbons in conventional reservoirs for 

exploration and resource extraction by reconstructing and/or incorporating the original 

hydrocarbon source location, generation, expulsion, migration pathways and 

preservation in hydrocarbon traps (Al-Hajeri et al., 2009). Original sediment deposition 

and subsequent diagenetic processes integrated by BPSM can include: 

sediment depositional environments, sediment types and structures, sedimentation 

rates, compaction, cementation, thermal 

history, dewatering and porosity evolution, kerogen maturation, hydrocarbon generation-

migration-accumulation, multi-phase flow including relative permeability, capillary 

pressure, and assumptions on wettability, phase behavior of hydrocarbons and/or other 

fluids, pore pressure evolution, (effective) stress changes, and faulting. The BPSM 

approach can be applied spatially in 1, 2, or 3 dimensions. Major differences of BPSM 

from typical conventional reservoir modeling include large basin-scale domains (on the 

order of hundreds of kilometers with large grid block sizes in the numerical modeling) 

and geologic time scales (e.g., hundreds of millions of years) as opposed to meter or 

kilometer scale modeling over months to years (Al-Hajeri et al., 2009).

Application of BPSM to shale hydrocarbon plays is relatively new and still under 

development. Recent effort focuses on treating the shale play as both source and 

reservoir. Romero-Sarmiento et al. (2013, pages 315–316)explain that “expelled 

[hydrocarbons] have been therefore used as a parameter to adjust for the assessment 

of conventional petroleum systems (Romero-Sarmiento et al., 2013). A thorough 

simulation of expulsion and retention mechanisms was not therefore necessary to 

define conventional oil and gas in place in the reservoirs.” Romero-Sarmiento et al. 

(2013) present approaches for basin-scale shale-play BPSM that include: source-

rock kinetics, chemical transformations, and evolution of total organic carbon(TOC) and 

associated porosity, retention of hydrocarbon fluids (e.g., via sorption or as a free-phase

in kerogen porosity), and assumptions of porosity evolution of kerogen-hosted pores 

versus mineral matrix pores (e.g. mineral-assemblage-hosted pores respond to stress 

state whereas organic pores respond mainly as a function of maturity i.e., thermal 

history) (Rowan et al., 2015). Recent and developing knowledge of the phase behavior 

of hydrocarbon fluids under nano-scale confinement, non-Darcy transport process (e.g.,

Knudsen transport), complex cementation/dissolution textures, and creep and other 

mechanical responses still need to be fully integrated in shale BPSM to enable better 

estimates of hydrocarbon resources in place and their exploitation potential.

3.2. Physical and chemical controls on fracturing in shale
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As discussed above, the heterogeneous nature of organic-rich shales arises from 

textural complexity and variation in mineralogical composition. Fractures and coupled 

processes in shales cannot be properly understood without accounting for the role of 

these textural/compositional variations in controlling the mechanical properties, failure 

and the interactions among rock deformation, pore pressure, fluid flow and solid-

liquid geochemistry (Gale et al., 2014).

The laminated nature and varying mineral/chemical composition of shale has been 

observed on multiple scales: from geologic observations at outcrops, in cores from 

organic-rich mudrock reservoirs, and from laboratory test (with cm-resolution) that 

measure properties along the core length (Fig. 2, Fig. 3). Core measurements have 

shown that variation in mechanical properties of shale occur over intervals that range in 

scale from sub-centimeter to decimeters (Fig. 3). For example, unconfined strength in a 

single shale core can range from 69 MPa to 241 MPa (10,000 psi to 35,000 psi) among 

laminae, while Young Modulus has been observed to range from 7 GPa to 34 GPa 

(1 Mpsi to 5 Mpsi) on the same length scale (unpublished data). Equally large ranges of 

values of other mechanical properties are commonly observed (Suarez-Rivera, 2011). 

Pervasive mm- to cm- to decimeter- scale layering with sharply contrasting properties is 

abundant (Fig. 2). Large scale layering, on the order of meters, is also common and is 

caused by the presence of carbonate benches, or other mineral concentrations, and 

intercalated shale units (Fig. 3). The sharply changing properties between thin rock units

and the stacked rock architecture of organic-rich shales also results in the presence and

distribution of weak interfaces with specific orientations (often bed parallel) which also 

affect fluid mobility and fracture propagation. Some of these interfaces were activated, 

parted, and/or mineralized, during basin development. Other interfaces are susceptible 

to slip when stresses and/or pore pressure change during drilling, hydraulic fracturing, 

production, as well as from associated regional changes in stress and deformation. For 

example, stresses and fluid pressure can vary widely in regions with a high density of 

wells where large volume of fluids are pumped in during hydraulic fracturing, and 

withdrawn during production. The presence of layering and weak interfaces results in 

preferential directions of deformation, failure, and fluid flow. Often these observed 

preferential directions do not align as predicted by simple homogeneous isotropic 

models.
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Fig. 2. Intense layering with contrasting properties in shales. Outcrops photos (top), and
scanning electron microscope (SEM) images (bottom).
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Fig. 3. Elemental composition of shale measured by x-ray fluorescence (XRF) with 
centimeter-resolution. The presence and distribution of calcite-rich layers intermixed 
with mudstone units are observed over an 85 ft. (25 m) section.

These challenges have been clear to the mining and civil engineering industries, and 

their workflows and models include orientations and modes of rock failure that are 

controlled primarily by the presence, distributions, and properties of fault sets and 

discontinuities (i.e., planes of weakness). The role of the intrinsic rock properties on 

failure is proposed to be of secondary importance. Block Theory (Goodman and Shi, 

1985) is an example of a methodology developed to understand and predict rock failure 

and excavation stability based on a detailed mapping of the orientation and distribution 

of planes of weakness in the regional rock system. Admittedly the mining and civil 

engineering industries focus predominantly on “stronger” rocks, where the intrinsic rock 

strength is larger than the shear strength of faults or other planes of weakness; and the 

confining stresses may be lower because of the shallower nature of their applications. 

Nevertheless, in contrast, the method and models the oil industry uses for rock 

deformation and failure (e.g., wellbore stability, hydraulic fracturing, depletion-induced 

compaction, and others), are primarily dependent on the intrinsic, homogenized, rock 

properties. These are typically obtained or predicted at well-log resolution (averaged 

over 2 ft. (60 cm), Table 2) and, as a consequence, this minimizes or removes the 
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representation of existing thin layering and interfaces – e.g. micron-scale fractures (Fig. 

4). Such a method may be appropriate and successful for conventional reservoirs, but is

limiting for unconventional, over pressured, heterogeneous, anisotropic reservoirs. 

Regarding hydraulic fracturing, for example, it is now accepted that the layered nature 

of mudrocks and the ubiquitous presence of planes of weakness in them (often bed 

parallel) give rise to complex hydraulic fracturing geometries, the presence of multiple 

branches of fracture propagation, fish-bone structures of fracturing and leak off, step 

overs, and other geometric effects that do not occur in homogeneous isotropic materials

and cannot be explained using homogeneous models (Fig. 5) (Suarez-Rivera et al., 

2013).

Table 2. Types of data available for studies on shale, their spatial and temporal resolution, and their 

process couplings.

Data type

Spatial resolution
or size of testable

sample Temporal resolution
Couples witha or
strongly affects Comments

Texture (grain size,
shape, orientation of

individual grain,
overall sorting)

Mudrock has 
> 50% of particles 
< 62.5 μm; fine 
mud (clay and 
very fine silt) is 
< 8 μm

Time-scale of depositional 
setting (see Bedding); up to 
geological time for 
mechanical diagenesis and 
recrystallization

Porosity, 
permeability, 
capillary pressure 
characteristics; 
strength, Young's 
modulus

Informs sediment 
provenance, water 
column energy level, 
and geologic controls 
on rock properties 
including porosity and
permeability (Lazar et 
al., 2015)

Pore network
imaging, pore types

and distribution,
porosity (FIB-SEM,
USAN/SANS, core

plug measurements)
NMR

nm to 100s of μm 
(imaging); 0.5 μm 
to 100s of μm 
(EDS);
1 nm to 10s of μm 
(USANS/SANS)
cm's (core plug)

Time-scale of transport in 
pore networks: up to 
seconds

Porosity, 
permeability, 
chemical 
composition 
/wettability

Direct imaging and 
indirect measurements
of porosity and 
connectivity—useful 
for modeling of pore-
scale transport 
(including wettability)
and potential 
mechanical behavior

Bedding Lamina: fraction 
of mm to mms;
Laminaset: mm to 
cms;
Beds: typically 
mms to 10s of cms
(do not have 
minimum or 
maximum absolute
thickness); 
laterally meters to 
kms

Laminae: forms in seconds 
to one or more years
Beds: minutes to “many 
moments of geological 
time” (Campbell, 1967)

“Larger”-scale flow 
or mechanical units; 
natural fracture 
spacing may 
correlate with larger-
scale stratal units

Relevant for 
interpreting: sediment 
input, accumulation; 
energy of deposition; 
degree of bioturbation 
(Lazar et al., 2015); 
curved, wavy planar 
(parallel and 
nonparallel) affect 
heterogeneity and 
other 
transport/mechanical 
properties

Solid composition Can vary from Time-scale controlling Brine chemistry; Reflects primary 
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Data type

Spatial resolution
or size of testable

sample Temporal resolution
Couples witha or
strongly affects Comments

(mineralogy, chemical
composition, kerogen

type; total organic
carbon)

individual 
particles (or 
cements) to large-
scale systematic 
variation up the 
bedset or larger-
scale stratal units 
(such as 
parasequences)

composition from seconds 
(depositional setting) to oil 
and gas extraction and 
CO2 storage (10s to 1000s 
of years) to geological time 
(diagenesis)

pore-lining phases 
and geometry of 
pore networks; 
(mixed) wettability

depositional and 
diagenetic conditions; 
pore-lining phases 
affect wettability and 
chemical reactivity

Fluid chemistry
(brine, fracturing

fluids, hydrocarbon
liquids and gases,

possibly injected CO2)

Single pores to 
regional scale (10s
to 100s of km)

Minutes/hours/weeks/years 
for engineered (injection); 
geologic time scales for 
natural systems

Mineralogy; 
permeability, 
porosity (coupled 
through reactive 
transport) and nano-
scale confinement 
effects and phase 
behavior; sub-
critical fracture 
growth

Fluid chemistry can 
strongly couple with 
many processes 
(transport, mechanical
behavior, heat flow, 
and microbiology)

Absolute
permeability (and

relative permeability)

10s of microns 
(FIB-SEM and 
modeling) to cm 
(core plug)

Permeability evolution of 
natural systems: geological 
time scale for diagenesis; 
permeability evolution can 
be over hours, weeks, days, 
years for engineered 
systems

Porosity; pore 
pressure distribution;
drained versus 
undrained behavior; 
texture, chemistry

Continuum concept; 
REV may vary for 
shales and is not very 
well documented yet 
and may vary for 
different types of pore 
structure (e.g., matrix 
vs fractures)
Relative permeability 
is not routinely 
measured in mudrocks

Capillary pressure
curves and pore-

throat size
distributions

cm (core plug); 
possibility down 
to 100′s of 
microns if using 
FIB-SEM data and
a modeling 
method (e.g., LB)

Probably up to seconds of 
transport (in FIB-SEM 
models)

Porosity, 
permeability, 
textural analysis; 
activity of water or 
fluids in nano-scale 
confined pore 
networks

Capillary imbibition 
strongly coupled with 
texture

Effective diffusion
coefficient

cm (core plug); 
possibility down 
to 100s of microns
if using FIB-SEM 
data

Geologic time scales for 
natural transport processes; 
large surface area of 
induced fractures may 
reduce time scales to that of 
reservoir production

Texture 
(topology/tortuosity 
of pore networks); 
porosity

Diffusion processes 
may range from 
Ordinary Fickian to 
Knudsen diffusion

Sorption/adsorption
isotherms

mm to cm (core 
plug or crushed 
samples)

Seconds; may depend on 
reservoir pressure and thus 
time scales of field 
operations (years)

Texture, 
composition, fluid 
compositions, 
permeability

Consider 
sorption/desorption 
for fine-grained 
minerals and organic 
material



Data type

Spatial resolution
or size of testable

sample Temporal resolution
Couples witha or
strongly affects Comments

Geomechanics and
constitutive models:
Young Modulus and

Poisson ratio
(isotropic);

Transversely isotopic
(five parameters);

critical state
mechanics; general
plasticity; failure

models and
parameters (e.g.,
Mohr-Coulomb)

From micron 
(nanoindentation) 
to cm (core plug); 
core plugs may 
need to be taken at
different angles for
estimates of 
transversely or 
fully anisotropic 
parameters

Seconds, hours, weeks 
(engineered) to geological 
timescales (natural)

Porosity, pore 
network properties, 
texture, composition,
diagenetic textures

Some parameters may 
be dynamically 
estimated from 
seismic wave 
velocities; 
sophistication of 
geomechanical 
properties estimated 
can vary greatly

Unconfined
compressive strength

micron to mm to 
cm (micron 
indenter on FIB-ed
columns; 
calibrated scratch 
test; core plugs)

Seconds, hours, weeks 
(engineered) to geological 
timescales (natural)

Porosity, pore 
network properties, 
texture, composition,
fluid composition 
contacting fracture 
process zone, 
chemistry-related

In situ stress state, 
including magnitudes, 
directions, and pore 
pressure distribution 
should be taken into 
account in predicting 
subsurface behavior

Fracture toughness From micron 
(nanoindentation) 
to cm (double-
torsion)

Seconds, hours, weeks 
(engineered) to geological 
timescales (natural)

Porosity, pore 
network properties, 
texture, composition,
fluid composition 
contacting fracture 
process zone

In situ stress state and 
fluid composition 
should be taken into 
account

Tracer logs or spinner
surveys; distributed
fiber optic sensing

10's of cm, up to 
length of 
completion of 
wellbore

Hours, weeks, years (for 
permanently installed fiber 
optic arrays)

Porosity, 
permeability, 
fracture network 
characteristics

Tracer logging and 
spinner surveys may 
reflect aspects of 
completions and the 
reservoir itself

Production decline
analysis; pressure or

rate transient
analysis: yields

estimates of a variety
of reservoir
parameters

Length scale of 
fracture spacing; 
provides 
information on the
entire length of 
completion of 
wellbore

Months to decades; the 
progression of flow regimes
in shale reservoirs may take 
decades to develop

Integrates 
permeability 
(potentially 
temporally varying), 
porosity, multi-phase
flow; may include 
double porosity

Attempts to invert for 
reservoir parameters 
and reverses or oil/gas
in place, and forecasts 
production

Wireline
measurements

(neutron porosity,
gamma ray, well

resistivity, NMR, in
situ fluid saturations,

etc.)

Resolution 1–2 ft 
(30–60 cm)

Wireline measurements on 
order or hours

Porosity, 
permeability, and 
fluid composition

Important tools for 
measurements of 
reservoir properties 
over length of 
completed zones

Microseismic 10s of meters Probably hours for 
measurements

Porosity, 
permeability, 

Important for mapping
fracture complexity at 



Data type

Spatial resolution
or size of testable

sample Temporal resolution
Couples witha or
strongly affects Comments

geomechanical 
properties

the wellbore scale

Notes: a identifies where methodologies for integrating multi-disciplinary data are well established.
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2. Download full-size image

Fig. 4. Healed bedding plane fracture in Eau Claire Formation, a major seal for the Mt. 
Simon Sandstone in the mid-continent of the U.S.
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Fig. 5. (a) Borehole breakouts result along preferential direction under a uniform stress 
field, because the presence of planes of weakness in the rock; (b) Hydraulic fracture 
grows by overcoming one layer at a time, despite the imposed uniform stress field; (c 
and d) Thin mineralized interfaces and weak bedding control the propagation of 
fractures during fracture toughness experiments; (e) Fish-bone structures of fracture 
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propagation and fluid leak off are common on laboratory hydraulic fracturing 
experiments on laminated shales.

Elastic or seismic wave characterization is often used to determine the mechanical 

properties of rocks in the subsurface from measurements of wave attenuation and 

velocity. However, interpretation of geophysical signals is complicated for shale 

because of the potential for competing sources of anisotropy: textural versus structural. 

Textural anisotropy arises from laminae, thin parallel layers of alternating composition 

and moduli (e.g. carbonaceous, silty, dolomitic, clayey, or lithoclastic) that range in scale

from micrometers to centimeters, to decimeters (Fig. 1, Fig. 2, Fig. 3), and with 

orientations that depend on the original depositional environment and post-depositional 

tectonic processes. Structural anisotropy arises from micro-cracks, fractures, joints, and

the aforementioned interfaces that range in scale from micrometers to meters, are 

sensitive to stress, and have orientations and spacings that may or may not align with 

the textural features based on the diagenetic and tectonic history or any activities that 

perturb the subsurface system. These competing sources of anisotropy can mask either

the presence of fractures and/or the matrix/fabric anisotropy depending on the state of 

stress (i.e., stress magnitude and orientation).

The effect of competing anisotropy has been clearly demonstrated in the laboratory 

measurements on manufactured anisotropic medium. The acousticwavefronts (Fig. 6) 

were propagated through this anisotropic medium with fractures perpendicular to 

subwavelength layering (Shao, 2015). The unique symmetry axis for the fracture set is 

vertical while that for the matrix is horizontal. In Fig. 6, the spatial distribution of energy 

is shown at a fixed arrival time. At low or high stress, the measured anisotropy is 

controlled by either the fracture orientation or the matrix texture, respectively. However, 

at an intermediate stress, the fractured anisotropic medium appears isotropic as 

indicated by the circular shape of the wavefronts, i.e. the energy spreads out nearly 

uniformly in all directions. Interpreting rheological properties from velocities measured 

under the condition of the intermediate stress state would, incorrectly, yield isotropic 

moduli.
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Fig. 6. Acoustic wavefronts propagated through garolite (fiberglass-epoxy laminate) 
sample with a set of parallel fractures. Stress was applied perpendicular to the fractures
(solid black lines) or parallel to the layering (dashed gray lines).

Thus a question arises whether competing sources of anisotropy in fractured shale can 

be delineated using seismic or elastic wave techniques. Fractures and other mechanical

discontinuities often give rise to converted-, guided- and scattered modes that could be 

used to interpret fracture and matrix properties. For example, the velocity of waves 

guided between or along fractures has shown promise as potential tool to extract both 

fracture and matrix properties from elastic waves. These guided modes depend on the 

orientation of a fracture relative to layering, the matrix and fracture mechanical 

properties, layer/fracture spacing and signal frequency (Shao and Pyrak-Nolte, 

2013, Shao et al., 2015). Heterogeneity leads to scaling complexities that are the 

undeniable challenge for evaluating and modeling failure, fracture, and fluid mobility 

behavior of organic-rich mudrocks, for understanding their coupled effects, and for 

defining the type of measurements that will be relevant. Additional research is needed to

assess the contributions to the scattered wave field not only from fractures but also from

fracture intersections, fracture sets, stress gradients and fluids in order to characterize 

dynamically evolving fractured shale systems. This future research will determine 

whether competing sources of anisotropy are separable, if the dominant symmetry axis 

depends on stress and fluid conditions, and if the dominant symmetry axis also 

indicates fluid flow anisotropy.

The ability to detect and monitor the dynamic evolution of fractured shale systems 

using geophysical methods requires a link between a remotely-measured geophysical 

response and a characteristic property (or properties) of a fracture. For over two 

decades, several researchers have demonstrated that fracture-specific stiffness can be 

estimated from seismic wave attenuation and velocity (Choi et al., 2014, Far et al., 

2014, Hobday and Worthington, 2012, Verdon and Wüstefeld, 2013, Lubbe and 

Worthington, 2006, Lubbe et al., 2008, Majer et al., 1988, Pyrak-Nolte et al., 

1990a, Pyrak-Nolte et al., 1990b, Sayers et al., 2009). The dependence of specific 

stiffness on the spatial and probability distribution of regions of contact between two 

fracture surfaces creates an implicit link to the hydraulic properties of a fracture through 

the fracture geometry (Pyrak-Nolte and Morris, 2000, Cook, 1992). Recently, Petrovitch 

et al., 2013, Petrovitch, 2013b determined the existence of a scaling relationship 

between fracture specific stiffness and fluid flow for single fractures (Petrovitch et al., 
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2013, Petrovitch, 2013a). The numerical flow-stiffness data, simulated at multiple length 

scales, collapsed to a single scaling function because fracture specific stiffness captures

the deformed fracture void topology that includes both changes in contact area and 

aperture caused by stress as well as by transport-dominated chemical erosion (Pyrak-

Nolte and Nolte, 2016).

The resulting hydro-mechanical scaling function potentially provides a link between fluid

flow and the seismic response of a fracture, because fracture-specific stiffness affects 

seismic wave attenuation and velocity. However, several outstanding questions related 

to the deformation of fractures in shale and the scattered wave field must be addressed 

before extending these concepts from single fractures to fracture networks in 

subsurface shale. For example: does a viscoelastic matrix affect deformation of fracture 

void geometry in a manner that differs from pure elastic conditions? Will the flow-

stiffness relationship hold for partially-mineralized fractures that are often found in 

shale? Can seismic data differentiate or unravel chemical, fluid and stress alteration of 

fractures? Can scattered wave fields delineate the effects of stress gradients that lead 

to non-uniform fracture topology and fluid distributions that mask or promote additional 

scattering? And how do proppants or geochemically induced reaction halos affect 

fracture deformation and in turn fracture specific stiffness?

The importance of the chemical effects on subsurface fracture behavior, or chemo-

mechanical coupling, has been recognized for several decades. Chemically assisted 

subcritical fracture growth, also referred to as stress corrosion cracking, is proposed to 

control the time and deformation-rate-dependent failure of rocks (e.g., (Anderson and 

Grew, 1977, Swanson, 1984, Holder et al., 2001) and references therein). Resistance to

subcritical fracturing depends on microstructural heterogeneities: micro-fractures, grain 

boundary cohesion and orientation, and mismatches in elastic properties between 

phases. Development of large fracture populations and fracture architecture is 

controlled by chemical processes in the micro-scale near-tip fracture regions (Hu and 

Hueckel, 2013, Schultz, 2000, Gale et al., 2004). In aqueous fluids, mineral reactions 

have been shown to play a key role in subcritical fracture development at both bulk and 

microscopic scales.

A technique traditionally used for assessing reaction kinetic effects on subcritical 

fracture propagation is double-torsion geomechanical testing, which allows measuring 

fracture propagation rate and subcritical index in shale under controlled fluid 

composition and temperature (Holder et al., 2001). A novel approach for interrogating 

coupled chemical-mechanical fracture processes is X-ray computed tomography (CT) 

for imaging fractures while controlling stress conditions using a triaxial cell. This 
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technique enables characterization of fracture formation and permeability changes at in 

situtemperature, pressure and stress conditions (Carey et al., 2015). The CT data can 

be used as model input (Carey et al., 2015, Lei et al., 2014) enabling prediction of 

fracture behavior as a function of fluid pressure and changes of in situ stress. The 

accuracy of these models depends on the proper inclusion of interfaces and fluid flow 

processes.

Further development of coupled models is needed in order to predict coupled fracture, 

multi-phase flow, and multi-component reactive transport in the subsurface, and to 

capture the effect of geochemical reactions on fracture permeability. These new models 

require that the solid solvers are coupled to the multi-phase reactive flow and reactive 

transport codes. One difficulty in modeling chemical-mechanical processes in shale, is 

that a model must incorporate changes in volume that correspond to changes in 

chemical concentration which in turn are coupled to the diffusion processes. In addition, 

laboratory data to support or verify such models is sparse.

3.3. Fluid flow in multi-porosity systems

Fluid flow in shales takes place in a variety of void or pore structures. Salient features 

that influence flow and transport include: the occurrence of discrete pore networks 

within kerogen and inorganic components (e.g., clay and silt), that have different 

wettabilities and characteristic sizes (Akkutlu et al., 2015, Heath et al., 2011); a range of 

pore sizes that result in various transport modes including viscous flow, Knudsen 

flow, transition flow (viscous and Knudsen flow), and diffusive fluxes encompassing 

ordinary Fickian diffusion including effect of mass (Graham's Law), and adsorption-

desorption processes on the surface of pores of the minerals or organic 

matter(Gensterblum et al., 2015); a variety of pore body and throat shapes, sizes, and 

topologies that can strongly affect multi-phase flow processes such as imbibition-

drainage (Fig. 7), especially relevant for liquid and gas hydrocarbonsystems (Sakhaee-

Pour and Bryant, 2012); a vast range of natural or induced fracture types that reflect 

paleo and recent fluid flow, and precipitation-dissolution that may have modified the 

porous matrix or fracture permeability (Fig. 4). Different flow mechanisms can occur for 

different scales of the pore structures (Mehmani et al., 2013). The orientation of 

fractures (or faults) relative to the current regional and local stress regime can affect 

whether the fractures-faults are critically-stressed and “hydraulically active.”
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Fig. 7. (a) Dual beam focused ion beam (FIB)/SEM 3-D volume, (b) 3-D rendering 
of kerogen and (c) 3-D rendering of the pores in this volume of the Pt. Pleasant 
formation, Wood Co. West Virginia, 9503 ft. depth.
Re-printed from Arthur and Cole (2014).

Additional complexity is introduced by the large variability of the organic matter 

associated with shale (Milliken and Curtis, 2016, Eliyahu et al., 2015). For example, 

laboratory measurements of hydrocarbon fluid extraction and composition indicate 

measurable differences in hydrocarbon compositions and in the partition between light 

components, intermediate molecular weight components and heavy components, within

short intervals in the same formations and at the same levels of thermal 

maturity (Freeman et al., 2011). This is most likely due to the heterogeneous distribution

of macerals in the system and also to the effect of rock texture and composition on 

moderating the thermal processes of hydrocarbon generation and cracking. Thus fluid 

separation (oil and water) in relation to surface energies (mineral and organic surfaces),

and changes in hydrocarbon composition in relation to changes in rock texture and 

composition are factors that also contribute to the heterogeneous distribution of pore 

pressures, and control the flow in the system.

The large variety of pore types (Milliken and Curtis, 2016), many of which can occur in a

shale formation at a range of scales, makes the quantification and/or prediction of flow 

and transport difficult. Current techniques for understanding the transport in the multi-

porosity shale system include a combination of methods to characterize the pores and 

model flow and transport. Several studies use fully three-dimensional (3D) imaging or 

serial sectioning to characterize the pores and then reconstruct digital models of the 

pore geometry and connectivity of solid components. Primary methods (Table 2) include

dual beam focused ion beam–scanning electron microscopy (FIB-SEM) (Fig. 7), X-ray 

CT and micro- to nano-tomography, and neutrontomography, with resolutions from 

~ 1 nm to 10s of microns or higher for medical X-ray CT systems (Saraji and Piri, 2015).

A major concern of reconstructions for flow modeling is whether the small volumes 

representative of the digital reconstructions are representative of bulk volume properties

of the shale. These volumes can range in size from ~ 653 μm3 (Saraji and Piri, 2015) to 

~ 106 μm3 (Trebotich and Graves, 2015). Several studies address issues of 

representative elementary volume (REV) to determine the length scale at which shale 

properties become statistically stable and suited for modeling by continuum methods 

(Saraji and Piri, 2015, Yoon and Dewers, 2013, Chen et al., 2013, Gelb et al., 2011). It 

appears porosity REVs can be obtained for some shales from FIB-SEM 3D 

reconstructions: e.g., members of the Bakken, (Saraji and Piri, 2015); however, it is not 
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possible to obtain an REV for permeability for the same study because the FIB-SEM 

volumes are too small. Rui and Akkutlu (2016), have recently presented a scaling up 

approach predicting kerogen REV using a nanopore-network modeling, and predicted 

an REV of 5 μm3 (Fig. 8). Establishing the ranges of sizes for REVs in kerogen, clay 

mineral-rich components, and mixtures of these with larger grains has not yet been fully 

investigated; however, and limited data is available to determine if REVs for certain 

shale lithotypes can be universally applicable to other shales (or even regions within the

same shale). The unique depositional and diagenetic histories may make it difficult to 

determine which REV length scales are appropriate for different shale lithofacies. 

Concepts of representative elementary time (RET) also come into play for the given 

process under study, as the different pore types have different characteristic length 

scales that in turn affect the characteristic time scales of processes (Milliken and Curtis, 

2016). Other studies address transport through laboratory measurements of 

permeability, porosity (connected and disconnected), capillary breakthrough pressure, 

wettability, and fracture hydraulic aperture and conductance (Schneider et al., 

2011, Gensterblum et al., 2015). Laboratory petrophysical properties suffer from the 

limitations due to retrieval and handling of core, which may induce microcracks and 

fractures that are not present in the subsurface. Additionally, the variety of techniques 

can give disparate results, especially when compared to digital pore network 

reconstructions.
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2. Download full-size image

Fig. 8. Left: Three-dimensional pore network model consisting of nano-capillaries shown
in two-dimensions for nanopore Pn. The model has been developed and used to 
investigate kerogen REV by Rui and Akkutlu (2016). Right: estimated permeability of the
kerogen nanopore network as a function of the network volume for 
changing coordination number, Z. Methane transport is considered (including 
convection, diffusion and adsorption mechanisms) at average pore pressure of 
2500 psi, and temperature 80 °C (353 K).

Modeling approaches for pore-scale flow and transport in shale range from theoretical 

to empirical―either idealized pore body and throat sizes and connectivity are assumed 

or digital reconstructions from direct imaging are used (Sakhaee-Pour and Bryant, 

2012, Trebotich and Graves, 2015). Theoretical models typically capture laboratory-

based behaviors such as drainage of a non-wetting phase and absolute permeability 

using network models such as bundle-of-tubes model; regular-lattice models; acyclic 

models; and multi-scale-multi-physics networks (Sakhaee-Pour and Bryant, 

2012, Mehmani et al., 2013, Purcell, 1949, Washburn, 1921). Theoretical models have 

revealed that certain pore structures can capture multi-phase transport behaviors such 

as the non-plateau drainage in shale (Sakhaee-Pour and Bryant, 2012) and allow for 

estimation of fitting parameters that may be helpful for classification of different shales. 

Empirical modeling using digital reconstructions from shale samples involve realistic 

pore structures, geometries, and topologies. Approaches include level set methods, 

volume of fluid methods, gradient based computational fluid dynamics, and Lattice 

Boltzmann (LB) methods. LB methods in particular show much potential for shale as 

they capture pore geometries and can represent large differences in densities of two 

fluids occupying the pore space (Lei et al., 2014, Ho and Striolo, 2015). They also 

unfortunately suffer from the small REV problem discussed previously.

Wasaki and Akkutlu proposed a matrix permeability model for organic-rich shale and 

considered its coupling to a fracture during shale gas/oil production (Wasaki and 

Akkutlu, 2015). They argued that the shale permeability is not a petrophysical quantity in

the classical sense reflecting the fluid transmitting ability of the pore network but instead

it is an overall mass transfer coefficient that needs to be carefully tuned to honor the 

total mass flux of fluids draining into the fractures. They presented a conceptual 

transport model for the shale matrix with dual-porosity and single-permeability 

delineating the transport mechanisms at multiple-scales: (i) adsorption and diffusion 

mainly in the kerogen pores; and (ii) diffusion and convection in micro-cracks and other 

slit-shape inorganic pores.
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(3a)koil=km

(3b)kgas=km+μcgDI+μVsLρgrainBgεkspLp+pL2DsI

Here, I is second order identity matrix. Wasaki and Akkutlu (2015) recognized that the 

observed anisotropy also exists in the flow field and inherently belongs to micro-cracks 

contribution (km) which is sensitive to effective stress (Fig. 9). The authors gave 

analytical expressions for the micro-crack permeability components, {km}11, {km}12, and 

{km}22. Accordingly, if horizontal flow is considered, {km}11 and {km}12 are the elements that 

will affect the flow, and {km}12 can be important if pressure gradient in vertical direction 

exists. Note that only the natural gas flow has it non-Darcian effects, as shown in 

Eq. (3b), due to the presence of molecular transport mechanisms taking place in the 

kerogen. These mechanisms are pore diffusion and cluster diffusion of the adsorbed 

molecules and here represented by the isotropic diffusion coefficients, D, and Ds, 

respectively, following terminology presented by Akkutlu and Fathi (2012).
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Fig. 9. Left: Schematic illustrating the uniform distribution of micro-cracks and their 
orientation angle θ in a cross section of organic-rich shale in vertical direction. The 
organic-rich shale is shown as gray background. Directions of vertical and horizontal 
minimum stresses are also shown. Right: Permeability tensor km elements for various 
microcrack orientation angle (θ) with kz′z′ = 0.

At the production scale, another type of modeling – pressure transient or rate transient 

analysis (PTA/RTA) – involves inversion of pressure and/or flow rate measurements at a

production wellhead to estimate reservoir transport parameters and properties. 
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PTA/RTA methods can represent the pore space as dual, triple, or multi-continua in 

order to attempt to capture the multiple pore types and their interchange of fluids 

(Clarkson, 2013, Ezulike and Dehghanpour, 2016, Kuhlman et al., 2015). Reactive 

transport modeling (and other geochemical modeling) can be used for mm- to reservoir 

scale systems and is commonly applied to addresses mineral dissolution/precipitation, 

adsorption/desorption, and homogeneous chemical reactions (Bethke, 2008).

Fluid flow in shale is often coupled to other physical and chemical processes, resulting 

in coupled phenomena. These can include mechanical behavior where the shale 

behaves as a partially-drained or undrained medium, thus affecting the mechanical 

constitutive behavior. Distinct pore networks in kerogen or the inorganic clay-silt 

components can exhibit different stiffness/compliance for different deviatoric stress and 

conditions of the pore fluids e.g., Biot and Skempton coefficients (Suarez-Rivera and 

Fjær, 2013). Thus, the permeability of kerogen may be affected by flow and compaction 

or other mechanical processes at time-scales different from the pore networks of the 

inorganic components, which in turn affects the overall flow regimes in shale impacted 

by natural or engineering activities. The texture of a shale can strongly affect flow due to

matric (combined effects of capillarity and adsorptive forces) and osmotic 

potentials―nano-scale confinement affects the phase behavior e.g., mean free path of 

a gas molecule and hence transport behaviors. Texture can cause flow mechanisms to 

be species-dependent as the mean free path may vary due to pressure changes 

(Knudsen number can vary during production of a reservoir). The ability to 

flow methane gas in a system with porosity dominated by kerogen-matrix is also a 

function of the percolation threshold of the connected kerogen volume in any given 

organic-rich shale system.

3.4. Nano-scale confinement, activity of water, and pore-scale coupled processes in 
shale

Due to fine-grained shale fabric and presence of nano-pores, fluids (gas, oil, brine) in 

shales are often present as nano-scale thin films, and occupy nano- and submicron-

scale pores (Ambrose et al., 2010, Wang and Reed, 2009, Bennion et al., 2002, Al-

Bazali et al., 2009, Wang, 2014). The resulting interfacial areas (fluid-fluid, and mineral-

fluid) are relatively large for the pore volume and therefore control chemical and 

transport behavior in shale. As shown below, the combined effect of surface strain and 

fluid confinement results in a unique (and, largely unknown) set 

of thermodynamic parameters, different from those observed in the bulk phase 

(Firincioglu et al., 2012a, Wu, 2015, Teklu et al., 2014, Akkutlu and Rahmani, 2013). For
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example, molecular dynamic (MD) simulations reported by Phan et al. (2014; 

2015) have shown that methane solubility in confined water may far exceed that in bulk 

systems, and the release of methane from kerogen nano-pores is controlled by the 

geometry and connectivity of these pores (Ho et al., 2016). Methane solubility in 

confined water strongly depends on the confining material, with silicayielding the highest

solubility followed by aluminum (Al2O3) and magnesium (MgO) oxides (Phan et al., 

2014, Phan et al., 2016). Investigators looking into hydrocarbon behavior under 

confinement recorded confinement effects on phase behavior, and fluid properties 

(Akkutlu and Rahmani, 2013, Singh et al., 2009, Firincioglu et al., 2012b, Rahmani 

Didar and Akkutlu, 2013). Fig. 10shows the suppression effect of nanopores on the 

phase envelop of pure methane and pure n-butane. The asymmetry in the suppression 

of the phase diagrams—the greater gap between the bulk and confined fluid in the left-

hand-side compared to the right-hand-side on the phase diagram, indicates the greater 

impact of confinement on the vapor branch than on the liquid branch.
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Fig. 10. Phase diagrams of methane (top, left) and n-butane (top, right) in 4 and 8 nm 
size pores obtained from simulations and compared to bulk behavior. Phase diagram of 
binary methane-n-butane mixture (bottom). The bulk behavior is extracted from Peng-
Robinson equation of state.
Adopted from Rahmani and Akkutlu (2015).
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Cristancho et al. (2016) have recently quantified the impact of organic pore wall 

heterogeneities on the hydrocarbon fluid storage capacity of the pore using atomistic 

modeling and molecular simulations (Cristancho et al., 2016). For the purpose of 

creating heterogeneity, they have considered organic (carbon) walls with deficiencies 

and with non-hydrocarbon atoms, such as nitrogen. Their results, shown in Fig. 11, 

indicate that the measured excess amount due to confinement on the stored methane is

most pronounced between 6.9 and 34.5 MPa (1000–5000 psi), which is the typical 

shale gas reservoir pressure range. The pore wall surface heterogeneities have the 

potential to impact storage depending on the type and level of heterogeneities. Among 

the investigated heterogeneities, nitrogen-doping at the pore walls is found to be the 

most influential. Both the adsorbed and excess amount decreased with the nitrogen-

doped pore wall surfaces (Fig. 11).

1. Download high-res image     (457KB)

2. Download full-size image

Fig. 11. Left: Organic pore wall model with surface heterogeneities. Carbon is shown in 
brown, hydrogen in yellow and nitrogen in blue. Right: Predicted storage of methane in 
the pore in adsorbed form (solid line) and excess (dashed line) methane. Predictions 
are based on grand canonical ensemble molecular simulations where the Lennard-
Jones parameters (ε, σ) of methane-wall interactions have been estimated using 
quantum mechanical (DFT) calculations and ground-state energy optimization.
Adopted from Cristancho et al. (2016)
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The dielectric constant of water decreases with increasing nano-scale confinement 

(Marti et al., 2006, Senapati and Chandra, 2001), and this effect becomes more 

pronounced when the pore size approaches < 5 nm. Molecular dynamics simulations 

quantify the dielectric constant of water to be about one half of its unconfined value 

when water is contained in a 12 Å (1.2 nm) pore (Senapati and Chandra, 2001). Due to 

the decrease in the dielectric constant the equilibrium constant for the mineral 

surface protonation (pKa) change, ultimately changing the sorption behavior of the 

mineral surfaces. Bourg and Steefel (2012) calculated that the average pKa value of 

silanol surface sites in a 2 nm nanopore is 0.5 pH units higher compared to unconfined 

surfaces (Bourg and Steefel, 2012). Experiments indicate that in silica pores with 

< 5 nm pore size, both the density and the surface tension of water decrease with 

decreasing pore size (Takei et al., 2000). Other examples of emergent chemical 

behavior due to nano-scale confinement include the decrease in the solvation energy of 

metal cations, which promotes the formation of inner-sphere adsorption complexes over

outer-sphere (Kalluri et al., 2011, Wang et al., 2003), enhanced solubility of gas in water

(Diaz-Campos et al., 2009), enhanced adsorption (Wang et al., 2003, Nelson et al., 

2014, Zimmerman et al., 2004), and modified redox properties (Jung et al., 2012, Patra 

et al., 2014a, Patra et al., 2014b). The nano-scale nature of the chemical environments 

in shale dictates the unique chemical transport and reactivity trends, in particular ion-

selectivity and semi-permeable membrane behavior.

The nano-scale pore structure, mixed wettability, and multi-phase fluid conditions of 

shale have a strong effect on the disposition and movement of water, oil, and gas, which

can all interfere with each other's movement. Quantitative measurements of shale 

samples by nuclear magnetic resonance(NMR) indicate that the amount of “free” water

—water not structured by electrostatic forces—is largely variable for different shale 

samples, and does not correlate with the overall porosity (Dusseault, 2004). For 

example, only about 5% of total water content is “free” in smectite-rich shale of 10–20% 

porosity (Pierre II shale from Wyoming), while 50% of total interstitial water is “free” in 

the quartz-illite shale with the lower porosity of 6–8% (Queenston Shale from Ontario) 

(Dusseault, 2004). Surface-bound water is not likely to be oil wetting, thus oil migration 

through such pathways will require higher pressure. NMR measurements have also 

been used to demonstrate mixed wettability of source rock shale and for quantifying the 

water-wetting vs. oil-wetting porosity (Odusina et al., 2011). The resulting ratio of water 

(brine)-wetting to oil (dodecane)-wetting ranged from 0.34 to 2.93 (Odusina et al., 2011).

This indicates that surfaces are heterogeneously wet - some shale surfaces are water-

wetting, while others are hydrocarbon wetting. Interfacial contact lines will tend to pin at 
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locations where wettability changes, and additional pressure is required to cross these 

regions. Both adsorbed water and hydrocarbon will partially occlude the geometric area 

available for flow in nanopores affecting phase mobility (Sakhaee-Pour and Bryant, 

2012, Hu et al., 2014).

Water in shale is subject to a variety of forces that affect its potential energystate 

(relative to a reference state) as expressed by the total potential. The total potential of 

water incorporates the matric potential, the osmotic (or solute) potential, the pressure 

potential, and the gravitational potential (Nitao and Bear, 1996). Pressure and 

gravitational potentials are invoked for understanding fluid flow in conventional 

reservoirs and aquifers. In tight shales, Darcian flow may not take place due to the 

limiting pore throat size. Because the majority of water may be “structured” – bound to 

the mineral surfaces – a threshold pressure gradient is required for advective 

transport to begin (Dusseault, 2004). High osmotic pressures (1–2 MPa) develop since 

hydrated ion flux is impeded (Dusseault, 2004). Fig. 12 shows the predicted osmotic 

pressure in the clay mineral pores as a function of the distance from the hydraulic 

fracture surface (Eveline et al., 2016). Hydraulic conductivity of smectite-rich shales 

depends on specific mineral surface characteristics (e.g., mineral surface charge, 

the ionic composition of the interstitial water, and temperature (“structured” water layer 

thickness decreases with increasing temperature, causing an increase in hydraulic 

conductivity). Therefore, hydraulic conductivity of shale is not a unique function of the 

pore and throat geometry. The following sections address the importance of the matric 

and osmotic potentials in shale with regard to the following: spontaneous imbibition-

drainage, adsorptive fluid films and ion, and solute transport in shale.
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Fig. 12. Osmotic pressure increase by the hydraulic fracture as a function of shut-in time
at various locations (1, 5, 10, 50, and 100 cm) in the shale matrix near the fracture. The 
simulation involves flow of water in a rock (semipermeable membrane) driven by the 
pressure and chemical potential gradient. Membrane efficiency is 0.1 (top) and 1.0 
(bottom). Osmotic pressure increase is defined as the difference between the initial pore
pressure and pore pressure after fluid invasion. A constant pressure is applied on the 
left boundary. The objective of the simulation is to understand the effect of hydraulic 
fracturing water with low salinity (equivalent NaCl concentration of 10,000 ppm) on the 
adjacent shale matrix containing formation water with higher salinity (50,000 ppm). The 
initial pressure is 3000 psi and temperature is 50 °C. The rock has permeability of 
200 nD and porosity of 10%. The further most left cell has a constant pressure of 
3000 psi, which is representing shut-in pressure in the fracture, temperature of 50 °C.

The matric potential expresses combined effects of capillarity and adsorptive forces of 

a porous medium (Hillel, 1982). Capillary forces arise due to a pressure difference 
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related to the curvature of the interface between two immiscible fluids, as expressed by 

the Young-Laplace equation that incorporates the effects of the pore size, interfacial 

tension, and contact angle. The nanometer-scale pore sizes and water-wet or 

intermediate-wet conditions for certain pore networks in shale lead to high capillary 

pressure that can become significant in comparison to pressure potentials.

The features of shale that control the matric potential include the pore size, shape, and 

wettability. Many studies have been performed to examine the pore structures in shales 

(Chalmers et al., 2012, Ambrose et al., 2010, Wang and Reed, 2009, Bustin et al., 

2008, Curtis et al., 2011, Desbois et al., 2009, Dewers et al., 2012, Heath et al., 

2012, Silin and Kneafsey, 2011), with Desbois et al. (2009) classifying pores. Pore 

geometry imposes the first order control on the mobility of water. Smaller, triangular 

pores or flat narrow pores (on the scale of 10 nm) have a tendency to imbibe water and 

spontaneously fill at a given water chemical potential compared to larger, circular pores 

(Or and Tuller, 1999) in part because adsorptive films take up a substantial portion of 

the pore space (Heath et al., 2014). “Corners” influence the curvature of the fluid-fluid 

interface and thus their geometry affects the amount of capillary-held water (Heath et 

al., 2014). The matric potential is currently being cited to explain the field observation 

when only a small portion of the water injected during hydraulic fracturing returns to the 

wellbore (e.g. ~ 30 ± 10% return, (Byrnes, 2011)). Gas shale systems typically have 

high thermal maturities with little to no smectite component left in the MLC (e.g. 

Marcellus and Haynesville shales). In the thermally mature systems only a fraction of 

injected water is recovered, due to the low chemical potential of water in these 

formations. In some cases, the observed return of injected water is higher: for examined

wells in the Marcellus Shale, 10–50% of the fracturing fluid returns to the surface as 

produced water after a year of production (Rowan et al., 2015); while for Barnett Shale, 

large variability from < 20% to > 350% in the ratios of returned to injection water are 

observed after 4 years of production (Nicot et al., 2014). The return in excess of 100% 

indicates that wells produce local waters from adjacent formations. Extensive 

petrophysical evaluation of gas-bearing shale systems shows them to have very low 

water saturations and essentially no free mobile water phase. The limited water activity 

in organic-rich shale and how it is controlled by thermal maturity is an example of a 

coupled process that evolves over geological timescale.

Osmotic, or solute potential, is defined as the potential of water molecules to move from

a hypotonic solution to a hypertonic solution across a semi-permeable membrane 

(Hillel, 1982). Osmotic potential is a function of the gradient in solute concentration. Due

to the nano-scale porosity and the permanent negative charge on the surfaces of clay 
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minerals, shale acts as an ion-selective semi-permeable membrane, with apparent ion 

mobility differing from the bulk-solutions (Lomba et al., 2000a). Therefore, shale can be 

conceptualized and modeled as an ion-exchange membrane with fixed charged sites 

along narrow pores (Lomba et al., 2000b). During Fickian ion transfer waters of 

hydration are transported with the ions. Flow occurs by osmotic pressure, governed by 

gradient in chemical potential. Shale exhibits a non-ideal, or “leaky” membrane 

behavior, due to the heterogeneity in pore size and pore throat geometry, with wider 

pores increasing the overall permeability to solutes. High concentrations of solutes have

been observed in flowback water from hydraulic fracturing operations, indicating higher 

concentrations in the subsurface reservoir than in the injected water. The presence of 

this high-salinity brine and injection of low salinity brine is expected to drive an osmotic 

flow (Haluszczak et al., 2013, Arthur and Cole, 2014, Engelder et al., 2014).

The effects of osmotic pressure have been observed during well completions. Water 

from introduced fluids is absorbed into shale due to the difference in osmotic potential 

between the pore waters and the drilling mud or fracturing fluid, causing sloughing of 

well walls (Al-Bazali et al., 2009, Chen et al., 2003, Schlemmer et al., 2003, van Oort et 

al., 1995). These processes have been incorporated in a coupled mechanical-thermal-

physico-chemical model (Choi et al., 2004). To account for the driving force on fluid flow 

due to osmotic potential, osmotic pressure is explicitly included in the rock water 

potential. The gradient between the rock water potential and water potential in drilling 

mud (or, hydrofracturing fluid) is the driving force for pore fluid flow (Choi et al., 2004).

Because shales may exist under low water saturations (for both liquid and gas 

hydrocarbons), the strong capillary and adsorption potential results in spontaneous 

imbibition and potentially counterflow of hydrocarbons from the shale matrix (Engelder, 

2012, Engelder et al., 2014). Other researchers quantify water uptake in shales through 

imbibition experiments, while taking into account effects of rock texture, complex pore 

networks, interactions between hydrofracturing fluid and minerals, and changes in 

osmotic potential, with some studies accounting for how concurrent 

and countercurrent flow during water imbibition impacts liquid and gas hydrocarbon 

recovery (Ghanbari and Dehghanpour, 2015). Findings indicate that the connectivity of 

water-wet and oil-wet pathways may differ, which in turn affect water uptake and 

hydrocarbon expulsion (Engelder et al., 2014, Ghanbari and Dehghanpour, 2015). Thus,

the matric potential is a major driving force for water (and other fluid) flow in the nano-

scale matrix in shale.

3.5. Equilibrium-disequilibrium transitions in perturbed shale
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The combination of heterogeneous rock texture and composition, 

heterogeneous surface forces acting on the solid and fluid (liquid and gas) constituents, 

and the potential separation of fluid types (water and hydrocarbons) based on their 

interactions with wetting and non-wetting surfaces suggests an added heterogeneity in 

the fluid distribution and the fluid pressure. The available models for coupled poro-

elastic behavior are described by poro-elastic coefficients developed based on an 

assumption of homogeneous rock properties, homogeneous stresses, and hydraulic 

pressure equilibration. These models cannot be extrapolated to mudrocks, particularly 

due to the coarse – 2 ft. (60 cm) – volumetric averages typical for well-log 

measurements. The typical examples of perturbations include injection of CO2 (into 

sandstone storage formations with shale caprock) and unconventional gas extraction by

hydraulic fracturing of shale. In both cases, the initial state of shale formation is either at

steady-state, or at equilibrium, before the drilling and introduction of large volumes of 

fluid disrupt the initial state. The response of the geologic system to this perturbation is 

non-linear in space and time, since for re-equilibration it has to reach a multi-component

- equilibrium, not an independent equilibrium of each of the components (e.g., hydraulic 

equilibrium). For example, the overall fluid flow and pressure equilibration for fine-

grained rocks is controlled by chemical effects (osmosis), surface effects (capillary), 

physical effects (electrical double layer), and thermal gradient effects (relative 

expansion between solids and fluids in relation to hydraulic diffusion and thermal 

diffusion). The deformation versus pore pressure equilibration of organic-rich laminated 

mudrocks has the same contributions as considered for other fine-grained rocks, 

complicated by complex distribution of texture and compositions. This problem cannot 

be resolved by measuring an equivalent homogenized Biot's coefficient; new models 

are required to define coupled behaviors in locally heterogeneous media.

The state of geochemical (dis)equilibrium is usually assessed by analyzing fluid 

samples. Detailed chemical and isotopic analyses of pore waters in shale and tight 

reservoirs have been reported for only a few recent case studies (Haluszczak et al., 

2013, Rowan et al., 2015, Arthur and Cole, 2014, Council GWP, 2009). Chemical and 

isotopic data reported by oil companies from approximately 10,000 samples of 

‘flowback’ and produced waters from these unconventional sources of petroleum have 

been recently compiled and added to the updated and expanded USGS Produced 

Waters Geochemical Database (Blondes et al., 2015). The reported salinity and 

chemical composition of water varies widely with time of sampling and carry large 

uncertainties, especially for the ‘flowback’ samples that are a variable mixture of pore 

formation water and the hydraulic fracturing fluids, which consist of large volumes 
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(~ 10,000–40,000 m3 per well) of generally fresh, local meteoric water, together with 

proppants (sand), and organic and inorganic chemicals additives (Kharaka et al., 

2013, Bryndzia and Braunsdorf, 2014, Gallegos et al., 2015, Healy et al., 2015). During 

hydraulic fracturing, a significant fraction of the injected water can be imbibed into pores

in some shales (e.g. Marcellus (Rowan et al., 2015, Engelder et al., 2014)), and the 

imbibition process may continue over a period of weeks to months (Byrnes, 2011, Nicot 

et al., 2014). Water salinities and chemical compositions obtained at steady chemical 

states, which may require a year or longer following production, vary greatly from basin 

to basin. Results show formation waters with relatively low salinities are present in 

Fayetteville Shale, AR (~ 15,000 mg L− 1) and in Monterey Formation, CA 

(~ 30,000 mg L− 1). Produced water salinities in Barnett Shale, TX, average at 

~ 100,000 mg L− 1, but higher average salinities (~ 150,000 mg L− 1) are obtained in 

brines from the Marcellus Shale, PA, and Haynesville, TX; even higher average 

salinities (> 250.000 mg L− 1) are observed in brine in Bakken Shale. An important initial 

conclusion from these data is that the chemical and isotopic compositions of these 

samples are comparable with data from more than 150.000 samples currently listed in 

the same USGS Produced Waters Geochemical Database, but collected from 

conventional oil and gas wells(Blondes et al., 2015). It remains challenging, however, to 

use this geochemical data for predictive modeling.

4. Conclusions: approaches for coupled process studies and future research 

needs

4.1. Summary of applied approaches/methodologies

Table 2 indicates the various common data types relevant to shales, and their spatial 

and temporal resolution as well as well-established methods for integration of multi-

disciplinary data.

Promising approaches for addressing coupled processes so far included 

dynamic consolidation problems with elastoplastic deformation and finite element 

modeling (FEM) (Lewis and Schrefler, 1987, De Borst et al., 1993, Armero, 1999, Kim, 

2000, Chen et al., 2015a), quasi-static discrete element models (DEM) coupled with 

conjugate lattice network flow (Huang and Mattson, 2014), basin petroleum 

system modeling (Romero-Sarmiento et al., 2013), incorporating Knudsen diffusion and 

gas slippage (in addition to Darcy flow) into reservoir models for shale (Swami and 

Settari, 2012), and lattice Boltzmann (LB) approaches for coupled multi-component 

reactive flow and transport with the feedback between pore structure changes and flow 
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processes (Chen et al., 2015b, Chen et al., 2015c). The typical measurement resolution 

and modeling methods used for single and coupled processes in shale are shown 

in Fig. 13.
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Fig. 13. The typical measurement resolution (see Table 2), and modeling methods used 
for single and coupled processes in shale.

The physics-based hydraulic fracturing simulator (Huang and Mattson, 2014) couples a 

quasi-static discrete element model for deformation and fracturing with conjugate lattice 

network flow model for fluid flow in both fractures and porous matrix. This two-

dimensional model with coupled deformation and flow reproduces growth patterns of 

hydraulic fractures. The model accounts for in situ stress, fluid viscosity, heterogeneity 

of rock mechanical properties and injection rate. The modeling of a multistage horizontal

wellbore confirms the strong coupling between observed complex fracture patterns 

and fluid pressure, small length scale heterogeneities, and elastic interactions among 

multiple propagating fractures (Huang and Mattson, 2014).

The lattice Boltzmann method is used for modeling pore-scale reactive transport and 

allows accounting for complex biogeochemical processes - mineral dissolution-

precipitation and biofilm dynamics, and their feedback to transport (e.g. Yoon et al., 

2015). LB models conceptualize flow as a collective behavior of pseudo-particles 

described by a discrete Boltzmann equation (Yoon et al., 2015). In shale applications, 

LB modeling is capable of predicting permeability and effective Knudsen diffusivity of 

the shale samples characterized by FIB-SEM (Chen et al., 2015b). LB models have 

been applied to multi-phase flow with phase transition (Shan and Chen, 1993) and 

development of preferential flow paths in porous media (Szymczak and Ladd, 2006).

Basin petroleum system modeling is relatively new for unconventional hydrocarbon 

resources and is still under development and refinement. Basin-scale shale-play 

modeling accounts for source-rock kinetics and chemical transformations, including the 

evolution of TOC and associated porosity and adsorption of hydrocarbons to the mineral

and organic components (Romero-Sarmiento et al., 2013). However, this modeling 

approach does not account for the chemical effects due to nano-scale confinement, 

non-Darcy transport process (e.g., Knudsen transport), and complex 

cementation/dissolution textures. The retention capacity in BPSM is also a coupled 

process between burial, uplift and geomechanical rock properties since the in situ fluid 

pressures are ultimately determined by the fracture gradient that a shale can sustain as 

a result of overburden loss during uplift. One of the most important challenges 

for resource assessment in unconventional plays is the need to quantitatively model the 

retention capacity of such organic-rich source rocks.
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4.2. Coupled processes in shale: future research needs

The development of quantitative predictive models capturing process coupling and 

emergent phenomena at the necessary length and temporal scales requires a 

systematic approach involving a broad range of multi-disciplinary techniques. Current 

research is hindered due to sparse data from shale formations at in situ pressure and 

temperature conditions, limited spatial resolution of the well-logging/interpretation 

techniques, and methodologies for merging multi-disciplinary datasets at different length

and time scales. Therefore, on the practical side, it is critical to define the type of 

relevant measurements, improve the resolution and link in situ well resistivity logging to 

chemistry, and develop better approaches for representative or standardized sampling 

and sample preservation. In particular, addressing heterogeneity and anisotropy, which 

leads to scaling complexity, is a major challenge. Below, we identify future research 

needs critical for fundamental and applied shale science, considering both single- and 

multi-disciplinary approaches.

It is necessary to develop unambiguous classification schemes for mudrocks, and 

develop further understanding of the material transport and cementationmechanisms 

during shale deposition and diagenesis. We also need to establish the range of sizes for

REVs, which are different for kerogen, clay mineral-rich components, and 

individual lithofacies, and are controlled by the unique depositional and diagenetic 

history. As shown in our review, the complex cementation and dissolution textures—both

solid components and pores in shale—control the fluid transport, chemical behavior, 

and mechanical properties. Understanding fundamental geological/chemical/physical 

controls on the formation of these textures, and proposing a comprehensive 

classification scheme, could lay the foundation for the development of predictive 

methods to understand physical flow, chemical behavior and reactive transport, and 

mechanical behavior of shale in native state and in engineered systems.

Another key research area is developing robust methods for integrating rock anisotropy 

into geomechanical analysis, especially proper characterization and modeling of 

mechanical interfaces, and developing new constitutive laws describing stress-strain 

relationships for shale. Seismic methods show promise in characterizing fractures; 

however, research is needed to understand the contributions to the scattered wave field 

from fracture intersections, fracture sets, stress gradients and fluids in the dynamically 

evolving fractured shale systems. To further refine the interpretation of seismic data, and

to characterize dynamically evolving fracture populations, seismic data needs to be 

integrated with high resolution imaging. A potential bridge here is the integration of high 
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resolution image logs (centimeter scale) with petrological studies (micron scale) that 

may be upscaled to the seismic scale. The upscaling issue dominates the use of 

seismic methods for quantitative assessment of reservoir rock properties at all scales. 

Future research should focus on separating competing sources of anisotropy in rock 

and fluid flow, and how seismic signals change as a function of stress and fluid 

conditions. Future research needs to answer the fundamental question - can seismic 

data differentiate or unravel chemical, fluid and stress alteration of fractures?

The geochemistry of shale is unique, characterized by high salinity, complex 

compositions of brine and solids, water-limited, and nano-scale confined chemical 

environments, resulting in ion-selectivity and semi-permeable membrane behavior. In 

order to interpret and predict the chemical behavior in these environments, we need to 

develop new thermodynamic databases, as well as a systematic approach for predicting

shifts in chemical kinetics under these conditions. Fundamental science of 

nanogeochemistry is still in its infancy.

As shown in our review, process coupling exerts major controls on the physical, 

mechanical and chemical behavior of shale. Further development of coupled models is 

crucial for predicting coupled fracture, multi-phase flow, and multi-component reactive 

transport in the subsurface. New models are required to address coupled behavior in 

locally heterogeneous shale media. For the development of these models, the solid 

solvers need to be coupled in a 2-way manner to the multi-phase reactive flow and 

transport codes, and incorporate changes in volume and chemical concentrations, and 

their feedback to the mechanical properties and permeability. Due to complex pore 

geometries and the large variety of pore types and their control on the flow processes in

shale, the development of a porosity-permeability relationship is a challenge. Since fluid

flow in shale is coupled to the mechanical behavior, a method is required for computing 

the effect of flow on the mechanical constitutive behavior of shale (as partially-drained 

or undrained medium). These models should also incorporate multi-porosity system 

behavior, as distinct pore networks in organic and mineral components can exhibit 

different stiffness/compliance as a function of stress, resulting in different time scales of 

permeability evolution. Additional laboratory data for calibration and verification of these 

coupled models is necessary.

Further development of data integration approaches is another critical research need, 

due to the primary controls that the nano-scale processes exert on the macro-scale 

behavior. In an ideal case, we should be able to merge data all the way from 

the mineral-water interface (sub-nanometer), to rock microstructure observations 
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(micron), to the core-scale samples (centimeter-meter), well-log scale (meters), and 

linking to seismic scale (many meters to kilometers) (Table 2).

For developing fully coupled multi-physics multi-scale models for shale, we need a 

fundamental understanding of the interplay between the physical and chemical 

processes, their rates and resulting emergent behavior. We need to understand and 

quantify the evolution of thermal, hydrologic, chemical, mechanical, and biological 

(dis)equilibrium during perturbations (withdrawal or emplacement of materials into 

subsurface), and identify the relevant representative elementary volumes, as well as 

representative elementary time scales. Further development in constitutive laws (or, 

equations of state) is needed to incorporate evolving stress-pressure and system 

transitions. This requires advanced modeling linking molecular-, to pore-, to 

macroscopic-scale processes and the formalization of heterogeneity and spatial and 

temporal scales. We need to improve and merge conceptual models and develop a 

common language for the multi-disciplinary research on coupled THCMB processes in 

shale.
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