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This is an opportune time to evaluate the contributions
of Neurospora to genetics and biology in the recent past
and to anticipate what its role might be in the years ahead.
The turn of the century marks the 75th anniversary of the
first genetic experiments with Neurospora. Although his-
torical accounts of Neurospora genetics usually begin with
the 1941 paper of Beadle and Tatum, genetic analysis had
in fact been initiated 16 years earlier by B. O. Dodge (see
Robbins, 1962). It was Dodge who identified the two
mating types and used them to demonstrate Mendelian
segregation in individual asci. Dodge quickly recognized
the potentialities of the organism for genetic research. His
enthusiasm was largely responsible for the adoption of
Neurospora by geneticists and for its development as a
model organism. Now, 75 years after Dodge’s identifica-
tion of the first gene, over 1000 loci have been character-
ized and mapped in the seven linkage groups (Perkins et
al., 2000).

Within a few years of Beadle and Tatum’s initial work,
and in large part because of it, many prokaryotic microbial
models emerged in molecular genetics. These include
Escherichia coli and Salmonella, together with the T series
of virulent bacteriophages and the temperate phages P22,
P1, and l. Many of their attributes made them more
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replication, molecular recombination, and regulation.
However, Neurospora workers continued to make funda-
mental contributions in such areas as meiotic recombina-
tion, metabolic organization, mitochondrial biogenesis and
function, cell biology, heterokaryosis, fungal sexual devel-
opment, and chromosome mechanics. It soon became
apparent that eukaryotes differed markedly from pro-
karyotes in many respects and that numerous eukaryotic
features could not be investigated at all in prokaryotes.
The need for a eukaryotic microbial model was clear, and
Neurospora was well qualified to assume such a role. The
Neurospora work led to an increased appreciation of the
lifestyle of mycelial fungi and to the development of other
fungal models, such as Aspergillus nidulans. These models
have increased in importance as molecular approaches
were applied to fungal pathogens and industrial fungi. A
new field has emerged—fungal genetics and biology, em-
bodied in biennial meetings at Asilomar and indeed, this
journal.

In recent decades, the spectacular contributions of Sac-
charomyces have tended to eclipse what has been accom-
plished with other fungi. The shadow is passing as post-
genomic molecular and cell biologists seek to explore the
diversity of mechanisms of regulation and development
and the evolution of complex systems. The filamentous
fungi have continued to make important contributions,
both because of their similarities to the yeasts and because
of their differences. The filamentous species are similar to
Saccharomyces in their basic biochemistry and cell biol-
ogy, but they are phylogenetically quite distinct from yeast
and more complex developmentally. Aside from their in-
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trinsic interest, the filamentous fungi provide information
that is either unattainable or difficult to obtain from yeast.
Euascomycetes such as Aspergillus, Neurospora, Coch-
liobolus, Magnaporthe, and Gibberella and basidiomycetes
such as Coprinus, Schizophyllum, and Ustilago are all in a

FIG. 1. Asci and basidia from various fungi that have been used in g
tetrasperma. The others are: (A) Ascobolus immersus. (B) Ascobolus magn
(G) Aspergillus nidulans. (H) Ophiostoma multiannulata. (J) Saccharom
Puccinia graminis. (P) Ustilago maydis. (Q) Cytidia salicina. (R) Cop
Emerson (1966).
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
unique position to complement and extend the rapid
growth of knowledge emerging from the study of Saccha-
omyces, the “minimal eukaryote” (see Fig. 1).

The sexual phase of Neurospora was described and the
enus was named by Shear and Dodge (1927). The orange

studies. Drawn to scale. Ascus C is Neurospora crassa. Ascus M is N.
(D) Venturia inaequalis. (E) Bombardia lunata. (F) Glomerella cinguata.
revisiae. (K) Schizosaccharomyces pombe. (L) Podospora anserina. (N)
metarius. (S) Schizophyllum commune. (T) Cyathus stercoreus. From
enetic
ificus.
yces ce

rinus fi



vegetative phase had long been known as a prolific con- Neurospora mutants to provide the first well-verified ex-
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taminant of bakeries, a constituent of edible Javanese
cakes called oncham, an early colonist of burned-over
vegetation, and a common colonist of sugar cane stubble
and the residues of sugar-cane processing. Heterothallic
species of the genus are exemplified by Neurospora crassa,
the species most commonly used in experimental work.
Growth is hyphal in the multinucleate, syncytial mycelium
of the vegetative phase, which conidiates prolifically.
There are two genetically determined physiological mating
types, and matings can occur only between strains of
opposite mating type. Genes at the complex mating-type
locus are called idiomorphs in recognition of their nonho-
mologous base sequences. Individual strains can function
both as a female and as a fertilizing parent. Differentiated
female structures, the protoperithecia, send out special-
ized hyphae, the trichogynes, which seek out and fuse with
cells of opposite mating type, from which they transport
fertilizing nuclei into the protoperithecium. Mating culmi-
nates in the production of perithecia within which as many
as 200 asci are formed. Each ascus contains the four
products of a single meiosis. A postmeiotic mitosis before
ascospore formation results, in N. crassa, in four pairs of
sister ascospores arranged in a linear order that reflects the
events of meiosis.

The main long-term contributions of Neurospora have
been described by Horowitz (1991), Perkins (1992), and
Davis (2000). In the present article, we begin with a brief
narrative of Neurospora research in the earlier years and
go on to describe in more detail some significant advances
in the past decade. Because previous work was fully doc-
umented in the 1992 review, few references will be given
to original publications before that date. Information on
subjects for which reviews are not cited will generally be
found in Davis (2000).

CONTRIBUTIONS IN THE DECADES
BEFORE 1990

Recombination

Ease of culture, speed of growth, haploidy, and the
ability to determine the genotypes of all four products of
individual meioses made Neurospora attractive to geneti-
cists. Recombination studies showed that the mechanism
of meiotic recombination resembles that in the animals
and plants conventionally studied by geneticists. An out-
standing novel contribution was Mary Mitchell’s use of
ample of gene conversion This and other studies of intra-
genic recombination in Neurospora led directly to intense,
definitive studies of conversion in asci of Sordaria, Asco-
bolus, and Saccharomyces.

Cytogenetics

The behavior of chromosomes during meiosis and
ascus development was described by McClintock (1945)
and Singleton (1948, 1953), who showed for the first
time that both meiosis and mitosis in fungi were typi-
cally eukaryotic. Their description of the pachytene
karyotype and the first chromosome rearrangements
opened the field of fungal cytogenetics (reviewed by
Perkins and Barry, 1977). Patterns of aborted ascos-
pores in crosses of strains heterozygous for standard and
aberrant sequence facilitated the recognition and diag-
nosis of chromosome rearrangements. Insertional and
terminal rearrangements provided a ready source of
meiotically generated partial-diploid segregants that
carry duplications of genetically defined chromosome
segments.

Biochemical and Molecular Genetics

The simplicity of the nutritional requirements, the
simple life cycle, and the ease of genetic analysis led
Beadle and Tatum (1941) to use Neurospora in their
search for mutants affecting intermediary metabolism.
Their success in obtaining nutritional mutants—a find-
ing that was entirely novel—initiated the explosive de-
velopment of microbial and biochemical genetics, the
precursor to what we now call molecular biology. Use of
auxotrophs and selective platings led to the demonstra-
tion of gene exchange in bacteria (Lederberg and Ta-
tum, 1946). Lederberg’s first research experience had
been with Neurospora. Neurospora was adopted in

any laboratories in the years following 1941, yielding
wealth of information about general metabolism, mi-

ochondrial function and biogenesis, formal genetics,
hromosomal aberrations, and unique aspects of the
ungal lifestyle such as heterokaryosis.

Regulation of enzyme activities became an early preoc-
upation of workers with Neurospora at a time when
tudies of regulation were at the forefront of work in
acteria. Global regulatory systems governing nitrogen,
hosphorus, and sulfur metabolism became models for
ukaryotes, particularly with the discovery of regulatory
ascades connecting the external stimulus to the change in
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
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(2000).
In the early years, the study of genes and their pro-

tein products depended on the availability of mutant
alleles or naturally occurring allelic differences. Mu-
tants were examined phenotypically, mapped geneti-
cally, and used in studies of recombination and comple-
mentation. Fine-structure genetic mapping matured by
way of amino acid sequencing and finally DNA sequenc-
ing. Studies of the mutational process provided infor-
mation on reversion, suppressor mutation, and photo-
reactivation and on the action and relative effectiveness
of different mutagens. Mutagen-sensitive mutants con-
tributed to the understanding of DNA repair mecha-
nisms (reviewed by Schroeder et al., 1998; Inoue, 1999).
Duplicated DNA sequences were found to be inacti-
vated premeiotically by a process called RIP2 (repeat
induced point mutation), an important novel discovery.
RIP, which occurs in haploid nuclei prior to formation
of the diploid zygote, results in severe mutational deg-
radation, by GC to AT transitions, of both copies of the
duplicated segment (reviewed by Selker, 1990).

The advent of transformation techniques, developed in
1979, was followed by restriction fragment length poly-
morphism (RFLP) mapping shortly thereafter. The ability
to transform opened the way for molecular investigations
of gene structure, gene expression, and evolution. By
1985, DNA-mediated transformation of N. crassa had
became routine. Many of the problems that had reached
their technical limits in the 1970s took on a new life, and
a number of new areas opened up.

Genome Organization

The haploid genome was shown to contain approxi-
mately 43 Mb of chromosomal DNA, with 54% gua-
nine 1 cytosine pairs; individual chromosomes range
from 4 to 10.3 Mb. The seven linkage groups, which had
previously been identified cytologically with individual
chromosomes, were assigned to separate DNA mole-
cules using pulsed-field gel electrophoresis (Orbach et
al., 1988; Orbach, 1992). Little repetitive DNA was
ound, mainly the genes specifying ribosomal RNA.
elomeres were shown to have a DNA sequence iden-

ical to that of humans.
The longstanding study in Neurospora of the mitochon-

drial genome and its introns, and of mitochondrial biogen-

2 Abbreviations used: RFLP, restriction fragment length polymor-
hism; RIP, repeat induced point mutation; V-ATPase, vacuolar ATPase.
Copyright © 2000 by Academic Press
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mitochondria, to our understanding of the organelle in all
aerobic eukaryotes (reviewed by Davis, 2000). Mitochon-
drial plasmids were discovered and characterized.

Most of the genes concerned with steps of the same
biochemical pathway were found to be scattered about the
genome, unlike many such groups in bacteria. The orga-
nization of genes in Neurospora is unsurprising, but an
important feature of certain related genes was first appre-
ciated in Neurospora. Two or more of the enzyme activi-
ties of some pathways, notably tryptophan, histidine, py-
rimidine, and arginine synthesis, and the common aro-
matic amino acid sequence, are catalyzed by single
proteins. When a few multifunctional loci or gene clusters
were discovered, it was thought at first that they might be
similar to bacterial operons. This was proved incorrect
when the aro “cluster-gene” product was shown to be a
single polypeptide chain that carried multiple enzyme
activities.

Developmental and Cell Biology

Studies in Neurospora provided new information on the
compartmentation of metabolic activities and small mole-
cules in mitochondria, vacuoles, and microbodies, further-
ing knowledge of the integration of biochemical activities
in eukaryotic cells.

In the 1960s, investigators were emboldened to use
mutants in an attempt to analyze developmental fea-
tures of Neurospora such as the mycelial growth habit
and differentiation of vegetative spores. Strains with
colonial growth or derangements of condidal formation
were obtained. Abnormal morphology in some mutants
was found to be associated with certain enzyme defi-
ciencies in glycolysis and related reactions (reviewed by
Brody, 1973; Mishra, 1977). These mutants gave prom-
ise that developmental processes could be related to
well-characterized biochemical steps. While this hope
was not realized, interest in growth and morphology
persisted. Investigations of growth and differentiation
were resumed strongly in the 1980s. The study of mor-
phogenesis was reinitiated by isolating cDNAs specific
for certain developmental stages or certain times in the
circadian cycle. This work has flourished in the recent
past, as we indicate below.

Linear growth of wild-type Neurospora can exceed 4
mm/h, perhaps the highest of any fungus. This proved
advantageous for quantitative studies of growth and for
a variety of other studies, including that of circadian
rhythms. During normal mycelial growth, fusion among
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between genetically different mycelia is readily ob-
served. Heterokaryons have been used to examine hy-
phal fusion, complementation (both intergenic and in-
tragenic), and vegetative incompatibility, which was
shown to be induced by the mating-type idiomorphs or
by allelic differences in a number of other genes that
are polymorphic in the wild. Individual genes responsi-
ble for vegetative incompatibility were conveniently
identified by their expression in heterozygous partial
diploids. Studies of the attraction and fusion of tricho-
gynes to cells of the opposite mating type, which are
normally incompatible in vegetative confrontations,
provided evidence for the involvement of pheromones
and for nullification of the incompatibility response
governed by the mating-type idiomorphs.

The sexual phase offers unique opportunities for devel-
opmental studies. The ascus is a single giant cell within
which meiosis and postmeiotic mitosis occur in a common
cytoplasm, where no partitioning occurs until ascospore
walls are formed (documented photographically by Raju,
1980). Mutants that affect ascus development in various
ways were observed microscopically and compared with
wild type (reviewed by Raju, 1992). Studies of the pro-
gramming of ascus development took advantage of related
species, especially the four-spored Neurospora tetra-
sperma (Raju and Perkins, 1994). In this species, the

eterokaryotic ascospores normally contain nuclei that dif-
er in mating type, and the opposite mating types are
egetatively compatible.

Natural Populations

Neurospora from nature was studied using collections
begun systematically in 1968 (reviewed by Perkins and
Turner, 1988). Strains obtained by sampling populations
from many parts of the world provided information on
ecology, geographical distribution, variation, and specia-
tion. Criteria that used crossing behavior to define and
distinguish species were developed. Molecular differences
were used to study genetic polymorphisms, showing that
intrapopulation variation in this haploid eukaryote is as
great as that in Drosophila and humans and that a large
proportion of the species variation is present in local
populations. Wild strains proved to be a valuable source of
variants for laboratory investigations and especially for the
study of vegetative incompatibility (reviewed by Glass and
Kuldau, 1992) and meiotic drive. Strains that contain mei-
otic drive factors called Spore killers (Sk) were discovered.
When a “selfish” Sk element is heterozygous in a cross,
Turner and Perkins, 1991; Raju, 1994).

RECENT DEVELOPMENTS—
THE PAST 10 YEARS

The 1990s were highly productive, with many significant
advances beyond those described in the last detailed re-
view (Perkins, 1992).

Genome Organization

Genome projects are now under way. Expressed se-
quence tags (ESTs) have been obtained that identify genes
expressed at different stages of the vegetative or sexual
phases of the life cycle or during different intervals of the
circadian cycle. Over 2000 different genes have been iden-
tified in this way (Nelson et al., 1997; Dolan et al., 2000).
More than half of these have no known homologs in the
yeast genome or elsewhere (Nelson and Natvig, 2000;
Braun et al., 2000). Physical maps of the genome are being
constructed (Arnold, 2000). Genome sequencing is
progressing in Germany (Mewes et al., 2000; http://www.
mips.biochem.mpg.de/proj/Neurospora/) and at the
Whitehead Institute, Massachusetts Institute of Technol-
ogy, where an award by the National Science Foundation
provides for ninefold coverage, assembly, and annotation.
The results will be distributed in a public database. Neu-
rospora will thus provide the first publicly available ge-
nome sequence for a filamentous fungus. The DNA se-
quence will complement already existing physical and ge-
netic knowledge of the genome. At the same time, genetic
mapping has progressed substantially using classical mark-
ers (Perkins, 2000), RFLP markers (Nelson et al., 1998;
Nelson and Perkins, 2000), and chromosome rearrange-
ments (Perkins, 1997).

Recombination

Understanding of meiotic recombination has been ad-
vanced by high-resolution experiments using molecular
markers. The recombinator site cog has been cloned and
two alleles have been sequenced (Yeadon and Catcheside,
1995a). Intragenic recombination appears to be initiated at
cogL (Yeadon and Catcheside, 1998), which is 39 of the am
ocus (Bowring and Catcheside, 1991). Intragenic recom-
ination has been studied using simultaneously both
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
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genes to flank the am gene (Bowring and Catcheside,
996, 1998) and the his-3 gene (Yeadon and Catcheside,

1998). Conversion tracts are frequently interrupted in
both these studies. Although about one-third of gene con-
versions at his-3 are accompanied by a crossover, this
pparent association is tenuous at am, where recombina-

tion frequencies are much lower. These observations cast
doubt on the widely held assumption that both conversion
and reciprocal crossing over arise from the same event.
Evidence has been obtained that conversion events at am
stimulate crossing over nearby (Bowring and Catcheside,
1999). Studies with closely linked molecular markers show
that the genetic criteria previously used to establish the
order of intragenic sites is flawed when differentially
spaced conventional mutants are used as flanking markers
(Bowring and Catcheside, 1995).

With the cloning of large fragments of DNA, physical
and recombination distances could be compared. In gen-
eral, the values lie between 30 and 80 kb per genetic map
unit, with much less recombination around the centro-
meres (e.g., Mautino et al., 1993; Centola and Carbon,
1994).

Disruption of Duplicate Genes

RIP has been used extensively for gene disruption. Null
mutations of a RIP-inactivated essential gene can be re-
covered in progeny when a strain that carries two copies of
the wild-type allele is crossed to a dominant mutant that
induces meiotic nondisjunction (Metzenberg and Grote-
lueschen, 1992). The RIP-induced null mutation is shel-
tered in one component of viable heterokaryotic asco-
spores that result from nondisjunction (see, e.g., Harkness
et al., 1994).

RIP frequently generates DNA-sequence signals for de
ovo methylation. The nature of these signals remains
lusive, but detailed analysis of one short region with
xtensive RIP mutations suggests that the signals are re-
undant and degenerate and in some cases quite short,
ith many factors contributing to the actual pattern of
ethylation and its spread into contiguous regions (Miao

t al., 2000). Evidence was also obtained for maintenance
ethylation in Neurospora (Singer et al., 1995). Further

nalysis of methylation resulting from RIP led to the
iscovery of an unexpected connection between histone
cetylation and DNA methylation (Selker, 1998). Mutants
efective in DNA methylation (dim mutants) have been

isolated (see Foss et al., 1998). Mutations in dim-2, which
ncodes a DNA methyltransferase (E. Kouzminova and
Copyright © 2000 by Academic Press
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etectable methylation, at least in the vegetative phase.
No known mutation in any other eukaryote completely
bolishes DNA methylation.) Viability of the dim-2 mutant
ndicated that DNA methylation is not essential in Neuro-
pora. The mutant has been used to demonstrate that
ethylation can either interfere with gene expression (Ire-

an and Selker, 1997; Rountree and Selker, 1997) or pro-
ote it indirectly (Cambareri et al., 1996), that methyl-

tion can inhibit transcript elongation in vivo (Rountree
nd Selker, 1997), and that gene silencing in the vegetative
hase does not rely on DNA methylation (Cogoni et al.,
996).

Silencing

Vegetative silencing of genes (“quelling”), which is re-
versible, can occur when additional copies of a gene are
introduced into the cell by transformation (Romano and
Macino, 1992; Pandit and Russo, 1992; reviewed by Irelan
and Selker, 1996). Both the introduced and the resident
copies are affected. Silencing is posttranscriptional and is
dominant in heterokaryons (see Cogoni et al., 1996;
Cogoni and Macino, 1997, and references therein). This
demonstrates a nuclear interaction via the cytoplasm.
Quelling-deficient mutants in which transgene-induced
gene silencing is impaired have been used to show that
quelling requires three gene products: a protein homolo-
gous to RNA-dependent RNA polymerase (Cogoni and
Macino, 1999a), a RecQ DNA helicase known to be in-
volved in repair and recombination in other organisms
(Cogoni and Macino, 1999b), and a homolog of the
Caenorhabditis elegans rde-1 gene-product, which con-
trols the degradation of double-stranded RNA (Catal-
anotto et al., 2000).

Silencing may also occur during the sexual phase. One
of the more original advances has come from studies with
an ascus-dominant gene, Asm-1, which affects ascospore
maturation. Deletion of the Asm-1 gene blocks maturation
of all the ascospores of a cross, even if one of the parents
carries the wild-type allele, Asm-11. However, a frameshift

utation affects only those spores carrying the mutant
llele, Asm-1. More striking is the fact that the dominant
utant phenotype prevails even in crosses between par-

nts, each of which carries the normal allele, if the two
opies of the Asm-11 gene happen to be in different
ocations in the genome (Aramayo and Metzenberg, 1996).
he dominant effect is attributed to transvection, in which
ertain genes must pair prior to Metaphase I if meiosis is
o yield viable products. This discovery demonstrated
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159Contributions of Neurospora
ent from Drosophila, where it was first described. The
Neurospora results can be interpreted as due to silencing
of unpaired segments and of all segments that are homol-
ogous to them in both parental nuclei.

Transposable Elements

Only one active transposon is known in Neurospora, but
inactive DNA sequences have been found that represent
different transposon families, and these bear unmistakable
hallmarks of RIP (Kinsey et al., 1994; Cambareri et al.,
1998; Margolin et al., 1998; Bibbins et al., 1998). Except
or one DNA-intermediate element (Yeadon and
atcheside, 1995b), the relic copies of transposable ele-
ents discovered so far appear to be retroransposons.
hese are often severely degraded, an attribute ascribed to
remeiotic inactivation by RIP. Evidence has accumulated
hat RIP serves as a genome defense system (see Selker,
997). Characterization of centromeric DNA (Centola and
arbon, 1994) has revealed the presence of complex re-
eats reminiscent of the centric heterochromatin of Dro-
ophila (Cambareri et al., 1998). Defective transposable

elements of several types are present among the repeats,
and these show evidence of having been inactivated by
RIP.

Mutation and DNA Repair

Neurospora continues to advance knowledge in the area
of mutagenesis and DNA repair (Inoue, 1999). Study of
the UV-sensitive mutant mus-18 identified a novel DNA
endonuclease that initiates an excision repair pathway
rather different from other known DNA-repair mecha-
nisms (Ishii et al., 1991; see Yasui and McCready, 1998, for
review). A UV-sensitive mutant, mus-38, is impaired in the
previously known, highly conserved nucleotide excision
repair pathway (Ishii et al., 1998). Curiously, this pathway

ad eluded detection for some years, owing in part to the
arly misidentification of the uvs-2 mutant as defective in
he classical system.

Ectopic integration of transforming DNA was shown to
e accompanied frequently by new gross chromosome
earrangements, many of which have breakpoints associ-
ted with vector DNA (Perkins et al., 1993). Methods have
een developed for obtaining targeted, homologous inte-
ration (e.g., Margolin et al., 1997).
Individual metabolic pathways have continued to re-
ceive attention. Studies of the arg-6 gene, which encodes
a multifunctional precursor of two enzymes located in
mitochondria, show that arg-6 is a product of gene fusion
nd that a signal sequence between the N-terminal and
he C-terminal domains was doubtless derived from the
volutionary precursor of the latter. Insertion of the en-
yme into mitochondria leads to cleavage of the precursor
t specific sites in the linking, signal peptide (Parra-Ges-
ert et al., 1998). In the same pathway, Wang and Sachs
1997) have used detailed in vitro studies of the arg-2 gene
o demonstrate a novel translational regulatory mecha-
ism, sensitive to arginine, that involves arginine-regu-

ated ribosome stalling. Studies of the polyamine pathway
ave culminated in the general picture of how the key
nzyme of the pathway, ornithine decarboxylase, is tran-
criptionally regulated by four regions of the DNA in
ocations distributed from far upstream to downstream of
he coding region (Hoyt et al., 2000). Studies of lipid
etabolism have clarified the individual steps of unsatur-

ted fatty acid synthesis and the involvement of specific
enes (e.g., Goodrich-Tanrikulu et al., 1995). Comparable
tudies of carotenoid synthesis have revealed a multisub-
nit, five-step desaturase, the initial substrate of which is
he colorless precursor, phytoene (Hausmann and Sand-
ann, 2000).
Major advances have come in detailed knowledge of

ircuits governing the transport and metabolism of nitrog-
nous compounds (Feng and Marzluf, 1998), phosphate
Peleg et al., 1996), and sulfur compounds (Kumar and

Paietta, 1998), and particularly the control, fate, and lo-
calization of regulatory proteins. Similarly, work on heat-
shock responses (reviewed by Plesovsky-Vig, 1996) has led
to a more systematic knowledge of heat-shock proteins
and their homology with counterparts in other organisms.
Plesovksy-Vig and Brambl (1998) have described the prob-
able role of some small heat-shock proteins in the stabili-
zation of an enzyme of glycolysis, required during recov-
ery.

Mitochondria and Mitochondrial Plasmids

Mitochondrial membranes and other features of mito-
chondria have been studied intensively. Workers in yeast
and Neurospora have standardized the nomenclature and
have compared the proteins and processes of protein im-
port into the organelle (Pfanner et al., 1996). Studies with
Neurospora have progressed to the point that the prepro-
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.
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160 Perkins and Davis
the outer mitochondrial membrane. The complex is effec-
tive in translocating mitochondrial intermembrane pro-
teins when inserted into artificial membranes, and the
complex has been shown by electron microscopy to con-
tain centers interpreted as pores that represent protein-
conducting channels (Künkele et al., 1998).

Neurospora was used to show that mitochondrial tRNA
synthetase mediates RNA self-splicing (Wallweber et al.,
997). Two mitochondrial plasmids are retroelements that
hare properties of RNA viruses and mitochondrial in-
rons. The novel transcriptases they encode possess char-
cteristics suggesting how present-day reverse transcrip-
ases and DNA polymerases could have evolved (Wang
nd Lambowitz, 1993).

Mitochondrial plasmids that are present in natural pop-
lations were shown to belong to discrete families (Yang
nd Griffiths, 1993; Arganoza et al., 1994). New examples
f plasmids that cause senescence have been discovered
Yang and Griffiths, 1993; Marcinko-Kuehn et al., 1994;
e et al., 2000; reviewed by Griffiths, 1992, 1995, 1998).

Circadian Rhythms and Photobiology

N. crassa has become a preeminent model for studying
circadian rhythms. In an extension of work pioneered by
J. F. Feldman, the gene frq (frequency) was shown to
encode a central component of a molecular feedback loop
in which the product of frq negatively regulates synthesis
of its own transcript, resulting in oscillation in the forma-
tion of conidia (Aronson et al., 1994; Dunlap, 1993). The
control is indirect, since the FRQ product acts not on its
own promoter, but on the WC-1/WC-2 complex produced
by the light-transduction genes white-collar-1 and -2
Dunlap, 1999). Resetting the clock occurs when induc-
ion of frq by light overcomes negative autoregulation,
esulting in phase delay or advance, depending on the time
f day (Crosthwaite et al., 1995). The frq gene and the
hite-collar genes wc-1 and wc-2, which encode photore-

sponse regulators, specify interconnected feedback loops.
The FRQ protein and the WC-1/WC-2 complex have an
antagonistic relationship that, with rhythmic induction and
degradation kinetics of certain components, lend stability
to the circadian rhythm (Crosthwaite et al., 1997; Lee et
l., 2000). Increasingly sophisticated models of the clock
ppear as the work continues (Merrow et al., 1999; Mc-

atters et al., 1999). In conditions of lipid starvation,
ntrainable and free running rhythmicity can persist even
n absence of the frq and wc gene products (Lakin-

Thomas and Brody, 2000). This suggests that frq, wc-1,
Copyright © 2000 by Academic Press
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they may not represent the entire core repertory of this
complex system. A variety of clock-controlled genes have
been identified, the inactivation of which does not alter
rhythmicity (Bell-Pedersen et al., 1996). For reviews of the
Neurospora clock work, see Bell-Pedersen (1998), Loros
(1998), Dunlap (1999), and Lakin-Thomas (2000).

Significant contributions have been made to the molec-
ular genetics of a related subject, photobiology, with the
identification and characterization of photomutants and
genes regulated by blue light (reviewed by Lauter, 1996).
The two wc genes are global regulators of photoresponses,
encoding blue-light-activated transcription factors and
participating in the blue-light signal transduction pathway
(Ballario and Macino, 1997; Schwerdtfeger and Linden,
2000). A gene homologous to archaeal rhodopsins pro-
vided the first example of an opsin in eukaryotes other
than animals. The Neurospora gene-product, NOP-1, is a
photochemically reactive member of the archaeal rhodop-
sin family (Bieszke et al., 1999a,b).

Signal Transduction

Extensive information has been obtained on the expres-
sion of genes under light, circadian, or developmental
control (see Lauter, 1996; Bell-Pedersen et al., 1996;

bbole, 1996). Genes that specify a-1, a-2, and a-3 sub-
units of heterotrimeric GTP binding proteins have been
isolated and characterized (Turner and Borkovich, 1993;
Baasiri et al., 1997; Kays et al., 1998, 2000). Numerous
dditional genes that encode putative signal transduction
roteins have been identified (Margolis and Yanofsky,
998; see also Perkins et al., 2000), making it likely that
arious signal cascades will be well defined in the near
uture.

Vegetative Growth, Differentiation, and
Morphogenesis

Neurospora has recently proved to be as useful in the
study of hyphal growth as it was to biochemical genetics.
Work in this area has been facilitated by the availability of
many genetically well-characterized morphological and
biochemical mutants. Hyphal growth has been studied for
many years and from many standpoints (reviewed in
Davis, 2000). Attention has now focused on three major
issues: cell wall formation, the activity of cytoskeleton and
molecular motors, and the relevant signal transduction
systems. The b-glucans and chitin components of the cell



wall are becoming better understood with the cloning of protein kinases (Yarden et al., 1992), and protein phospha-
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genes affecting b-glucan synthase activity (Enderlin and
Selitrennikoff, 1994) and those encoding chitin synthase
(Yarden and Yanofsky, 1991; Beth-Din and Yarden, 2000).

The hyphal tip, which contains a cluster of vesicles
called the Spitzenkörper, is the site of deposition of cell
wall material by exocytosis of these apical vesicles. The
“hyphoid” model of vesicle distribution from this cluster
accounts well for the shape of the tip (reviewed by Bart-
nicki-Garcia, 1990; Riquelme et al., 2000). The biochem-
ical events involve ion gradients and a tip-high calcium
gradient (reviewed by Jackson and Heath, 1993; Silver-
man-Gavrila and Lew, 2000). The newest work has begun
to unravel the cytoskeletal elements at the tip, which have
until now been poorly described. Heath’s laboratory has
discovered a spectrin-containing membrane skeleton and
has shown that actin is required at the tip, for normal
growth, but microtubules are not (Degoussée et al., 2000;
Heath et al., 2000). Moreover, a SNARE protein is found
at the tip in a gradient that approximates the gradient of
wall deposition in earlier studies (Gupta and Heath, 2000)
even though it does not conform closely to the hyphoid
equation of Bartnicki-Garcia.

Early studies of the proton gradient across the plasma
membrane (reviewed by Slayman, 1977) flourished with
characterization of the plasma membrane ATPase and
cloning of the corresponding gene, pma (reviewed by Rao
and Slayman, 1996). Interest in ATPases widened with the
discovery and characterization of a distinct, multisubunit
vacuolar ATPase (V-ATPase) and the cloning of most of
the genes that contribute to it (reviewed by Margolles-
Clark et al., 1999). The role of the vacuole in growth and
morphology is beginning to become clear, with studies of
inhibitors of vacuolar function and their possible effects in
the distribution of calcium, which is a major player in the
control of growth and branching (Bowman et al., 1997;
reviewed by Bowman and Bowman, 2000).

New light has been shed on regulatory genes that affect
morphology. Mutants known from the earliest days of
Neurospora genetics have sometimes contributed. Several
genes that served as morphological markers in construct-
ing the first fungal genetic maps in the 1930s have now
been cloned, sequenced, and characterized functionally.
These include fluffy (Bailey and Ebbole, 1998) and
crisp-1, both of which affect conidiation. crisp-1 proved to
be the structural gene for adenyl cyclase (Kore-Eda et al.,
1991). The antagonistic roles of cAMP and calcium in
hyphal branching had become clear in earlier days (re-
viewed in Davis, 2000), and studies have now been ex-
tended to the action of calcineurin (Prokisch et al., 1997),
tases (Yatzkan and Yarden, 1995). A coherent picture of
the control of hyphal growth and branching can be ex-
pected to emerge from the extension and integration of
these studies.

Morphological mutants called ropy were shown to be
defective in specifying subunits of dynein and related
molecular motors (Plamann et al., 1994). Mutations at
ropy loci are selectable as suppressors of the morpholog-
ical mutant cot-1. Similarly, the mcb (microcycle blasto-
conidiation) mutant, which affects growth polarity, acts as
a suppressor of the morphological mutant crisp (Bruno et
al., 1996). The lack of polarity is correlated with a rate of
secretion of extracellular enzymes in mcb cultures at the
high level characteristic of the hyphal tip in wild-type
cultures (Lee et al., 1998). Another molecular motor,
kinesin, which drives organelle movement on microtu-
bules in a direction opposite from the dynein-activated
movement, is represented by a distinct form (N-kin) in
Neurospora (Seiler et al., 1997). Curiously, double mu-
tants lacking activity of both dynein/dynactin and kinesin
are still viable, although they grow slowly (Seiler et al.,
1999). Other molecular motors that endow hyphae with
specialized means of moving particular organelles are
therefore thought to exist in Neurospora.

Recent work has helped solve the mystery of the hex-
agonal crystals, often called Woronin bodies, that are
found in many filamentous fungi. These bodies clog septal
pores upon a sudden loss of turgor, preventing excessive
loss of protoplasm from burst or cut hyphal tips. They
were originally identified as ergosterol crystals, but later
studies showed that they are composed largely of protein.
Isolation of these bodies and the constituent protein al-
lowed Jedd and Chua (2000) to clone the gene hex-1 and
to show that its aggregated product is an inclusion in an
unusual peroxisome. Disruption of the gene in vivo results
in cytoplasmic bleeding at damaged hyphal tips.

Natural Populations

Information has been brought together on the more
than 4600 cultures from natural populations that are now
available from the Fungal Genetics Stock Center (Turner
and Perkins, in press). These authors review the informa-
tion that these strains have provided on species distribu-
tion, ecology, genetic diversity, population structure, and
meiotic drive. The wild strains have continued to provide
genetic variants for a variety of laboratory investigations.
Surveys of the strains have revealed widespread occur-
rence of mitochondrial plasmids.
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



Neurospora tetrasperma

a
s
i
o
s
n
g
d
t

r

m

a
m
t
S
t
s
f
t
s
f
p

are together in heterokaryons or in heterozygous partial

s
m
a
c
1

e
n
m
c
i
s
1

162 Perkins and Davis
The pseudohomothallic species N. tetrasperma occurs
naturally as a self-fertile heterokaryon carrying nuclei of
both mating types. Investigations of N. tetrasperma from
natural populations have related observations on hetero-
karyosis and crossing-over suppression in the mating-type
chromosome to the unusual population genetics and evo-
lution of this unique genetic system (Merino et al., 1996;
Gallegos et al., 2000; Metzenberg and Randall, 1995; Raju
nd Perkins, 1994). In particular, Merino et al. (1996)
howed that segments linked to mating type are different
n the mat A chromosome than in the mat a chromosome
f individual wild-collected, heterokaryotic N. tetrasperma
trains, whereas autosomal markers are homogeneous in
uclei of the same heterokaryons. When strains from geo-
raphically distinct populations were compared, strikingly
ifferent evolutionary trees were obtained for the mating-
ype chromosomes than for the autosomes.

Mating Type

Substantial progress has been made in understanding
the organization and function of genes at the mating-type
locus, which are called idiomorphs rather than alleles in
recognition of their lack of homology (Metzenberg and
Glass, 1990). The mat a idiomorph contains a single open
eading frame, while mat A contains three (Ferreira et al.,

1996). Both mat A-1 and mat a-1 appear to be essential for
ating and for sexual development, while mat A-2 and

mat A-3 increase fecundity but are not essential (Ferriera
et al., 1998). For reviews of mating type, see Staben (1996)
and Coppin et al. (1997).

Heterokaryons and Vegetative
Incompatibility

Genes responsible for vegetative (heterokaryon) incom-
patibility (het genes) have been cloned and sequenced,
nd with this, a start has been made to understanding the
olecular basis of cell death in incompatible confronta-

ions (Saupe et al., 1996; Smith et al., 1996, 2000a, 2000b;
hiu and Glass, 1999). The same multiple alleles of het-c
hat are found in N. crassa are present in other Neuro-
pora species and in related genera, indicating derivation
rom a common ancestor and conservation during evolu-
ion (Wu et al., 1998). The tol gene has been cloned and
equenced (Shiu and Glass, 1999). tol function is required
or expression of mating type-mediated vegetative incom-
atibility, which is seen when mat A and mat a idiomorphs
Copyright © 2000 by Academic Press
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diploids. However, a functional tol gene is not required for
vegetative incompatibility reactions mediated by genes
other than mating type (Leslie and Yamashiro, 1997). An
active tol allele is normally present in the heterothallic
outbreeding species N. crassa, where the gene was origi-
nally identified as a recessive mutation that suppressed
A 1 a vegetative incompatibility. The species N. tetra-
perma, which normally exists as a self-fertile (mat A 1
at a) heterokaryon, was shown to possess an inactive tol

llele, and the active and inactive tol alleles were inter-
hanged between N. crassa and N. tetrasperma (Jacobson,
992).
Heterokaryons are being used to produce het-

rodimeric molecules that incorporate components origi-
ating from genetically different nuclei. Intact antibody
olecules are formed by heterokaryons in which the light

hain is encoded by one nuclear type and the heavy chain
s encoded by the other; the components assemble them-
elves in the cytoplasm and are secreted (Stuart, 1997,
998).

PROSPECT

In the exciting years ahead, as genes are annotated
following completion of the genomic sequence, the knowl-
edge and the strains obtained so painstakingly during the
past 75 years will be instrumental in relating sequence
data to biologically meaningful problems.

Neurospora will continue to provide a healthy counter-
part to Saccharomyces. The two organisms are phyloge-
netically and biologically quite distinct, with lineages di-
verging from a common ancestor 360 million years ago
(Berbee and Taylor, 2000). They differ profoundly in life
cycle, morphology, ecology, and chromosome comple-
ment. Neurospora is structurally more complex, with dis-
tinct, differentiated cell types. More than half of the ex-
pressed genes in Neurospora have no detectable homolog
in yeast. Neurospora is perhaps more of a generalist, with
genetic mechanisms that appear to be more representative
of other eukaryotes. A more sophisticated picture of fungal
genetics and biology should emerge from studies with
both organisms.

Neurospora remains a powerful model, especially for
the mycelial fungi. Future work with Neurospora should
bring increased understanding of many aspects of fungal
biology, ranging from genome organization, signal trans-
duction, and hyphal growth to evolutionary history and



speciation. Because comparative genomics is largely inde-
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pendent of the techniques of classical genetics, much of
what is learned from the Neurospora sequence can quickly
be adopted in the study of diverse organisms. Availability
of the genome sequence should be a boon to all students
of fungi, empowering those who work with less tractable
species to solve problems that would otherwise be too
baffling. We look forward to the time when it can be said
that the most important contribution of Neurospora in its
later years has been to advance knowledge and propagate
interest in all the fungi, a unique, widespread kingdom of
organisms that is even now relatively unexplored.
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