UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Essays in Development, Behavioral, and Health Economics

Permalink
https://escholarship.org/uc/item/1k70090n

Author
Harrell, Stephen James

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1k70090n
https://escholarship.org
http://www.cdlib.org/

Essays in Development, Behavioral, and Health Economics

by
Stephen James Harrell

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Agricultural and Resource Economics
and the Designated Emphasis
in
Development Engineering
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Aprajit Mahajan, Chair

Professor Marco Gonzalez-Navarro

Professor David 1. Levine

Fall 2019



Essays in Development, Behavioral, and Health Economics

Copyright 2019
by

Stephen James Harrell



Abstract

Essays in Development, Behavioral, and Health Economics
by
Stephen James Harrell
Doctor of Philosophy in Agricultural and Resource Economics
with a Designated Emphasis in Development Engineering
University of California, Berkeley

Professor Aprajit Mahajan, Chair

This dissertation combines three empirical studies aimed at addressing one of the developing world’s
leading causes of death — exposure to household air pollution from using biomass as a cooking fuel —
which is responsible for millions of premature deaths annually and contributes to global climate
change. The first study tests the effects of a soft commitment device on eliminating biomass use
among households in India who have access to a clean fuel, LPG. The second and third studies explore
reducing biomass use through a fuel-efficient biomass cookstove among a population in Uganda who
does not have access to clean fuels. The second study tests the effects of selling a fuel-efficient
cookstove (at the market price) on biomass use. The third study focuses on the methodology behind
measuring stove use by comparing four methods of measurement.

The first chapter explores how a commitment mechanism may help households who use a mix of
biomass and clean cooking fuels to fully transition to clean fuels. Most Indian households now own
an LPG stove and one LPG cylinder. However, many households continue to regularly use indoor
biomass-fueled mud stoves (i.e., chulhas) alongside LPG. Focusing on this population in rural
Maharashtra, India, this study tests the effects of conditioning a sales offer for a spare LPG cylinder
on a soft commitment device requiring initially disabling indoor chulhas. We find that almost all
relevant households (>98%) were willing to accept the commitment device. Indoor chulha use
decreased by 90% when the sales offer included the commitment device, compared to a 23% decrease
without it. If the effects are persistent, this intervention may be one of the most cost-effective means
to save lives among tens of millions of Indian households. Using WHO-CHOICE criteria and
conservative assumptions, this intervention generates benefits roughly 20 times larger than the costs.

The second chapter, co-authored with Theresa Beltramo, Garrick Blalock, David 1. Levine, and
Andrew M. Simons, is among the first studies to examine the effects of a fuel-efficient biomass
cookstove while selling the stove at market prices. After introducing a fuel-efficient cookstove,
fuelwood use and household air particulates declined by 12% and by smaller percentages after
adjusting for observer-induced bias, or the Hawthorne effect. These reductions were less than
laboratory predictions and fell well short of World Health Organization pollution targets. Even when
introducing a second stove, most households continued to use their traditional stoves for most
cooking. While any reduction in fuel use and particulate matter was likely beneficial, fuel-efficient
biomass cookstoves such as the one used in this study will not be adequate to reach safe levels of
household air pollution. Thus, policies that assist consumers to shift to safe fuels such as gas or



electricity—particularly when coupled with policies to disable smoky indoor stoves—should take on
increased importance.

The third chapter, co-authored with Theresa Beltramo, Garrick Blalock, Juliet Kyayesimira, David 1.
Levine, and Andrew M. Simons, compares four methods of measuring stove use: time spent cooking
(measured by heat sensors on stoves), number of people cooked for (self-reported), fuel weight used
(measured by a scale), and particulate matter concentrations (measured by a monitor). We find
statistically significant positive correlations between five out of six of these pairs of measures. While
the correlations are positive, the explanatory power of each measure for another is weak. The weak
correlations emphasize the importance of using multiple measures to track changes in stove use for
both researchers and carbon auditors.



To those I love and to accessing the love within; to the journey of introspection, reflection, and
inquiry; and to attempting to alleviate some suffering in the world.
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Chapter 1

Incentivizing elimination of biomass cooking fuels
through a commitment mechanism and a spare LPG
cylinder

I. Introduction

In India, approximately 480,000 deaths and 16 million lost DALY's (disability-adjusted life years) occur
per year due to exposure to household air pollution (HAP) from continuing use of biomass as a
cooking fuel (GBD 2017). The Indian government is addressing this problem through distribution of
liquefied petroleum gas (LPG) stoves and initial fuel cylinders at a reduced price to poorer households
through the Pradhan Mantri Ujjwala Yojana (Ujjwala or PMUY) program.' PMUY largely solves the
problem of access to clean fuels, yet positive health gains will not be realized unless households nearly
completely abandon biomass use (Smith and Pillarisetti 2017; Johnson and Chiang 2015).
Unfortunately, there is a significant portion of households that use both LPG and indoor biomass-
fueled mud stoves (i.e., chulhas) on a regular basis (Gould and Urpelainen 2018; Anenberg et al. 2013).
Jain et al. (2018, Fig. 42) find that about 50% of rural households across six states use both LPG and
biomass for cooking. If that share generalizes, then roughly 90 million rural households in India use
both stoves regularly.” Our study focuses on this population of mixed users by only including rural
households who own an LPG stove, have purchased at least three LPG refills in the past nine months,
and continue to use an indoor chulha.

Among this population, the primary suggested reasons for using both LPG and biomass for cooking
include (Jain et al. 2018): (1) supply issues — there is a gap in time between when a household’s LPG
cylinder becomes empty and when they receive a refill, (2) information problems — respondents were
unaware of the harms of biomass use, and (3) behavioral barriers — households have the habit, routine,
and preference for using a chulha.

The supply issue — of lacking constant access to LPG — results in a return to biomass use for cooking
while the household waits for a refill. Middle and upper-income households have solved this problem
by owning a second, or spare, cylinder. That is, when the first cylinder runs out, they have a second
cylinder to use while they wait for the refill of their empty cylinder. To acquire a second cylinder,
households must pay approximately $20 (INR 1,450) as a security deposit.* Although the recurring
cost of LPG fuel may be affordable to our population of interest, this fixed cost may be a significant
barrier in acquiring a second cylinder.

1 See: http://www.pmujjwalavojana.com/faq.html.

2'This is due to the nonlinear exposure-response relationship between HAP and health outcomes (Johnson and Chiang 2015).
3 The 2011 India Socio Economic and Caste Census states there are 180 million rural households. See:
https://timesofindia.indiatimes.com/india/Census-2011-data-released-10-key-highlights /articleshow/47923276.cms.

4 See: https://www.bankbazaar.com/gas-connection/indane-gas-new-connection-price-and-charges.html.




Despite the increase in LPG use in India, there is low awareness of the negative health effects of
burning biomass for cooking (Jain et al. 2018). Understanding the negative impact burning biomass
has on health may lead to a decrease in biomass use and an increase in alternative fuel use (i.e., LPG
use).

Our basic intervention addresses supply and information problems through a sales offer of a free trial
(followed by installment payments) of a second, or spare, cylinder coupled with health educational
messages on the harms of using biomass for cooking with chulhas. The combination of a free trial
and installment payments is used because a previous study (Levine et al. 2018) found that it increased
fuel-efficient biomass cookstove sales by a factor of ten. In our study, we also experimentally identify,
through a second study arm, the effects of one strategy to address behavioral barriers — conditioning
the sales offer on disabling the indoor chulha.

Despite expressed dissatisfaction from households with using chulhas, as long as the indoor chulha is
still present and functional, it is unlikely that households will fully transition away from using it. To
explore this, we test the effects of conditioning the sales offer on a soft commitment device — requiring
the initial disabling of the indoor chulha by either dismantling it or filling it with mud or pebbles. This
is a soft commitment device because the consequences are largely psychological — the process can be
undone within an hour if the chulha was filled with pebbles, or within a half day if it was dismantled,
and there is no other associated penalty with subsequent use (i.e., households still received the sales
offer if they rebuilt the chulha during the study as long as they initially disabled it). Given the ease of
undoing the commitment, the effectiveness of the strategy is uncertain.

Behavior change issues are well-known in the public health and technology adoption literature,
especially in development economics (e.g., Kremer, Rao, and Schilbach 2019). Commitment devices
have been used as one strategy to encourage behavior change (e.g., Kremer, Rao, and Schilbach 2019).
In this literature, past research has focused on the effects of both hard commitment devices — those
that have economic penalties or rewards, and soft commitment devices — those that have largely
psychological consequences (Bryan, Karlan, and Nelson 2010). Hard commitment devices have found
large effects among a variety of outcomes including worker performance (Kaur, Kremer, and
Mullainathan 2015), savings (Kast, Meier, and Pomeranz 2018), and exercise (Royer, Stehr, and Sydnor
2015). Soft commitment devices have also found significant effects in areas including savings (Thaler
and Benartzi 2004) and educational progress (Himmler, Jackle, and Weinschenk 2017). One study,
Karlan and Linden (2018), compared a hard and soft commitment savings account and found that the
soft commitment savings account caused stronger increases in savings for educational supplies.

For our context, more closely related literature involves government policies using soft commitment
devices that remove or inhibit use of certain goods. These studies have found positive, but somewhat
mixed results. Mikhed, Scholnick, and Byun (2017) find that the removal of slot machines from
neighborhood bars in Alberta, Canada reduced personal bankruptcies filed by close neighbors.
Bernheim, Meer, and Novarro (2016) find that consumers in relevant US states increase their liquor
consumption in response to extended Sunday on-premises (i.e., at restaurants and bars) sales hours,
but not in response to extended off-premises sales hours (i.e., through liquor stores).

A key distinction of this paper from past research on government policies is that participants
voluntarily remove the good (i.e., the indoor chulha) instead of the government changing barriers to
use of certain goods. Because the commitment here is voluntary, there may be a larger effect for those



that agree to the terms. On the other hand, given the ability to easily re-enable the indoor chulha,
households may choose to use it shortly after initially disabling it.

Specific to our context, Pillarisetti et al. (2019) explored related issues in a non-randomized sample of
a specific population — pregnant women. That study loaned 200 households in rural Maharashtra,
India a second LPG cylinder for the duration of the study in order to ensure they have constant access
to LPG. They asked, but did not require, households to disable their indoor chulha during the study.
Surprisingly, 65% disabled it. At the end of the study, households were asked to either purchase the
second cylinder or return it: 85% chose to purchase it. These previous findings provide suggestive
evidence that a soft commitment device to disable the indoor chulha in exchange for a second LPG
cylinder loan may lead to significant effects on decreasing indoor chulha use, and uptake of a second
LPG cylinder. This provides motivation for our study, which aims to eliminate (or at least greatly
decrease) use of biomass fuels among households that own one LPG cylinder and use LPG and an
indoor chulha regularly.

Our study finds that almost all (>98%) of the relevant households in our study site were interested in
the sales offer regardless of whether it was conditional on disabling the indoor chulha. When the sales
offer was conditional on initially disabling the indoor chulha, chulha use decreased by 90% (based on
minutes used as determined by data from temperature-logging stove use monitors, or SUMs). Without
this requirement, chulha use decreased by only 23%. We find no statistically significant change for
cither treatment group in LPG use (based similarly on minutes used). For both treatment groups, 80%
purchased the second cylinder at the end of the study.

These results imply a high willingness of households to agree to a soft commitment device (i.e.,
disabling the indoor chulha) that leads to a large decrease of 77% in indoor chulha use. If the effects
are persistent, this intervention may be one of the most cost-effective means to save lives among tens
of millions of Indian households. Using WHO-CHOICE criteria and conservative assumptions, this
intervention generates benefits roughly 20 times larger than the costs. If the Indian government wishes
to reduce deaths from household air pollution substantially, the intervention we studied may provide
a highly cost-effective model.

The remainder of the paper is organized as follows. Section II describes the experimental setting and
study design. Section III describes the specification used. Section IV reports the results. Lastly, Section
V concludes and discusses implications for policy makers and researchers.

II. Experimental setting and study design

A. Study site and participant selection

Our study was conducted in a subset of the Junnar block of Pune district among a population of
approximately 6,000 individuals living in 1,200 households. The study was conducted by KEMHRC
Pune, which has worked extensively in the area for decades conducting health-related research. This
location was chosen due to KEMHRC’s experience with the study area and the high percentage of
households that use biomass for cooking. According to LPG distributors in the area, approximately



70% of households owned only one LPG cylinder at the time of the study and hence were potentially
eligible for participation.

Working with Accredited Social Health Activists (ASHAs), we identified all households in a subset of
the study area (371 in total) that own exactly one LPG cylinder, have purchased at least three refills in
the past nine months, and own an indoor chulha. We then approached a random subset of 189 of the
eligible households, explained the study design (while verifying that they satisty the eligibility criteria),
and invited them to participate in the study. Of the 189 households, three did not agree to participate
(before treatment status was known) because they did not want to be assigned to the study arm that
is required to disable the indoor chulha in order to receive the sales offer. After obtaining written
informed consent, each household was randomly assigned to one of three study arms.

B. Study design

All households that agreed to participate in the study (N=186) were randomly assigned to one of the
following three intervention arms:

1. Treatment 1 (N=062): receive a six-week free trial of a second LPG cylinder (with the right
to return it during the free trial) followed by four installment payments collected over ten
additional weeks. This offer also included a detailed set of health educational messages to
explain the harms of using biomass for cooking;

2. Treatment 2 (N=062): same offer as Treatment 1 but with a requirement to disable or move
their indoor chulha in order to receive the sales offer;

3. Control group (N=62): no special sales offer or health messages but provides access to
purchase a second cylinder, as is commonly available in the area.

The study included a four-week baseline period in addition to the sixteen-week endline period. A
baseline survey was conducted at the beginning of the study to gather household demographics.
Households were visited every two to four weeks to monitor stove usage and to deliver health
messages.” Due to some of the originally recruited households not satisfying the eligibility criteria of
owning an indoor chulha, approximately half of the households began the study in December 2018
and the other half began in March 2019. The study concluded in July 2019.

Two sets of health messages were used in the study. The first is a flipchart (see Appendix 1) that
focuses on the harms to health of using biomass with related images. The second is a video® that
focuses on different scenarios in which households may be inclined to use biomass (e.g., during
festivals, when they run out of LPG, or taste preferences) and then suggests potential solutions.

C. Outcomes

As the primary goal of our intervention was to eliminate use of biomass for cooking, our primary
outcome is indoor chulha use. LPG use is also measured as a secondary outcome. For chulha and

5> Note, the control group did not receive health messages.
6 To view the video, see: http://kemhtcvadu.ore/index.php/projects/ongoing-projects /14-sample-data-articles /189-impact-of-clean-
cooking-fuel-on-health.




LPG stove use, outcomes include time spent using each stove per day, cooking events per day on each
stove, and a binary indicator for whether or not each stove was used each day. We also measure uptake
rates of the sales offer for each treatment group and rates of purchasing the second cylinder at the
end of the study.

D. Measurements

Thermocouple-based stove use monitors (SUMs) manufactured by Wellzion (model number SSN-61,
Xiamen, Fujian, China) were used on both chulhas and LPG stoves to measure stove usage in all
households in the study. Although we do not account for the effects of the presence of SUMs on
behavior (e.g., as Thomas et al. 2016 does), we assume these effects are equal across each study group
and thus do not bias the comparison of study groups. In treatment group 2 (in which indoor chulhas
were disabled), we placed SUMs on all filled in chulhas to monitor if households used them. In cases
where households completely destroyed the indoor chulha, we monitored if they rebuilt the chulha at
each household visit (without any associated penalty). If they did rebuild it, we placed SUMs on it. For
households that completely destroy their indoor chulha, indoor chulha use is assigned zero for all
relevant days and then weighted proportional to rates for households in which we have valid SUMs
data.”

SUMs record temperature readings every 10 minutes and can stay powered for weeks at a time. In
order to analyze stove use, we first need to convert SUMs data — in the form of temperature time
series data — into metrics of stove use. For this analysis, we used a slightly modified version of the
FireFinder algorithm, part of the open-source SUMSarizer R package® maintained by Geocene.
Firefinder builds upon previous SUMs detection algorithms (Pillarisetti et al. 2014, Piedrahita et al.
2016, Ruiz Mercardo et al. 2012) to determine approximate time spent cooking on each stove (in
minutes)’, number of cooking events per day (count), and days of any stove use (binary).

I1I. Specification

The following ordinary least squares regression is used to determine the effects of each treatment on
traditional biomass and LPG stove use:

Yie = o+ biTyi + baTo + bspost. + B Ti*post, + B2 To*post: + &

where Y; is the stove use outcome (i.e., minutes per day, cooking events per day, or binary indicator
for any use per day) for household i at time t (t=0 if pre-treatment, t=1 if post-treatment), o; are
household fixed effects (which are necessary due to the autocorrelative nature of daily measurements
from the same household), T is a dummy variable equal to one if in treatment group 1, T is a dummy
equal to one if in treatment group 2, post. is a dummy variable equal to one if occurring after treatment,

7 Note, approximately 30% of SUMs data is missing due to over-heating, malfunctioning, and a shortage of SUMs. The missing data is
spread evenly across each study group arm.

8 See: https://github.com/Geocene/sumsarizet.

9 Note, interpreting time spent cooking between stove types should be done with caution as there is a much slower decay in heat on a
chulha compared to that of an LPG stove.




and € is the etror term. The coefficients of interest ate 31 and > which, due to the exogeneity of
treatment status, are the causal effect of being in treatment groups 1 and 2, respectively, post-
treatment. As the data may be correlated at levels above our unit of randomization, which is at the
household level, standard errors are clustered at the village level.

For the binary outcomes of accepting the sales offer and purchasing a second cylinder we will run a
two-sample t test for equality of proportions.

IV. Results

A. Summary Statistics and Randomization Tests

Table 1 shows baseline summary statistics. The average household had 4.6 people and owned one
indoor chulha. Most (64%) of households were below the poverty line. The average respondent was
40 years old and had nine years of education. On average, households used the indoor chulha for 53
minutes per day (averaging over all days) and used it on 44% of days. They also averaged 101 minutes
of LPG stove use per day and used LPG on 77% of days.

Table 2 shows balance tests for covariates comparing the control group, treatment 1, and treatment
2. The 16 covariates were not jointly statistically significant in predicting treatment arm (y* = 31, P =
0.42). Of the 48 possible comparisons, four were statistically significant. Treatment 1 had almost one
year less of education than the control group (8.37 vs 9.28). Treatment 2 had slightly fewer households
with electricity access than the others (95% vs 100%), used LPG on 10% more days than treatment 1
(83% vs 73%), and used LPG for about 25 more minutes (i.e., 25% more) per day than either treatment
1 or the control group (119 vs. 94 vs. 89). Fortunately, the core baseline covariates of chulha use (daily,
number of cooking events per day, and minutes per day) were balanced across the study groups.

B. Initial and final sales offer uptake

Before being randomly assigned to a study group, households consented to participate in the study.
Of 189 houscholds approached, three (less than 2%) did not consent to participate. After
randomization, all who consented accepted their initial sales offer. The three who declined consent
are included in the analysis as one in each study group. Thus, 98% of treatment 1 and 2 each accepted
the relevant initial sales offer (Table 3). Post-randomization, all treatment 2 households complied with
their sales offer and initially disabled the indoor chulha. This implies that households did not perceive
disabling their indoor chulha as a costly action compared to the benefit of receiving a free trial of a
second cylinder. Of these participants, 53% destroyed their indoor chulha and 47% filled it with mud
or pebbles. All 53% did not rebuild their chulha throughout the study. No treatment 1 or control
group household destroyed or filled their indoor chulha throughout the study. At the end of the study,
roughly 80% of treatment 1 and 2 purchased the second cylinder after the free trial while 20% returned
it. No participants from the control group purchased a second cylinder during the study.



C. Effects of sales offer on biomass and LPG use

Next, we analyze our primary outcome, the causal impact of each sales offer on biomass use (Table
4). In the pre-intervention period, households on average use the indoor chulha for 53 minutes per
day (our most precise measure), for 0.8 cooking events per day, and on 44% of days. After receiving
the sales offers, based on daily minutes used, treatment 1 decreases indoor chulha use by 23% (-12
min, 95% CI = -23 to -0.88, p<0.05) while treatment 2 decreases indoor chulha use by 90% (-48 min,
95% = -70 to -26, p<0.01. Difference from treatment 1 P = 0.002)." Thus, conditioning the second
cylinder sales offer of a free trial + installment payments + health messages with the requirement to
initially disable the indoor chulha leads to an additional 77% decrease in minutes of indoor chulha use.
In regard to the number of cooking events per day and percent days of any use, we find no change
for treatment 1 households while we find a 61% decrease in both measures for treatment 2 households
(-0.48 cooking events per day, 95% CI = -0.831 to -0.127, p<0.01; -27% of days, 95% CI = -40% to
-14%, p<0.01).

Lastly, we analyze the causal impact of each sales offer on LPG use (Table 5). In the pre-intervention
period, households on average use the LPG stove for 100 minutes per day (our most precise measure),
for 2.6 cooking events per day, and on 77% of days. After receiving the sales offers, we find no
statistically significant change for either treatment group in minutes or event per day of using LPG.
We do however find a small and weakly statistically significant decrease in percent days using LPG
among Treatment 2 by 6.5% (p<0.10).

These results of LPG use are puzzling as one would expect to see an increase in LPG use to
compensate for the decrease found in chulha use. Potential reasons for this lack of reduction include
households may have increased their efficiency of using LPG by using both burners on the LPG stove
(and perhaps because they were no longer simultaneously using their indoor chulha), households may
have shifted indoor chulha use to outdoor chulha use (which we did not observe), or sampling error.

V. Discussion and Conclusion

Household air pollution from using biomass as a cooking fuel is a significant contributor to ill-health
in India, approaching five hundred thousand deaths per year (GBD 2017). The PMUY program
helped enable most households to access a safe cooking fuel (LPG). However, many households
regularly use indoor biomass along with LPG.

Our study finds a potential solution for many of these households — a sales offer for a spare LPG
cylinder coupled with the requirement to initially disable the indoor chulha. We find high demand for
this sales offer (98%). We also find a huge effect, a 90% reduction, in indoor biomass use. Additionally,
we find that the soft commitment device is vital to this very large reduction; without this commitment
device, the sales offer results in just a 23% reduction in indoor biomass use. These results imply a high
willingness of households to agree to a soft commitment (i.e., disabling the indoor chulha) that leads

10 Note, during endline we find a puzzling overall decrease in any daily chulha use and no. of daily uses, but there is no change in the
more precise measure of daily minutes used (see table 4 row 1).



to a large decrease of 77% in indoor chulha use. Future research is needed to determine how well the
effects last outside of a four-month period and what their impacts are on household air pollution.

If the effects are persistent, this intervention may be one of the most cost-effective means to save
lives among tens of millions of Indian households. Jain et al. (2018, Fig. 42) find that about half of
rural households across six states use both LPG and biomass for cooking. If that share generalizes,
then 90 million rural households in India use both stoves regularly.!’ While some homes rely on smoky
stoves for heat or other purposes, it is likely our intervention could reduce household air pollution in
the vast majority of these 90 million homes.

We next discuss cost-effectiveness. Nearly half a million deaths per year and 16 million lost DALY's
are attributable to household air pollution in India. Our relatively low-cost intervention may decrease
this burden. One method of evaluating the cost-effectiveness of health interventions is using WHO-
CHOICE criteria. Interventions that avert one DALY for less than average per capita income or
region are considered very cost-effective. Using this approach, Tripathi and Sagar (2019) find that the
total lost economic value from household air pollution is roughly INR 69,000 (~USD $1,000) per
household that cooks with biomass. That economic value is presumably lower for households that
also cook on LPG, but the majority of health harms are persistent whenever biomass cooking remains
common (Smith and Pillarisetti 2017; Johnson and Chiang 2015). The cost of this intervention is on
the order of less than USD $10 per household to cover overhead, transportation of LPG cylinders,
hiring ASHAs to deliver health messages, and ensuring households initially disable the indoor chulha.
Thus, even with very conservative estimates, the benefits of this intervention far exceed the costs.

As an illustration of a conservative estimate on benefits vs. costs, suppose the indoor chulha has only
20% of the economic value of removing a biomass stove in other settings (because the households
already have LPG, and some will rebuild their indoor chulha). This would result in a benefit of $200
per household. In regard to costs, suppose this sales offer costs four times that of a normal delivery,
or $1.60. Suppose ASHAs receive a similar amount as they do for promoting other health related
products, or $1 per home visit."* Assume uptake of the sales offer is two-thirds of what we observed
(65%, not 98%), then the ASHA cost per household that accepts the offer is $1.50. Assuming total
overhead costs of the intervention are double the field costs (or $6.20 per household), then the total
cost per household is $9.30. With these conservative assumptions, this intervention generates benefits
roughly 20 times larger than the costs (i.e., $200 in benefits vs. $10 in costs per household). Even if
the cost-benefit ratio is off by a factor of 10, this intervention is still very cost-effective.

If the Indian government wishes to substantially reduce deaths from household air pollution, an
intervention that targets disabling indoor chulhas is likely to be important. The intervention we studied
may provide a highly cost-effective model.

11'The 2011 India Socio Economic and Caste Census states there are 180 million rural households. See:
https://timesofindia.indiatimes.com/india/Census-2011-data-released-10-key-highlights /articleshow/47923276.cms.

12ASHAs receive roughly $1 for promoting household toilets. See Table 1 in the following:
https://www.intrahealth.org/sites/ihweb/files/files/media/petrformance-based-payment-system-for-ashas-in-india-what-does-

international-experience-tell-us-technical-report/PerformanceBasedPavmentSystem ASHAsIndiaReport.pdf




Appendix

Appendix 1 — Health message 1

Chulha smoke has many bad immediate
effects

Chulha smoke is harmful Gas cooking is clean and safe

* Coughing [insert images for these symptoms]
* Sore throat

* Runny nose

* Itchy / burning sensation in eyes

* And in the long-term it contributes to respiratory ilinesses, heart
disease, and low birth weights.

Children are the most vulnerable )
You cannot see the smoke particles, but you have

Children breathe faster and seen its effects

inhale more of the chulha
smoke than adults

Smoke turns your shiny pots black

e

The same thing happens to your lungs Even a little bit of chulha use, can have very
bad effects

And the smoke is most
damaging to children, even
while the mother is
pregnant!
* Their lungs are still
growing
* Their bodies are still
developing the ability
to fight disease

Your lungs bring in the air you breathe.
Smoke goes in the same way and damages your lungs

§n

How about heating water?

* So you should not use chulhas even on special occasions and you
need a second cylinder to cover the refill gap when ordering a refill!

Clean LPG, Clean House, Clean India

Heat water outside, so the smoke stays away

. Keep your pots, kitchen, and
from you and your family

house clean

If you can use it, electric water
heating is even better and
produces no smoke

LPG stoves are easy to maintain,
unlike your chulha, which must be
repaired, repainted, and remade




Table 1: Baseline summary statistics

Statistic Mean  St. Dev. Min Max N
Household size 4.63 1.73 2.00 12.00 185
Respondent is primary cook (share) 0.86 0.35 0.00 1.00 185
Respondent age 39.68 12.45 19.00 72.00 185
Female respondent (share) 1.00 0.00 1.00 1.00 185
Years of education 8.93 2.99 0.00 15.00 185
Below poverty line (share) 0.64 0.48 0.00 1.00 185
Electricity access (share) 0.98 0.13 0.00 1.00 185
Number of mud stoves owned 1.04 0.19 1.00 2.00 185
Received LPG through PMUY (share) 0.06 0.24 0.00 1.00 185
Years owned LPG 7.01 5.43 0.17 24.00 185
Days used mud stove (share) 0.44 0.36 0.00 1.00 171
Days used LPG stove (share) 0.77 0.29 0.00 1.00 182
No. of daily mud stove uses 0.79 0.78 0.00 4.23 171
No. of daily LPG stove uses 2.55 1.36 0.00 5.88 182
Mud stove daily minutes used 52.69 61.05 0.00 276.21 171
LPG stove daily minutes used 101.12 72.44 0.00 519.38 182

Note: To be included in the study, households were required to own at least one mud
stove and have an LPG connection with one LPG cylinder. This data includes baseline
stove usage measured four weeks pre-intervention. Days used mud/LPG stove (share)
refers to the share of days using the respective stove during the four-week baseline
period. PMUY refers to a government program in India that distributes LPG connections
to below poverty line families.
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Table 3: Initial and final offer uptake

Offer uptake Purchased 2" cylinder Sample size

% p-value % p-value N
Control NA 0% 63
Treatment 1 98% 82% 63
Treatment 2 98% 81% 63
Control vs Treatment 1 NA 0.000**
Control vs Treatment 2 NA 0.000***
Treatment 1 vs Treatment 2 1.000 1.000

Note: *p<0.1; **p<0.05; **p<0.01

Households consented to participate in the study before being randomly assigned to a group.
All who agreed to participate in the study accepted the sales offer they were assigned. They
were offered 500 INR (USD $7.30) for participation. Three households did not consent to
participate, so we count those declining households as one in each group. This accounts for
the 98% in initial offer uptake. The control group received no special sales offer. Treatment 1
received a free trial of a second LPG cylinder. Treatment 2 received a free trial contingent on
disabling the indoor mud stove: 53% destroyed it and 47% filled it with mud or pebbles. All
53% did not rebuild their mud stove throughout the study.
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Table 4: Regressions of daily indoor mud stove use and treatment group

All columns include household fixed effects

Daily minutes used  No. of daily uses  Any daily use

1) (2) (3)

Endline —6.07 —0.26*** —0.15***
(3.88) (0.07) (0.03)
Treatment1*Endline —11.92* —0.02 —0.003
(5.64) (0.12) (0.04)
Treatment2*Endline —47.57 —0.48*** —0.27***
(11.21) (0.18) (0.07)
Baseline mean 52.69 0.79 0.44
Observations 16,343 16,342 16,343
No. of household FEs 166 166 166
R? 0.33 0.37 0.44

Note: *p<0.1; **p<0.05; **p<0.01

Treatment 1 received a free trial of a second LPG cylinder. Treatment 2 received
the free trial contingent on disabling the indoor mud stove. The study includes
approx. four weeks of pre-endline data and 16 weeks of endline data. There is
some missing data due to monitors over-heating or malfunctioning. Col (3)’s
outcome variable refers to an indicator if any use occurred that day with the
stove. Standard errors are clustered at the village level.
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Table 5: Regressions of daily LPG stove use and treatment group

All columns include household fixed effects

Daily minutes used  No. of daily uses  Any daily use

1) (2) (3)

Endline 1.51 —0.08 —0.04**
(6.98) (0.15) (0.02)
Treatment1*Endline —5.33 —0.10 0.01
(6.09) (0.17) (0.02)
Treatment2*Endline —12.61 —0.22 —0.05*
(11.12) (0.23) (0.03)
Baseline mean 101.12 2.55 0.77
Observations 18,032 18,031 18,032
No. of household FEs 179 179 179
R? 0.36 0.36 0.33

Note: *p<0.1; **p<0.05; **p<0.01

Treatment 1 received a free trial of a second LPG cylinder. Treatment 2 received
the free trial contingent on disabling the indoor mud stove. The study includes
approx. four weeks of pre-endline data and 16 weeks of endline data. There is
some missing data due to monitors over-heating or malfunctioning. Col (3)’s
outcome variable refers to an indicator if any use occurred that day with the
stove. Standard errors are clustered at the village level.
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Chapter 2

The Effects of Fuel-Efficient Cookstoves on Fuel Use,
Particulate Matter, and Cooking Practices: Results from
a Randomized Trial in Rural Uganda

I. Introduction

Almost 3 billion people cook with wood, charcoal, and dung using traditional cookstoves (Bonjour et
al. 2013). These stoves cause environmental degradation (Bailis et al. 2015), global climate change
(Ramanathan and Carmichael 2008), and an estimated four million deaths per year (Lim et al. 2012).
Truly safe cooking likely requires clean fuels such as gas or electricity. Unfortunately, most people
who cook with solid fuel lack an affordable and consistent supply of gas or electricity (Lewis and
Pattanayak 2012; Rehfuess et al. 2010). In the short to medium term, fuel-efficient cookstoves that
use less solid fuel than traditional stoves may reduce these environmental and health problems.

We experimentally examined the effects of a fuel-efficient cookstove, the Envirofit G3300 wood-
burning stove, on wood use, household air pollution, and cooking behaviors in rural Uganda. Our
work builds on important antecedents and extends previous literature in three key ways: (1)
households purchased the new stove at the market price; (2) we provided households with a second
fuel-efficient stove to see if a second cooking surface would limit stove-stacking; and (3) we adjusted
for observer-induced bias, or the Hawthorne effect.

The first studies to document the relationship of stove usage, household air pollution, and human
health were conducted in Kenya (Ezzati and Kammen 2001, 2002; Ezzati, Saleh, and Kammen 2000)
and Guatemala (Smith et al. 2006; Smith et al. 2011; Smith-Sivertsen et al. 2009). More recently, Hanna,
Duflo, and Greenstone (2016) examined the link between stove usage and household air pollution in
India and found reductions in smoke inhalation in the first year, but no changes over longer periods.
They suggested that the fade-out was due to a lack of stove maintenance by users. Bensch and Peters
(2015) examined a stove designed to reduce fuelwood consumption in rural Senegal and found
reductions in fuelwood use, smoke emissions, and smoke-related disease symptoms. Pillarisetti et al.
(2014) examined stove usage in a sample of pregnant women in India and found that users
experimented with the fuel-efficient stove at first, but that the use of the new stove declined over time.
Moreover, by one year after introduction, the sampled households used traditional stoves for 75% of
their cooking.

Similar to the studies of Hanna, Duflo, and Greenstone (2016) and Bensch and Peters (2015), we
measured stove use in the short term (a year or less) and over the long term (a 3.5 year follow-up).
These two previous studies measured health outcomes (documented by medical personnel or self-
reported). In contrast, we measured household level particulate matter (PM2.5) concentrations.
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Particulate matter concentrations have been directly linked to health problems in numerous studies
(Chay and Greenstone 2003; Currie and Walker 2009; Smith-Sivertsen et al. 2009). Due to their small
size (2.5 pg or less), these particles can reach deep into the lungs and are the best single indicator of
risk for many respiratory-related diseases (Chowdhury et al. 2007)." Similar to Pillarisetti et al. (2014),
we used unobtrusive temperature sensors to measure detailed household stove use over time.
However, unlike Pillarisetti et al. (2014), we introduced random variation in the assignment of when
the stoves were delivered to causally examine the effects of the introduction of a fuel-efficient stove.

Our study extends previous literature in three important ways. First, we examine cooking behaviors
among households that were willing to purchase the new stove at market prices (and perhaps,
therefore, value the stove more highly).” Because our results come from users who paid the market
price for the fuel-efficient stove, our sample mimics those that would be most likely to purchase such
a stove. There is a long-standing debate whether developing countries should charge for health
improving products (latrines, mosquito bed nets, deworming medications, chlorine tablets, etc.) or if
they should be distributed for free (Ashraf, Berry, and Shapiro 2010; Cohen and Dupas 2010; Dupas
2014; Fischer et al. 2019). A key part of this debate is the question of how usage of the product varies
depending on the price paid. Generally, cookstoves have been given for free or highly subsidized in
previous cookstove usage studies. Our study adds a new data point to quantify usage for users who
paid market price for their cookstoves.

A second innovation in our study was that, after measuring stove usage when households had one
fuel-efficient stove, we provided all households with a second fuel-efficient stove. Common cooking
practice in the study area involved cooking with two pots simultaneously (e.g., rice and beans, or
steaming bananas and cooking gravy). Stove stacking (the simultaneous use of the fuel-efficient stove
and the traditional cooking technology) has been mentioned as a challenge to completely switching to
fuel-efficient stoves (Masera, Saatkamp, and Kammen 2000; Pillarisetti et al. 2014; Ruiz-Mercado et
al. 2011). This non-experimental intervention allowed us to examine how important the lack of a
second cooking surface was for continued use of the traditional stove.

A third innovation of our study was that we adjusted for observer-induced bias, or the Hawthorne
effect. The Hawthorne effect has been mentioned as a potential source of bias in numerous cookstove
studies (Bensch and Peters 2015; Ezzati, Saleh, and Kammen 2000; Pillarisetti et al. 2014; Smith-
Sivertsen et al. 2009). By collecting sensor data both when observers were and were not present, we
were able to measure and remove the source of this observer-induced bias.*

1 Accotding to Pope III et al. (2002), each 10 pg/m3 increase in long-term exposure to fine patticulate matter is associated with
approximately a 4%, 6%, and 8% increase in the risk of all-cause cardiopulmonary and lung cancer mortality, respectively.

2 These stove usage monitors were pioneered by Ruiz-Mercado, Canuz, and Smith (2012).

3 Among these similar studies, Hanna, Duflo, and Greenstone (2016) distributed highly subsidized stoves (users paid US$0.75 for a
US$12.50 stove), while Bensch and Peters (2015) and Pillarisetti et al. (2014) distributed stoves for free. Studies primarily focusing on
the public health benefits of cookstoves typically distribute the cookstoves for free. For example, the randomized exposure study of
pollution indoors and respiratory effects (RESPIRE) in Guatemala (Smith et al. 2006; Smith-Sivertsen et al. 2009), the Cooking and
Pneumonia Study in Malawi (Mortimer et al. 2017), and the research on emissions, air quality, climate, and cooking technologies in
Notthern Ghana (REACCTING) study (Dickinson et al. 2015).

4 This adjustment removes the bias from when observers were present compared to when no observers were present. We
acknowledge that it is possible that the sensors themselves could have induced different behavior, however we feel that given the small
size of the sensors (about the size of a coin) and the length of tracking (about six months) that the sensor was not salient enough to
make a big difference in sustaining atypical cooking behaviors.
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During the weeks when wood use and particulate matter were measured, we found that the
randomized early introduction of the first fuel-efficient stove reduced wood use by 11.6% and
particulate matter by 12.0%. Once both fuel-efficient stoves were introduced, wood use declined by
26.7% and particulate matter by 10.0%. However, we also found that participants cooked more on
the fuel-efficient stoves and less on three-stone fires when observers were present, and that
participants reversed these changes once observers left (Simons et al. 2017). When adjusting for this
observer-induced bias, we found that the randomized early introduction of the first fuel-efficient stove
may have only reduced wood use by 1.7% and particulate matter by 0.3%. Once both fuel-efficient
stoves were introduced, after adjusting for the Hawthorne effect, we found wood usage may have
declined by 2.5% compared to the baseline; however, patticulate matter may have increased’ (an
increase of 18.3% compared to the baseline).

Households used the new stoves more hours per day than the usage of the three-stone fires declined.
The increase in total hours of stove usage blunted reductions in fuel use and household air pollution.
At the same time, cooking on multiple surfaces most likely increased the utility of the cooks. It appears
that cooks used each stove for the foods that fit it best. For example, low-heat simmering of rice,
beans and unripe bananas was done on three-stone fires, and making sauces and boiling water for tea
was done on the fuel-efficient stove. In the longer term (3.5 years), we found lower rates of disrepair
than Hanna, Duflo, and Greenstone (2016).° Nevertheless, as in their study, we found low longer-
term usage of the fuel-efficient stove.

Concerning related environmental problems, our findings suggest fuel-efficient cookstoves similar to
the one used in our study and setting have, at best, marginal effects. The 12% reduction in fuel use
(upon introduction of the first fuel-efficient stove) may generate small reductions in deforestation and
carbon dioxide emissions, at least in the short term (though these reductions dissipated over the length
of our study).

Concerning related health problems, the 12% reduction in particulate matter left the air 14 times more
polluted than the World Health Otrganization (WHO) standard of 25 pg/m’ (World Health
Organization 2000). Thus, if clean air is a high priority, our findings suggest it is important to help
consumers shift to safe fuels such as gas or electricity and to find ways to encourage them to disable
or move their smoky stoves outdoors.

5> Note that the introduction of the second fuel-efficient stove was not experimentally identified, and the difference in changes in
particulate matter and wood use could have been due to a variety of factors, such as weather changes (i.e., wet wood burns less
efficiently).

6 This pattern makes sense as Hanna, Duflo, and Greenstone (2016) examined local artisan-built mud stoves, while the stoves used
in our study were commercially manufactured from metal. The manufacturer (Envirofit Inc.) stated its stoves would last up to ten years.
See: https://www.envirofit.org/.
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II. Experimental Setting and Data
A. Background and Site and Stove Selection

We selected the Mbarara region of Uganda because it is rural, almost all families cooked on a traditional
three-stone fire, households spent significant time gathering firewood or purchased firewood, and the
local government was supportive of our work. In pre-experimental discussion groups, we confirmed
that there was no active fuel-efficient cookstove intervention in the region, and that families spent
significant time gathering wood (approximately 10—20 hours per week).

Most participants farm matooke (starchy cooking banana), potatoes, and millet and raise livestock.
Prior to our experiment, almost all families cooked on a traditional three-stone fire (97%), usually
located within a separate cooking hut. Most (62%) households had totally enclosed kitchens with no
windows, while 38% had semi-enclosed kitchens with at least one window. Almost all cooking
occurred in the detached cooking hut.

We implemented a series of companion studies in rural areas of the Mbarara District in southwestern
Uganda from February to September 2012, focusing on the adoption of fuel-efficient stoves. These
studies analyzed the household purchase decision, and they found that relieving liquidity constraints
by allowing additional time for payments (Beltramo et al. 2015b) and providing a free trial with time
payments allowed users to learn about the stoves’ fuel savings properties (Levine et al. 2018) and
greatly increased purchase rates (for example, from 5% to 57% in our setting in rural Uganda). We
also examined how social networks affected purchasing (Beltramo et al. 2015a).

We marketed the Envirofit G3300 wood-burning stove, made by Envirofit International Inc. (Ft.
Collins, CO, USA) (see Figure 1 for images of a traditional three-stone fire and the Envirofit G3300).
This stove achieves relatively efficient fuel combustion by channeling airflow into the fire and directing
heat upward through an insulated cylinder to the cooking surface. These design innovations allow fuel
to burn at a controlled rate and enable more complete combustion than a three-stone fire. Emissions
testing of the Envirofit G3300 in a controlled laboratory setting found average reductions in carbon
monoxide (CO) of 65%, particulate matter reductions of 51%, and a reduction in fuel wood use of
50% compared with a three-stone fire (see Figure 2 for a copy of the emissions and performance
report).

Before selecting the Envirofit G3300, we conducted a feasibility study that tested four different
models of fuel-efficient stoves among households within the study zone.” The feasibility study
included three focus groups and one town hall style meeting, which included a total of 85 participants.
This study found that the participants preferred the Envirofit G3300. Additionally, during the
feasibility study it was apparent that most households used two cooking points on most days. This
finding informed our experimental design to distribute a second Envirofit to each household to give
cooks the ability to completely substitute away from the use of traditional three stone fires.

7'The full feasibility study report can be found here:




B. Selection of Study Participants

In the first stage of the experiment, we randomly selected 12 parishes (units of government
administration covering about 4,000-6,000 people), to receive a traditional full upfront payment sales
offer and 14 parishes to receive a sales offer of a one-week free trial followed by four equal weekly
time payments (see Levine et al. 2018). Within each parish, we recruited a local point person with the
help of local government officials. We asked each focal point person to gather roughly 60 people
together for a public sales meeting on a specified day. We did not tell the point person which sales
offer his or her parish would receive.

At the sales meeting, participants completed a questionnaire that focused on household cooking and
basic socioeconomic indicators. After this, the study team presented the Envirofit G3300, discussed
the stove’s features such as fuel savings and reduced pollution relative to traditional three-stone fires,
gave a cooking demonstration, and presented the terms of the randomly selected sales offer. While
the Envirofit was not commercially available in this region prior to our experiment, we sold it for the
same retail price (40,000 Ugandan shillings [~US$16]) that it was selling for in parts of the country
where it was available. We used the randomized assignment of the sales offer by parish as the
identifying assumption, as used by Levine et al. (2018), to examine the barriers to purchase. In the
current paper, to examine how often people used their stoves, our identification strategy was based
on randomly assigning the timing of when purchasers received their Envirofit (we call them early
buyers and late buyers). In each of the 14 parishes with the sales offer of a free trial plus time payment,
we randomly selected 12 of the purchasing households for stove usage tracking. Therefore, all
participants who had their stove usage tracked received the same sales offer at the extensive margin,
and all participants fully paid for the stove according to the terms of the sales offer (one-week free
trial, followed by four equal payments totaling 40,000 shillings).

Households were eligible to have their stove usage tracked if they mainly used wood as a fuel source,
regularly cooked for eight or fewer persons (so that their cooking pots could fit on the Envirofit),
someone was generally home every day, and cooking was largely done in an enclosed kitchen. In each
parish, more than 12 households met these criteria and agreed to join the study; therefore, among
those that agreed, we randomly selected 12 households per parish to track with the stove use monitors
(SUMs). We then randomly assigned each of these 12 households to be an early buyer or late buyer.
We asked both early and late buyers if they would agree to have SUMs immediately placed on their
traditional three-stone fires (all agreed). We used the randomly assigned time of Envirofit delivery
(early buyers vs. late buyers) as the identifying assumption for the causal claims made in this paper.

After participants consented to participate in the usage study, all existing three-stone fires were affixed
with SUMs. Then, approximately four weeks after the SUM data collection began, the early buyers’
group received their first Envirofit stove. Approximately four weeks after that, the late buyers received
their first Envirofit stove.

Based on earlier studies (e.g., Pillarisetti et al. 2014; Ruiz-Mercado et al. 2011, 2013) and our feasibility-
study, we anticipated that many households would use both their three-stone fire and their Envirofit.
One motivation for this is that common cooking practices in the area require two simultaneous
cooking pots (for example, for rice and beans, or for matooke and a sauce), and the Envirofit heats
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only one pot. We were interested in whether having a second fuel-efficient stove would substantially
end stove stacking. Thus, approximately four weeks after late buyers received their first Envirofit, we
surprised both groups with the gift of a second Envirofit stove.

In short, during the first study wave, both early and late buyers had only three-stone fires; in the
second study wave, early buyers had one Envirofit, along with their three-stone fires, but late buyers
only had three-stone fires; in the third study wave, both groups of buyers had one Envirofit; and in
the fourth wave, both early buyers and late buyers had two Envirofits. See Table 1 for the steps of the
experimental rollout. We tracked stove temperatures for approximately 18 weeks (May—September
2012). Each household had as many as two three-stone fires and two Envirofit stoves monitored with
SUMs. By the end of the study, numerous SUMs had been lost or burned up; therefore, after we
delivered the second Envirofit stove, we encountered a shortage of SUMs, so we focused
measurement on both Envirofits and the primary three-stone fire.

C. SUMs

We installed small, inexpensive, and unobtrusive SUMs to record stove temperatures.” Ruiz-Mercado
et al. (2008) initially suggested using SUMs to log stove temperatures, and various studies have used
that method (Mukhopadhyay et al. 2012; Pillarisetti et al. 2014; Ruiz-Mercado et al. 2013). We installed
SUMs on two Envirofits and two three-stone fires in each household when possible (recall that by the
end of the study, numerous SUMs had been lost or burned up; therefore, only a few secondary three-
stone fires were measured when all users had two Envirofits).

Throughout the study, field staff recorded about 2,400 visual observations of whether a stove was in
use (on/off) when they visited homes. Also, we examined the temperature data immediately before
and after the 2,400 visual observations of stove use. After understanding how temperature patterns
changed at times of observed stove use, we developed an algorithm to predict cooking behaviors for
the wider dataset of 1.7 million temperature readings during which we did not have visual
observations. By “cooking,” we mean that the algorithm predicts stove use, not necessarily that a cook
is standing above the fire and actively working on a meal. Our algorithm would likely detect “cooking”
in cases of banking hot coals for the next meal, and while this is not a formal act of cooking, it does
burn wood and increase particulate matter in the kitchen. This process, detailed in Simons et al.
(2014a), allowed us to unobtrusively and inexpensively track daily stove usage on a large sample of
households throughout the study. Appendix provides additional details on placing SUMs, the process
of converting temperature readings into measures of predicted cooking, and documents that SUMs
attrition was random.

8 The SUMs used for our project, iButtons™ manufactured by Maxim Integrated Products, Inc., are small stainless steel temperature
sensors about the size of a small coin and the thickness of a watch battery. Our SUMs recorded tempetatures up to 85°C with an
accuracy of +/— 1.3°C. For additional details see: http://betkeleyair.com/setvices/stove-use-monitoring-system-sums/. The SUMs
cost approximately US$16 each. They recorded a temperature data point every 30 minutes for 6 weeks in a household before needing
minimal servicing from a technician to download the data and reset the device.
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D. Kitchen Performance Tests and Particulate Matter Monitoring

We performed standard kitchen performance tests (KPT's) (Bailis, Smith, and Edwards 2007) in each
household to measure the quantity of fuel wood used, record detailed food diaries of what households
cooked, and measure household air pollution before any Envirofits were distributed, that is, when
early buyers had one Envirofit and when both groups of buyers had two Envirofits. The KPT lasted
approximately 72 hours and involved daily visits by a small team of researchers who weighed wood
and collected food diaries, which record cooking and stove usage over the previous 24 hours.
Households were asked to only use wood from a specific pile so that the team could determine the
change in weight over each day. In the food diary, households recorded what foods were cooked for
each meal.

During household visits, we also monitored household air pollution. Residential combustion of solid
fuels in developing countries is a significant source of pollutants that harms both the climate and
health (Bond et al., 2004; Smith et al, 2004). Roughly 10%-38% of the carbon contained in fuels is
not completely combusted when used in simple cooking technologies (Zhang et al., 2000). The carbon
that is not converted into CO; is instead emitted as products of incomplete combustion (PICs) that
contain potent health-damaging pollutants. We measured household level particulate matter (PM2.5)
concentrations over the same 72 hours of the KPT. To measure PM2.5, we used the University of
California, Berkeley (UCB) Particle and Temperature Sensor, which is a small, portable data logging
device (a modified commercial smoke detector) that uses an optical scattering sensor to measure real-
time PM2.5 concentrations.’

E. Long-Term Stove Usage

We revisited households approximately 3.5 years after they initially received their Envirofit stoves.
The survey team made quick, unannounced, observation visits in November 2015 to see whether
Envirofit stoves were still in use. The purpose of the visits was to observe which stoves were in use
at the time of the visit, examine Envirofits and three-stone fire locations for obvious signs of use
(smoke stains, black soot, etc.), and ask a series of short qualitative consumer satisfaction questions
about the different stove types. We observed 82% (137 of 168) of the households.

I1I. Specification

We analyzed wood usage (kg/day), daily household air pollution (PM2.5) concentrations, and stove
usage. Recall that there were four study waves with different levels of stove ownership: (1) households
that had two three-stone fires; (2) eatly buyers who had received an Envirofit and late buyers who had
only their three-stone fires; (3) both groups of buyers that had one Envirofit; (4) both groups of buyers
that had received a second Envirofit. Due to budgetary constraints, we could only run KPT's at phases

9 The UCB Particle Monitor User Manual (Berkeley Air Monitoring Group and Indoor Air Pollution Team, School of Public Health,
University of California 2010) details how to use these sensors.
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(1), (2), and (4). Thus, for outcomes measured in KPTs (wood usage, PM2.5), the regression
specification using data from study waves (1), (2), and (4) was as follows:

(1) Yipe = aip + bo * Ti + by * Early_have_Envirofit. + by* Both_have_two_Envirofits,
+ B1 (Ti * Early_have_Envirofit) + B2 (Ti * Both_have_two_Envirofits,) + €

where Yy is daily wood use or daily PM2.5 concentrations for household i for parish p in study wave
t, aip are fixed effects for each household, Early_have_ Envirofit. and Both_have_two_Envirofits, are
dummies for the study wave, and T; is a dummy equal to one if, in the early treatment group, €y is a
residual that is clustered by the parish * study wave but is assumed to be independent and identically
distributed (i.i.d.) within a parish and study wave. The coefficients of interest are 3; (the effect of being
in the early buyer group during the study wave [2], or the effect of owning an Envirofit while the
comparison group has only three-stone fires), and B, (the effect of being in the early buyer group
during study wave [4], or the effect of owning your first Envirofit for approximately 4 weeks longer
than the comparison group when both groups own two Envirofits).

We also ran this equation without household fixed effects, but our preferred specification included
them. The household fixed effect controls for unobserved characteristics of the household, such as
the talent and cooking style of the household cook, and structural features of the kitchen, such as
windows or ventilation. Because particulate matter has extreme positive outliers, we analyzed the
natural log of PM2.5 (as is typical in studies that examine PM2.5). We also top and bottom coded
PM2.5 at the 2nd and 98th percentiles, and top coded wood usage at the 98th percentile.

For stove usage, we had data for both during and between the three weekly periods when we measured
wood usage and PM2.5. Thus, the regression specification for the SUM usage data was:

(2) Yipe = aip + bo * Ti + by * Early_have_Envirofit, + by* Both_have_Envirofit, + bs*
Both_have_two_Envirofits, + (1 (Ii * Early_have Envirofit) + (. (Ti *
Both_have_Envirofit) + 5 (Ti * Both_have_two_Envirofits,) + €.

where Yiy is daily three-stone fire or Envirofit usage derived from SUM readings for household i for
parish p in study wave t, op are fixed effects for each household, Early_have Envirofit,
Both_have_Envirofit, and Both_have_two_Envirofits, are dummies for the study wave, and Ti is a
dummy equal to one if, in the early treatment group. €, is a residual that may be clustered by the parish
* study wave but is assumed to be i.i.d. within a parish and study wave. The coefficients of interest are
B1 (the effect of being in the early buyer group during study wave [2], or the effect of owning an
Envirofit while the comparison group has only three-stone fires), B (the effect of being in the early
buyer group during study wave [3], or the effect of owning your first Envirofit for approximately 4
weeks longer than the comparison group which also owns one Envirofit), and 3; (the effect of being
in the early buyer group during study wave [4], or the effect of owning your first Envirofit for
approximately 4 weeks longer than the comparison group when both groups own two Envirofits).
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A. Accounting for the Hawthorne Effect

Wood usage and PM data are only from field technicians’ visits during the approximately 72-hour
KPT measurement week. In a companion paper (Simons et al. 2017), we found that there was a
significant Hawthorne effect during those weeks."” In an attempt to account for this effect, we
calculated differences in stove usage between weeks when observers were present and weeks when
they were not present and adjusted wood and PM2.5 measures as follows.

Let the subscript group = early or late buyer, and let the superscript wave = the experimental wave
(i.e., [1] households with two three-stone fires; [2] early buyers with an Envirofit and late buyers only
with three-stone fires; [3] both groups of buyers with one Envirofit; and [4] both groups of buyers
with two Envirofits). Our estimate of wood usage adjusted for the Hawthorne effect was:

(3) AAdj_ Woodyavs, = ATSF_Hoursyats, + (Toee=) + AENV_Hoursyas, +
(ENV_Wood)

hour

ATSF_Hours and AENV_Hours are the differences in hours cooked due to the Hawthorne effect on
the three-stone fire (Envirofit) among those that own Envirofits. TSF_Wood per hour is wood
consumption from the first KPT (when no one had an Envirofit) divided by cooking on the three-
stone fires during those days. We did not have any periods when households only had Envirofits.
Thus, we used the laboratory results (Figure 2) indicating that ENV_Wood per hour is half that of a
three-stone fire.

For PM concentrations, we followed the same technique, and the Hawthorne-adjusted PM2.5
generated for each group of buyers was:

(4) AAdj_PM2.52:3%, = ATSF_Hours

wave (TSF_PMZ.S_Generated) n

group group hour
ENV_PM2.5_Generated
wave - -
AENV_Hoursgroyp * ( ou )

TSF_PM2.5_Generated per hour is calculated by dividing PM2.5 concentrations by three-stone fire
use from the first kitchen performance test (when no one had an Envirofit). ENV_PM2.5_Generated
per hour is from laboratory results (Figure 2).

Because we had sensor-based usage metrics that covered all weeks of the experiment, the estimates
for changes in cooking behaviors (hours cooked per day on three-stone fires and Envirofits) from Eq.

10 We compared stove usage in KPT weeks when observers were present with stove usage in adjacent weeks with no observers and
found that participants increased usage of Envirofits by about 3.0 hours per day and decreased usage of the primary three-stone fires
by about 1.8 hours per day during the endline KPT (when households owned two Envirofits), but then reverted to previous usage
patterns once the observers left (Simons et al. 2017). Also, see Gatland, Gould, and Pennise (2018) for an additional example of observer-
induced behavioral differences in stove use during kitchen monitoring periods.
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(2) were not likely affected by the observer-induced behavioral response.'" However, because
technicians were in homes to measure wood usage and PM2.5, we adjusted for the Hawthorne effect

by using Eqs. (3) and (4).

IV. Results

A. Summary Statistics and Randomization Tests

Table 2 shows baseline summary statistics and balance tests for covariates. Randomization between
early buyers and late buyers was successful. Only one difference among the 20 covariates was (weakly)
statistically significantly different than zero. Participants who randomly received their Envirofits eatly
had a higher value of assets (US$1,158 vs. US$905) (p=0.08). Control households used approximately
9.3 kg of daily wood, had an average PM2.5 reading of 414.3 pg/m’ in their kitchens, and cooked for
about 6.2 people.

Households used their first Envirofit about 4.3 hours per day and their second Envirofit about 2.9
hours per day (Table 3).

B. Effects of Envirofits on Fuel Use and Pollution

We began by analyzing the causal impact of the introduced Envirofit stove on wood usage (Table 4)
during our experiment. In the pre-intervention period, the control group used about 9.3 kg of
wood/day (Table 2, column 1); these usage rates fell when the eatly group had one Envirofit (-1.9
kg/day, p<0.01, Table 4, column 1) and when both groups had two Envirofits (-2.5 kg/day, p<0.01,
Table 4, column 1), but there were no statistically significantly different rates of reduction for those
that had received their Envirofit in the early group. In our preferred specification, with household
fixed effects (column 2), the eatly receipt of an Envirofit was causally associated with a change of
about -1.1 kg/day, (p<0.1). This reduction in wood consumption was a modest reduction of about
12% from the pre-intervention control group wood usage level. When all owned two Envirofits, both
groups reduced their wood usage by about 2.5 kg/day (p<0.01) ot 27%, relative to the pre-intervention
control group, with no statistically significant difference between groups.

In Table 5, we present the causal effects of the introduction of Envirofit stoves on household air
pollution concentrations. Pre-intervention, the control group had a daily concentration of PM of about
414 ug/m’ (Table 2, column 1). In our preferred specification with household fixed effects (Table 5,
column 2), the introduction of the first Envirofit reduced PM concentrations by 12% (p<.01)
compared to the control group. When both groups had two Envirofits, both groups reduced PM by
about 10% (p<0.1) with no difference between groups. That is, having the first Envirofit longer did
not result in detectably different pollution levels once both groups had received two Envirofits.

11 Observers (technicians) were only present in households in three 72-hour periods over the 18 weeks that sensors measured stove
usage.
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C. Effects of Envirofits on Cooking Behaviors

Next, we examined the effects of the introduction of Envirofits on daily time spent cooking on the
existing three-stone fires. We had stove usage data for much longer periods than the three kitchen
measurement periods. We estimated how the daily hours cooked on each stove varied over the entire
18 weeks of the study period (Table 6, based on Eq. 2). Figure 3 summarizes stove usage by study
phase. A weekly time series of stove usage is shown Figures 4 and 5."

Total usage on both three-stone fires was 12.7 hours per day by the control group in the sample of all
weeks prior to Envirofit introduction. In our preferred specification (Table 6, column 2), the causal
estimates were that the introduction of the first Envirofit reduced cooking on three-stone fires by
about 3.7 hours per day (p<0.01). This was a reduction of about 30% from the control group prior to
the introduction of the first Envirofit.

When late buyers received their first Envirofit (Table 6, column 2), we saw a reduction in use of the
three-stone fires among late buyers by 3.1 hours per day (p<<0.01) (about 25%); however, at the same
time, we saw an increase in three-stone fire use of about 2.9 hours per day (p<0.01) (about 23%) in
the early buyers (who had owned their Envirofits about 4 weeks longer than the late buyers). It is
unclear why these differed in direction, though one possibility is that, after initial experimentation with
the Envirofit, the eatly group had decided to use their three-stone fires more, while the late group
continued to experiment with the new Envirofit. This difference appears to have resolved itself once
both groups received their second Envirofit (Table 6, column 2), as combined use of the three-stone
fires declined by about 5.2 hours per day (p<0.01, with no statistically significant difference if
households received their first Envirofit earlier or later). This was a reduction of about 41% in three-
stone fire use once both Envirofits were introduced. In short, even with two Envirofit stoves, most
households continued to use their three-stone fires regularly.

D. Adjusting for the Hawthorne Effect

To adjust for this effect, we calculated the change in three-stone fire and Envirofit hours cooked in
the measurement week compared to all weeks."” To do this for three-stone fires, we ran the regression
for the effect of the Envirofit on hours cooked on three-stone fires, but restricted the sample to only
observations during the measurement week (Table 7). The difference of the coefficients between
Table 6 (all weeks) and Table 7 (only measurement weeks) was the delta three-stone fire hours used
in Egs. (3) and (4). To calculate the change in hours cooked on Envirofits, we ran similar regressions,
but instead used hours cooked on the Envirofit as the dependent variable (Table 8 [all weeks] and
Table 9 [measurement weeks]).

12 See Appendix Figures Al and A2 for the daily time series of stove use by eatly and late buyers, respectively.

13 Note that this is one option for addressing the Hawthorne effect. As this is not a methodological paper, we only show this option,
but we realize that other options are reasonable (e.g., only use one week before/after obsetrvers ate present to adjust estimated use).
Thus, we add the caveat that this method is only a rough estimation of the Hawthorne effect on differences in wood use and particulate
matter.
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Use of three-stone fires fell by 6.4 hours per day when the first Envirofit was delivered, when only
looking at the week when the KPTs were performed (Table 7, column 2), versus 3.7 hours per day
over the entire period with sensors (Table 6, column 2). Usage of the Envirofit was roughly 3.8 hours
per day when the first Envirofit was delivered, when only looking at the kitchen measurement week
(Table 9, column 3), versus 1.5 hours per day over the entire period with sensors (Table 8, column 3).
This reduction in three-stone fire use and increase in Envirofit use was anticipated because the

measurement weeks had the Hawthorne effect resulting from the daily visits of our enumerators
(Simons et al. 2017).

Thus, we adjusted for the 2.6 hours per day increased use of three-stone fires and 2.4 hours per day
(Table 10) decreased use of one Envirofit outside of the measurement week using Eqs. (3) and (4).
This adjustment yielded a smaller estimated reduction in wood use: 1.7% (Table 11, first panel) as
opposed to the unadjusted reduction of 11.6% (Table, 4, column 2). We also found a smaller reduction
of PM2.5: 0.3% (Table 11, second panel) instead of the unadjusted reduction of 12.0% (Table 5,

column 2).

Next, we calculated the Hawthorne adjustment for the periods when participants had two Envirofits.
Use of three-stone fires fell 10.2 hours per day when participants had two Envirofits during the
measurement week (Table 7, column 2), versus 5.2 hours per day during the entire period with sensors
(Table 6, column 2). Use of the Envirofits was 6.8 hours per day during the measurement week (Table
9, columns 3 and 5), versus 3.7 hours per day during the entire period with sensors (Table 8, columns
3 and 5)." Therefore, we adjusted for the 5.1 hours per day increased use of the three-stone fires and
3.1 hours per day (Table 10) decreased use of two Envirofits outside of the measurement week using
Egs. (3) and (4). The estimate of daily wood use changed from an unadjusted reduction of 26.7% to a
reduction of 2.5% after the adjustment (Table 11, panel one). The estimate of daily PM2.5
concentrations changed from an unadjusted reduction of 10.0% to an increase of 18.3% after the
adjustment (Table 11, panel two).

E. Long-term Usage

We made unannounced visits to measure stove usage approximately 3.5 years after the initial Envirofit
stoves were distributed. Approximately 82% of the original households were home when we visited.

At the exact moment our enumerators arrived, about 48% (66 out of 137) of the households were
actively cooking (Table 10). Among those, only 9% (6 out of 66) were cooking with an Envirofit stove.
Enumerators asked the 131 households that were not cooking on the Envirofit when enumerators
arrived if they could inspect their Envirofit to see obvious signs of use, such as black soot or fresh
ashes in the stove (Figure 6 shows an example of a stove with obvious signs of use). Among those
households, 65% had an Envirofit with obvious signs of use, 17% had Envirofits stored that were
clearly not being used, 2% had Envirofits that were still in perfect condition (essentially never used),
8% said their Envirofit was damaged and disposed of, and a final 8% said they had given the stove

14 We calculated total Envirofit cooking as the sum of cooking on the first Envirofit plus the cooking on the second Envirofit
individually, because only about 60% of the households had any combined readings from both SUM devices during the final
measurement week.
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away. Next, enumerators asked households to see their second Envirofit to determine if it had signs
of use. Among this sample, 25% had a second Envirofit with obvious signs of use, 11% had their
second Envirofit stored with limited signs of use, 9% had a second Envirofit that had never been
used, 38% reported they had given the second Envirofit away as a gift, and 16% said the second
Envirofit was damaged and they disposed of it.

Among all households visited (N=137), 23% reported that they still used both Envirofits, 50% said
they used only one Envirofit, and 27% said they had stopped using Envirofits completely.

Enumerators also asked all households if they had to purchase a stove today, would they purchase an
Envirofit. Among respondents, 79% said they would purchase an Envirofit, and 15% said they would
not purchase an Envirofit, with the remaining households unsure. Given that the share that stated a
willingness to repurchase was greater than the share using the Envirofit, we suspected this self-report
was biased.

Enumerators then asked open-ended response questions as to the reasons for those hypothetical
purchase decisions. The most popular responses among those that would buy another Envirofit were
that the stove saved fuel and reduced household time collecting fuel, the stove cooked fast, the stove
was easily portable, and the stove produced less smoke than a three-stone fire. Among those that said
they would not purchase another Envirofit, the most popular responses were that the preparation of
firewood was difficult for Envirofits (needed smaller pieces of wood than a three-stone fire), the stove
did not simmer food, the stove was too small for the household’s cooking needs, it was hard to prepare
some traditional meals on the stove, and the stove was hard to light.

F. Rebound Effects

Rebound effects occur when improvements in energy efficiency make consuming energy less
expensive and therefore encourage increased consumption of energy (see review in Sorrell,
Dimitropoulos, and Sommerville [2009]). While we did not have fuel cost data to formally estimate a
rebound effect, we examined stove use graphically, as shown in Figure 3, which suggested the presence
of a rebound effect. When households first received an Envirofit, they reduced three-stone fire usage.
However, by the end of our tracking period, Envirofit usage had increased more than three-stone fire
use had decreased. The aggregate time all stoves were in use increased by about 20% throughout the
period that we tracked stove temperatures.

V. Discussion and Conclusion

This study was the first randomized trial that collected detailed stove usage metrics among households
that paid market prices for their stoves. We found a slight reduction in wood use (-11.6%) and PM2.5
concentrations (-12.0%) after the introduction of one Envirofit, but this reduction mostly vanished if
we adjusted for the Hawthorne effect.
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Despite our selection of a sample that paid market price for their fuel-efficient stove, it did not appear
that usage rates of the new stove were markedly different than studies that offered highly subsidized
stoves. For example, in Pillarisetti et al. (2014), which also used temperature sensors to track detailed
stove level usage, households received fuel-efficient stoves for free and ended up using their traditional
stoves about 75% of the time and the introduced fuel-efficient stove about 25% of the time. Our
results were very similar, with roughly 67% of cooking done on the three-stone fires and 33% on fuel-
efficient surfaces by the end of our study. Hanna, Duflo, and Greenstone (2016) did not gather stove
use monitor data; however, their conclusion was that fuel-efficient stove use was enough to reduce
indoor air pollution in the initial phase of their experiment, but that in the longer term, poor
maintenance of the stoves led to an elimination of the air pollution benefits. Our results were similar,
except that, in our follow-up, it did not appear that a lack of stove durability was the cause of limited
stove use.

A second innovation in our study was to see if households would fully switch from the traditional
smoky cookstove, if given a second Envirofit. Despite the second fuel-efficient cooking surface,
households continued to mostly use the traditional cookstove. Almost all households used both three-
stone fires and fuel-efficient stoves in daily cooking. It appeared that households used the fuel-efficient
stove to heat things that cook relatively quickly, such as boiling water to make tea and sauces. They
preferred three-stone fires for low-heat cooking, such as simmering dishes like beans and cooking
bananas. It appeared that the ability to modulate the stove’s temperature would be a valued feature
for cooks.

Our third contribution was measuring the bias caused by observer-induced bias, or the Hawthorne
effect. By collecting stove temperature data when technicians were in the home and comparing it to
times they were not in the home, we found that households cooked about 2.5 hours per day more on
the Envirofit and 2.5 hours less per day on three-stone fires when observers were present and then
switched back to previous patterns once the observers had left. We found reductions in wood use (-
11.6%) and PM2.5 concentrations (-12.0%) after the introduction of one Envirofit, but once we
adjusted for the different behavior when observers were present, this reduction was almost zero. In
regard to impacting environmental and health problems, fuel use and particulate matter would need
to have declined by much more than what was found in this study. To reach WHO targets for
household air pollution, particulate matter needed to decline by 90% from pre-intervention levels.
Throughout the study period, three-stone fire use fell by about 2.5 hours a day, but this was more than
offset by about 5 hours a day of new cooking on the introduced stoves. This increase in total cooking
time diminishes the environmental and household air pollution benefits compared to those shown in
the laboratory results. While any reduction in fuel use and particulate matter was likely beneficial for
households," fuel-efficient wood stoves such as these will not be adequate to reach safe levels of
household air pollution. Thus, policies that assist consumers to shift to safe fuels such as gas or
electricity—particularly when coupled with policies to disable smoky indoor stoves—should take on
increased importance.

15 Emerging evidence shows that small reductions in PM2.5 can have benefits in especially vulnerable subpopulations. For example,
even a small reduction in PM2.5 can reduce adverse pregnancy outcomes (Alexander et al. 2018) and improve growth in children under
the age of two years (LaFave et al. 2019).
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Appendix

The details presented here summarize our previous research on how we converted temperature
readings into stove usage metrics and measured if the attrition of stove use monitors was random (this
appendix is based on Harrell et al. 2016; Simons et al. 2014; 2017; 2018).

A. Placement of SUMs

SUMs must be close enough to the heat source to capture changes in temperatures, but not so close
that they exceed 85°C, the maximum temperature the SUMs used in this study can record before they
overheat and malfunction. We do not need to recover the exact temperature of the hottest part of the
fire to learn about cooking behaviors. Even with SUMs that are reading temperatures 20-30 cm from
the center of the fire, as long as the temperature readings for times when stoves are in use are largely
different than times when stoves are not used, the logistic regression will be able to predict a
probability of usage.

SUMs for three-stone fires were placed in a SUM holder (Figure A3) and then placed under one of
the stones in the three-stone fire (left panel, Figure A4). The SUMs for Envirofits were attached using
duct tape and wire and placed at the base of the stove behind the intake location for the firewood
(right panel, Figure A4). Figure A5 shows an example of SUM temperature data for a household over
about three weeks. The left panel shows the temperatures registered in a three-stone fire versus the
ambient temperature also recorded with SUMs in this household, while the right panel compares the
temperature of the Envirofit to the ambient temperature reading.

B. Visual Obsetrvations of Use

Each time data collection personnel visited a household; they observed which stoves were in use
(whether the stove was “on” or “off,” along with the date and timestamp recorded digitally via a
handheld device). Enumerators visited each household several times during a “measurement week,”
when they also enumerated a survey and weighed wood for the KPT. Another enumerator visited
once every 4 to 6 weeks to download data and reset the SUM devices.

C. Generating an Algorithm

We matched the observations of stove use to SUM temperature data by time- and date stamps. At the
core of our method was a logistic regression using the lags and leads of the SUM temperature data to
predict visual observations of stove usage. We tested 10 specifications of differing combinations of
current, lagged, and leading temperature readings (Simons et al. 2014).

In order to determine which of the models was most appropriate, we tested the 10 specifications with

the Akaike information criterion (AIC) (Akaike 1981). The AIC trades off goodness of fit of the model
with the complexity of the model to guard against over-fitting.
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The preferred specification included the temperature reading closest to the time of the observation,
the readings 60 and 30 minutes prior, and 60 and 30 minutes after the observation of use, and a control
for hour of the day. This regression specification correctly predicted 89.3% of three-stone fire
observations and 93.8% of Envirofit observations of stove usage. We then compared our algorithm
to other previously published algorithms (Mukhopadhyay et al. 2012; Ruiz-Mercado, Canuz, and Smith
2012). Those algorithms focused on defining “discrete” cooking events based on rapid temperature
slope increases and elevated stove temperatures, followed by a cooling off period. We applied those
algorithms to the temperature data we had collected and found our logistic regression correctly
classified more observations, with a higher pseudo R-squared, than any other algorithm for both three-
stone fires and the Envirofits.

D. Random SUMs Attrition

One concern for our study is whether the attrition of the sensors used to measure stove temperatures
was random. In cases of sensor malfunction we lost the temperature readings associated with that
device (about six weeks of data for that individual stove). The concern is that if damage (overheating
above the 85°C tolerance of our SUMs device) was more likely on stoves that were used more heavily,
then the data we have are not an unbiased measure of stove usage for the broader sample. If however,
the attrition of SUMs sensors is random, there is less concern about the internal validity of our sample.

To examine this topic we follow the approach outlined in Simons et al. (2017) and focus on the endline
period where all participants had two three stone fires and two Envirofit stoves. We test this in various
ways. First, we regress whether the SUMs data was missing at endline (device malfunctioned) on
household fuel wood consumption during that same period. Because fuel wood is a direct input into
how much the stoves were used, this is the most direct test of this relationship. If households that
cook more (using fuel wood consumption as a proxy) also have a higher probability of SUMs attrition,
this would be evidence of non-random attrition and a problem for our study. We examine this
relationship separately for each stove type that we included in our study (recall that we choose not to
track the non-primary three stone fire by the endline of our study).

Because we are testing for attrition due to excessive cooking (heat exposure) we only test for this
relationship on the sample of stoves on which we placed a SUMs device. We also do similar checks
with other variables that are related to cooking or experience (count of people cooked for daily,
number of meals cooked daily, number of meals in which matooke was cooked daily, and age of the
cook).

In Table Al we present the results of the attrition checks. In our preferred test, we find that the
likelihood of SUMs survival is statistically no different than zero (col. 1-3) for each additional kilogram
of wood consumption. When examining whether a larger household size is associated with the
likelihood of SUMs survival we find a weakly statistically significant relationship for primary three
stone fire usage (col. 4). Each additional person cooked for is associated with a four-percentage point
decrease in the probability of SUMs survival (p<0.10), however this relationship does not appear for
either of the Envirofit stoves (col. 5-6). Lastly, we test whether the count of daily meals cooked (col.
7-9), daily meals in which matooke was cooked (col. 10-12), or the age of the cook (col. 13-15) is
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associated with SUMs survival. We find no statistically significant relationship. Taken as a whole, these
tests do not provide strong evidence of non-random attrition of SUMs devices.
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Figure 1
Comparison of wood burning stoves: three stone fire versus Envirofit G-3300

(a) Three Stone Fire (b) Envirofit G-3300
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Figure 2
Certified Emissions and Performance Report for Envirofit (G3300

April 27, 2011

ENGINES & ENERGY

=)
]

Emissions and Performance Report

The stove listed below has been tested in accordance with the “Emissions and Performance Test
[:[]NVEBS'[]N LAB Protocol”, with emissions measurements based on the biomass stove testing protocol developed by
Colorado State University (available at www.eecl.colostate.edu). Percent improvements are

“Dnipc':fm:ﬂ gz aneng | calculated from three-stone fire performance data collected at Colorado State University.
COLORADO STATE UNIVERSITY
Stove Manufacturer: Envirofit International
1374 CAMPUS DELIVERY
FORT COLLINS, CO Stove Model: G-3300
80523-1374
970.491.4796 Test Dates: 4/4/2011-4/22/2011
970.491.4799 (F)
www.eect.CotosaeEou | Average CO emissions (grams): 18.7
80% Confidence Interval: 17.7-19.7
Percent Improvement: 65.30%
Average PM emissions (milligrams): 995
80% Confidence Interval: 944-1046
Percent Improvement: 51.20%
Average Fuel use (grams): 596.7
80% Confidence Interval: 591.6-601.7
Percent Improvement: 50.10%
Average Thermal efficiency: 32.6
80% Confidence Interval: 32.3-32.8
Percent Improvement: 105.20%
High Power (kW): 3.3
80% Confidence Interval: 3.3-34
Low Power (kW): 1.9
______ 80% Confidence Interval: 1.8-1.9

The above results are certified by the Engines and Energy Conversion Laboratory at Colorado State
University. All claims beyond the above data are the responsibility of the manufacturer.

G

Morgan DeFoort
EECL Co-Director
Technical Lead, Biomass Stoves Testing Program
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Figure 3
Average Daily Stove Use
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Note: Pre-intervention (4 weeks) no Envirofits; Weeks 1-4 early buyers have one Envirofit; Weeks 5-¢
all have one Envirofit; Weeks 9-14 all have two Envirofits.

Figure 4
Weekly Stove Use of Early Buyers
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Figure 5
Weekly Stove Use of Late Buyers
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Figure 6
Envirofit Stove with Obvious Signs of Use (from Long Term Usage Study in
Nov. 2015)
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Timeline

Table 1
of Experimental Rollout

Approximate Timing

Event

Weeks -4 to week 0

Stove use monitoring (SUMs) begins on two
three stone fires

Week 0

Baseline kitchen performance tests (wood
weighting) and particulate matter (PM2.5)
monitoring™

End of week 0

Deliver first Envirofit to early buyers

Weeks 1-4

SUMs monitoring continues

Week 4

Midline kitchen perfomrance test and PM2.5
monitoring™

End of week 4

Deliver first Envirofit to late buyers (now all
participants have one Envirofit)

Weeks 4-8 SUMs monitoring continues

Week 8 Deliver second Envirofit to both early and
late buyers

Weeks 8-14 SUMS monitoring continues**

Week 14 Endline kitchen performance test and PM2.5

monitoring™

3.5 years later

Long-term usage follow up

Note: Measurement dates and timing are approximate as roll-out
was staggered across the 14 parishes. Stove usage monitors (SUMs)
were on all Envirofit stoves and usually on two three stone fires per

household.

*Fach measurement week (weeks 0, 4, 8) involved three 24-hour pe-
riods with wood weighing and particulate matter (PM2.5) monitors.
**After we delivered the second Envirofit stove in week 8 we had
a shortage of SUMs, so some homes only had a SUM on one three

stone fire.

36




“Surpunor o} Iotid pojenored ST UWN[0D SOUSIOPIP ) Ul onfeA o) ‘soor[d [RUWIIOP 0M) 0) POPUNOI oIk pojuasald soneAp ‘ueq PLIOA\ )
Aq paystiqnd (SINST) £0AINg JusweINSes]\ SPIRpUR)S SUIAIT RpURS() 91} JO PUNOI [-TT(F ) WOIJ UoYR) oIe SON[RA J9SS® 9)R[NO[RD 0) pash seorid
O, "oIg ou0js 921} ATepuodes pue Arewtid oY) 10 IO0J ISIX SoN[RA SUISSIUL UOU JI POJR[NO[Rd ATUO SI SOI SUO)S 991} [[B UO POY00d SINOY A[re(]
"9486 1% papoo doj ST ST POOM S[IYM UOIGLIISIP d) JO %7 PUR %86 8 Papod wojjoq pue doj aie sSUIPRal G gINJ PUR S}SSe JO onjea o[} SI8I[INO JO
109]J0 9} AZIWIUIW OF, ‘ToA9] ystred o1} Je SULI)SN[D I0] SIOLIS pIepuer)s Isnlpe op\ 'sSuljeaw safes apim Ysired je pajod[[0d BIeD PIOYOSNOH 270N

il a8 4y I9JJ0 SUIAT09I SPOYDSLOY JO IOQUITLN
0ST  €€0 v9'1v- 16°8¢¢ 99¢cLe ¥8'0¥¢ 0€¥1IV cU/811 ‘Suipeal ¢ gNJ 9Setoay
€eT  8€0 €L0 0.7 001 0T'¥ 0€'6 (8 ur yySom) Arep pasn poom joN
16 7€0 01'e- 66'S 7¢01 1.°6 evel SOIY OUOJS JOIY [[B UO PAyood sIoy ATre(]
66 8¢0 71~ 89°G 1¢% 179 16°G QI QUOJS 991} AIRPUOIIS UO PAs{00d SINOY ATre(]
STT L70 780 1C°L 718 GL'9 0¢L 21 ou0)s 991y} Arewrtid TO poyood SINoy Are([
SIUIULIATSDI UL QQN&QQU qULISDY
€9T 1670 10°0- 6£°0 180 6€°0 280 (o1eys) TyuOUI JSB] POOMIIY POIITYEY)
91 7C0 80°0 0S0 €70 870 7€0 (oIeys) YIUOW JSB] POOMOIY POSRYDIN ]
791 180 10°0 ¢c0 G6°0 ¥Z0 ¥6°0 (oreys) 9omos [onj Arewrtzd poomaIr]
79T 690 c0°0- il cLo 770 7L 0 (oxeys) 1oyem SunfuLIp S[10q SAEM[Y
€91 €20 Ge0 6g'c 169 G6°'1 919 [eowr Afrep 3so8Ie[ je Ioquiny
sponf puv 2sn 20035
791 800 L2'€4¢ 89°0991 LE'8GTT ¢807Ct 01506 (asn) siosse jo anfep
7oL 001 000 9¢°0 680 9€°0 a0 (orers) siouLrej 9dUSISANS st AJYUOP]
791 290 70°0- 0S0 670 050 ¢s o (oreys) juowfojdwo punor 1eox
POl 00T 000 ] €L0 Al €Lo0 (oreys) pafordwe yrog
€91 990 ¥0°0- €e0 880 8¢0 60 (oxeys) swoour sures
SnNIvj)s DNEDQQQQONUQW
791 ¢S0 G00- 060 250 050 280 (exeys) Apjurol suorsoep axeur sesnodg
791 090 ¢0°0- 8¢0 60 ¥¢'0 76°0 (oxeys) yooo Arewrtad st oJi\\
P91 ¢80 10°0- €70 LLO el 8L°0 (oreys) parizery
€91 ¥T°0 89°¢- 6cCl 8€ 0V 97" €1 90°7¥ juopuodsar Jo 98y
79T 8€0 S0°0 Sl €L0 L0 890 (oreys) juopuodsor opeuId,]
so1ydoibowop ployasnogy

N onfea-d ooudIpL( (IS JUSWIIRSL], URSJA JUSWIIRAIL], (]S [OIIUO)) URSN [0IIUO))

SOJBLIRAOD JO 9OUR[R( PUR SOIISIIR)S ATRTITINS UI[OSBL]

AEICLAT

37



Table 3
Envirofit stove use

Variable Mean Std. Dev. Min. Max. N
Early buyers have one Envirofit
Daily hours cooked on primary Envirofit 4.35 3.89 0.02 16.75 188
All buyers have two Enwvirofits
Daily hours cooked on primary Envirofit 4.25 3.68 0 16.23 198
Daily hours cooked on secondary Envirofit — 2.91 3.5 0 16.93 198
Daily hours cooked on all Envirofits 7.17 4.79 0.26 24.59 198

Note: This table only includes data from weeks with a kitchen perfor-
mance test when households had one or two Envirofits.

Table 4

Effect of the Envirofit on daily wood used for cooking

Dependent variable = kg. of wood used daily

(1)

(2)

VARIABLES OLS FE
Treatment 0.72
(0.72)
Early buyers have one Envirofit -1.86%HF 1 73K
(0.60) (0.56)
All buyers have two Envirofits SQARHHH D YR
(0.68) (0.66)
Treatment x Early buyers have one Envirofit -0.95 -1.08*
(0.85) (0.56)
Treatment x All buyers have two Envirofits -0.46 -0.55
(0.88) (0.59)
Constant 12.40%**
(0.46)
Observations 1,116 1,116
R-squared 0.15 0.42
Number of household fixed effects 163

Standard errors clustered at parish-wave level in parentheses

K p<0.01, ** p<0.05, * p<0.1

Note: Wood weights are top coded at 98%. OLS regressions

include parish fixed effects.
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Table 5
Effect of the Envirofit on daily PM concentrations

Dependent variable = natural log daily PM concentrations

(1) (2)

VARIABLES OLS FE
Treatment -0.02
(0.03)
Early buyers have one Envirofit 0.12%*  0.12%*
(0.05)  (0.05)
All buyers have two Envirofits -0.10**  -0.10*

(0.04)  (0.05)
Treatment x Early buyers have one Envirofit  -0.13*  -0.12**

(0.07)  (0.06)
Treatment x All buyers have two Envirofits -0.02 -0.02

(0.06)  (0.06)

Constant 6.57H**
(0.07)
Observations 1,242 1,242
R-squared 0.87 0.92
Number of household fixed effects 164
Standard errors clustered at parish-wave level in parenthe-
ses

R p<0.01, ** p<0.05, * p<0.1

Note: OLS regression includes parish fixed effects and all
regressions include PM monitor fixed effects. PM2.5 read-
ings are top and bottom coded at 98% and 2% of the dis-
tribution prior to taking the natural log.
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Table 6
Effect of the Envirofit on daily hours cooked on three stone fires - all weeks

Dependent variable = daily hours cooked on all (cols. 1 and 2),
primary (cols. 3 and 4), or secondary (cols. 5 and 6) three stone fire(s)

(1) (2) (3) (4) (5) (6)

VARIABLES OLS FE OLS FE OLS FE
Treatment -2.58 0.26 -1.86
(2.47) (1.36) (1.22)

Weeks 1-4 (Early buyers have one Envirofit) 1.80 1.96** 1.28 1.49% 0.82  1.22%**
(179)  (0.83)  (1.00)  (0.84)  (0.82)  (0.32)

Weeks 5-8 (All buyers have one Envirofit) -2.72 -3.09%% 0.34 0.42 -0.73  -1.04%*
(1.82)  (0.95) (1.19)  (0.88)  (0.90)  (0.42)

Weeks 9-14 (All buyers have two Envirofits) -3.61%  -5.15%*%*  -045 -0.38 -0.13 -0.85
(2.08)  (1.53) (115)  (0.91)  (0.94)  (0.62)

Treatment x Early buyers have one Envirofit ~— -3.16 ~ -3.73*** _3.33%* _3.68%** (.15 -0.58
(2.67)  (0.74)  (L60)  (1.12)  (1.37)  (0.48)
Treatment x All buyers have one Envirofit 1.83 2.89%FF  _1.91 -1.77 2.96*%F  3.07***
(278)  (105)  (1.86)  (1.09)  (L35)  (0.78)
Treatment x All buyers have two Envirofits -0.29 0.73 -1.47 -1.03 2.66 1.19
(3.18)  (L75)  (1.96)  (1.25)  (L68)  (1.07)
Constant 14.397%F* 5.63%** 6.27***
(1.76) (0.92) (0.92)
Observations 8595 8595 13,800 13,890 8,056 8,056
R-squared 0.13 0.58 0.10 0.45 0.08 0.52
Number of household fixed effects 144 160 146

Standard errors clustered at parish-wave level in parentheses

E p<0.01, ** p<0.05, * p<0.1

Note: Data includes all weeks that temperature sensors were on stoves. OLS regressions
include parish fixed effects.
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Table 7
Effect of the Envirofit on daily hours cooked on three stone fires -
measurement weeks
Dependent variable = daily hours cooked on all (cols. 1 and 2),

primary (cols. 3 and 4), or secondary (cols. 5 and 6) three stone fire(s)

(1) (2) (3) (4) () (6)

VARIABLES OLS FE OLS FE OLS FE
Treatment -1.93 0.78 -0.91
(2.00) (1.01) (1.14)

4.35%* 2.75 2.56** 3.7TERE D 1THE 1.55
(1.93)  (1.95)  (L16)  (1.01)  (0.86) (0.94)

All buyers have two Envirofits -3.56  -10.20%*  -1.49 -0.86 1.06 0.94
(2.85)  (3.81)  (1.19)  (1.34)  (1.62) (2.40)
Treatment x Early buyers have one Envirofit -7.41%**  _6.36*** -6.56*** _7.79***  _1.09  -1.07
(252)  (1.63)  (L57)  (1.17)  (1.49) (0.99)

Early buyers have one Envirofit

Treatment x All buyers have two Envirofits -3.16 3.38 -2.42 -2.53 1.71 0.30
(3.71) (4.71) (1.83) (1.74) (3.38)  (3.75)
Constant 12.367%** 5.06%** 6.73***
(1.62) (0.94) (0.79)
Observations 571 571 941 941 555 555
R-squared 0.24 0.73 0.18 0.60 0.13 0.73
Number of household fixed effects 129 155 133

Standard errors clustered at parish-wave level in parentheses

Rk p<0.01, ** p<0.05, * p<0.1
Note: This table only includes data from weeks with a kitchen performance test. OLS regres-

sions include parish fixed effects.
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Table 8
Effect of the Envirofit on daily hours cooked on Envirofit(s) - all weeks

Dependent variable = daily hours cooked on all (cols. 1 and 2),
primary (cols. 3 and 4), or secondary (col. 5) Envirofit(s)

" 0 @ ©® @ 0

VARIABLES OLS FE OLS FE OLS
Treatment 0.44 0.44 0.07

(0.35) (0.55) (0.35)
Weeks 5-8 (All buyers have one Envirofit) -0.17 0.05 -0.09  -0.02

(0.27)  (0.26) (0.25) (0.21)
Weeks 9-14 (All buyers have two Envirofits) 1.90%** 2.24*%*  0.08  0.04
(0.56)  (0.54) (0.50) (0.33)
Treatment x All buyers have two Envirofits -0.76 -0.90 -0.22 -0.22
(0.72)  (0.56) (0.51) (0.29)

Constant 1.59%%* 1.53** 2.16%**

(0.43) (0.64) (0.10)
Observations 6,853 6,853 8,923 8923 2,957
R-squared 0.12 0.47 0.09 0.41 0.10
Number of household fixed effects 130 152

Standard errors clustered at parish-wave level in parentheses

** p<0.01, ** p<0.05, * p<0.1

Note: Data includes all weeks that temperature sensors were on stoves. OLS
regressions include parish fixed effects. The constant in column (1) corresponds
to the period when early buyers owned one Envirofit.

Table 9
Effect of the Envirofit on daily hours cooked on Envirofit(s) - measurement
weeks

Dependent variable = daily hours cooked on all (cols. 1 and 2),
primary (cols. 3 and 4), or secondary (col. 5) Envirofit(s)

m @ B @B

VARIABLES OLS FE OLS FE OLS
Treatment -0.01 0.21 0.65
(0.77) (0.66) (0.48)

All buyers have two Envirofits 2.71¥¥%  3.08%** (.10 -0.36
(0.65) (0.81) (0.54) (0.57)

Constant 3.97H** 3.75%** 3.00%**

(0.77) (0.66) (0.14)
Observations 390 390 482 482 256
R-squared 0.16 0.66 0.05 0.57 0.12
Number of household fixed effects 105 129

Standard errors clustered at parish-wave level in parentheses

K $<0.01, ** p<0.05, * p<0.1

Note: This table only includes data from weeks with a kitchen perfor-
mance tests. At midline treatment households owned one Envirofit and
at endline all households owned two Envirofits. OLS regressions include
parish fixed effects. The constant in column (1) corresponds to the period
when early buyers owned one Envirofit.
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Table 10
Adjustments for Hawthorne effect

Change TSF Change ENV Adjustment
in TSF wood in ENV  wood for Wood
Hours usage Hours usage (kg/day)
(bhr/day) (kg/hr)  (hr/day) (kg/hr)

Midline (Early 2.63 0.64 -2.38 0.32 0.92

Buyers)

Endline (All Buy- 5.05 0.64 -3.06 0.32 2.25

ers)
Change TSF Change ENV Adjustment
in TSF PM2.5 in ENV PM2.5 for PM2.5
Hours (ug/m*  Hours (pg/m3  (ug/m3
(hr/day)  per hr) (hr/day) per hr) per day

Midline (Early 2.63 32.95 -2.38 16.08 48.39

Buyers)

Endline (All Buy- 5.05 32.95 -3.06 16.08 117.19

ers)

Note: Stove users used three stone fires less and Envirofit stoves more when observers were
present, when observers departed they reveresed these changes (Simons et al. (2017)). Therefore,
to adjust for this observer induced bechavior, we calculate the change in TSF hours per day as the
difference in the coefficients when estimating the effect of the introduction of Envirofit(s) on TSF
use only in the measurement week compared to all weeks (difference of coefficients between Table
6 and 7). The change in ENV hours per day is calculated as the difference in the coefficients when
estimating the effect of the introduction of Enviroift(s) on ENV use only in the measurement week
compared to all week (difference of coefficients between Table 8 and 9). Three stone fire wood
(PM2.5) usage per hour calculated during first kitchen performance test when no one owned an
Envirofit. Envirofit wood (PM2.5) usage per hour calculated using the laboratory results shown
in the “Emission and Performance Report” (Figure 2) because we do not have any periods in our
experimental setting when households only had Envirofits.
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Table 11
Estimates of Wood Use and PM concentrations after Hawthorne Effect
Adjustment

Baseline  Unadjusted Unadjusted AdjustmentAdjusted Adjusted
Amount  Change Change (kg/day) Change Change

(kg/day) (kg/day) (%) (kg/day) (%)
Midline (Early 9.30 -1.08 -11.6% 0.92 -0.16 -1.7%
Buyers)
Endline (AH Buy- 9.30 -2.48 -26.7% 2.25 0.48 -2.5%
ers)
Baseline  Unadjusted Unadjusted AdjustmentAdjusted Adjusted
Amount  Change Change (ug/m? Change Change
(pg/m*>  (ug/m*® (%) per day)  (ug/m*® (%)
per day) per day) per day)
Midline (Early 414.30 -49.72 -12.0% 48.39 -1.33 -0.33%
Buyers)
Endline (AH Buy- 414.30 -41.43 -10.0% 117.19 75.76 18.3%
ers)

Note: Unadjusted estimates of the change in wood usage come from Table 4. Unadjusted estimates of
the change in PM2.5 come from Table 5. The adjustments are calculated in Table 10. Calculations for
the adjusted changes are based on Equations 3 and 4. Baseline amounts come from Table 2.

44



Table 12

Long term usage study: unannounced home visit 3.5 years after initial

Envirofits delivered

N %
Someone home for unannounced long term usage study 137 100.0%
Actively cooking in moment when enumerators arrived 66 100.0%
-among those, cooking on three stone fire only 52 78.8%
-among those, cooking on Envirofit only 6 9.1%
-among those, cooking on other (mud/charcoal) stove 8 12.1%
Among all households not using Envirofit when enumerators arrived, 131 100.0%
enumerators asked to see primary Envirofit stove for signs of use
-primary Envirofit with obvious signs of use 85  64.9%
-primary Envirofit stored and clearly not being used 22 16.8%
-primary Envirofit stored and in perfect condition (basically never used) 3 2.3%
-primary Envirofit damaged and disposed of 11 8.4%
-primary Envirofit given away (condition unknown) 10 7.6%
Among all households that stated they received two Envirofits, 129  100.0%
enumerators asked to see secondary Envirofit stove for signs of use
-secondary Envirofit with obvious signs of use 32 24.8%
-secondary Envirofit stored and clearly not being used 14 10.9%
-secondary Envirofit stored and in perfect condition (basically never used) 12 9.3%
-secondary Envirofit damaged and disposed of 21 16.3%
-secondary Envirofit given away (condition unknown) 49  38.0%
Asked: “Do you still use the Envirofit stove?” 137 100.0%
-“I still use both Envirofits” 31 22.6%
-“I still use only one Envirofit” 69  50.4%
-“I have stopped using Envirofits” 37 27.0%
Asked: “If you bought a new stove today, would you purchase an Envirofit?” 137 100.0%
-Yes 108  78.8%
-No 21 15.3%
-Unsure or no response 8 5.8%
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Average daily hours of stove use

Figure A1l
Daily stove use of early buyers
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Figure A2
Daily stove use of late buyers
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Figure A3
SUM holder designed to encase the stove use monitor to protect it from
malfunctions when exceeding temperatures of 85 degrees Celsius
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Figure A4
Arrows mark the placement of SUMs on three stone fire and Envirofit

(a) Three Stone Fire (b) Envirofit

Figure A5
Example of household level SUMs temperature data in same household at
same times

SUMs data for Three Stone Fire and Ambient Temperature SUMs data for Envirofit and Ambient Temperature
Dashed line is TSF, Solid line is ambient temp Dashed line is ENV, Solid line is ambient temp
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Chapter 3

What is a “Meal”? Comparative Methods of Auditing
Carbon Offset Compliance for Fuel-Efficient
Cookstoves

I. Introduction

Globally, approximately 2.8 billion people cook on traditional stoves that burn solid fuels such as
wood and charcoal (Bonjour et al. 2013). The burning of solid fuels associated with traditional
cookstoves, such as the three-stone fire, has high global health costs, causing an estimated four million
deaths per year (Lim ef a/. 2012), and high costs in terms of the release of greenhouse gases (Robert
Bailis, Ezzati, and Kammen 2005) and black carbon (soot), which contribute to global warming (Bond,
Venkataraman, and Masera 2004; Ramanathan and Carmichael 2008). Inefficient stoves also
contribute to deforestation (Arnold, Kéhlin, and Persson 2000).

Because fuel-efficient cookstoves (defined as stoves that use less fuel than the three-stone fire or
relevant baseline stove) release less carbon dioxide than traditional three-stone fires, some fuel-
efficient cookstove projects have received carbon credits that subsidize the cost of the stoves (Simon,
Bumpus, and Mann 2012). Fuel-efficient cookstoves are an especially attractive target for carbon
credits because, in addition to decreases in greenhouse gas emissions, these stoves can also improve
the health and safety of users and reduce the time people (usually women and children) spend
collecting fuel (Burke and Dundas 2015; Kammen, Bailis, and Herzog 2002).

To quantify the changes in cooking practices due to fuel-efficient cookstoves, it is not sufficient to
simply measure the usage of the new stove. It is also crucial to measure any reduction in the use of
traditional stoves (Ruiz-Mercado e a/. 2011; Miller and Mobarak 2013) as many owners of new stoves
continue to use old stoves and fuels in a phenomenon known as “stove stacking” (Masera, Saatkamp,
and Kammen 2000; Ruiz-Mercado ¢ a/. 2011), which reduces the environmental benefits of using only
the fuel-efficient cookstoves. Researchers examining the effects of cookstove programs need to
understand and measure these nuances to correctly estimate program benefits. The carbon market
needs to know whether these new stoves really do offset the amount of greenhouse gases that they
claim to reduce. The Gold Standard methodology calculates carbon credits for cookstove projects
based on reductions in carbon emissions estimated through reductions in fuel use after a fuel-efficient
stove is purchased.! To estimate the reduction in carbon emissions, the project developer estimates
biomass fuel savings, the fraction of non-renewable biomass, and emission factors for fuel
consumption (Lee et al. 2013). These measures feed into an equation with default emission factors
and global warming potentials to derive the CO»-equivalent saved for a given project year. An auditor
comes to the project site to spot check data, calculations, and visits a small number of households. If
there are errors, problems with study design, or the auditors’ observations deviate from what was

! For more details, see: http://www.cdmgoldstandard.org/frequently-asked-questions /carbon-market.
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reported by the project developer, then the auditor may recommend that the offsets be adjusted or
additional data be collected.

This paper focuses on understanding stove use in a variety of ways. We compare how different
measures of cooking correlate across 163 households (403 household-days) in Mbarara, Uganda, all
of whom used three-stone fires as their normal cooking technology. We measured hours cooked
(derived from a predictive logistic regression of stove usage monitors on observations of stoves in
use), detailed household food diaries, weight of wood consumed, and household air pollution (PMa;,
particulate matter less than 2.5 micrometers in diameter) concentrations. We do these analyses both
across and within households.

Our goal is to identify how well these measures predict each other. If some measures correlate strongly
with others, then it is possible that carbon offset auditors and/or researchers with intensive
monitoring programs can rely on a subset of measures (or a single measure). If an inexpensive
method’s results strongly predict a more costly method’s results, perhaps that method can be used,
reducing overall monitoring costs. Using a proxy could be particularly useful in the case of indoor air
pollution monitoring because the equipment required to measure particulate matter is costly and
requires technical oversight. Conversely, if one measure appears unrelated to the other measures, then
it may not be valid and should not be used in isolation. If all the measures correlate positively but all
the correlations are weak, then carbon compliance officers and related researchers must continue to
improve measurement techniques. Without more robustly correlated measures, multiple measures will
be necessary to create confidence in stove use metrics, their related quantity of carbon offsets, and
their related use in the measurement of other benefits of fuel-efficient cookstove programs, such as
indoor air pollution reductions and time savings.

The paper is organized as follows. Section II describes the study area and the previous methodological
studies that compared techniques to measure stove use. Section III describes the research methods
used. Section IV reports the results and discusses their importance. Lastly, section V concludes and
discusses the policy implications for researchers and auditors of fuel-efficient cookstove programs.

II. Measuring Stove Usage

We analyze data from daily household visits over four days, yielding three 24-hour periods of
measurement. During each 24-hour period of measurement, we recorded temperatures on each three-
stone fire every 30 minutes using stove usage monitors (SUMs), which we regress on visual
observations of stoves in use to determine predicted hours cooked; food diaries consisting of foods
cooked, type(s) of fuel(s) used, type(s) of stove(s) used, number of stoves used, and number of people
cooked for at each meal; the amount of fuel used via kitchen performance tests (IKPTs); and mean 24-
hour particulate matter concentrations of PM,;s using University of California, Berkeley Particle and
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Temperature Sensors (UCB-PATS). Because all households used three-stone fires, these measurement
techniques capture near complete household-level data.”

A. Prior Studies Comparing Measures of Stove Usage

A few studies have compared predicted time spent cooking (based on an algorithm using stove
temperature data) with another method for measuring stove usage. These past studies have used two
methods to determine fuel-efficient stove usage and impact. For example, Thomas e a/ (2013)
compared predicted time spent cooking with self-reported use and direct observations. Ruiz-Mercado
et al. (2013) compared predicted time spent cooking with cooking behaviors described in food diaries.
Pillarisetti ez a/. (2014) used predicted time spent cooking over more than a year to determine whether
use early in the year predicted long-term use. Graham e7 a/. (2014) used predicted time spent cooking
to estimate fuel consumption and then compared the estimates with observations in the field.

Our study expands upon these previous studies by directly comparing a number of stove measurement
techniques in the same setting, making the unique contribution of comparing four methods of stove
measurement.

B. Study Area

For our study site, we selected the Mbarara region of Uganda because it is rural, almost all families
cooked on a traditional three-stone fire, there was no active fuel-efficient cookstove intervention in
the region, it was less than a day’s travel from Kampala, and families spent a lot of time gathering
wood (approximately 10-20 hours per week).” The main economic activity is agrarian, including
farming of matooke (a type of green banana), potatoes, and millet, as well as raising livestock. We
executed a series of randomized control trails surrounding the drivers of purchase and usage of fuel-
efficient cookstoves. The present study highlights the measurement techniques we employed for
measuring stove usage. However, we also studied the impact of informational marketing messages and
liquidity constraints on the purchase decision (Beltramo et al. 2015b; Levine et al. 2018), as well as
social network effects on purchase (Beltramo e a/. 2015a). Those studies can be consulted for a more
detailed background on the Mbarara region.

2 All households used at least one three stone fire and typical practice was two three stone fires per household. Across the entire
sample of cookstoves observed 97% were three stone fires, 2% mud stoves, and 1% charcoal stoves.

3 Wood was scarcer in some northern parts of Uganda, but given the poor road infrastructure in those districts, they were logistically
too difficult for us to work in.
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IT1. Methods

A. Stove Measurement Usage Techniques

Our first usage measure is estimated hours cooked generated from continuously recorded stove
temperature data and visual observations of use. The temperature data and visual observations are
processed with an algorithm based on Simons ez a/. (2014a) to determine an estimate of the minutes
cooked on each stove in a household. Throughout the experiment, field staff recorded visual
observations (about 2,400 visual observations) of whether a stove was in use (on/off)* when they
visited homes. Then we used a machine-learning algorithm to examine the temperature data
immediately before and after the 2,400 visual observations of use. The algorithm analyzed the data to
understand how temperature patterns change at times of observed stove use and then predicted
cooking behaviors to the wider dataset of temperature readings.’

The goal of researchers examining environmental benefits (and for auditing for carbon offsets) is to
compare the carbon released by households before and after the introduction of a fuel-efficient stove,
the development of algorithms for temperature data for three-stone fires and fuel-efficient stove types
could allow for longer periods of comparison (i.e., months) compared to kitchen performance tests
that measure kilograms of wood used, which usually last a week or less. Using SUMs offer an
unobtrusive, relatively inexpensive, and objective measure of stove usage, however, a concern with
SUMs is that they record temperature, and not exact stove usage. A companion paper (Simons ez 4.
2014a), discusses many of the slippages between temperature and cooking.

We used iButtons™ as temperature logging devices for our SUMs, which are small stainless steel
temperature sensors about the size of a small coin and the thickness of a watch battery that can be
affixed to a stove or open fire and record temperatures with an accuracy of +/- 1.3°C up to 85°C.°
The iButtons were set to record temperatures every 30 minutes.” We buried one iButton below each
three-stone fire, as three-stone fires comprised 97% of stoves used in our study area.® Typically,
households have one larger three-stone fire to cook the main part of the meal (usually #atooke and/ ot
beans) and a smaller three-stone fire to cook side dishes and sauces. In these instances, we used one

4 Enumetators were instructed to matrk whether a household was cooking (on/off) based on the presence of a flame or hot coals and
food being cooked each time they entered a participant home.

5 For this paper we modified the Simons ez /. (2014a) algorithm by adjusting the probability of nighttime cooking to be zero if the
predicted probability of cooking is less than 0.85 during nighttime hours. Because enumerators did not visit homes during the night
(too intrusive for participant households) we have no visual observations of stove use taken during the night, therefore this adjustment
is necessary. The Simons e# a/. (2014a) study only examines how well the algorithm predicts visual observations of stove use (all taken
during the day) and therefore does not deal with potential adjustments that are necessary to apply the technique to nighttime temperature
readings.

¢ For additional details concerning the iButtons, see: http://www.berkeleyair.com/products-and-services/instrument-services/78-
sums.

7 A shorter period between temperature readings (such as 10 or 20 minutes) would have been in line with other studies (Pillarisetti et
al. 2014; Ruiz-Mercado, Canuz, and Smith 2012), however due to logistical and budgetary constraints (tracking every 10 minutes would
have required a technician to download data and reset the device every two weeks, tracking every 20 minutes would require a visit once
every four weeks) we opted for a 30 minute interval which requires a technician visit only once every six weeks. Due to the size and
duration of our study, and a desire to minimize household visits so as not to influence participant behavior, a shorter resolution than
30 minutes was not possible. In Simons et al. (2014a) using data from this same setting and 30 minute resolution we correctly predicted
89% of visual observations of use in the three stone fires.

8 Due to the extremely small sample sizes of mud stoves (2%) and charcoal stoves (1%) in the study area, the analysis only covers
three-stone fires.
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iButton for each three-stone fire. Approximately every six weeks, we collected the iButtons,
downloaded the temperature data, and replaced them with new iButtons. For a more detailed
description of the data collection process with iButtons, see Simons ¢ a/. (2014a).

Our second measurement technique is through the use of food diaries (Prentice 2003; Krall and Dwyer
1987). While food diaries create a detailed account of everything cooked in a given household, they
can be inaccurate due to recall bias and experimenter demand effects (if respondents over-report the
use of the item, such as stoves or foods, that the experimenter is interested in). Food diaries also do
not directly measure the duration of cooking. Another potential complexity with self-reported food
diaries is households cooking two meals at once but then reporting the two meals as separate events.

Our third measure is a KPT, which weights the woodpile in a kitchen on sequential days to quantify
the amount of wood used in a given 24-hour petiod.” The KPT is the protocol used to estimate fuel
savings, a primary component of calculating carbon credits for a stove project (The Gold Standard
Foundation 2013). To minimize variance, the standard recommendation is that the KPT testing period
should be at least three days, avoiding weekends and holidays (Bailis, Smith, and Edwards 2007)".
Although the KPT is a useful tool for measuring fuel consumption, there are challenges in carrying
out the protocol. Changes in the weight of a wood pile may not equal wood burned due to households
sharing wood with neighbors, households inadvertently adding wood to the measured pile of wood,
or wood becoming wet or dry between initial and final weighing. Additionally, direct observational
processes alter participants’ behavior (as noted by Ezzati, Saleh, and Kammen 2000; Smith-Sivertsen
et al. 2009; Simons ¢# al. 2017).

Our fourth measurement technique is using PM monitors to measure the mean 24-hour
concentrations of particulate matter (PM). PM monitors measure the concentration of particles in
wood smoke that have negative health effects (McCracken e a/. 2007; Smith ef a/. 2010). However, to
our knowledge, PM concentrations have not been used to estimate stove usage because PM
concentration potentially depends on stove type, fuel, cooking practice (high or low temperature,
smoldering wood, etc.), airflow in the kitchen, moisture content of wood, proximity of cook to the
fire, ambient background PM levels, and other factors. We measured mean 24-hour concentrations of
PM; by installing calibrated UCB-PATS PM monitors in the study participants’ homes during the
same 72 hours of the kitchen performance test. We followed best practices as outlined by the Berkeley
Air Monitoring Group'' and measured three consecutive days of mean 24-hour PM.;s concentrations
in the kitchen. We averaged data from the UCB-PATS PM monitors into 24-hour average PM,s
readings in ug/m’.

B. Statistical Methods

We compared each of the cooking event measurements using ordinary least squares pooled across
days and household, instrumental variables, and within-household (fixed-effects) regressions. Pooled
regressions were clustered by household. Instrumental variables allow for consistent estimation in
cases where covariates are measured with measurement error (which is possible in our setting). Within-

9 For more information, see: http://ehs.sph.berkelev.edu/hem/content/KPT Version 3.0 Jan2007a.pdf.
10 For more information, see: http://cleancookstoves.org/technology-and-fuels/testing/protocols.html.
11 For details, see: http://berkelevair.com/services/ucb-patticle-and-temperature-sensor-ucb-pats/.
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household estimators eliminate the bias of time-invariant omitted variables by including a household
fixed-effect. However, because the within-household estimations only consider changes in covariates
over time, our identifying variation is very limited and likely attenuates our point estimates downward.
We ran ordinary least squares (OLS) regressions with the following specification:

Yie= Bo + BiXjie + uis,

where Y is a cooking measure (time spent cooking, wood use, or PM) at household 7 on day 7 X
are alternative cooking measures j (number of meals cooked, cooking matooke or beans, number of
people cooked for, etc.) at household 7 on day 7 g is the coefficient estimate associated with cooking
measure j, and #; is a residual for that household on that day.

We used an instrumental variables approach to allow for consistent estimates in cases where the
covatiates are measured with error, but the error terms are orthogonal.'” As time spent cooking,
wood use, and particulate matter were all measured with error, we instrumented for each of these
using food diary data (number of meals cooked per day, number of instances of cooking beans or
matooke per day, and the maximum number of people cooked for at lunch or dinner). We used two-
stage least squares, and in the first stage regress the covariate measured with error on the three food
diary instruments (Z),

)(jl't = 5,Z + uit'

Then we estimated the predicted value of this regression, X = 6'Z. In the second stage, the
regression of interest was estimated as usual, except the covariate measured with error was replaced
with the predicted values from the first stage, ¥;; = X Biv + €i¢. In cases where the first stage was
not estimated with high precision, we did not proceed to the second stage.

We also ran regressions with a fixed effect for each household (2):
Y= ﬁ() + ﬂ/’X}/‘; + vt

The coefficient fis the estimate of how increasing one measure of stove usage (7)) at a household
predicts higher levels of another measure of stove usage at that household on a different day of that
week. The fixed effects estimator has the advantage that fixed attributes of the home that week (e.g.,
ventilation or placement of the iButton) do not affect the estimate. The disadvantage is that it relies
only on within-household variation across three or so measurement days. Thus, its precision is low if
households do not change their measured behavior much across adjacent days.

12'This use of instrumental variables is not related to achieving causal estimates, but merely addresses measurement error. Our results
remain descriptive about how different measures correlate.
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IV. Results and Discussion

A. Common Cooking Practices and Descriptive Statistics

There are four main meals cooked in the Mbarara region: breakfast, lunch, afternoon tea, and dinner.
Almost all families cook on a traditional three-stone fire, usually located within a cooking hut. In our
sample, 62% of households had no windows in the cooking hut. Most stove usage occurs during lunch
and dinner preparation, with atooke and beans as the most common and most time-consuming foods
cooked. Matooke, the main food for lunch and dinner, is typically steamed for three to five hours.
Beans are prepared by boiling and simmering for two to four hours. Households in this region use
stoves exclusively for cooking, not for heating or other purposes.

Table 1 includes summary statistics for hours cooked based on the predicted logit specification for
the selected days of the kitchen performance tests. These statistics correspond to the predicted stove
usage for the 219 24-hour periods when we also had wood weighing, food diaries, and PM monitors.
Of these days, the main three-stone fire was used on average for approximately 6 hours and 26 minutes
and the secondary three-stone fire was used on average for approximately 4 hours and 31 minutes.

Respondents reported cooking an average of 3.34 meals per day (Table 1). Most stove usage occurs
during the preparation of the two largest meals, lunch and dinner; thus, the analysis focuses on these
two meals. The average value of the maximum number of people at either lunch or dinner, which is
our main measurement from the food diaries, was 6.34. Snack/tea had the lowest average number of
attendees (4.4), while dinner had the largest (6.1). For lunch, matooke was cooked on 78% of days and
beans were cooked on 42% of days. For dinner, matooke was cooked on 71% of days and beans were
cooked on 56% of days.

There are 359 measures of daily wood weights.”” Mean daily wood use was 9.91 kilograms. After top-
coding the highest 5%, the mean amount of wood used in a 24-hour period was 9.62 kilograms (Table

1.

We measured 365 days of particulate matter concentrations, with a mean 24-hour PM concentration
of 1019 ug/m’ (Table 1). This level is well above WHO’s air quality guidelines for annual mean

concentrations, with an interim target of 35 pug/m’and a final target of 10 ug/m’."

B. Regression Analyses

We first examine how well the number of people cooked for'” (our main measure from the self-
reported food diary) predicts time spent cooking, as measured by our iButtons (Table 2)." In the
pooled regression (col. 5), each additional person cooked for predicts 0.54 hours of cooking per day

13 There were 376 measures of wood weights, but we dropped 17 negative values (4.5% of the data). The likely cause of these negative
values is that the household added wood to the woodpile before it was weighed the following day.

14 See http://whglibdoc.who.int/hq/2006/WHO SDE PHE OEH 06.02 eng.pdf for more detail.

15 We use maximum number of people cooked for lunch or dinner.

16 Recall that our stove usage metrics generated from iButtons temperature data incorporate visual observations of stove use in the
algorithm to convert temperatures to stove usage.
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(95% confidence interval [CI] = -0.0043 to 1.1, p < 0.1). This point estimate is 6.4% of a standard
deviation and about 5.0% of the mean of total hours cooked. Each additional lunch or dinner cooked
predicts 3.3 more hours of stove use (95% CI = 0.30 to 6.4, p < 0.05). Finally, each time matooke or
beans are cooked is associated with an increase in cooking time of 0.61 hours, but the 95% confidence
interval is very wide (-0.77 to 2.0). While the coefficients are large in magnitude, the model's
explanatory power is low (R*> = 0.073).

When turning to within-household estimation (col. 6), we get useful variation only from homes that
changed their cooking patterns substantially across the three measurement days. Thus, precision is
typically much lower. Now the maximum number of people cooked for at lunch or dinner has a
coefficient near zero (0.035 hours, 95% CI = -0.35 to 0.42). An extra main meal adds 1.3 hours of
cooking (95% CI = -0.48 to 3.2). The coefficient on each time mafooke or beans is cooked remains
similar (0.66 hours, 95% CI = -0.028 to 1.4, p < 0.1), but now is marginally statistically significant.
The Hausman test (p = 0.46) fails to reject the null hypothesis that the random effects estimator (or
in our case the OLS with clustering estimator) is consistent and therefore is preferred over the fixed
effect specification.

We next examine how well the number of people cooked for predicts kilograms of wood use (Table
3). In the pooled OLS regression (col. 5), adding one to the maximum number of people cooked for
at lunch or dinner predicts an increase of wood use by 0.65 kilograms (CI = 0.39 to 0.90, p < 0.01).
This point estimate is 11% of a standard deviation and about 6.8% of the mean daily wood use.
Cooking an additional main meal (lunch or dinner) predicts a 2.0 kg increase in wood used (95% CI
=0.12 to 3.9, p < 0.05). The number of instances of cooking beans or matooke for lunch or dinner has
no predictive power (8 = -0.28, 95% CI = -0.95 to 0.39, p = 0.41). Again, while some coefficients are
large, the explanatory power is low (R* = 0.084).

When we include a fixed effect for each household, the coefficients become smaller in magnitude and
lose statistical significance. The Hausman test (p = 0.015) suggests that the fixed effect estimate is
preferred.

We next examine how time spent cooking (as measured by iButtons) predicts kilograms of wood use
(Table 4). In the pooled regression, 10 hours of additional cooking (about 1.2 times the standard
deviation and about 90% of the mean) predicts 1.8 kilograms higher wood use (95% CI = 1.0 to 2.5;
col. 1). This point estimate is about 31% of a standard deviation and 19% of the mean of wood use.
The explanatory power (R* = 0.10) is consistent with measurement error in wood use, measurement
error in time cooking, and with stoves varying substantially in wood consumption per hour cooking.

To account for possible measurement error in wood weights, we instrument hours of cooking with
three instrumental variables from the food diary: the maximum number of people cooked for at lunch
or dinner, number of main meals cooked per day (lunch and/or dinner), and number of instances of
cooking beans or matooke per day. The two-stage least squares estimate implies a much higher
coefficient on wood used per hour cooked. The estimate implies that on days a household cooked 10
additional hours, it used 5.7 kilograms more wood (95% CI = 2.5 to 8.9; col. 2). This point estimate
is about three times larger than the OLS estimate in column 1.
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When we include a fixed effect for each household, the estimate implies that on days a household
cooks 10 additional hours, it uses 2.0 kilograms more wood (95% CI = -0.14 to 4.1; col. 3). The
Hausman test does not reject that the OLS estimates are consistent. The instrumental variables
approach in the fixed effects specification lacks a strong first stage, so we do not estimate that model.

We next separate out hours of cooking on what the family called its primary versus its secondary stove
(col. 4). Hours on the main three-stone fire predict wood use (8 = 0.31, 95% CI = 0.15 to 0.48), while
hours cooked on the secondary three-stone fire have a much smaller value (3 = 0.01, 95% CI = -0.16
to 0.18). We are not sure why the secondary stove point estimate is so close to zero. These results are
perhaps consistent with a larger fire on the primary stove and the secondary stove being used for
reheating a sauce or making a separate meal for a child or person on a restricted diet.

In the FE regression, we find no statistically significant correlations, although the point estimates on
both stoves are close to the estimate of total hours (col. 5). There is neither a large nor a statistically
significant effect of squared hours on either stove (col. 6 and 7).

We next examine how well the number of people cooked for predicts PM concentration, as measured
by UCB-PATS (Table 5). Cooking for one additional person predicts a 9.3% increase in daily average
PM concentration (8 = 0.089, 95% CI = 0.031 to 0.15, p < 0.01; col. 5). Cooking an extra main meal
(lunch or dinner) predicts a 23% higher daily average PM concentration, but the confidence interval
is wide (B = 0.20, 95% CI = -0.16 to 0.56, p = 0.27; col. 5). The number of instances of cooking beans
or matooke also had no statistically significant effect on daily average PM concentration. When we
include a fixed effect for each household (col. 6), we find similar results. The Hausman test does not
reject that the OLS is consistent.

We review how well time spent cooking (as measured by stove usage monitors) predicts PM
concentration (as measured by UCB-PATS, Table 6). Pooling across homes, there is neither a large
nor statistically significant effect of time spent cooking on average PM concentration (8 = 0.0083,
95% CI = -0.012 to 0.028; col. 1). When we instrument for the maximum number of people cooked
for at lunch or dinner, using the number of main meals cooked per day (lunch and/or dinner), and
the number of instances of cooking beans or matooke per day, the estimate is much larger and
statistically significant. An additional hour of cooking is associated with the 24-hour mean
concentrations of PM increasing by 6.5% (8 = 0.063, 95% CI = 0.0014 to 0.12; col. 2). This point
estimate is over seven times larger than that in the pooled analysis.

When we include a fixed effect for each household, the estimate implies that an additional hour of
cooking is associated with the 24-hour mean concentrations of PM increasing by 3.5% (g = 0.034,
95% CI = 0.0061 to 0.062; col. 3). The Hausman test does not reject that the OLS is consistent. The

instrumental variables approach in the fixed effects specification lacks a strong first stage.

When examining how time spent cooking on the main stove (versus on the secondary stove) predicts
PM concentrations, we find no statistically significant correlations with OLS (col. 4). When we include
a fixed effect for each household, an additional hour of cooking on the secondary stove is associated
with a 5.7% increase in mean 24-hour PM concentrations (8 = 0.055, 95% CI = 0.0023 to 0.11; col.
5). However, the Hausman test does not reject that the OLS is consistent. There is no large or
statistically significant effect of squared hours on either stove (col. 6 and 7).
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Finally, we examine how a kilogram of wood used predicts PM concentrations, as measured by UCB-
PATS (Table 7)."" In the pooled regression, a 10% increase in wood used predicts a 3.0% increase in
daily average PM concentration (8 = 0.30, 95% CI = 0.093 to 0.50, col. 1). Although the effect is
sizable, the explanatory power is low (R* = 0.039).

When instrumenting wood use with the maximum number of people cooked for at lunch or dinner,
the number of main meals cooked per day (lunch and/or dinner), the number of instances of cooking
beans or matooke per day, and hours main and secondary stove cooked adjusted by reliability, the
estimate implies that a 10% increase in wood used predicts about a 5.7% increase in daily average PM
concentration (§ = 0.57, 95% CI = 0.017 to 1.1; col. 2). This point estimate is about twice that in the
OLS analysis.

When we include a fixed effect for each household, the estimate implies that a 10% increase in wood
used predicts a 1.6% increase in daily average PM concentration ( = 0.16, 95% CI = 0.022 to 0.30;
col. 3). The Hausman test does not reject that the OLS is consistent. The instrumental variables
approach in the fixed effects specification lacks a strong first stage.

V. Conclusions and Policy Implications

If we mismeasure stove usage, then carbon credits will be allocated incorrectly. In addition, our
measures of how stoves affect outcomes such as health will be subject to unknown biases. These
biases will also reduce our ability to understand what interventions might reduce harms from
household air pollution. Our findings emphasize the importance of using multiple measures to
understand cooking practices.

Of the main analyses, we find statistically significant positive correlations between five of the possible
six pairs of proxies for cooking: estimated time spent cooking and number of people cooked for
(weakly significant), kilograms of wood used and number of people cooked for (strongly significant),
kilograms of wood used and estimated time spent cooking (strongly significant), PM concentrations
and number of people cooked for (strongly significant), PM concentrations and estimated time spent
cooking (not significant), and PM concentrations and kilograms of wood used (strongly significant).
At the same time, the coefficients are often not very large and the explanatory power of each regression
is low. Instrumental variable estimates adjust for measurement error and the coefficient estimates are
typically several times larger than the OLS estimates.

We also included as covariates the number of main meals cooked, number of instances beans or
matooke were cooked, hours main stove cooked (as well as centered and squared), and hours secondary
stove cooked (as well as centered and squared). We found statistically significant correlations (all
positive) between estimated time spent cooking and number of main meals cooked, kilograms of wood

17 It is standard in the literature to analyze the natural log of PM. Thus, we use natural log of wood use to predict the natural log of
PM so units are comparable. Additionally, results are similar analyzing kilograms of wood.
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used and number of main meals cooked, and kilograms of wood used and hours main stove cooked.
Within-household estimators eliminate the bias of time-invariant omitted variables (ventilation,
altitude, etc.). However, when we controlled for these houschold fixed effects, estimates were
imprecise because most households did not change their cooking very much from day to day.

Some variation in outcomes is due to our measures being conceptually distinct: wood use is not the
same as PM concentration or hours of cooking. Additional variations in outcomes are due to variations
in homes (e.g., ventilation), fuel (wet or dry), stoves (good or bad airflow), the weather (wind,
temperature), and so forth. The very modest R* values we estimated are consistent with a substantial
measurement error in most or all of our measures. We used instrumental variables to address the
measurement error and get estimates that are more sensible in those cases. However, we cannot
determine whether the measurement error was largely due to low reliability (random error) or low

validity (bias).

These findings highlight challenges for researchers investigating health-related and other impacts of
fuel-efficient cookstoves and for auditing carbon credits for fuel-efficient cookstoves. For example,
when measures of fuel (and carbon) savings use only a single method for assessing stove use, such as
a kitchen performance test, and use only a modest sample size, results can have substantial
measurement errors. Given the weak correlations between measurements, we recommend that
multiple measures should be used to increase the validity of estimated impacts.

In addition to the above findings, in a companion analysis we find that periods of intensive in-person
monitoring of wood use significantly changes which cookstoves are used. These changes revert
immediately when observers depart (Simons et al. 2017). Therefore, it is important to have low-cost,
long-term and inconspicuous monitors to measure daily stove usage. Coupling SUMs with KPTs or
other measurements may achieve this goal. For fuel-efficient cookstove programs to have the desired
public effect of lowering carbon emissions and the desired private effect of improving household
health, it is important to continue improving stove usage monitors and other stove measurement
techniques.
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