
UCSF
UC San Francisco Previously Published Works

Title
motifDiverge: a model for assessing the statistical significance of gene regulatory motif 
divergence between two DNA sequences.

Permalink
https://escholarship.org/uc/item/1k939088

Journal
Statistics and Its Interface, 8(4)

ISSN
1938-7989

Authors
Kostka, Dennis
Friedrich, Tara
Holloway, Alisha K
et al.

Publication Date
2015

DOI
10.4310/sii.2015.v8.n4.a6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1k939088
https://escholarship.org/uc/item/1k939088#author
https://escholarship.org
http://www.cdlib.org/


motifDiverge: a model for assessing the statistical significance 
of gene regulatory motif divergence between two DNA 
sequences

DENNIS KOSTKA*,
Department of Developmental Biology, Department of Computational & Systems Biology, 
University of Pittsburgh School of Medicine, 530 45th Street, Pittsburgh, PA 15201, USA

TARA FRIEDRICH,
Gladstone Institutes, Integrative Program in Quantitative Biology, University of California, 1650 
Owens Street, San Francisco, CA 94158, USA

ALISHA K. HOLLOWAY, and
Gladstone Institutes, Division of Biostatistics, University of California, 1650 Owens Street, San 
Francisco, CA 94158, USA

KATHERINE S. POLLARD
Gladstone Institutes, Institute for Human Genetics, Division of Biostatistics, University of 
California, 1650 Owens Street, San Francisco, CA 94158, USA

Abstract

Next-generation sequencing technology enables the identification of thousands of gene regulatory 

sequences in many cell types and organisms. We consider the problem of testing if two such 

sequences differ in their number of binding site motifs for a given transcription factor (TF) 

protein. Binding site motifs impart regulatory function by providing TFs the opportunity to bind to 

genomic elements and thereby affect the expression of nearby genes. Evolutionary changes to 

such functional DNA are hypothesized to be major contributors to phenotypic diversity within and 

between species; but despite the importance of TF motifs for gene expression, no method exists to 

test for motif loss or gain. Assuming that motif counts are Binomially distributed, and allowing for 

dependencies between motif instances in evolutionarily related sequences, we derive the 

probability mass function of the difference in motif counts between two nucleotide sequences. We 

provide a method to numerically estimate this distribution from genomic data and show through 

simulations that our estimator is accurate. Finally, we introduce the R package motifDiverge that 

implements our methodology and illustrate its application to gene regulatory enhancers identified 

by a mouse developmental time course experiment. While this study was motivated by analysis of 

regulatory motifs, our results can be applied to any problem involving two correlated Bernoulli 

trials.
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1. INTRODUCTION

Next-generation sequencing increasingly provides insight into the locations of regulatory 

regions in the genomes of many organisms, and it gives information about the cell types and 

developmental stages in which these regulatory elements are active [1]. RNA sequencing 

(RNA-seq, [2, 3]) enables accurate quantification of gene expression, and techniques such as 

DNase sequencing (DNase-seq, [4]) and Formaldehyde-Assisted Isolation of Regulatory 

Elements (FAIRE-seq, [5]) pinpoint which parts of a genome are in open chromatin and 

therefore may be associated with regulatory activity in a given cell type. These methods can 

be coupled with chromatin immunoprecipitation followed by sequencing (ChIP-seq, [6]) for 

histone modifications, transcription factors (TFs) and co-factors to further refine predictions 

of regulatory elements, such as promoters, enhancers, repressors, and insulators [7]. Gene 

expression levels are different between cell types and dynamic during development as the 

result of regulatory elements that are specifically active in some cells but not in others [8, 9]. 

Therefore, identification of functional regulatory elements and the TFs that recognize them 

is a key step to characterizing any type of cell. This information also sheds light on 

transitions between different cell types, such as in the progression to cancer or during 

cellular differentiation.

Regulatory genomic elements typically contain multiple motifs for one or more TFs. The TF 

proteins bind to these motif sequences to combinatorially modulate the expression of nearby 

genes [10]. TF motifs are to some extent degenerate (i.e., mutations away from the 

consensus sequence are tolerated), and therefore they are typically represented as probability 

distributions over nucleotides (A, C, G, and T ) at each position in the motif [11]. For each 

TF, this distribution can be represented as position specific probability matrix (PSPM). 

While TF binding depends on more than just the target DNA sequence (TF concentration, 

open chromatin, etc.), and even though the binding affinity of a TF towards a stretch of 

nucleotides is quantitative rather than binary, the presence or absence of TF motifs can be 

represented as a binary event by scoring how well a sequence matches a TF’s PSPM (details 

below). Because sequence changes can alter how well DNA matches a PSPM, mutations and 

substitutions can create or destroy motif instances. It is challenging to predict the effect of a 

single motif loss or gain on the function of a regulatory region, because a loss may be 

compensated for by a nearby gain. However, a large cumulative change in the number of 

motifs across a regulatory region can alter expression of nearby genes, potentially resulting 

in differences in organismal traits, such as disease susceptibility.

To the best of our knowledge there are no existing methods for quantifying divergence 

between DNA sequences based on differences in motif counts. The primary challenge is that 

in most biologically meaningful settings the sequences are related through evolution (i.e., 

they are homologous) or functional constraints, and therefore motif instances are correlated. 

This is the problem we address in this paper: We derive the joint distribution of the number 

KOSTKA et al. Page 2

Stat Interface. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of motifs in the two sequences, and the marginal distribution of the difference in numbers of 

motifs between the two sequences. From the latter distribution, we show how p–values can 

be computed for testing the null hypothesis of no systematic difference in motif counts 

between two sequences. We validate our methodology through simulations and apply it to 

ChIP-seq and RNA-seq data from a developmental time course.

2. A MODEL FOR REGULATORY MOTIF DIVERGENCE

We propose a probabilistic model and test for assessing the statistical significance of the 

difference in number of motifs for a single TF between two DNA sequences. While the core 

of our approach is independent of the specifics regarding TF motif modeling, we also 

provide methodology to estimate the distribution of our test statistic for any TF that has a 

motif model in the form of a PSPM. The sequences may be homologous or not, because our 

approach does not require (but can make use of) a sequence alignment that enables a 

parameter estimation scheme based on evolutionary models (see Section 2.2.5 and the 

Appendix). In both cases, the two sequences can be short sequence elements (e.g., pairs of 

orthologous gene promoter sequences) or concatenations of multiple short sequence 

elements that share some property (e.g., promoters of multiple genes). For the non-

homologous case, any two sequences or sets of sequences can be compared. For example, 

one might be interested in TFs with significantly different numbers of motifs in promoters of 

genes that are up-regulated versus down-regulated in a cancer RNA-seq experiment, or in 

comparing gene promoters versus distal enhancers. For the homologous case, one might 

compare two genotypes present within a single species, such as a disease-associated versus 

healthy genotype of a gene promoter. The homologous case can also be used across species, 

for instance, to quantify the regulatory divergence of pairs of homologous regulatory 

sequences identified via ChIP-seq. We recently took this approach to compare human and 

fish developmental gene regulation, and we showed that TF motif differences capture 

functional changes in enhancer sequences better than do standard measures of sequence 

divergence [12].

2.1 Background: predicting TF motifs

A typical approach to identify TF motifs in DNA sequences is to scan a sequence one 

position at a time using a PSPM and predict a motif at any position where the likelihood of a 

motif-length sub-sequence under the PSPM model is significantly higher than under a 

background distribution (see below for details) [13]. In this context, the PSPM and 

background distribution are thought of as generative models. Let M be a PSPM of length l 

(typically about 7 to 10 bp) over the DNA nucleotide alphabet {A,C,G,T}, where Mij is the 

probability of observing nucleotide i at position j in the motif. Let Bi be the probability of 

observing nucleotide i (at any position) under a background model. Such a background 

model can, for example, be estimated from the whole genome or from any reasonably long 

sequence from the species of interest. Then Lij := log(Mij/Bi)is the log odds for nucleotide i 

at position j and  is the log odds score for a sequence x = x[1,…,l] of length 

l. The distribution of T can obtained numerically, and a log odds score threshold for 

predicting motif instances can be found in such a way that Type I error, Type II error, or a 

balance between the two (balanced cutoff) are controlled [13]. Alternatives to Type I error 
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control are commonly employed, because false negatives can be important in this 

application; TFs frequently bind to sequences that are weak matches to their motif (i.e., 

would be missed with strict Type I error control), and in some cases this weak binding is 

functional.

We note that PSPM based log odds scores do not account for dependencies between motif 

positions, despite the fact that these are known to exist for TF motifs. More sophisticated 

methods for motif annotation that take relationships between nucleotide positions into 

account have been developed [14, 15, 16]. However, standard PSPM scoring is commonly 

used, computationally convenient, and has recently been observed to perform well [17]. The 

model we describe in this paper can in principle be applied together with any method for 

motif prediction.

To scan a sequence x of length k ≥ l for motifs, a sliding window approach is typically used. 

Starting at the first nucleotide x1, compute T(x1→l):= T(x[1,…,l]). Then, slide the window 

one nucleotide to start at position x2 and compute T(x2→l+1). Continue computing 

T(xi→i+l−1) until the last test statistic T(xk−l+1→k) is computed. A motif is predicted at 

position i if T(xi→i+l−1) > t for a log odds score threshold t (see above). Note that subsequent 

test statistics are not independent, because their underlying sequences overlap. This “in-

sequence” dependency is often not accounted for, but there are methods that take it into 

account [18]. Our model does not explicitly include in-sequence dependency. However, 

based on the fact that our method performs well on simulated data with in-sequence 

correlation (see Section 4.2), and that other methods with similar assumptions perform well 

in practice [17], we believe that this is a reasonable approach. Also, we show that there is a 

relationship between in-sequence dependence and the dependence between motif counts in 

two homologous sequences (Appendix). Because of this relationship, our model is able to 

indirectly account for some in-sequence dependence via its parameter for between-sequence 

correlation (Section 2.2.5).

2.2 Modeling differences in the number of TF motifs between two sequences

Consider two sequences x and y of lengths kx and ky (possibly not equal). For a given TF, let 

a random variable Xi be the indicator for the presence of a motif at position i in x, and let Yi 

be the corresponding random variable for y. We assume the prediction of a motif in a 

sequence is the result of a Bernoulli trial with a homogeneous success probability along the 

sequence. Then, the joint distribution of (Xi,Yi) does not depend on i. Next, we define 

random variables Nx = ΣiXi and Ny = Yi for the total number of motifs in each sequence. 

Marginally Nx and Ny have Binomial distributions. However, note that Xi and Yi (and 

therefore Nx and Ny) are not necessarily independent, because the sequences x and y are 

potentially related, for example due to sequence homology or shared regulatory constraints. 

The problem we address here is how to define and estimate the distribution of the difference 

in the number of motifs between the two sequences Nxy = Nx − Ny under dependence of Xi 

and Yi. Our approach is based on the two underlying, correlated Binomial trials. We note 

that assuming homogeneous success probabilities implies that we are neglecting effects 

stemming from in-sequence dependence between motif hits. We believe this is a reasonable 

approach for the reasons given above and in Section 2.2.5.
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2.2.1 Equal length sequences—First consider the case of equal length sequences (k := 

kx = ky), which simplifies the model because there is a corresponding Bernoulli trial in x for 

each trial in y. Let N10 be the number of pairs (Xi,Yi) with Xi = 1 and Yi = 0, and let N01 be 

the number of pairs with Xi = 0 and Yi = 1. Then Nxy = N10 − N01. To derive the distribution 

of Nxy, we first consider the joint distribution of N10 and N01,which is multinomial:

(1)

where (·,·,·)! is the multinomial coefficient, n = k − l+1 is the number of windows tested for 

a motif of length l, p00 = Pr(Xi = 0,Yi = 0), p01 = Pr(Xi = 0,Yi = 1), and so on.

Notably the joint distribution of (N10,N01) is independent of p00 and p11 and only depends 

on the probabilities for a motif in one sequence and not the other: p01 and p10. Because nxy = 

n10 − n01 can be realized in  different ways, the distribution of Nxy is:

(2)

Identifying the sums in Equation (2) as hypergeometric series (Appendix), we can rewrite 

them in terms of the Gaussian hypergeometric function 2F1 [19]:

(3)

with similar results for the other sum. Since 2F1(a; b; c;0) = 1, Nxy follows a Binomial 

distribution with parameters p10 and n when p01 → 0. This is as expected, because in this 

case P(N10 = n10,N01 = 0) is Binomial, and there is only one term contributing to the sums in 

Equation (2). Similarly, for p10 → 0 the distribution P(N10 = 0,N01 = n01)isa Binomial with 

parameters p01 and n, and Nxy has the same Binomial distribution, just mirrored at nxy = 0.

Finally, we can obtain the mean and variance of Nxy from the multinomial distribution of 

N10 and N01 (Equation (1)):

(4)
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2.2.2 Alternative parametrization—Instead of the parameters (p11,p10,p01,p00)wecan 

use the success probabilities of the Bernoulli trials Xi and Yi, plus their correlation. Define 

p := p11 + p10 and q := p11 + p01, and let the correlation between the two trials be 

. In this parameterization admissible values of ρ 

depend on p and q. Intuitively,it is clear that not all correlation coefficients can be 

admissible. For instance, if the trials have different success probabilities they cannot at the 

same time be perfectly correlated. If we assume 0 ≤ p≤ q ≤ ½ then ρ− ≤ ρ ≤ ρ+ with

(5)

so that our model can fully be specified by the success probabilities of the Bernoulli trials 

and an admissible correlation coefficient. We note that the variance of Nxy is maximal at ρ = 

ρ− (i.e., p11 = 0), not at ρ = 0 (i.e., p11 = pq), which corresponds to independent trials. 

Further, the variance of Nxy is minimal at ρ= ρ+ (i.e., p11 = min(p,q)).

2.2.3 Different length sequences—In most situations, even with homologous 

sequences, the lengths of x and y will not be identical. Suppose without loss of generality 

that x is the longer sequence so that kx ≥ ky. Our strategy for modifying P(Nxy = nxy) to 

account for the length difference is to treat ky nucleotides as in Equation (2) and to derive 

the distribution for the number of motifs in the remaining nucleotides of x. Recall that we 

model the difference in motif hits Nxy without conditioning on specific alignments or 

configurations of hit-pairs A = {(xi,yi)} between the two sequences. In fact, the sums in 

Equation 2 are equivalent to summing over all configurations consistent with observing nxy: 

ΣA P(A)I(nxy|A), where I(nxy|A)is one if A is consistent with observing nxy and zero 

otherwise. Likewise, our approach for different-length sequences is also equivalent to 

averaging over all possible configurations. To that end, note that Nxy = N1 + N2, where N1 is 

a random variable representing the number of motifs in the first ky − l+1 nucleotides of x 

minus the number of motifs in the corresponding nucleotides of y, and N2 represents the 

number of motifs in the remaining kx −ky possible motif start positions in x. Again, N1 and 

N2 are marginalized quantities in the sense that they average over all configurations of hit-

pairs between the two sequences. Then, N1 has the distribution defined in Equation (2) with 

length parameter ky (i.e., n = ky −l + 1). It is easy to see that N2 only depends on x and is 

Binomially distributed with success probability p10 + p11 and kx −ky trials, as expected for 

the remaining Bernoulli trials. If ky >kx, we leave the definition of N1 unchanged, but instead 

treat the excess trials in x as negative counts of motifs that are subtracted from the count for 

the same-length segment of length ky. In this case, N2 is Binomially distributed with success 

probability p01 + p11 and ky − kx trials. Thus, for different length sequences the difference in 

numbers of motifs is distributed as the convolution of the distributions for N1 and N2:
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(6)

where Bin(·) is the probability mass function of the Binomial distribution with parameters 

given above, and Ps denotes the probability mass function of Nxy in the case of equal-length 

sequences (Equation (2)). We get the mean and variance of Nxy for different length 

sequences from Equation (4) and the Binomial distribution:

(7)

where again kx ≥ ky without loss of generality. Unlike Equation (2), which depends only on 

p10 and p01, the distribution of Nxy for unequal length sequences (Equation (6)) depends on 

p11 as well (via p = p11 + p10) and makes full use of the parametrization of (Xi,Yi).

2.2.4 Computing P(Nxy = nxy) and P(Nnx ≥ nxy)—Our main application is to compute 

a p–value for an observed difference in motifs (Nxy = nxy) between two sequences x and y. 

Thus, we are interested in computing a tail probability of the probability mass function of 

Nxy (Equation (6)). To test if nxy is significantly larger compared to what we expect under a 

null hypothesis we need to obtain P(Nxy ≥ nxy). Similarly, we need P(Nxy ≤ nxy)to test for 

significantly fewer motifs in x compared to y.

To numerically evaluate P(Nxy = nxy), we perform the convolution in Equation (6) using the 

fast Fourier transform. A prerequisite for this is the probability mass function Ps(Nxy = nxy) 

for the symmetric case (kx = ky), which we get from Equation (2) and evaluate up to a pre-

specified error ε ≥ 0. More specifically, let Ps(Nxy = nxy)= ΣjSj, where the summands Sj are 

taken from Equation (2). Further let wj := Sj+1/Sj. Then there exists j− such that for j+ with 

 (Appendix):

(8)

We evaluate this error bound after each additional term in the sum and stop when a desired 

precision has been achieved. Additionally, in order to obtain Ps(Nxy = nxy) for a series of 

values for nxy the following recurrence relation (Appendix) is useful:
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(9)

The fast Fourier transform evaluates P(Nxy = nxy)overan entire range of values for nxy, which 

enables us to compute tail probabilities P(Nxy ≥nxy), and thereby p–values, by direct 

summation.

2.2.5 Estimating model parameters—Up to this point, we have treated the model 

parameters (p10, p01, p11), or alternatively (p,q,ρ), as known. In practice they must be 

estimated from data before one can compute p–values for an observed difference nxy in the 

number of motif hits between two sequences. The process of predicting TF motifs (Section 

2.1) suggests several properties that could influence the shape of the probability mass 

function of Nxy:

i. Sequence length. More predicted motifs can be expected in longer sequences. Also, 

the larger the length-difference between two sequences, the larger the difference in 

motifs is expected to be. Both of these effects are explicitly included in our model 

(via kx and ky), and we assume that these sequence lengths are known.

ii. Motif information content. Low information content (i.e., weak or uninformative) 

PSPMs can lead to more predicted motif instances compared to high information 

content PSPMs. This effect can be taken into account via the choice of the log odds 

score threshold t (Section 2.1). For example, selecting a value of t for each TF that 

controls the Type I error will make motif counts comparable across TFs.

iii. Threshold for predicting motifs. A loose threshold t for predicting motifs will result 

in more motif predictions. In our model, the expected number of motifs will be 

reflected in the parameters p and q.

iv. Sequence composition. For a given background distribution, the probability of a 

motif prediction will depend on the similarity of the nucleotides favored in the 

PSPM compared to the nucleotide composition of the sequence. For instance, for a 

GC-rich motif we expect more motifs in a GC-rich sequence compared to an AT-

rich sequence. The parameters p and q account for the sequence composition of x 

and y, respectively. While effects of sequence composition can be further mitigated 

by using sequence-dependent prediction thresholds {txy} (e.g., corresponding to 

sequence-dependent background distributions Bi), this is not desirable if a 

consistent threshold is sought for a collection of jointly analyzed sequences.

v. Relationship of the two sequences. If the two sequences are homologous, we may 

expect fewer differences in motifs compared to the case of two independent 

sequences. As described above, we model the relationship between x and y via a 

correlation parameter ρ, which allows us to accommodate both correlated (ρ> 0) 

and uncorrelated (ρ= 0) sequences.

Taking these issues into account, we propose the following approaches to parameter 

estimation.
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Independent sequences: Assume x and y are independent and that motifs are equally likely 

in both sequences. Then, we can estimate p̂ = q̂ := (nx + ny)/(kx + ky)(which implies p̂10 

=p̂01). With respect to the correlation parameter ρ we have two options. First, we can choose 

, reflecting the independence of Xi and Yi. In this case, our model is fully specified. A 

second alternative for independent sequences leverages a relationship between in-sequence 

dependence and between-sequence dependence (Appendix) to account for correlation (or 

anti-correlation) between motif instances within each sequence. Specifically, assume the 

{Xi} and {Yi} are realizations of two independent Markov chains. Then λx := P(Xi = 1|Xi−1 = 

1) may be different from P(Xi = 1|Xi−1 = 0), and such a correlation (λx= p) influences the 

variance of Nx [20]. A similar effect holds for λy := P(Yi = 1|Yi−1 = 1) ≠ q and the variance of 

Nythe expectations stay the same as in the original model. Numerical estimates for λx and λy 

can be obtained, and we can we can choose ρin a way that the variance of the model with no 

in-sequence dependence matches the variance of this more general model. Let 

be estimates for the conditional success probabilities. Then this approach leads to: (10)

(10)

where A(·) quantifies the effect of the in-sequence dependence on the variance of Nx and Ny 

(Appendix, [20]). This parameter choice enables us to include some of the effects due to in-

sequence dependence into our model when x and y are independent.

Dependent sequences: If x and y are homologous sequences, we propose to estimate model 

parameters using an evolutionary model that quantifies the probability of nucleotide changes 

between x and y. We will focus on evolutionary models for cross–species data based upon 

continuous time Markov chains (CTMCs), but population genetics models for genotypes 

within species could also be used.

Like in the case of independent sequences we estimate p̂ = q̂ := (nx + ny)/(kx + ky). But we 

estimate the between-sequence correlation ρ via an estimate for p12 derived from the 

evolutionary model. More specifically, suppose there is a motif at position i in x (i.e., Xi = 

1). Consider the probability p1→1 that the congruent, homologous sub-sequence of y also 

contains a motif. We then obtain a numerical estimate p̂1→1 based on the sequence 

composition of x and y, an evolutionary model, the PSPM, the background model and the 

score cutoff t used to predict motifs (see Appendix for details). Finally, an estimate of the 

probability of a motif in both sequences is p̂11 =p̂p̂1→1, and the resulting estimator of ρ takes 

the form:

(11)

Note that  for independent sequences (p̂11 =p̂2), and  for positively correlated 

sequences p̂1→1 >p̂2. Negative between-sequence correlation is typically not accounted for 

in evolutionary models, so for homologous sequences we have .
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3. SOFTWARE PACKAGE

We implemented statistical tests for differences in the number of motifs between two 

sequences in an open source software package, called motifDiverge, which is written in the 

R programming language. The package includes functions for predicting motifs in 

sequences and computing p– values based on an estimate of the distribution of motif 

differences between two sequences. The difference distribution and p–value account for 

sequence lengths, nucleotide composition of the sequences and the motif, the total number 

of motifs, and the similarity of the two sequences. The motifDiverge package is freely 

available by request from the first author or can be downloaded from http://

www.kostkalab.net/software.

4. SIMULATION STUDY

We performed a study on simulated data to assess whether the model in Equation (6) 

describes differences in the number of annotated motifs between two sequences well. In 

order to assess the model and our proposed heuristics for parameter estimation, we compare 

the shape of estimated histograms for P(Nxy = nxy) to the true distribution under different 

scenarios. We also assess the distribution of p–values obtained from data simulated under 

the null hypothesis. These analyses make use of generative phylogenetic models for pairs of 

DNA sequences. We simulate independent sequence pairs (x, y), as well as correlated 

sequences where transitions between corresponding nucleotides in x and y are modeled by a 

continous time Markov chain (CTMC).

4.1 Simulation approach

We use a phylogenetic hidden Markov model (phyloHMM) [21] to generate pairs of 

sequences (x, y). Let τ denote the evolutionary time separating x and y. When τ is small, x 

and y are correlated (e.g., homologous), while τ →∞generates independent sequences. To 

simulate motif instances, our phyloHMM consists of three states: a background (BG) and 

two motif states (M1,M2, which are reverse complements of each other). The transition 

probabilities between these states are 1−ζ for BG to BG, M1 to BG, or M2 to BG,and ζ/2for 

BG to M1, BG to M2 or between M1 and M2 (Appendix). The parameter ζ encodes motif 

prevalence. The background state consists of a CTMC with a strand-symmetric and time-

reversible rate matrix estimated from neutrally evolving sites in primate genomes (46-way 

Conservation track from the UCSC Genome Browser, http://genome.ucsc.edu). It emits two 

corresponding nucleotides (one in sequence x and one in sequence y) separated by 

evolutionary distance τ (i.e., there are τ expected substitutions between x and y per 

nucleotide, also some times denoted K or D). The motif state consists of a similar CTMC 

except that the equilibrium probabilities of each position equal the probability distribution 

given by the TF’s PSPM (or its reverse complement). Each motif state emits two sequences 

of motif-length (one for x and one for y).

We repeatedly generated sequence pairs (x, y) and predicted motifs for the transcription 

factor Nkx2-5 using a log odds score threshold t with a false positive rate (Type I error, see 

section 2.1) for motif hits of 1%. Sequence pairs were generated with different lengths 

(kx,ky), different between sequence divergence parameters τ, and different motif-prevalence 
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parameters ζ. To simulate kx = ky,we generate two sequences of the longer length and then 

delete the excess nucleotides from the shorter sequence. In most simulations, the motif 

prevalence is the same in x and y, so that we are simulating data reflecting P(Nxy = nxy) 

under the null hypothesis of no motif differences between x and y.

For each simulation scenario we generated 100,000 sequence pairs, counted motif-hit 

differences, and then computed three estimates of P(Nxy = nxy) based on the simulated data: 

(i) Maximum likelihood estimation given our model, where we find the parameters that 

maximize the likelihood according to Equation (6);(ii) A Gaussian distribution with mean 

and variance estimated from the simulated data; and (iii)the same Gaussian distribution with 

continuity correction that accounts Nxy being an integer.We also estimated p–values using 

different estimation schemesfor the model parameters, which we describe in Section 

2.2.5.These cover independent versus homologous sequences and count-based versus 

phyloHMM-based estimates.

4.2 Simulation results

First, we show that the proposed estimators of P(Nxy = nxy) describe differences in motif hits 

well. Figure 1 shows results for three combinations of (kx,ky) (columns) and four 

combinations of (τ, ζ) (rows). For each scenario, we simulated 100,000 data sets. Each plot 

shows a hanging rootogram [22] of the differences in the number of observed Nkx2-5 

motifs. That is, the vertical axis denotes the square root of the probability, and the horizontal 

axis the difference in motif counts. The solid circles correspond to the maximum likelihood 

fit of P(Nxy = nxy) to the simulated data. The blue dashed lines correspond to a Gaussian 

approximation with the estimated mean and variance, and the blue vertical bars are the 

corresponding Gaussian values with continuity correction. These should be compared to the 

lengths of the black vertical bars, which correspond to the true frequencies of nxy in the 

simulation. The first two rows show simulations for independent sequences (τ →∞) for 

different values of ζ, while in the second two rows x and y are related (τ = 0.2 expected 

substitutions per nucleotide). Across these different scenarios, we find that all three 

estimators of P(Nxy = nxy)very accurately capture the observed distribution of motif-count 

differences in our simulations. In other words, the black vertical bars nearly all end at zero; 

the blue bars are often similar in length to the black bars, and the dotted blue density in 

general matches the other three distributions fairly closely.

Next, we looked at the accuracy of our estimated p– values. We simulated 1,000 sequence 

pairs with τ = 0.02, ζ = 0.02, and three combinations of sequence lengths (kx,ky). Figure 2 

summarizes the results. Each panel shows the (partial) empirical cumulative distribution 

function (CDF) of p–values obtained from different parameter estimates. The blue lines 

represent model-based estimates, whereas the red lines represent count-based estimates (see 

Appendix for definitions of different parameter estimates). The solid lines treat the 

sequence-pairs as homologous (which is how the data were generated), whereas the dotted 

lines assume independence between x and y. We find that our p–values are mostly 

conservative, and that for longer sequences they become approximately uniformly 

distributed for smaller p. Interestingly, when the simulated sequence pairs are uncorrelated, 

the estimates are very similar for count-based and for model-based parameter estimates. In 
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light of the greater computational effort for model-based estimates this may suggest the 

usage of count-based estimates for non-homologous sequences.

Finally, to assess the model fit of P(Nxy = nxy)when motif prevalence is different between x 

and y, we simulated 100,000 sequence pairs in the following way. Sequence x was simulated 

from a phyloHMM with ζx →0 and sequence y from a model with ζy = 0.02. Taking single 

sequences from two different phyloHMMs corresponds to τ →∞.Figure 3 is analogous to 

Figure 1 and shows the result. We find that even when motif prevalence is different, our 

estimators of P(Nxy = nxy) accurately capture the properties of the true, simulated 

distribution of Nxy.

5. MOTIF DIVERGENCE IN GENE REGULATORY ENHANCERS DURING 

CARDIAC DEVELOPMENT

To illustrate the use of motifDiverge on genome sequence data, we analyze a collection of 

gene regulatory elements identified via ChIP-seq for the active enhancer-marking histone 

modification histone 2 lysine 27 acetylation (H3K27ac) by Wamstad et al. [9]. This study 

identified genomic sequences marked by H3K27ac in mouse embryonic stem cells (ESCs) 

and at several subsequent developmental time points along the differentiation of ESCs into 

cardiomyocytes (CMs), which are beating heart cells. Our analysis uses these cell type 

specific enhancer sequences to illustrate applications of motifDiverge to both non-

homologous and homologous sequences. We also leverage RNA-seq gene expression 

measurements from the same ESC and CM samples [9] to identify expressed TFs. Tissue 

development is a useful system for illustrating our approach, because active regulatory 

elements and TFs that are important for regulating gene expression differ across cell types 

and between species.

5.1 Motif divergence between mouse and human enhancer sequences

We first explored the use of motifDiverge to quantify motif differences between 

homologous sequences. For each of the 8,376 H3K27ac-marked enhancers from mouse 

CMs, we identified the homologous human sequence (if any) using the whole-genome, 30-

way vertebrate multiple sequence alignments available from the UCSC Genome Browser 

(http://genome.ucsc.edu), which are based on the hg18 and mm9 genome assemblies. It is 

interesting to compare CM gene regulation between these two species, because there are a 

number of structural and electrophysiological differences between their hearts. We identified 

1,617 orthologous human-mouse sequence pairs that were at least 20 nucleotides long. For 

each enhancer pair, we estimated the number of motif hits in the human and mouse sequence 

with JASPAR PSPMs (http://jaspar.genereg.net) for all 53 TFs expressed in mouse CMs 

(defined as those that have at least 10 sequence fragments per kilobase of sequence in the 

gene per million fragments aligned to the genome: RPKM >10). We set the log odds score 

threshold to achieve a Type I error rate of 5%. Our findings were fairly robust to this thresh-

old choice (Appendix; Figure 4). Then we tested for TFs with significant differences in 

motif counts between human and mouse in each CM enhancer region using count-based 

parameter estimation. Model-based estimation produced p– values that were highly 

correlated with those from the count-based analysis (Appendix; Figure 5).
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After adjusting for multiple testing using the Benjamini-Hochberg false discovery rate 

(FDR) controlling procedure [23], we found that a large percentage of enhancers (82%) 

show evidence of significant differences in motif counts for at least one TF (FDR < 5%; 

count-based parameter estimation). About two thirds of CM enhancers (66%) have 

significant differences in motif counts for multiple TFs, and several have significant 

differences for ten or more TFs. Conversely, most TFs only have significant differences in 

counts between human and mouse for a small percentage of CM enhancers. This suggests 

that differences in the motif composition of ESC and CM enhancers is driven mostly by a 

few TFs. The TFs with the largest percentage of enhancers showing significant differences 

are listed in Table (1). These TFs are promising candidates for understanding differences in 

CM gene regulation between humans and mice. Interestingly, Mycn, Jdp2 and Fhl1 have 

some enhancers with significantly more motifs in human and some enhancers with more 

motifs in mouse, suggesting that these TFs may target somewhat different sets of enhancers

—and potentially different genes—in the two species.

5.2 Differences in motifs between enhancers active in different cell types

Next, we used motifDiverge to compare motif counts between non-homologous sequence 

pairs. This application also illustrates how motifDiverge can be applied to perform a single 

test to compare two sets of sequences. We concatenated the sequences of the 10,580 

H3K27ac-marked regions in CMs to create a single, long sequence containing all the active 

enhancers for this cell type. Then, we generated a similar concatenation of all 7,159 

enhancers from ESCs. Any genome sequence marked by H3K27ac in both ESCs and CMs 

was removed from both data sets, so that the resulting two ESC and CM enhancer sequences 

were non-overlapping. We predicted motifs in the ESC and CM sequences as described 

above with PSPMs for all 73 TFs expressed in either cell type. Then we tested for TFs with 

significant differences in motif counts between the combined enhancer regions of the two 

cell types. At FDR < 5%, we found 40 TFs with significantly more motifs in ESC enhancers 

and 27 TFs with significantly more motifs in CM enhancers.

To better understand the biological meaning of these results, we used the Wamstad et al. 

RNA-seq data to quantify the expression of each TF in ESCs and CMs. Several TFs are only 

highly expressed in one cell type, while others are expressed in both ESCs and CMs. The 

TFs with the most significant motif divergence included many that were highly expressed in 

the cell type with more motifs, but also some with low–though potentially biologically 

significant– expression levels (Table 2). This is not surprising, since TFs can function at low 

expression levels. Expression levels of some TFs were much higher in the cell type with 

more motifs compared to the other cell type (e.g., Gbx2 and Sox15 in ESCs, Egr1 in CMs), 

but in many cases expression was similar or even higher in the cell type with fewer motifs 

(e.g., Nkx2-5). This suggests that RNA-seq data might also be useful for filtering out 

significant motif differences that are not biologically meaningful; Nkx2-5 is not expressed in 

ESCs, making it unlikely that the additional motifs affect ESC gene regulation. More likely, 

these motifs reflect similarity in the Nkx2-5 motif to other TF’s motifs or usage of the ESC 

regulatory regions in other cell types where Nkx2-5 is expressed, a hypothesis that could be 

tested as RNA-seq data from more cell types becomes available. Finally, Nkx2-5 and many 

other TFs have multiple different motif models (PSPMs) in different databases, and results 
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should also be compared across PSPMs for the same TF, which can be quite different from 

one another. In the case of Nkx2-5, enrichment in ESCs is not recapitulated with some of the 

alternative PSPMs, further supporting the idea that the ESC motif hits are not biologically 

meaningful. These analyses show how motifDiverge can be used to analyze data from ChIP-

seq experiments and how RNA-seq data can be used to filter and interpret motifDiverge 

findings, leading to robust conclusions about the role of sequence differences in gene 

regulation.

6. CONCLUSION

In this paper, we propose a new model for the difference in counts between two correlated 

Bernoulli trials representing numbers of TF motifs in a pair of DNA sequences. Our major 

results are the model derivation, accurate methods for parameter estimation, and a software 

package called motifDiverge that can be used to predict TF motifs and to perform tests 

comparing motif counts in two sequences. We illustrate the use of motifDiverge to discover 

TFs with significant differences in motifs (i) between two species, or (ii) between two cell 

types. These applications demonstrate the power of our methodology for discovering 

specific genes and regulatory mechanisms involved in species divergence and tissue 

development through careful analysis of ChIP-seq data.

Sequence divergence is usually measured in numbers of DNA substitutions or model-based 

estimates of rates of substitutions. These measures do not account for whether or not 

substitutions create or destroy TF motifs and are not well suited to quantify functional 

divergence [12]. Our tests capture how changes to DNA sequences affect their TF motif 

composition, and therefore they provide a more meaningful measure of divergence for 

regulatory regions. Hence, our model will be useful for understanding when non-coding 

mutations affect or do not affect the function of regulatory sequences. This information will 

enable, for example, identification of causal mutations in genomic regions identified as 

associated with diseases or other phenotypes. Since the majority of these genome-wide 

association study (GWAS) hits are outside of protein-coding regions [24], motifDiverge has 

the potential to have a large impact on human genetics research.

In future work, it would be interesting to extend our approach to model the joint distribution 

of multiple correlated Bernoulli trails and univariate summary statistics (e.g., sums, 

differences) of this distribution. As with two sequences, the main challenge is modeling 

correlations between the sequences. The phylogenetic tree models we used here can measure 

relationships between multiple homologous, but not equally related, DNA sequences; 

therefore they could provide a natural solution to this problem. Another interesting 

application would be to leverage motif divergence for phylogenetic tree construction, in 

place of the usual metric of overall sequence divergence. This could potentially be achieved 

in a maximum likelihood framework after development of a tree-based version of 

motifDiverge for multiple species.

We focus on comparing counts of TF motifs in two (possibly homologous) sequences, but 

our model is not specific to motifs in any way. The random variables Nx and Ny could 

represent other features of interest in two related DNA sequences, such as counts of 
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microRNA binding sites, repetitive elements, polymorphisms, or experimentally measured 

events (e.g., ChIP-seq peaks). In fact, the two Bernoulli trials do not need to measure events 

on sequences, and our model could be applied to many other types of correlated count data.
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APPENDIX

Derivation of Equation (3)

P(Nxy = nxy) is a hypergeometric function for kx = ky

The probability mass function of Nxy for equal length sequences (Equation (2)) can be 

written as a sum: P(Nxy = nxy) = ΣjSj, with the summands Sj given by Equation (1). Taking 

the ratio of two successive summands we get:

(12)

We note that this is a rational function in j, nxy and n and identifies the arguments (nxy − 

n)/2, (nxy − n + 1)/2 and (nxy + 1) of the Gaussian hypergeometric function in Equation (3)

[19].

Derivation of Equation (8)

Error bound for evaluating P(Nxy = nxy) for kx = ky

Let wj := Sj+1/Sj. From Equation (12), we get that increasing j decreases the numerator Sj+1 

and increases the denominator Sj, so that wj is decreasing in j. Therefore, there exists j−,with 

wj− < 1 (i.e., the summands Sj are decreasing for j ≥ i−). The error ε(j+) of truncating the sum 

over j at j+ ≥ j− is then:

(13)

where we have used the following: (i) Sj =(Sj /Sj−1)Sj−1 = wj−1Sj−1,(ii) Sj are decreasing for j 

≥ j−,(iii) Sj ≤ 1are non-negative multinomial probabilities (see Equation (2)), and (iv) the 
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geometric sum. Thus, to estimate the probability mass function of Nxy to a desired precision 

ε, Sj an be truncated at the first j+ ≥ j− for which E(j+) ≤ ε.

Derivation of Equation (9)

Recurrence relation for P(Nxy = nxy) for kx = ky

Let P(Nxy = nxy) = ΣjS(j,nxy, n), where the summands S(j,nxy, n) are taken from Equation (2). 

Recurrence relations in n and nxy can be obtained via the Zeilberger algorithm [19], for 

instance as implemented in the computer algebra system Maxima (http://sourceforge.net/

projects/maxima). For a recurrence in nxy, the Maxima code is:

(%1) Sj : n!/((n_{xy}+j)!*i!*(n-n_{xy}-2*j)!)

   *p10^(n_{xy}+j)*p01^j*(1-p10-p01)^(n-n_{xy}-2*j) $

(%2) load(zeilberger) $

(%3) Zeilberger(Sj,j,n_{xy});

(%o3) [[-(j*(n+n_{xy}+2)*p10)/(n_{xy}+j+1),

   [(n-n_{xy})*p10,(n_{xy}+1)*(p10+p01-1),

   -(n+n_{xy}+2)*p01]]]

This output defines the following quantities:

which satisfy the recurrence relation

(14)

Summing Equation (14) over j gives the recurrence for P(Nxy = nxy). We confirm that the 

right hand side is zero:
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That R(0,nxy, n) = 0 follows straight from the definition, and that 

= 0 follows via Sj+1 = (Sj+1/Sj )Sj and Equation (12).

Derivation of Equation (10)

In-sequence and between-sequence correlation

As mentioned in the main text, PSPM based annotation of motifs generates in-sequence 

dependence that is not per-se accounted for in our model. Suppose there is a first order 

(Markov) dependence of Xi on Xi−1, quantified by the parameter λx (and likewise for Yi). 

Under these assumptions the expected value for Nx is still kxp, but for the variance we find 

[20]:

(15)

and an equivalent expression for Ny. For Nxy = Nx −Ny we then find (assuming no between-

sequence dependence)

(16)

where A(·,·,·) represents the second term in the variance formula in Equation (15) and 

Cov(Xi,Yi) = 0. Comparing Equation (16) with Equation (7), substituting p = p11 + p10 and q 

= p11 + p01 we arrive at Equation (10) after some algebra. Note that a negative correlation 

between Xi and Xi+1 decreases the variance in Nx = Xi, and similarly i for Ny. If both 

sequences have negative correlation between subsequent successes, the variance of Nxy 

decreases. This is the same effect a correlation between Xi and Yi has on the variance of Nxy.

Parameter estimates contributing to  in Equations (10) and (11)

Count-based and model-based parameter estimates

Here we describe estimates for the parameters λx = λy =: λ (for independent sequences)and 

p1→1 (for homologous sequences with alignment). These quantities reflectin-sequence and 

between-sequence dependencies, respectively: λ = P(Xi = 1|Xi−1 = 1) and p1→1 = P(Yi = 1|
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Xi = 1), see Section 2.2.5 in the main text. We assume that the in-sequence dependence is the 

same in x and y, that motif gains and losses are time-reversible (i.e., P(Yi = 1|Xi = 1) = P(Xi 

= 1|Yi = 1) and present count-based estimates as well as estimates based on a phylogenetic 

hidden Markov model (phyloHMM).

Count-based estimates

For a count-based estimate for λ, we count the number of adjacent motif hits in both x and y, 

and then divide it by the number of overall motif hits in both sequences. This is analogous to 

the estimate p̂ for the success probability of the two Binomial trials X and Y, as described in 

the main text. For p̂1→1, in turn, we count the number of congruent motif hits in x and y 

from alignments, and then divide the result by the overall number of motif hits in x. The 

advantage of both these estimates is that they do not take much effort to calculate. The 

downside is that typically p is small (for instance because a strict Type I error cutoff t in 

motif prediction, see Section 2.1). This, in turn, means that (especially for short and 

intermediate length sequences) not many adjacent or congruent motif hits will be observed. 

Therefore these count-based estimates can be very variable in those situations.

Model-based estimates

To overcome the variability in the count-based estimates described above to some extent, we 

assume a phyloHMM as an underlying, generative model for the two sequences x and y. For 

this approach we require a sequence alignment of x and y. Essentially, we fit the phyloHMM 

to our observation (the sequences x and y, plus the corresponding motif hits) and then derive 

the parameters of interest as large sample properties from the fitted model. As described in 

Section 4.1, the phyloHMM consists of three states: a background state (corresponding to a 

neutral evolutionary model), a motif state, and a state for the reverse complement of the 

motif. First, we model the transition probabilities to be ζ/2 for background-to-motif and 

motif-to-motif transitions, and 1 −ζ for background-to-background and motif-to-background 

transitions. We then fix the ζ in such a way that

(17)

where p̂ is our count-basedestimate of the success probability, S is a nucleotide sequence of 

motif-length (with log odds score T(S)) emitted by the phyloHMM Ψ as either of the two 

sequences, and O is the state-path of motif-length generated by the Markov chain in Ψ that 

underlies the emission of S. Note that the left-hand sidein Equation (17) depends on ζ 

because the probability for each state-path depends on the transition probabilities; but the 

LHS is independent of τ (the evolutionary time between sequences x and y),because the Ψ is 

time-reversible and S is a “marginalized” single sequence, not a sequence-pair. To evaluate 

the expectation in Equation (17) we enumerate all possible state-paths O and calculate (i) 

their Type I motif-hit error according to the PSPM and background distribution used for 

motif annotation (see Section 2.2), and (ii) their probability of occurrence from the 

equilibrium frequencies of the Markov chain. This yields an estimate .

Next, to obtain an estimate for τ we maximize the likelihood of the sequences x and y:
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where L() denotes the likelihood of jointly observing x and y. Overall this procedure yields a 

fully specified (fitted) phyloHMM .

Finally, we use this fitted phyloHMM to obtain estimates for λ and p1→1. To that end we 

generate two very long (100,000 nucleotides or longer) sequences and take (i)  be the 

fraction of adjacent motif hits, and (ii)p̂1→1 to be the fraction of motif hits that is congruent 

between the two generated sequences. We note that it is straightforward to obtain bounds for 

these estimates via Binomial tail inversion [25].

Note that highly similar, well-aligned sequences will lead to short estimated evolutionary 

times , and therefore high values for p̂1→1, which will in-turn lead to large estimates of  in 

Equation (11). Conserved motif instances in both sequences will, during the estimation 

procedure, “vote” for larger estimates of ζ and for smaller estimates of τ;non-conserved 

motif hits, on the other hand, will still favor large ζ, but also large τ (in contrast to small τ). 

Long evolutionary times are the only way the null-model (of no difference in motif-

prevalence between the two sequences) can account the creation/destruction of motif hits. 

The evolutionary model also accounts for the fact that some nucleotide changes are more 

likely than others, and that some motifs are therefore more likely to be lost and gained than 

others, based on their nucleotide composition. Finally, more realistic evolutionary models 

that explicitly include insertions and deletions could in principle be utilized in this 

framework.

Effects of the threshold used to identify motif hits

We investigated the sensitivity of motifDiverge findings to the choice of threshold used to 

identify motif hits in each sequence. Specifically, for the analysis of human versus mouse 

CM enhancers (Section 5.1), we tested the robustness of our results by varying the log odds 

score threshold across a range of values: 1%, 5%, 10%, 20%. We found that the resulting 

motifDiverge p–values are correlated (Figure 4) across thresholds, with higher correlation at 

more similar thresholds, as expected. We also observed that our conclusions about human 

versus mouse enhancer motif content are not dramatically affected by the choice of 

threshold.

Effects of parameter estimation methods

We compared several methods of motifDiverge model parameter estimation in our analysis 

of human versus mouse CM enhancers (Section 5.1). Overall, model-based estimation 

identified more TFs with significantly different numbers of motifs between the two species. 

We found that 100% of enhancers had at least one TF with significant differences compared 

to 82% with count-based estimation. However, motifDiverge p–values from the two 

approaches are highly correlated (Figure 5). For many TFs, including Smad3, Atf6, Fhl1, 

Jdp2, and Arnt, there were almost no differences in the number of enhancers with significant 
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losses or gains when comparing count-based and model-based estimation (<1% of enhancers 

discordant). On average across TFs, about 2% of enhancers produced discordant results 

when using a Type I error threshold of 5% for calling motif hits and FDR < 0.05 for 

motifDiverge tests. No TFs had more than 5% discordant results across enhancers. When 

using a stricter Type I error threshold of 1% for calling motif hits, results were more 

discordant between count-based and model-based estimation procedures (typically 10%

−30% discordant). Thus, while our simulations indicate that model-based estimation can be 

more sensitive, we found in practice that for species at the divergence of human and mouse, 

accounting for the phylogenetic relationship between sequences does not have a big impact 

on motifDiverge results. Both options are available in the R package and can be explored by 

users for their particular application.
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Figure 1. 
P(Nxy = nxy) describes differences in motif hits well. The rows show different between-

sequence dependence, the columns different sequence lengths.
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Figure 2. 
Partial empirical CDF of 1,000 p–values computed using different parameter estimates for 

data simulated under the null hypothesis. Three panels show different sequence lengths.
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Figure 3. 
P(Nxy = nxy) for TF motif differences for sequences with different motif prevalence (ζx vs. 

ζy).
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Figure 4. 
Scatter plots of motifDiverge −log(p–values) comparing human versus mouse 

cardiomyocyte enhancers for all expressed TFs at different motif hit thresholds (0.01, 0.05, 

0.1, 0.2).
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Figure 5. 
Correlation between motifDiverge p–values from count-based versus evolutionary model-

based parameter estimation. Tests are for enrichment in mouse compared to human 

cardiomyocyte enhancers.

KOSTKA et al. Page 26

Stat Interface. Author manuscript; available in PMC 2015 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

KOSTKA et al. Page 27

Table 1

Transcription factors with the most enhancers showing significant divergence in motif counts between human 

and mouse sequences, excluding those with more than 2% of enhancers showing discordant results between 

model-based and count-based parameter estimation methods

Transcription factors with more motifs in mouse

TF Proportion of CM enhancers
with more motifs in mouse

Egr1 0.137

Mycn 0.064

Fhl1 0.033

Pbx1 0.032

Jdp2 0.012

Transcription factors with more motifs in human

TF Proportion of CM enhancers
with more motifs in human

Mafk 0.275

Mycn 0.035

Creb3l2 0.033

Trp53 0.025

Jdp2 0.023

Srebf1 0.020

Fhl1 0.019

Gabpa 0.012

Deaf1 0.0093
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Table 2

Transcription factors with the most significant differences in TF motif counts between ESCs and CMs. 

Expression values are reads per kilobase per million fragments sequenced (RPKM)

Transcription factors with more motifs in ESC

TF FDR adjusted
p–value

ESC
Expression

CM
Expression

Rhox6 <1e-300 11.890 0.129

Pou3f1 <1e-300 15.081 0.380

Zfp187 <1e-300 8.215 13.816

Sox2 <1e-300 212.888 0.120

Hmbox1 <1e-300 4.799 12.281

Pou2f1 <1e-300 12.103 7.669

Sox12 <1e-300 22.933 23.458

Foxd3 <1e-300 20.746 0.038

Zfp105 <1e-300 10.949 4.216

Srf <1e-300 33.402 42.569

Sox13 <1e-300 14.345 2.693

Tbp <1e-300 15.609 5.676

Hbp1 <1e-300 17.552 28.762

Arid3a <1e-300 5.055 15.516

Sox4 <1e-300 17.788 41.915

Pbx1 <1e-300 6.593 43.487

Gata6 <1e-300 0.152 75.887

Mafk <1e-300 3.695 18.851

Pou5f1 <1e-300 669.960 0.043

Yap1 9.5e-294 51.1 57.6

Cebpb 5.3e-271 6.2 16.7

Gbx2 7.7e-258 22.7 0.01

Zfp652 5.1e-156 8.0 11.9

Dbp 4.1e-132 3.5 28.5

Elf3 1.1e-130 24.3 0.6

Zbtb12 3.2e-84 23.5 25.8

Tcf7 2.3e-75 16.3 7.6

Fhl1 4.7e-63 26.6 29.7

Nkx2-5 3.0e-60 0.9 177.6

Sox15 1.0e-42 14.1 0.1

Transcription factors with more motifs in CM

TF FDR adjusted
p–value

ESC
Expression

CM
Expression

Tcfap2c <1e-300 23.884 0.055

Zic2 5.5e-248 26.8 0.1
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Srebf1 1.1e-185 15.5 27.5

Esrrb 7.4e-98 85.2 2.4

Zic3 4.3e-92 38.6 0.07

Creb3l2 2.0e-69 1.3 50.1

Stat3 1.1e-62 8.4 21.8

Tgif1 5.6e-61 43.3 6.4

Smad3 1.8e-56 5.3 21.1

Myc 2.9e-53 32.0 4.2

Glis2 1.6e-49 12.5 12.9

Mlx 2.8e-35 18.3 7.03

Tcf3 1.2e-24 54.7 21.0

Mycn 2.6e-20 125.5 10.8

Xbp1 2.0e-18 18.8 20.5

Egr1 2.5e-18 19.9 192.2

Atf1 1.4e-17 26.3 7.2

Zbtb7b 2.7e-17 3.4 10.8
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