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Abstract

A recurrent network was trained from sentence examples to
construct symbolic parses of sentence forms. Hundreds of
sentences, representing significant syntactic complexity, were
formulated and then divided into training and testing sets to
evaluate the ability of a recurrent network to learn their struc-
ture. The network is shown to generalize well over test sen-
tences and the errors that do remain are found to be of a single
type and related to human limitations of sentence processing.

Introduction

Problems with time-dependent input require computational
mechanisms that can respond well over time. One such area,
natural language processing, is seen by some as pivotal to the
success or failure of connectionism. Pinker and Prince (1988,
p.78) stated that “Connectionism, as a radical restructuring
of cognitive theory, will stand or fall depending on its ability
to account for human language.” Meeting this challenge is a
major focus of our work.

From the basic design of a deterministic natural language
parser, we are introducing and evaluating connectionist tech-
niques and evolving toward a fully connectionist language
understanding system. Deterministic (wait-and-see) parsing
(Marcus, 1980) is a good model for the design of a neural
network based parser fore two reasons. First, it concentrates
on syntax, which has the advantage of being relatively well
understood and therefore leads to results which can be eas-
ily compared. Second, the fixed-length input buffer of a
deterministic parser is consistent with the input strategy of
recurrent neural networks, such as those due to Elman (1990),
which iteratively process fixed-sized pieces of a larger input.
The result is a natural fit between a deterministic approach to
natural language processing and the processing strategy of a
recurrent net.

Motivation

Marcus (1980, p. 204), in his determinism hypothesis, conjec-
tured that “there is enough information in the structure of nat-
ural language .. . to allow left-to-right deterministic parsing
of those sentences which a native speaker can analyze with-
out conscious effort.” A clear implication of this hypothesis
1s that natural language processing need not depend in any
fundamental way on backtracking strategies. Furthermore,
parsing should not be a process which generates partial struc-
tures from false starts that are eventually discarded in favor

'This material is based upon work supported by the National
Science Foundation under Grant No. IRI-9201987.
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of others. While this hypothesis does not dictate any details
about the architecture or the rules, it does limit sentences to
those that a native speaker can analyze without conscious ef-
fort. In effect, this eliminates garden-path sentences such as
“The horse raced past the barn fell.”

Marcus constructed PARSIFAL, a system that examined
this hypothesis under a specific rule-based architecture involv-
ing a stack, a set of often complicated rules, rule packets, rule
priorities, and an intricate mechanism of “attention-shifting
rules. The true force of the hypothesis, as it pertains to human
language processing, was left unexamined.

We are testing the hypothesis directly by developing a cor-
pus of sentences which a native speaker can analyze without
conscious effort, and constructing a neural net architecture
that learns how to process sentences from examples. The
trained network accepts a buffer of sentence elements pre-
sented in sequence and produces structure building and ma-
nipulating (primitive) actions as output. Such a performance-
oriented approach (as opposed to a competence-oriented one)
is intentional. There is growing belief that “. . . human pars-
ing resources must be characterized as finite-state” (Pulman,
1986) and that full recursion, as supported by context-free
languages, may be unnecessary (Christiansen, 1992; Church,
1982). Simple recurrent networks possess the power of a finite
state machine, but as such can approximate, to a finite degree,
the processing requirements of a context free language.

Unlike recurrent parsing networks described elsewhere
(see, for example, Das et al., 1992), our system contains no
explicit internal or external stack. The stack's role is assumed
to a sufficient degree by the recurrence in the network.

Weckerly and Elman (1992), in a study similar to ours,
trained a recurrent network with center-embedded sentences
to examine simple semantic preferences. They found that
a stack-like approach, one in which levels of processing are
tightly encapsulated, is incorrect if one is to account for human
processing of semantically biased verbs. The study described
here is more ambitious in its scope, but is limited at the mo-
ment to syntactic processing only.

The test of whether there is enough information in the struc-
ture of natural language to allow deterministic parsing, as the
deterministic hypothesis claims, becomes an evaluation of
the extent to which training enables the recurrent network to
generalize to novel sentence forms. Our approach involves
exposing the network to a variety of complex sentences during
training and then testing for generalization on a completely
different set of sentences. Training and testing data for the
network is developed by tracing the symbolic processing of
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Figure 1: Network architectures. Dotted arrows represent full connectivity between layers.

a corpus of (non-garden-path) sentences. A total of 209 sen-
tences, each unique in the processing steps required, are used
in this experiment. These are randomly divided into a set
of 156 training sentences and a set of 53 testing sentences.
Generalization is shown to occur and the errors in processing
provide useful insights into the nature of this process.

System Architecture

While our design departs substantially from PARSIFAL, we
follow many of the same ideas. Parsing is performed deter-
ministically in that system by permitting the parser to look
ahead up to the next three constituents of the sentence, which
are held in a three-place buffer. PARSIFAL requires a stack to
allow the recursive processing of embedded structures and to
facilitate processing generally. Primitive actions which build
structure and move constituents can be performed on the stack
and in the buffer positions. These actions are controlled by a
set of grammar rules. The rules are usually associated with
the current (top-level) node of the structure being built, which
is held on the top of the stack. A processing step consists of
selecting an applicable rule and firing the rule by performing
its action, forcing changes to the stack and/or buffer. Af-
ter a series of steps, a termination rule fires which ends the
processing and the final structure is left on top of the stack.

Previous Work

In earlier work, we replaced the rules used by PARSIFAL
with a feedforward neural network trained from either rules
or sentences. Our goals in that work were to unify PARSIFAL
and a variety of proposed extensions and amendments within
one model and to test the ability of the parser to address is-
sues of ambiguity and ill-formedness. The network learned
a mapping from the patterns used to encode the sentence ele-
ments in the buffer and the structure on top of the stack to the
appropriate rule and its action. The three-place buffer, stack,
and actions were all handled symbolically. Figure 1(a) illus-
trates the network design used in our earlier work (Kwasny
& Faisal, 1990; Kwasny & Kalman, 1991; Kwasny & Faisal,
1992). Casting the rules as a neural network yielded signif-
icant advantages in robustness and we have studied lexical
ambiguity, grammatical ill-formedness, lexical omission, and
other properties of the design.
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Current Work

In our current work, a simple recurrent network (Elman, 1990)
is utilized which permits some degree of memory of past deci-
sions. Although stack-like processing is necessary to address
embeddings of the type present in all context-free languages,
the recurrent design, shown in Figure 1(b), obviates the need
to present the top-of-stack contents to the network as in our
previous work because sufficient information is represented in
the recurrent connections, Because the choice of appropriate
rule in a symbolic deterministic grammar is largely dependent
on information stored on the stack, heavy responsibility in our
adaptive network falls on the recurrent connections. The net-
work is coerced, through training, to produce the primitive
create and drop actions that manipulate the stack without ex-
plicitly representing the stack. The output is a sequence of
actions to be performed on the symbolic structures that evolve
during processing.

During processing, the activation pattern of the hidden layer
in the recurrent network is copied back to the input layer on
each step. These activation patterns encode information about
relevant past events so that current and future decisions can
be influenced, much as the stack would influence symbolic
processing. Since there is evidence that isolating the linearly
separable relationship from the non-linear part makes for more
effective training (Lee and Holt, 1992), and since parsing
seems to require approximately linear processing for most
of the steps, we adapted the recurrent network designed by
Elman to include direct connections from input to output units.
The parser is illustrated in Figure 2.

With this design, we are moving closer to a confrontation
with the determinism hypothesis: Can a parser extract the
structure of English sentences left-to-right deterministically as
the hypothesis claims? The real evidence is in the complexity
of sentences we have processed, in the extent of coverage
of the structures of English, and in the degree of success
achieved.

Training
Patterns must be obtained that illustrate, by example, the map-
ping to be learned. This is true whether we are training a
recurrent network or training a feedforward network. The

primary difference comes in the sequencing required for re-
current networks. Patterns must be arranged in the sequence
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Figure 2: Parser design. The buffer contents are transformed using the lexicon and presented to the recurrent network
which produces an action that is performed on the symbolic structures.

in which they occur during processing. This is necessary to
permit proper context patterns to be computed and derived
as a by-product of training. The word order of the sentence
forms used for training provides the sequencing.

Figure 3 shows a sample of the 156 randomly selected train-
ing sentences. Each sentence is processed symbolically from
left to right in a manner analogous to that of PARSIFAL. A
lexicon is used to determine the appropriate pattern of syn-
tactic features for each word. Finch and Chater (1992) argue
that such syntactic features can be learned from the statistical
properties of sentences in a domain, although our lexicon was
built manually, in the interest of time, to fit our examples.

For the particular set of rules we are using, only two buffer
positions are required, but the technique can easily be ex-
tended to a longer buffer if required. (Marcus argues that
three is sufficient for English.) The first buffer position is
encoded using 26 units while the second buffer position re-
quires 12 units. These units represent features such as part
of speech (noun, verb, auxiliary, etc.), verb form (infinitive,
gerund, past participle, etc.), noun phrase, verb phrase, final
punctuation, and others.

Example

If the first two words of the sentence were ‘the cat’, for exam-
ple, two units in the representation of the first buffer position
would be turned on to indicate that the first word is a deter-
miner and that it is a symbol that can begin a noun phrase. The
second buffer pattern would indicate that the second word isa
singular noun. The symbolic parser also needs to examine the
topmost stack node since rules depend on the constituent be-
ing built. The top of the stack would be empty in this example.
So, the parser selects the rule which is applicable when there
is a determiner in the first buffer position, a singular noun in
the second position, and the stack is empty. The action exe-
cuted will be to create (push) a new sentence (S) node on the
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stack. The patterns from the buffer (but not the stack) and the
pattern representing the selected output are collected at each
step. In this way, we end up with a sentence trace in the form
of a sequence of coded condition-action patterns suitable for
training. The buffer patterns provide the input stream and the
actions chosen at each step are the desired output.

While the patterns could be derived by hand, this would
not be expeditious. In practice we use a set of grammar rules
designed for this purpose. They are applied automatically to
assure that consistent rule application and coding practices are
followed. The grammar is based on one used in PARSIFAL
and consists of 76 single-action rules, each of which selects
one of 39 possible actions. Among the actions that may be
performed are: attach as an adjective, auxiliary, main verb,
etc; create a noun phrase node, verb phrase node, secondary
sentence node, etc; switch (interchange contents of first two
buffer positions); drop (pop the stack, shifting the top of the
stack into the first buffer position); and stop. For the examples
presented in this paper, 24 hidden units are required, which
are copied back at each recurrent step.

Reducing Training Complexity

Training is time consuming, but possible. Use of singular
value decomposition (SVD) to transform the input patterns
into a space in which the input units are aligned orthogonally
is one primary reason for success in training and seems to be
particularly important for sizable networks with large numbers
of training patterns See Kalman et al. (1993) for a complete
discussion of this technique and results obtained. This method
leads to quicker and more effective training, and permits the
resulting weights to be back-transformed so that they perform
identically on the original training patterns. SVD allows easy
identification of those inputs that contribute weakly or not at
all to the problem. For the parser, the number of input units
was reduced from 38 to 34, effectively yielding an architecture



1 John likes Mary.
8  The tall man scheduled the meeting.
17  The angry old man has punished the little boy.
27 Books were read by the boys.
32 Was John taken in the house?
38 The big angry old man would like the little kitten for the barn.
51  Will he have gone by Friday?
69 Does Mary like the cat?
86 Mary has been punished by the teacher who scheduled the exam for Friday.
104  Was it scheduled by the teacher who complained?
120  Has the man bought the big books which the tall boys read?
132 Was the black cat taken by the girl who liked it?
138  The books which were read by Mary have been taken to the meeting
which John scheduled.
141  Take the books which the man read from the house which the teacher likes!
144  The tall man who likes Mary scheduled the meeting which the teacher wants
for the boys who should have been punished.
151 The man who the girl who disappeared likes scheduled the meeting.
154 The boy who likes the girl who likes the cat bought the book.
156  They bought the books which the teacher who scheduled the exam
which John read liked.

Figure 3: Sample of Training Sentences

2 John scheduled the meeting for her.
5 Mary has scheduled a meeting for Wednesday.
9 Do boys schedule meetings?
12 John was punished by him.
16 He could have been punished by the tall man.
18  Should Mary have been taken to the meeting?
22 John scheduled a big meeting.
25  She likes the cat.
28  She has met her.
31 The books which the teacher bought were read by the boys.
33 Mary likes the boy who likes the cat.
35 John was punished by the teacher in the barn which would fall on Friday.
41 Boys who like the teacher disappeared.
42  The boys who could have bought the horse want the teacher in the house
on Friday.
45  Should the girl have been taken to the house which fell?
47 The man who the girl likes has punished the boy who likes Mary.
49  Does she like the old books which the teacher scheduled for the exam
which disappeared?
50 Were the books which the teacher had bought read by the man who prays
in the barn which would fall on Friday.
53  John scheduled a meeting for the boy who would take the exam
which the teacher scheduled.

Figure 4: Sample of Testing Sentences
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Error Frequency Targets:

Drop | Attach | Auach | Attach | Attach
Network Output: PP-NP | Obj-NP | Punct | Subj-NP
Drop 0.1 N 2.1 0,1
Attach PP-NP 1,5
Attach Obj-NP 30
Attach Punct 2,6
Attach Subj-NP 2,0 0,1 1,0
Create Aux 1,4

Figure 5: Error Analysis: Frequency of errors occurring in the actions reported by the network vs. targeted actions. Only the

non-empty portion of the 39 x 39 table is shown. The first value

of 58-24-39 for training and 62-24-39 for testing. Training it-
self is performed using a modified conjugate-gradient method
(Kalman, 1990) that has been implemented to utilize the par-
allelism available on a 20-processor Sun SPARC Center 2000
machine.

Results

Training proceeded until the number of errors encountered in
the training set was small and further training increased the
number of errors in the testing set. The training set of 156
sentences were trained until only 13 errors remained out of
5,465 total steps represented in the sentences (0.2% error).
The performance of the trained network was then evaluated
on the 56 randomly selected testing sentences. A sample of
these sentences is shown in Figure 4. Each sentence was
processed as a sequence of items which flows into the buffer
and was encoded for presentation to the network. The stack
was absent from this process and therefore the performance of
the parser hinges on the degree to which the recurrent network
has generalized the sequential processing.

Collectively, there are 1,860 parsing steps in processing
the 53 sentences correctly. Of these, 1,840 steps (99%) were
correctly generated by the network and 20 (1%) were not.
On the sentence level, this translates into 40 sentences (75%)
processed completely without error and 13 sentences (25%)
that contained at least one error during processing.

Discussion

This paper has presented evidence that complicated sentence
processing can be learned effectively by a recurrent neural
network. While the overall performance of the parser is quite
good, the errors that do occur are worthy of further discussion.

Analyzing Errors

The errors are not random. None of the errors occur within a
constituent. That is, the network apparently has learned the
proper sequence of actions relating to the base grammar and
its ability to construct lower level pieces of constituents. The
errors that do occur cluster around constituent boundaries.
Every ‘create X' action must be eventually answered by a
‘drop’ action and a subsequent ‘attach X as Y’ action. To
accomplish this requires, at minimum, a context-free grammar
mechanism necessitating the use of a stack. The recurrent
network does not contain the equivalent of a stack, but can
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is from training and second value is from testing.

approximate such a mechanism to a finite extent.?  For this
reason, sentences requiring long-range dependencies of the
sort that could be captured by a simple stacking mechanism
are occasionally missed.

All of the errors relate to the actions ‘drop’ and ‘attach’
mentioned above. Figure 5 illustrates the confusion between
attaching and dropping. In one category of error, ‘drop’ is the
target and ‘create aux’ is the network response. This happens
when the constituent boundary fora subject NP modified by an
embedded sentence is missed and the parser wants to continue
with processing of the main sentence.

In missing a drop action, a typical situation would be a
clause at the end of a sentence wherein a final punctuation
mark occupies the first buffer position and a secondary sen-
tence is on top of the stack. The network may attempt to
attach the final punctuation to the embedded secondary sen-
tence rather than dropping the constituent and attaching both
constituent and final punctuation to the main sentence node. In
missing an attach action, the network typically substitutes the
wrong label. Thus, the parser would substitute for an ‘attach
pp-np’ action, which creates the dominating node structure for
the object of a preposition, an *attach obj-np’ action, which
identifies it as the object of the sentence. All of these error
examples can be seen as related to a similar underlying dif-
ficulty, namely that once a node is created, a later step must
take action to place it into the structure.

Some of these errors can be overcome with a slightly differ-
ent scheme for identifying the dominating node in a structure.
At creation time, the role of the constituent (e.g., Subj-NP,
PP-NP, etc.) is known and therefore the final label can be
created along with the node. Later, at the time of the attach,
no label need be supplied. This will effectively collapse all
attaches into one action.

Other errors are more fundamental. A recurrent network
cannot overcome the memory limitations inherent in a finite
state device. We hope to eventually show that these errors
are comparable to those that humans make during sentence
processing.

?Any computational mechanism is memory limited and, there-
fore, cannot fully implement an unbounded stack, although for prac-
tical purposes this is usually not a problem. A recurrent network also
has limited resources in that feedback only contains a finite number
of units. The difference is in the fact that a recurrent network cannot
dynamically request more resources as it performs.



Future Work

Several ideas stemming from this work are being investigated.

The granularity of the primitive actions taken from PARSI-
FAL has contributed to the errors. We are actively revising the
set of primitive actions so that frequently occurring combi-
nations will be fused into a single action. For example, drop
actions are often followed by attach actions and an action
could easily be constructed that would finalize a constituent
and attach it properly under its dominating node.

A similar modification involves the dependency between
create and attach. Now, a create action for a node and its
corresponding attach action must both specify the node label.
For example, a ‘create PP’ action eventually requires an ‘at-
tach PP’ action to adjoin the PP structure it has built. This
could be changed so that the attachment need not redundantly
label the constituent.

Work is ongoing to investigate the proper inclusion of se-
mantic information in the parser. This process is requiring
major changes in which lexical representation is being in-
tegrated with semantic structure building in a micro-world.
Whether the finite-state hypothesis continues to prove suffi-
cient is yet to be determined.
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