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ABSTRACT OF THE DISSERTATION

Systems and Algorithm Support for
Efficient Heterogeneous Computing with GPUs

by

Yang Liu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Steven Swanson, Chair

Heterogeneous computing has seen a great rise in the age of big data. In particular,

heterogeneous computing systems with GPUs are able to deliver exceptional performance

with better energy efficiency, thus equip us with great power to deal with the enormous

yet fast growing volume of data.

In order to exploit the power of such heterogeneous systems with GPUs, we have

to address the problems from three closely related aspects. First, we need to design and

implement algorithms best suited to the CPU and the GPU, and schedule workloads to

the best processors. Second, we have to maximize the utilization of the system resources

xvi



for better performance and higher power efficiency. Third, we should provide efficient

I/O management and data transfer mechanisms to accommodate the increasing amount

of data.

This dissertation explores the systems and algorithm support for efficient hetero-

geneous computing with GPUs to respond to the above three problems. We first present

a system called Hippogriff, which enables efficient direct data transfers between the SSD

and the GPU. Hippogriff is able to dynamically choose the best data transfer route for

the GPU to improve the overall system performance and efficiency.

We then focus on improving the resource utilization in the context of MapReduce,

and present SPMario, a system to scale up MapReduce with the GPU via optimized I/O

handling and task scheduling. SPMario proposes I/O Oriented Scheduling to coordinate

concurrent task execution in a way that minimizes the idle time of the system resources

while avoiding I/O contention.

Last, we present a heterogeneous search engine called Griffin, which explores new

parallel algorithms and task scheduling to meet the rigorous requirement of query latency

in Web search. Griffin uses a dynamic intra-query scheduling algorithm to break a query

into sub-operations, and adaptively schedules them to the state-of-the-art CPU search

implementation and to our new GPU-based search kernels, based on the ever-changing

runtime characteristics of the queries.

Overall, we demonstrate our systems address the above three problems, and can

improve the performance and efficiency of the heterogeneous computing systems with

GPUs.
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Chapter 1

Introduction

Heterogeneous computing has seen a great rise in the age of big data. In particular,

heterogeneous computing systems with GPUs are able to deliver exceptional performance

with better energy efficiency, with flexibility and wide applicability to various applications.

As a result, heterogeneous computing systems equip us with great computing power to

deal with the enormous yet fast growing volume of data.

The trend of adopting heterogeneous computing has spread over multiple areas.

High performance computing systems have become more heterogeneous and hierarchical,

integrating both multi-core CPUs and accelerators like GPUs together [89]. For example,

52 out of the Top 500 world’s fastest supercomputers in 2015 utilize NVIDIA GPUs,

and they are able to achieve better performance and energy efficiency by coupling high-

performance host processors with GPUs [1]. In addition, cloud computing starts to

embrace heterogenous computing. As a powerful new paradigm, the combination of the

two provides the compute power and data throughput that meet the requirement of many

applications [2], and enables the processing ability for workloads like bioinformatics,

which are previously limited by conditions such as electricity, cooling, floor space, money,

etc., if using standard clusters or parallel processing [20].

The strength of heterogeneous computing comes from combining the best features

of different processors. Modern multi-core CPUs have very fast and large caches, and

1
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explore instruction-level parallelism (ILP) with mechanisms such as fine-grained branch

prediction, speculative execution, instruction pipelining and prefetch. Therefore, they

are suitable for supporting task parallelism. On the other hand, GPUs shine in massive

(data) parallelism and high memory bandwidth. A GPU consists of hundreds or even

thousands of smaller, simpler but more efficient cores, and can execute in wide SIMD

(single instruction, multiple data) manner. It has fast context switch, which can hide

the latency caused by instruction stalls and memory accesses, and can achieve memory

bandwidth as high as several hundred GB/s.

In order to exploit the power of heterogeneous computing systems with GPUs,

we have to address the problems from three aspects that are closely related to each other.

The first problem is to design and implement algorithms best suited to GPUs, and to

schedule workloads to the best processors that can execute them efficiently. This is the

basic and fundamental problem in heterogeneous computing, and still remains an active

area. For one thing, we have to develop new algorithms to adapt new workloads, to

parallelize existing workloads on GPUs, and to reflect the progress in the research of

parallel algorithms for better performance. For another, not all workloads are suitable to

run on GPUs; some of them can run faster on CPUs. Even for a single workload, not all

parts of it can be efficiently parallelized on GPUs. As a result, we need to differentiate

the parts and types of the workloads based on their characteristics, and perform them on

CPUs and GPUs accordingly for best fit.

The second problem is to maximize the utilization of the system resources.

GPUs are precious resources that provide high performance at the cost of high power

consumption. Therefore, we have to keep GPUs busy on two levels. From the perspective

of individual programs, their GPU code has to utilize as many GPU cores as possible,

i.e., achieving high occupancy of the GPU, for maximum parallelism and performance.

From the perspective of the overall system, multiple processes of the same program, or
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even multiple programs should find a way to share the GPU efficiently, enabling GPU

multiplexing. Indeed, besides the GPU, we ought to improve the utilization of all system

resources by keeping them busy working on meaningful jobs cooperatively, including

CPUs and other components such as I/O subsystems.

The third problem is to provide efficient I/O management and data transfer

mechanism. However, efficient I/O handling is a long-neglected issue in heterogeneous

computing systems with GPUs. GPUs, even nowadays, are still deemed as co-processors

attached to the host. They do not have the ability to handle I/O operations, and have

to rely on the host to load the inputs from and store the results back to the I/O devices.

As a result, the traditional GPU programming model either assumes the data has been

loaded in GPU’s device memory, or leaves the hassle of I/O handling to the host operating

system. However, in order to deal with the very large and ever-increasing volume of data

today in the real world, heterogeneous computing systems can no longer skirt around the

I/O handling problems of GPUs. We have to take into consideration I/O handling when

designing and implementing such heterogeneous systems for better overall performance

and efficiency.

This dissertation explores the systems and algorithm support for efficient het-

erogeneous computing systems with GPUs to address the above three problems. The

organization of the dissertation is like this. Chapter 2 first introduces the background

on heterogeneous computing, discussing the trend and necessity of the heterogeneous

computing. It also provides a thorough introduction to the architecture and features of

the GPU, explaining the advantages of doing heterogeneous computing with GPUs.

Chapter 3 introduces the design and implementation of a system called Hip-

pogriff, which provides efficient data transfers for GPUs in heterogeneous computing.

Conventionally, GPUs have to rely on the host CPU for I/O data transfer, as we discussed

earlier. To read the input from the I/O devices such as hard disk drives (HDDs) and solid
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state drives (SSDs), the GPU has to ask the host to read the data into a temporary buffer

allocated in the host DRAM, and then move the data further to the device memory on the

GPU. To write the output to the I/O devices, again the data has to go to the buffer in the

host DRAM first before eventually reaching the I/O devices. Keeping the host CPU and

DRAM as man in the middle of the GPU data transfer route will unnecessarily occupy

CPU cycles and DRAM that can otherwise be used to do more useful jobs. Moreover,

it will increase the latency and decrease the throughput of data transfer for GPUs, and

lower the power efficiency.

In Hippogriff, we first extend NVMe interface [37] to enable direct data transfer

between the SSD and the GPU, bypassing the host. Then, we propose a set of simplified

high-level interfaces to ease the users’ job of managing the GPU device memory and

specifying the data movement requirements. Hippogriff can dynamically choose the

best GPU data transfer route between the direct one and the traditional CPU-involved

one to improve the overall performance and efficiency of the system. In Chapter 3,

we evaluate Hippogriff on multiple workloads. Our results show that Hippogriff can

speedup single program workloads by 1.17x, reduce the energy consumption by 17%,

and improve the energy-delay by 26%. For multi-program workloads, Hippogriff can

achieve a 1.25x speedup. Hippogriff also improves the performance of a GPU-based

MapReduce framework by 10%.

In Chapter 4, we focus on the problem of improving the resource utilization of

heterogeneous systems in the context of MapReduce, and present SPMario, a system

to scale up MapReduce with the GPU. Using GPUs to scale up MapReduce seems a

natural and attractive option in existing systems, given that both GPUs and MapReduce

provide parallelism. Yet most existing GPU MapReduce systems neglect the impact

of the bandwidth mismatch between the I/O devices and the GPU, and only target

offloading computation from CPU to GPU. However, lack of efficient I/O handling
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and scheduling results in underutilization of system resources. Simply increasing the

number of processes/tasks will not solve this problem; instead, it will lead to resource

contention [93] among processes/tasks. In fact, our profiling of a state-of-the-art GPU

MapReduce framework reveals that, even with multiple processes, the GPU utilization

can be lower than 20%, while the I/O device is idle for almost 50% of the time. This

inefficiency will undermine the potential performance gains from scaling up MapReduce

with GPUs.

In SPMario, we scale up MapReduce with optimized I/O handling and task

scheduling, to address the above problems. SPMario runtime includes a scheduler and

multiple containers. The scheduler dispatches tasks to containers, while the containers

provide the execution environment for the tasks and enforce the execution order. To

further improve the performance and resource utilization, SPMario proposes I/O Oriented

Scheduling to coordinate task execution in a way that minimizes idle time of the resources,

and pipelines different types of operations, including the I/O operations, the data transfers

between the host and the GPU, and the GPU kernel execution. We implement the

SPMario prototype on a server with an NVIDIA Tesla K20 GPU and a high-end PCIe

SSD. Our experiment results show that for the single job cases, SPMario can achieve up

to a 2.28x speedup over the baseline in job execution time, and yield up to 2.12x GPU

utilization and 2.51x I/O utilization. When scheduling two jobs together, SPMario with

I/O Oriented Scheduling outperforms with round-robin by up to 13.54% in execution

time, and 12.27% and 14.92% in GPU and I/O utilization, respectively.

Chapter 5 presents the design and implementation of a heterogeneous search

engine called Griffin, to explore new parallel algorithms and task scheduling for better

performance and utilization of the overall system. Web search engines have to respond to

tens or hundreds of thousands of queries per second, over tens of billions of pages with the

total size of multiple terabytes [63], all while keeping response times under 300ms [83].
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To meet their latency goals, they rely on clever, highly-optimized algorithms that exploit

intra-query parallelism. Existing studies also leverage the parallelism that GPUs [63, 44]

can provide and can obtain impressive speedup compared to CPU solutions [44]. Because

queries may have different characteristics, some queries may run better on GPU, while

others run better on CPU. So, a heterogeneous system with CPU and GPU can achieve

better overall performance by running a query either on the CPU or the GPU based on its

characteristics [63].

However, the characteristics of a query can change as the query executes. While

the early stages of a query’s execution may run well on the GPU, the later stages are

often a better fit for the CPU. Therefore, running an entire query solely on the CPU or

the GPU may not achieve the best query processing performance. This suggests that a

dynamic fine-grained approach that can schedule operations within the processing of

individual queries to the suitable processors will lead to better performance.

So, in Griffin, we address these challenges with a dynamic intra-query scheduling

algorithm that breaks a query into sub-operations and schedules them to the GPU or to

the CPU based on their runtime characteristics. Griffin uses this scheduling algorithm

to divide work between a state-of-the-art CPU-based search implementation and new

GPU-based search kernel called Griffin-GPU. Griffin-GPU is the second key innovation

in Griffin. Griffin-GPU combines two components. The first is a parallel implementation

of the Elias-Fano compression [128] algorithm that provides fast decompression and a

high compression ratio. The second is a load-balancing merge-based implementation [3]

of parallel list intersection.

Our experiments on the real world query dataset show that Griffin speeds up the

query processing by 10x and 1.5x compared to a highly optimized CPU-based search

engine and Griffin-GPU running alone, respectively. Griffin also reduces tail latency:

it reduces the 95th, 99th, and 99.9th percentile latencies by 10.4x, 16.1x and 26.8x,
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respectively, compared the CPU-only implementation.

Finally, Chapter 6 concludes the dissertation and summarizes our findings from

the preceding chapters.



Chapter 2

Background

This chapter provides the background information about the heterogeneous com-

puting and the GPU for the rest of the dissertation. It first discusses the trend of paral-

lelism and heterogeneity, as well as the motivation of heterogeneous computing with

GPUs. It then provides a thorough introduction to the architecture of GPUs and the key

technologies used in modern GPUs.

2.1 The Trend of Parallelism and Heterogeneity

This section discusses the emergence and the trend of the heterogeneous comput-

ing and the heterogeneous computing systems with GPUs.

2.1.1 The Failure of Traditional Scaling and the Rise of
Heterogeneous Computing

For the past decades, Moore’s Law [98] and Dennard scaling [62] have guided

chip design to improve the performance of processors. CPU vendors like Intel and AMD

were able to boost the clock rates continuously, enjoying the increased transistor budgets

and clock speeds granted [131]. However, since around 2006, Dennard scaling began

to fail, and Moore’s Law hit the power wall and utilization wall [127], starting the era

of Dark Silicon [67]. Consequently, even though the size of transistors might continue

8
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to shrink, the increase in the clock rates can hardly progress further, due to the fact that

limited by the power constraints, the energy demand would not scale down accordingly.

Figure 2.1. 35 years of microprocessor trend data [18].

Figure 2.1 demonstrates such trend with 35-year data of microprocessors. From

the figure we can observe that since 1970s, the number of transistors on a chip keeps

increasing, thanks to the continuous reduction in the transistor size. But the frequency

and thus the single-thread performance of the chips begin to stagnate after around 2006,

associated with the stagnation in the typical power (Watts) per chip, indicating the failure

of Dennard scaling.

In fact, even the shrinking trend of the transistor size may not retain anymore

in the near future. According to the report of 2015 International Technology Roadmap

for Semiconductors (ITRS) [17], the shrinking in transistor could stop in five years 1,

1ITRS chair Paolo Gargini says that some further scaling may be possible after transistors go vertical
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which may come sooner than we originally expected. Figure 2.2 compares the ITRS

2015 prediction with the previous more optimistic 2013 one, in which the shrinking trend

was predicted to last until some time around 2018.

To continue to boost performance despite the failure of the traditional scaling, both

the industry and academia have turned to the multi-core architecture. While not being the

final solution, the multi-core architecture does provide the increase in performance within

the power constraints by accommodating multiple cores on the same chip. Figure 2.1

reflects such trend, showing that the number of cores on a chip starts to increase since

2005.

Figure 2.2. Comparison between the itrs 2013 and ITRS 2015 prediction in physical
gate length of transistors. The previous 2013 ITRS report predicted that the physical
gate length of transistors would continue to shrink until at least 2028 (blue line). But
ITRS recently modified its prediction in its 2015 report, showing the transistor size will
become flat sooner than expected [30].

though [30], but that would be another story.
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To achieve their full performance potential, multi-core CPUs require multi-

threaded applications to run for parallelism. As a result, only applications that manifest

parallelism and can be parallelized easily could benefit from multi-core CPUs. Fortu-

nately, many real world applications show that this is the case.

Furthermore, the drive to improve performance and the continuing constraints

on power and scalability in multi-core CPU development have led to the efforts of

incorporating specialized hardware (DSPs/FPGAs/GPU etc.) for particular tasks. The

rationale behind this is that the characteristics of the tasks may be different, and different

types of tasks may have different degrees of demands for parallelism. For example, in

heterogeneous systems with CPUs and GPUs, CPUs usually run the operating systems and

perform traditional serial tasks that may have complex control logic or branches, while

GPUs can execute workloads that require massive parallelism and are mathematically

compute intensive.

Indeed, the heterogeneity in characteristics of the workloads and Amdahl’s Law

result in heterogeneity in the hardware. Compared to CPUs that have more complex cores

that include advanced control and compute units as well as large cache, GPUs have a

larger number of much simpler cores. So, when Moore’s Law drives up the complexity in

circuit, GPUs can benefit directly from it in terms of performance thanks to the increase

in the degrees of parallelism, while CPUs do not see the gain that much.

2.1.2 Heterogeneous Computing with GPUs

Based on how the GPU is coupled with the CPU, there are two types of heteroge-

neous computing systems: the one with integrated GPUs and the one with discrete GPUs.

In the systems with integrated GPUs, the CPU and the GPU reside on the same chip and

share the memory bus. A representative example with such architecture is Heterogeneous

System Architecture (HSA) [24] developed by HSA Foundation. HSA provides a unified
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framework for the integration of the CPU and the GPU, to reduce the communication

latency between different processors and to reduce the users’ efforts in programming the

systems.

HSA aims to break the barriers between the CPU and the GPU by sharing the

resources between the two processors. For example, HSA implements the Shared Virtual

Memory (SVM) by supporting the shared page table. Both the CPU and the GPU can

use the single set of page table entries, and can access the memory via the same virtual

address. This simplifies the task of page table management for the operating system. In

addition, unlike the discrete GPUs that can only access the pinned host memory thus

preventing these memory pages from being swapped out, HSA enables the page faulting

for the GPU for better performance and flexibility. Figure 2.3 depicts the architecture of

the HSA APU from AMD.

Figure 2.3. HSA Accelerated Processing Unit from AMD [25].

Currently, the HSA architecture is mainly popular among desktop processors

(e.g., AMD APU, or Accelerated Processing Unit [19]) and mobile processors (e.g., some

processors from ARM). The biggest issue of such architecture is that, unlike its discrete

counterpart, the integrated GPU usually contains a very limited number of cores (e.g.,
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several hundreds) due to the stricter limitation in the die size and power supply, thus can

only provide modest computing power. Moreover, the bandwidth of the DRAM shared

by both the CPU and the GPU is much lower (e.g., ∼ 60GB/s) than that of those discrete

GPUs (e.g., ∼ 300GB/s or higher).

Figure 2.4. A system containing a discrete NVIDIA Kepler GPU [4]. The GPU connects
to the host (x86/ARM64/Power8) CPU via PCIe, which has a theoretical bandwidth of
16GB/s.

In the systems with the discrete GPUs (Figure 2.4), the GPU is on a standalone,

separate chip or card, and usually connects to the host CPU via PCIe bus and has its

own cooling system. Therefore, the discrete GPUs can include more cores, and provide

much higher computing power with the help of high throughput device memory (e.g.,

∼ 288GB/s in NVIDIA K40). The advantage of the discrete GPUs in performance is the

main reason many of the TOP 500 super computers today are using these GPUs in their

systems. However, the disadvantage of the discrete GPUs is also obvious. The GPU has

its own device memory that is separated from the host main memory, but does not have

the ability to handle I/O independently. As a result, if the GPU requires input data from
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the I/O device, it has to rely on the host CPU to load the data from the I/O device into the

host DRAM first, and then transfers the data to the device memory of the GPU via the

PCIe bus, which has much lower bandwidth (e.g., 16 lane PCIe gen3 has a theoretical

bandwidth of 16GB/s) compared to the memory bus.

In this dissertation, we only target the heterogeneous systems with discrete GPUs,

due to their huge advantage in performance and their popularity in applications that

demand high computing power.

2.2 The Basics of the GPU

This sections introduces the basic architecture and the memory hierarchy of

the GPU. It also discusses the key technologies used in GPUs for better performance

and efficiency. We use a discrete NVIDIA Tesla K20 card (Kepler microarchitecture)

with CUDA2 to implement all the systems in this dissertation, so we will use CUDA

terminology to describe NVIDIA GPUs of Kepler microarchitecture. We only focus

on the discrete GPU without loss of generality, because an integrated GPU like AMD

APU [19] shares the similar basic high level architecture with a discrete GPU, and has

less complex memory hierarchy.

2.2.1 The Overview of the GPU

The GPU is a kind of multicore processor designed to process problems with

massive data parallelism. It comprises multiple SIMD stream multiprocessors, or SMs.

Each SM is further composed of many simple execution units called CUDA cores, on

which CUDA threads execute sequentially. Threads are organized into thread blocks

(containing up to 1024 threads on current GPUs) and grids of thread blocks. The

threads inside a thread block run concurrently, and can cooperate with each other via
2CUDA [23] is the hardware and software architecture that enables NVIDIA GPUs to execute programs

written with C, C++, Fortran, OpenCL, DirectCompute, and other languages [27].
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barrier synchronization and shared memory. Each thread block has a block ID inside its

corresponding grid.

Thread blocks are supposed to execute independently from each other, but threads

inside the same thread block execute the same instruction at the same time. Every

32 threads within the same thread block are grouped into SIMD execution and basic

scheduling units called warps, which are multiplexed onto the same SM. At any time,

only threads from one warp execute in lockstep on a SM (but multiple warps can be

scheduled), and super fast context switching can hide both arithmetic and memory latency

as well as avoid dependency stalls. When the execution meets conditional branches,

some cores are disabled for conditional operations.

In CUDA, a program executed by thread blocks on the device is called a CUDA

kernel. Each thread inside the thread block executes an instance of the current kernel,

and has a thread ID within its thread block, program counter, registers, per-thread private

memory, inputs, and output results [27]. The execution of a kernel on the GPU cannot be

preempted on the current hardware. Once a kernel starts to run, others will not proceed

until the current one exits.

Currently a GPU is still deemed as a coprocessor attached to the host CPU, and

there is no direct support for I/O operations. As a result, before the computation starts,

a discrete GPU will have to load the input data from the host DRAM to its own device

memory. If the input data is not buffered in the host DRAM, then the host will have to

load the data from the storage device to the host DRAM before sending it to the GPU’s

device memory, costing more system resources.

2.2.2 The Memory Hierarchy of the GPU

Generally, there are two types of memories in an NVIDIA GPU. One is on-chip

memory, and the other one is off-chip memory. The GPU organizes these memories
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Figure 2.5. CUDA GPU memory hierarchy.

hierarchically, as depicted in Figure 2.5.

On-chip memory includes registers, scratchpad memory, and cache. Each SM

owns a large register file, which is the fastest on-chip memory. The register file is divided

evenly into multiple partitions among different CUDA threads. These partitions are

further mapped into the thread-local private memory space of the threads, so that each

thread has its own registers to save its states. If the threads do not get enough registers

(e.g., for large arrays), they have to use the much slower off-chip local memory within

their address space.

Each SM also has a small (64KB) indexable scratchpad memory with high

bandwidth and low latency. This memory is partitioned into two different parts: per-

thread-block shared memory and L1 cache. Kernels can use the shared memory as

a software-managed data cache for inter-thread communication, while L1 cache will

automatically cache the data the kernels have accessed. Users can configure this 64KB

memory into three configurations: 48KB of shared memory with 16KB of L1 cache,

16KB of shared memory with 48KB of L1 cache, and 32KB of shared memory with



17

32KB of L1 cache.

Besides the scratchpad memory, we can also find an optimized read-only 48KB

cache on GPUs with Kepler microarchitecture. It can improve the system performance

because it allows the read-only accesses to bypass the shared/L1 cache path, and can

support full speed unaligned memory access patterns with its higher tag bandwidth [29].

The on-chip memory also includes constant cache (for broadcasting of reads from

a read-only memory) and texture cache (for aggregating bandwidth from texture memory),

as well as the L2 cache of 1536KB, which is the primary point of data unification among

different SMs. The L2 cache serves all load, store, and texture requests and providing

efficient high speed data sharing across the GPU [29].

The off-chip memory includes global memory and local memory. The global

memory (also referred as the device memory) has the largest size (e.g., 5GB in the Tesla

K20 we use) in the GPU memory hierarchy, but also has the longest access latency

(accesses may take hundreds of cycles). Grids of thread blocks can share the results in

the global memory after the global synchronization among kernels.

Although called “local memory”, the local memory locates off the chip instead of

on the chip, because “local” here means thread local. The local memory is as slow as

the global memory, and threads use local memory for the register spilling purpose as we

mentioned previously.

Other types of off-chip memory include the constant and texture memory. The

constant memory stores constants and kernel arguments, while the texture memory is

optimized for 2D spatial access pattern. These two types of memory are cache optimized

with the corresponding on-chip constant and texture cache we have introduced above.

Thanks to the multi-level memory hierarchy, the GPU is able to tolerate the very

expensive accesses to the global/device memory, where the GPU computation usually

starts. In addition, the GPU also uses a high degree of multithreading and fast context
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switching to hide the memory access latency for better utilization, by keeping more active

threads than the number of cores. For example, the Kepler GPUs allow up to 64 active

warps on each SM. If a warp is waiting for the memory accesses, the execution will

switch to another active warp that is ready to run.

2.2.3 Memory Address Space and Data Transfer

Unified Virtual Addressing (UVA) and Unified Memory

The discrete GPU has its own device memory, which is separated from the host

DRAM. In the early ages of CUDA, the GPU and the CPU also have separate virtual

memory address space, thus they cannot access each other’s memory address directly. To

access the data on the host, the GPU has to memcpy (via cudaMemcpy calls) the data

from the host DRAM to its device memory explicitly; after the computation, the GPU

has to memcpy the results back from its device memory to the host DRAM explicitly, if

the results are needed on the host.

CUDA 2.0 introduces “zero-copy memory”, which allows the GPU threads to

directly access the data on the host DRAM (must be pinned host memory), as long as

they obtain the device pointers to the data. Zero-copy memory maps the host DRAM

address into the GPU address space so that it is visible to the GPU threads, but the actual

data transfer from the host to the GPU still happens via the PCIe bus when the data is

accessed. Unlike using cudaMemcpy, however, zero-copy does not need users to do

explicit data transfers, and only data that is needed instead of the whole data chunk will

move over the PCIe bus.

Sharing data via zero-copy memory requires synchronization of memory accesses

between the host and device memory. Otherwise, undefined behaviors will happen when

simultaneous modifications to the data in zero-copy memory occur from both the CPU

side and the GPU side. When multiple accesses to zero-copy memory take place, these
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accesses will result in multiple small (and probably synchronous) transfers via the PCIe

bus with low bandwidth. In this case, an explicit data transfer in advance is more efficient

than multiple zero-copy accesses.

CUDA 4.0 further introduces Unified Virtual Addressing (UVA) to provide a

single unified virtual address space for both the CPU and the GPU, when applications

run as 64-bit processes [21]. In UVA, there is no distinction between the host and device

pointers, and CUDA runtime will determine if a pointer is on the host CPU or on the

GPU. Thus, the CUDA kernels can directly access the pointers to the data on the host

DRAM (must be pinned host memory though). Thanks to this single virtual address

space, UVA enables simplified data accesses between the host CPU and the GPU, as well

as between two different GPUs. The direct data access between the GPUs is also referred

as “Peer-to-Peer” direct access.

Figure 2.6. The separate memory space versus the unified memory space [31]. There
was a clear physical and logical distinction between the host and device memories before
CUDA 6.0 (on the left). UVA provides a unified virtual memory address space, and UM
provides systematic support via automatic on-demand data transfers (on the right).

While zero-copy memory and UVA simplify GPU data accesses, they still require

users to explicitly allocate the pinned host memory, and each access across devices will

result in data transfer via the PCIe. NVIDIA adds a new feature called Unified Memory

(UM) [31] since CUDA 6.0, as shown in Figure 2.6, in addition to the single address
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space provide in UVA, to further improve the performance and efficiency of data transfers.

Unlike in UVA, where users have to allocate the pinned host memory and the device

memory before transferring data, UM automatically allocates the managed memory only

on the device. When the CPU touches the data via the address, it will trigger page faults,

and the CUDA runtime will migrate the part of the data from the GPU to the host via

PCIe in the granularity of pages (typically 4KB). This data migration is transparent to

users, and only involves dirty pages. The migration can happen both from the host to

the device, or from the device to the host, and the migrated data can be moved back if

needed.

Figure 2.7. GPUDirect P2P [28]. A GPU can directly issue load and store to another
GPU on the same PCIe root complex (on the left), and do direct data transfer from its
device memory to that of another GPU (on the right).

Although UM depends on UVA, they are very different. UM can achieve better

performance via the automatic on-demand page-level data transfers, while UVA only

allows the kernels to have direct data access via the PCIe. Of course, users may get the

best performance if they know when and where to move the data through well planned

explicit data transfers. Even UM in this case may not be the best choice since it does not
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know the intention of the users.

GPUDirect

Figure 2.8. GPUDirect RDMA [28]. With the RDMA support, applications can do
GPU-PCI-network-PCI-GPU communications bypassing the host DRAM.

GPUDirect [28] is a family of technologies that enable direct data communication

among GPUs (even remote ones), and between GPUs and other PCIe devices such as

NICs. This family includes three main technologies. GPUDirect Shared Access supports

direct access between GPUs and PCIe devices via shared pinned memory. GPUDirect

P2P (Figure 2.7) enables direct loads and stores from one GPU to another GPU, as well

as direct data transfer from the device memory of one GPU to that of another, with

both GPUs connected with PCIe. GPUDirect RDMA (Figure 2.8) realizes inter-node

direct access between GPUs and other PCIe devices. By removing the unnecessary data

transfers from and to the host DRAM, GPUDirect can improve the system performance.

2.2.4 Task Parallelism Support in the GPU

CUDA Streams and Asynchronous Operations

While the GPU computing mainly targets on massive data parallelism, CUDA

GPUs also support task parallelism to efficiently use different processors in heterogeneous
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computing. To enable the concurrency in executing multiple kernels and overlapping the

data transfers with kernel execution and other operations, CUDA allows applications to

run asynchronous commands in streams.

In CUDA, a stream is a sequence of operations executed on the device in the

order they are issued from the host. The operations within the same stream will execute

in the guaranteed FIFO order, and cannot overlap. The operations in different streams,

however, can execute out of order, interleaving or even running concurrently with each

other.

In CUDA, all operations have to run in one of the two types of streams, and

they can specify the chosen stream as an argument. When no stream is specified, the

operations will run in the default stream. Before CUDA 7.0, there is only one single

default stream on each GPU shared by all host threads on that GPU, and all operations

inside that default stream will have to synchronize with the host. This means an operation

in the default stream cannot start until the previous operation finishes and returns the

control to the host. Since CUDA 7.0, NVIDIA introduces per-thread default streams, to

allow each thread to have its own asynchronous default thread.

In addition to the default stream, applications can create non-default streams.

These non-default streams support asynchronous operations, such as kernel invocation and

asynchronous memcpy. In this way, applications can run multiple kernels concurrently

and overlap kernel execution with data transfers, by putting operations in different

streams.

Figure 2.9 shows the examples of overlapping different operations. In the serial

case, the operation of asynchronous memcpy from the host to the device (“cudaMem-

cpyAsync(H2D)” inside the yellow block), the kernel execution (“Kernel” inside the

green block), and the operation of asynchronous memcpy from the device to the host

(“cudaMemcpyAsync(D2H)” inside the yellow block) execute sequentially inside the
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Figure 2.9. Overlapping kernel execution with data transfers [5].

default stream, thus on overlapping happens at all. In the 2-way concurrency case, kernels

(K1 – K4) can overlap with data transfers from the device to the host (DH1 – DH4) in

different streams, but the kernels and data transfers inside the same streams still execute

sequentially. In the 3-way concurrency case, the data transfers from the host to the device,

the execution of different kernels, and the data transfers from the device to the host could

all overlap with each when they are in different streams. In this case, we can also see that

even the data transfers from the host to the device and that from the device to the host

from different streams can overlap. This is because in some NVIDIA cards (like with the

Kepler architecture), there are two separate data copy engines.

As long as there are enough available resources (including the streams, the GPU

cores, the device memory, etc.), more operations can run concurrently, as we see from

the 4-way and 4+ way concurrency cases in Figure 2.9. Kepler GPUs can support up

to 32 concurrent streams with 32 simultaneous hardware-managed work queues called

Hyper-Q, and the concurrency with multiple streams improves performance.

Multi-Process Service (MPS)

A CUDA program starts to execute by creating a CUDA context for a specific

GPU, either with explicitly using the driver API or implicitly using the runtime API [22].
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A context is the encapsulation of all the necessary hardware resources (e.g., the device

memory) for a program to run on the GPU.

Each host process has a unique context, and at any time there is only one active

context on a GPU, because the GPU uses a time sliced scheduler to schedule work from

work queues belonging to different CUDA contexts [22]. As a result, work from multiple

processes cannot operate concurrently, even they are from different streams (and these

streams are in different processes). Only operations within different streams belonging to

the same process/context can run concurrently.

To enable better sharing of the GPU resources among different processes, CUDA

introduces Multi-Process Service (MPS). MPS is a binary-compatible client-server run-

time implementation of the CUDA API [22], and sits between the CUDA driver and the

applications. MPS includes three components. The MPS control daemon starts and stops

the MPS server, and coordinates connections between clients and servers. The MPS

client runtime resides inside the CUDA driver library, and applications use the runtime to

communicate with the MPS server transparently to share the GPU resources with each

other. The MPS server process grants the GPU resources to the clients, providing the

concurrency.

Figure 2.10 and Figure 2.11 demonstrate how MPS benefits applications such as

Message Passing Interface (MPI) [26] programs. In this example, the MPI application

has two separate processes A and B. Without MPS (Figure 2.10), the MPI process A and

B will have to take turn to run within their assigned time-slice serially. Thus, kernel A1

from process A will not be scheduled to run until kernel B1, B2, and B3 from process

B run inside B’s time slice. This is because each MPI process has its own context, and

the time-sliced scheduler has to swap on and off different contexts to allow multiple

processes to share the GPU. As a result, at any time, only one MPI process is running on

the GPU.
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Figure 2.10. A likely schedule of CUDA kernels when running an MPI application
consisting of multiple OS processes without MPS [22].

Things are different with MPS. The MPS server maps multiple contexts of

different MPI processes into one single MPS server context, and these processes then

communicate with the GPU via the shared MPS server context instead of their own

individual contexts. Thus, the MPI processes can bypass the hardware limitations

enforced by the time sliced scheduling to share the GPU more efficiently. In this way,

MPS allows multiple tasks from different processes to run on the GPU concurrently,

and to overlap the kernels and data transfers, achieving higher utilization of the system

resources. In the above example, now kernel A1 from process A now can run concurrently

with kernels from process B, as shown in Figure 2.11

In addition, MPS reduces the storage requirement of the GPU contexts. MPS

just needs to maintain one copy of the context, and this copy will be shared across all

processes. If without MPS, the GPU would have to keep a separate context including

storage and scheduling resources for each process. Furthermore, MPS also eliminates the
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Figure 2.11. A likely schedule of CUDA kernels when running an MPI application
consisting of multiple OS processes with MPS [22].

context switching overhead because it does not need to switch between multiple contexts

of different processes.
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Chapter 3

Transferring Data Efficiently in Het-
erogeneous Computing Systems

The ever-growing size of application data is reshaping the design of modern

high performance systems. To be able to handle such huge amount of data, a system

has to excel in both processing/computing power and data transfer throughput. While

heterogeneous computing systems with different types of processors (e.g., CPUs and

GPUs) can provide high computing power, the efficient data transfer still remains a

challenge. So in this chapter, we describe how we provide efficient data transfer in

heterogeneous computing systems.

Efficient data transfer and I/O handling is a long-neglected issue in heterogeneous

computing systems. Most co-processors (e.g., GPUs, FPGAs) attached to the host in a

heterogeneous system do not have the ability to handle I/O operations. Thus, to access

the data stored in the I/O devices, they have to adopt the CPU-centric model, and rely on

the host CPU to first transfer data from the source to the main memory before to the final

destination.

In addition to the entrenched CPU-centric programming and execution model,

high-speed interconnects like PCIe provide fast peer-to-peer communication between

devices in a computer [103, 33, 100, 130, 41, 82, 105, 102, 129, 51, 88, 139, 116]. This

28



29

brings multiple benefits. First, it reduces data transfer latency to remove the main memory

and the CPU from the data path. Second, it frees the CPU from managing data movement

to perform useful work or shift to the low power mode to save energy. Third, it reduces

contention for TLB (Translation Look-aside Buffer) entries and memory bandwidth.

However, the existing systems require the programmers to choose either the

entrenched CPU-centric or the peer-to-peer model. Thus, it is cumbersome and difficult

to make the best use of heterogeneous system resources, as the programmers might not

be able to accurately predict the runtime workloads and make the best choice.

To address this problem, we designed Hippogriff system. Hippogriff proposes

a novel software interface and runtime system to manage the data transfers for the

applications.

As an initial step towards the full Hippogriff design, we focused on the data trans-

fer between the NVM-Express (NVMe) [38] solid-state disks (SSDs) [38, 80, 114] and

the GPUs. We implemented NVMeDirect, an extension to the existing NVMe interface

to support peer-to-peer transfers between the NVMe SSDs and the GPUs, in addition to

the conventional way of sending data through CPU and main memory. The Hippogriff

runtime system automatically selects the most efficient route of data transfers, making

applications running on the Hippogriff system agnostic to the underlying interconnect

technology. Thus, applications can adopt new interconnect technologies without any

changes.

We evaluated the Hippogriff system on a computer containing an Intel Xeon pro-

cessor, an NVIDIA K20 GPU, and a high-end NVMe SSD. Experiments demonstrate that

for a single GPU-accelerated workload, Hippogriff speeds up the application end-to-end

latencies by 1.17×, reduces the energy consumption by 17%, and improves the energy-

delay product by 26%. With slower CPUs that consume less power, Hippogriff becomes

even more beneficial, speeding up applications by 1.21× on average. As the Hippogriff
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runtime system dynamically dispatches data transfers across the available paths when

multiple processes are running, Hippogriff can accelerate the execution of multi-program

GPU applications by 19%–31% on average. Even for a GPU-MapReduce framework

that is highly optimized for heterogeneous computing systems [123], Hippogriff still

improves the performance of the framework by 12%.

The remainder of this chapter is organized as follows. Section 3.1 introduces the

two approaches of data transfer. Section 3.2 describes Hippogriff’s design, implementa-

tion, and programming model in detail. Section 3.3 describes the system configuration

and the benchmarks to evaluate Hippogriff. Section 3.4 evaluates Hippogriff’s perfor-

mance and energy efficiency. Section 3.5 compares Hippogriff with previous efforts.

Section 3.6 summarizes this chapter.

3.1 Moving Data in Heterogeneous Systems

CPU

SSD GPU

Main memory

PCIe 
Interconnect

Figure 3.1. A typical heterogeneous computing system with GPU.

Heterogeneous computing systems bring together diverse hardware resources

such as CPUs, GPUs and SSDs to improve performance, as presented in Figure 3.1. This
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Control Data

(2) Allocate main memory space 
(1) Create file descriptors

(4) Transfer data from the storage device to the main memory 
(5) Allocate GPU device memory
(6) Transfer data from the main memory to the GPU memory 

(7) Allocate main memory space (if necessary)
(8) Transfer data from the GPU memory to the main memory 
(9) Create file descriptors

(11) Transfer data from the main memory to the storage device 

SSD GPU CPU Main Memory

(3) Issue read commands

(10) Issue write commands

GPU kernel

Figure 3.2. The conventional CPU-centric data movement between the GPU and the
SSD.

section provides a brief introduction to the two types of data transfer between the storage

devices and the computing resources: the conventional CPU-centric approach and the

emerging peer-to-peer approach.

3.1.1 Conventional CPU-centric Data Transfer

In the current programming models for heterogeneous computing systems (e.g.,

CUDA or OpenCL), the CPU serves as both the control plane and data plane. When an

application needs a data transfer from the SSD to the GPU, the SSD’s driver has to first

transfer the data to a DRAM buffer via DMA, and then the GPU driver delivers the data

to the GPU also via DMA. Figure 3.2 illustrates this process in detail.

Steps (1–6) transfer data between the SSD and the GPU. In Steps(1–3), the

application creates file descriptors, allocates DRAM memory buffers, and issues read()

system calls. After the SSD directly accesses main memory in Step (4), the CPU allocates

space in the GPU (Step (5)) and, in Step (6), copies the data from the main memory to

the GPU memory. Steps (7–11) show the same process in reverse as the program moves

the results of the GPU kernel back to the SSD.

The obvious problem is, although the application just needs the data transferred
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from the SSD to the GPU, the actual data transfer has to go through the DRAM buffer

first. This inefficiency wastes CPU time and memory bandwidth, pollutes TLBs and

caches, and consumes DRAM unnecessarily.

3.1.2 Peer-to-peer Data Transfer

PCIe allows devices to send data packets directly from one to another, bypass-

ing the CPU and the main memory. Supporting PCIe peer-to-peer data transfer model

requires a device to map its own device memory to PCIe base address registers (BARs)

in the PCIe controller/switch. AMD’s DirectGMA [33] and NVIDIA’s GPUDirect [100]

are technologies that allows the software to program GPUs for PCIe peer-to-peer com-

munication.

However, the standard NVMe SSD cannot natively support peer-to-peer data

transfer, as NVMe SSDs are not byte-addressable memory devices but use block addresses

for its own data array.

3.2 Hippogriff

Hippogriff decouples the control plane from the data plane for applications, and

manages the low-level details of scheduling and executing data transfers. By eliminating

the main memory from the data path when using NVMeDirect, Hippogriff can reduce

the data transfer latency, and free up the CPU and the main memory for other tasks.

Figure 3.3 presents the components of the Hippogriff system. Hippogriff contains

three main components:

Hippogriff API: Hippogriff API allows the applications to specify the source and

destination of the data transfer.

Hippogriff Runtime System: The Hippogriff runtime system selects the best route for



33

Application

Hippogriff API

Hippogriff Runtime System

NVMeDirect

PCIe Interconnect

GPU NVMe
SSD

Operating 
system

Hardware

GPU 
runtime

NVMe

Figure 3.3. The system components of Hippogriff.

the data transfer based on the runtime information. It understands the file layout in the

storage devices, and monitors resource usage on the destination device.

NVMeDirect: Hippogriff implements NVMeDirect to achieve peer-to-peer transfer

between two PCIe devices (e.g, the GPU and the SSD).

3.2.1 Hippogriff API

The Hippogriff API allows the applications to specify only the sources and the

destinations of the data transfer, while leaving the actual data movement to Hippogriff.

The applications can use the API to initialize the environment, create data access

requests, perform data transfers, and release the resources when the transfer is done. The

Hippogriff API interacts with the underlying file system, operating systems, and the

Hippogriff kernel module to acquire permission for accessing files. Table 3.1 documents

the API.

Figure 3.4 compares a simplified LUD (from Rodinia Benchmark [112]) CUDA
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1:  fp = open(filename, O_RDWR);
2:  m = (float*) malloc(sizeof(float)*matrix_dim*matrix_dim);
3:  read(fp,m,sizeof(float)*matrix_dim*matrix_dim);
4:  close(fp);
5:  cudaMalloc((void**)&d_m, 
      matrix_dim*matrix_dim*sizeof(float));
6:  cudaMemcpy(d_m, m, matrix_dim*matrix_dim*sizeof(float), 

     cudaMemcpyHostToDevice);
7:  lud_diagonal<<<1, matrix_dim>>>(d_m, matrix_dim);
8:  cudaMemcpy(m, d_m, matrix_dim*matrix_dim*sizeof(float), 

                               cudaMemcpyDeviceToHost);
9:  fp = open(filename_output, O_RDWR);
10: write(fp,m,sizeof(float)*matrix_dim*matrix_dim);
11: close(fp)

(a)

1:  hippogriff_init();
2:  fp = open(filename, O_RDWR);
3:  hippogriff_send(fp, (void **)&d_m, 0, 0);
4:  close(fp);
5:  lud<<<1, matrix_dim>>>(d_m, matrix_dim);
6:  fp = open(filename_output, O_RDWR);
7:  hippogriff_recv(fp, d_m, 0, 
                      sizeof(float)*matrix_dim*matrix_dim);
8:  close(fp);
9:  hippogriff_deinit(); 

(b)

Figure 3.4. A simplified LUD CUDA code snippet example (a) implemented
with the conventional CPU-centric model and (b) with Hippogriff.

code snippet example implemented with the conventional CPU-centric model against

that with Hippogriff. In the conventional implementation (Figure 3.4(a)) with CUDA, the

application has to first open a file, allocates the host DRAM buffer, reads the input data

into the DRAM buffer (Line 1–3). And then it will allocate the device memory on the

GPU (Line 5), copies the data from the host to the device (Line 6) to do the computation

(Line 7). After the computation, it will have to copies the results back to the host (Line

8), and write the results out to the SSD (Line 9–11).

As the Hippogriff API does not rely on the application to setup data transfer, the
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resulting code (Figure 3.4(b)) is much simpler. After the call to hippogriff init()

initializes the Hippogriff runtime system, hippogriff send() sends data from the

SSD to the GPU and reports the location of data in the destination device using pointer

d m(Line 3). Once the function finishes, the kernel running on the GPU can access the

memory in d m (Line 5). When the kernel completes, hippogriff recv() moves data

directly from the GPU to the SSD (Line 7), and releases any resources Hippogriff was

using with hippogriff deinit() (Line 9).

3.2.2 Hippogriff Runtime System

The Hippogriff runtime system accepts the data transfer requests from the API,

and schedules them to the optimal data transfer route. Between the two routes that the

current Hippogriff runtime supports, the runtime always favors the direct data transfer

enabled by NVMeDirect. However, when the GPU does not have enough available

memory or is under heavy load, Hippogriff can schedule the data transfer to the main

memory buffer first before the GPU is ready. This results in lower overall latency and

higher bandwidth between the GPU and main memory, compared to the SSD bandwidth.

3.2.3 NVMeDirect

NVMeDirect extends the NVMe interface with new ioctl-based read and write

commands to move data directly between SSDs and GPUs. As an NVMe SSD is not byte-

addressable memory (but the GPU is), the NVMeDirect driver together with GPUDirect

or DirectGMA prepares GPU memory for the PCIe peer-to-peer transfers and generates

NVMe read and write commands that use GPU memory as DMA targets.

When the SSD receives the command, it reads or writes data directly from or to the

GPU without the involvement of the CPU and the main memory. Because NVMeDirect

still relies on the CPU code to issue read/write commands, NVMeDirect does not incur
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Control Data

(2) Allocate GPU memory space 
(1) Create file descriptors

(4) Transfer data from the storage device to the 
GPU memory

(5) Create file descriptors

(7) Transfer data from the GPU memory to the 
storage device 

SSD GPU CPU Main Memory

(3) Issue read commands

(6) Issue write commands

GPU kernel

Figure 3.5. The process of establishing direct data transfer for NVMeDirect.

any new file system integrity issues. Figure 3.5 illustrates how NVMeDirect avoids

unnecessary copies to and from main memory.

After the Hippogriff API initiates a file transfer and obtains a file descriptor from

the operating system (Step (1)), the Hippogriff runtime requests a region in the GPU

memory (Step (2)). In Step (3), NVMeDirect issues NVMe read commands that include

the GPU memory addresses to the SSD. Finally in Step (4), the SSD pushes data directly

from the SSD to the GPU using DMA, without any CPU involvement.

To write computations to the SSD, NVMeDirect follows Steps (5–7), which

resemble Steps (1–4) except that NVMeDirect issues NVMe write commands instead of

read commands and pulls data directly from the GPU memory.

NVMeDirect requires pinning GPU device memory to a BAR in the PCIe con-

troller, which is a slow operation [100]. Therefore, the NVMeDirect module maintains

a pinbuffer. When an application calls hippogriff init(), Hippogriff pre-allocates

a pinned memory region in the pinbuffer. Future Hippogriff transfers reuse this pinned

GPU memory and avoid the overhead of manipulating PCIe BARs.
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3.2.4 Implementation Details

Implementing Hippogriff requires the GPU to support GPUDirect that makes

the GPU memory available for PCIe devices. In addition, as Hippogriff uses the NVMe

command to send the GPU memory address to storage devices, Hippogriff also requires

the PCIe-attached storage device to support the NVMe standard. With these hardware

components, we modified the Linux drivers so that our Hippogriff library can set up

direct data access channels between the GPU and the storage device. In this section, we

will describe our modifications to the drivers and the implementation of our Hippogriff

system library.

To create a GPU memory region that is accessible to other PCIe devices, Hip-

pogriff first allocates a memory region in the GPU memory. Then Hippogriff uses the

nvidia p2p get pages() function that CUDA provides for GPUDirect to pin this GPU

memory location in the PCI BAR. Pinning GPU device memory in the PCI BAR is a

time-consuming operation that takes several milliseconds [100]. Therefore, we imple-

mented a virtual device, called pinbuffer, in the system. When an application calls the

hippogriff init() function in the Hippogriff library, hippogriff init() sends an

initialization command to pre-allocate a pinned memory region in this pinbuffer device.

The later function calls to the Hippogriff library will request pinned memory address

from this virtual device to reuse the pinned GPU memory and avoids the overhead of

performing the time-consuming pinning operation.

In terms of the NVMe driver, we extended the driver to support special ioctl

read and write commands for Hippogriff. The hippogriff send function and the

hippogriff recv function issue these special read and write commands to the NVMe

driver using the ioctl system call. Upon receiving these commands, the device driver

will start creating the direct data access channel between the SSD and the GPU using
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NVMe commands. The extended NVMe driver treats these special read/write commands

as conventional read/write request except that the driver maps the DMA memory to the

GPU memory. For each special command, the NVMe driver translates these requests

into standard NVMe commands, but uses the DMA addresses mapping to GPU device

memory in the physical memory pages (PRP) list of the NVMe command. After the

driver sends out the NVMe command, Hippogriff does not require the CPU for this data

transfer. The SSD accepting the NVMe command will directly send data to the memory

addresses in the PRP list without CPU’s intervention.

The current NVIDIA GPU limits the size of PCI BAR memory. For example, the

Tesla K20 card can only pin at most a 254MB memory region in a PCI BAR. Therefore,

the Hippogriff library partitions the data into chunks that fits in the pinned memory region

and issues read/write requests for each chunk of data. Then, the Hippogriff library takes

the advantage of the cheap device to device memory copy (less than 5 µs in our tests) to

put or pull the data to or from the global memory of the GPU device. For example, the

hippogriff send function will first allocate a GPU memory region (or use the memory

address for the argument, if the pointer is not NULL), and copies the data from the pinned

memory to the memory region once Hippogriff finishes moving a chunk of data.

Although the current Hippogriff implementation largely relies on NVIDIA’s

GPUDirect, the system designer can apply the same concept to other GPGPU platform

as the manufacturer of the GPU provides technology similar to GPUDirect. The designer

can also use the concept of Hippogriff to enable the SSD to exchange data with other

accelerators in the system.

3.3 Experimental Methodology

This section describes our test bed, benchmark applications, and the process of

evaluating these applications.
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Figure 3.6. The test bed for Hippogriff evaluation.

3.3.1 Experimental Platform

The testing platform is a machine running Linux 3.16.3 on a 4-core Intel Xeon

E5-2609V2 processor with 64GB DRAM. The GPU is an NVIDIA Tesla K20 card with

2496 CUDA cores and 5GB GDDR5 memory. It connects to the rest of the components

through 16-lane PCIe interconnect, providing 8 GB/s I/O bandwidth. The card BIOS

allows at most 192 MB of device memory to be mapped to the PCIe BARs. We use

an SSD with 768GB SLC chips and a PMC-Sierra controller supporting NVMe 1.1

commands [104]. The SSD uses 4 PCIe 3.0 lanes to provide 4GB/sec bandwidth, and

can sustain 2.2 GB/s for both read and write. Figure 3.6 shows our test bed.

The system uses the default “performance” governor in the Linux Intel CPU

driver as the power management policy. It dynamically optimizes the frequencies of

processor cores from 1.2 GHz to 2.5 GHz. To measure the power consumption, we use

the Wattsup power meter to read the total system power every second. The test system

consumes 117.6 W when idle.
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Table 3.2. The applications and the input data sizes.

Input Size
Application Name Small Medium Large
Breadth-First Search 37 MB 587 MB 1.17 GB
(BFS)
Computational Fluid 16 MB 570 MB 713 MB
Dynamics (CFD)
2D Discrete Wavelet 7 MB 27 MB 106 MB
Transform (DWT2D)
Gaussian Elimination 67 MB 268 MB 1.07 GB
(Gaussian)
HotSpot 34 MB 537 MB 2.15 GB
Hybrid Sort 40 MB 200 MB 1.2 GB
Kmeans 41 MB 136 MB 1.36 GB
LU Decomposition (LUD) 17 MB 268 MB 1.07 GB
k-Nearest Neighbors (NN) 71 MB 570 MB 1.14 GB
GPMR-IntCount 128 MB 256 MB 512 MB
GPMR-Kmeans 128 MB 512 MB 1 GB
GPMR-LinReg 128 MB 512 MB 1 GB
(Linear Regression)
GPMR-MM 128 MB 512 MB 2 GB
(Matrix Multiplication)

3.3.2 Benchmarks

We select 9 data-movement heavy CUDA applications from the Rodinia bench-

mark suite [112]. They accept files as inputs, and spend 55% of execution time moving

data on average. We store the input files in the binary format to eliminate the over-

head of ASCII to binary translation. For each benchmark, we generate three different

(small, medium, and large) sizes of input data, and rewrite the data movement part of

these applications with hippogriff send() and hippogriff recv(), and eliminate

unnecessary main memory allocations. To create multi-program workloads from Rodinia

benchmarks, we slightly modify the code to allocate the required GPU memory before the

GPU kernels. We also include GPMR [123], a GPU MapReduce framework, and modify

only the file I/O code. We run 4 workloads—IntCount, K-Means, Linear Regression and

Matrix Multiplication. Table 3.2 lists the applications and the sizes of input data in our

experiments.
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3.3.3 Benchmark Characteristics
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Figure 3.7. The execution time breakdown of Rodinia applications.

Figure 3.7 quantifies the significance of data movement in the 9 applications of

the Rodinia benchmark suite. It breaks down the execution time into three different

parts, and “Data movement” includes buffer allocation, data transfer, and SSD access.

Our experiments show that on average, applications spend about 68%, 54% and 49% of

execution time in moving data with small, medium and large input data sets, respectively.

Figure 3.8 breaks down the energy consumption into “idle energy” and “applica-

tion energy”. We calculate the application energy by subtracting system idle energy from

the total energy consumption. The experiments show that these applications spend 94%,

87% and 85% energy in idle power for small, medium and large input sets, respectively.

Figure 3.9 breaks down compute and data movement energy usage in the same

workloads. We only demonstrate the result when these applications use the large data

set. Even with the large data set that data movement accounts for the least amount of

execution among the three input data sets, applications still spend 48% of total system
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Figure 3.8. The energy active/idle breakdown of Rodinia applications.
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Figure 3.9. The compute/I/O energy breakdown of Rodinia applications.

energy in moving data.
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3.3.4 Test Method

To compare Hippogriff with the standard CPU-centric methods, we need to inte-

grate Hippogriff into test applications. Given a test application, we replace the traditional

I/O and data movement commands with hippogriff send() and/or hippogriff recv().

To produce multi-program workloads from the Rodinia benchmark suite, we run them

concurrently and modify the applications to ensure that the GPU kernels have sufficient

input data and output memory space to complete the GPU tasks without blocking.

We then measure the end-to-end latency of applications, thus the timer starts from

the launching of an application until the completion of the whole program. Before each

test, we clean the operating system page caches to have accurate measurement results.

3.4 Results

Hippogriff improves the application performance by dynamically choosing the

best data transfer route. This section first compares the two route options in Hippogriff

– the conventional CPU-centric NVMe and NVMeDirect, and then demonstrates the

effectiveness and trade-offs of using NVMeDirect and how Hippogriff balances these

trade-offs.

3.4.1 Comparing NVMeDirect and conventional NVMe

As NVMeDirect removes the CPU and the main memory from the data transfer

path, we expect smaller runtime overhead on the host side. To compare the runtime

overhead for each request using the conventional model and NVMeDirect, we examined

the number of CPU instructions and latency for read requests varying from 4 MB (the

smallest input file is 7 MB) to 32 MB (the maximum data size each I/O command accepts

in our SSD).

Figure 3.10 and Figure 3.11 illustrates the experimental results. We break down
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Figure 3.10. The instruction count breakdown for moving data from an SSD to
a GPU using (a) NVMe read and (b) NVMeDirect read commands.
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Figure 3.11. The latency breakdown for moving data from an SSD to a GPU
using (a) NVMe read and (b) NVMeDirect read commands.

the CPU instructions and latency into three parts: “System library” covers the operations

including opening file descriptors and calculating the LBAs. “Kernel driver” represents
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the operations that require the processor to set up DMA and interact with the SSD. “GPU

Memory Copy” includes the run-time system costs of moving data from the DRAM to

the GPU. We exclude the overheads of DRAM and GPU memory allocation in these tests

as they can be amortized over multiple runs. We use 4MB in conventional NVMe as the

baseline in these graphs.

The conventional mechanism devotes 25%–51% of its CPU instructions to moving

data from the DRAM to the GPU. This extra runtime overhead accounts for 33%–51%

of the latency.

On the other hand, as NVMeDirect bypasses the CPU and the main memory

when moving data to the GPU, it can eliminate the “GPU Memory Copy” overhead.

NVMeDirect also avoids the overhead of setting up DMA to the host DRAM in the

kernel driver. Therefore, NVMeDirect spends very few CPU instructions in GPU runtime

and the kernel driver.
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Figure 3.12. The throughput comparison of moving data from an SSD to a GPU.

Figure 3.12 compares the throughput of moving different sizes of file data from

the SSD to the GPU with NVMeDirect against conventional NVMe. The results here

exclude the overhead of allocating all necessary resources (e.g. memory buffers) along
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the data paths. The file sizes are up to 4GB due to limitation of the GPU memory size.

The performance advantage of NVMeDirect becomes more significant as file size

increases. When transferring a 4GB file, NVMeDirect offers up to 2221 MB/s bandwidth,

while NVMe can only achieve a throughput of 1691 MB/s, which is 34% lower than

NVMeDirect.
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Figure 3.13. The comparison of number of CPU instructions when moving data from an
SSD to a GPU.

To present the CPU overheads that different data movement mechanisms con-

sume, Figure 3.13 depicts the number of CPU instructions given in the experiments in

Figure 3.12. Conventional NVMe require the GPU runtime system to move data between

DRAM and GPU memory, so they require more CPU instructions than NVMeDirect. To

transfer a 4GB file, conventional NVMe uses 5.5× the instructions used by NVMeDirect.

3.4.2 Impact on single process workload

To find out the impact of Hippogriff for a single GPU application, we measure

the end-to-end latency for them. In this case, Hippogriff always uses NVMeDirect to

carry data as the application can have all the system resources.
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Figure 3.14. The speedup of applications using Hippogriff.
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Figure 3.15. The speedup of data movement in applications using Hippogriff.

Figure 3.14 illustrates the overall speedup of using Hippogriff on our benchmarks.

Hippogriff achieves an average speedup of 1.17× for all the input sets. If only consider

the data transfer, Hippogriff speeds up the data movement by 1.45× for large inputs,
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1.31× for medium, and 1.24× for small, as shown in Figure 3.15. In most cases, the

effectiveness of Hippogriff becomes more obvious as the data set size increases, since

larger input files help amortizing the initialization costs. Hippogriff also reduces the

number of page faults by 21% for the small data sets, 26% for the medium, and 32% for

the large.
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Figure 3.16. The relative energy consumption of applications using NVMeDirect.

Energy and Power

Hippogriff reduces the load on CPUs during the data transfer, enabling processor

cores to operate at lower clock rates or perform more useful work. To explore the

potential energy and power savings using Hippogriff, we measure the total system power,

and calculate the energy usage during the entire running time of these applications.

Figure 3.16 presents the relative total system energy consumption of our bench-

mark applications using Hippogriff against the NVMe baseline. Hippogriff can reduce

total energy consumption by 17%, 15%, and 14% when running large, medium, and

small input data sets, respectively. This figure also breaks down energy consumption
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Figure 3.17. The relative energy–delay product of applications using NVMeDirect.

into idle energy and application energy. Since Hippogriff reduces the execution time of

programs, we observe 13% reduction in idle energy. Even with an Intel CPU driver that

optimizes for energy efficiency, Hippogriff still reduces total system power consumption

by up to 8% and saves 30% of application energy over the baseline.

Figure 3.17 reports the energy–delay product. Hippogriff improves the energy–

delay of applications by 26%, 25% and 20% for large, medium and small data sets,

respectively.

Hippogriff and Lower-End CPUs

Hippogriff frees the CPU from transferring data between the SSD and GPU.

Therefore, the system can use a simpler and more energy-efficient CPU if most com-

putation is done on the GPU. This section explores the potential of using Hippogriff in

servers with lower-end CPUs.

For this experiment, we lower the CPU frequency in our test bed to 1.2GHz, the

lowest clock rate that the processor supports. Figure 3.18 examines the performance of
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Figure 3.18. The speedup comparison of baseline 1.2GHz and Hippogriff 1.2GHz.

the baseline system running at 1.2 GHz (“baseline(1.2G)”) and Hippogriff running at

1.2 GHz (“Hippogriff(1.2G)”). We compare these two against the baseline running at

2.5 GHz.

Lowering the CPU frequency to 1.2 GHz results in a 22% slowdown for base-

line(1.2G), since the 52% slower clock rate increases the CPU computation time by 192%

and data movement time by 54%.

Using Hippogriff, applications also see the increase in CPU computation time.

But Hippogriff can reduce the data movement time over baseline running at 2.5 GHz by

27%. As a result, Hippogriff(1.2G) only observes 6% performance loss. In this lower-end

server setup, Hippogriff shows more performance advantages. If we use execution time

of baseline(1.2G) as the baseline, the Hippogriff(1.2G) achieves 1.2× speedup.

Figure 3.19 shows the relative energy consumption of the above three config-

urations against baseline running at 2.5 GHz. Hippogriff(1.2G) can reduce energy

consumption by 4%. On the contrary, baseline(1.2G) consumes 18% more energy in total
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Figure 3.19. The relative energy consumption comparison of baseline 1.2GHz and
Hippogriff 1.2GHz.

due to the increased execution time.

3.4.3 Multi-program workload

To demonstrate the effectiveness of the Hippogriff runtime in a multi-program

environment, we compare Hippogriff and a specialized Hippogriff that always uses

NVMeDirect with the baseline. We investigated rodinia benchmark applications and

GPMR applications. Figure 3.20 shows the performance results. For all workloads that

we examined, Hippogriff achieves average speedups of 1.25×, 1.23× and 1.15× for

large, medium and small datasets, respectively.

Rodinia Benchmark

To create multiprogram workloads, we submit 8 homogeneous tasks simultane-

ously with the large, medium or small input data sets. We use the unmodified applications

as the baseline and measure the end-to-end latency.
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Hippogriff achieves average speedups of 1.31×, 1.30× and 1.19× for large,

medium and small datasets, rather than only 11%, 7% and -2% if always using NVMeDi-

rect. Although NVMeDirect can bypass the CPU and the main memory to reduce the

latency of a single task, when multiple tasks are running and one of them uses up all the

GPU memory, NVMeDirect cannot initiate data transfer until the GPU task completes.

In the baseline, however, the applications can send I/O data to the main memory before

the GPU resource becomes available, to better utilize the I/O bandwidth.

For applications that suffers slow down with NVMeDirect only, Hippogriff can

use conventional NVMe to overlap SSD I/O with GPU computation and saturate the

SSD I/O bandwidth. Therefore, Hippogriff does not incur any slowdown in applications.

For workloads that NVMeDirect provides speedup, Hippogriff can further improve the

performance by up to 2.45×.

GPU-MapReduce workload

To understand the impact of NVMeDirect in highly-optimized GPU server work-

loads, we tailor the GPU MapReduce framework GPMR [123] to use NVMeDirect for

data transfers between the SSD and the GPU. For each workload, we run 4 processes in

parallel.

Even though the baseline GPMR aggressively reduces the file I/O operations and

overlaps the data transfer with the GPU computation, Hippogriff can still improve the

performance by up to 27%, as shown in Figure 3.20.

All GPMR workloads but Matrix Multiplication contain relatively fewer MapRe-

duce tasks and file I/O operations. As a result, Hippogriff achieves limited performance

gain. For Matrix Multiplication, the workload spawns thousands of tasks and each task

reads relatively larger chunks from the input files. This allows Hippogriff to achieve

1.27× speedup.
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3.5 Related Work

Hippogriff improves the performance of heterogeneous systems by optimizing

data transfers. Most previous works considering the importance of data transfer focus

on the bottleneck between CPU and GPU [54, 74, 47]. Several works [92, 87, 120,

97] also propose to mitigate the CPU–GPU bottleneck using runtime scheduling and

pipelining to overlap data transfer and computation. Hippogriff leverages these efforts,

and automatically select the most efficient data transfer paths.

The NVMeDirect component in Hippogriff provides direct data transfers be-

tween commercially available NVMe SSDs and GPUs, similar to Donard [121] and

NVMMU [139]. However, the biggest difference lies in that, besides the direct data

transfer, Hippogriff explores the benefit of choosing the best data path in the runtime,

while both Donard and NVMMU might suffer from the severe performance issue as

we demonstrate when using NVMeDirect alone in multi-program workloads. GPU-

Drive [116] provides similar functionality, but with a customized PCIe switch to access

SATA SSDs. Hippogriff, NVMMU and GPUDrive leverages AMD’s DirectGMA or

NVIDIA’s GPUDirect to program GPU memory addresses in PCIe BARs [33, 100].

Existing works focusing on providing peer-to-peer communication to improve inter-node

communication within GPU clusters [130, 41, 82] or intra-node communication between

GPUs or other devices [105, 102, 129, 51, 88].

Hippogriff reduces the importance of CPU performance in heterogeneous com-

puting platforms. The result of Hippogriff encourages researchers to revisit the design

of server architectures [46]. Several server systems including FAWN [43], Gordon [53]

and Blade [90] also prove the concept of using low-end CPUs for servers running data-

intensive applications. Our experiments show that Hippogriff is especially effective for

GPU servers using low-end CPUs.
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Heterogeneous System Architecture (HSA) [24] provides another approach for

direct data transfer. HSA integrates the CPU and GPU on the same chip and uses a unified

virtual address space to share the main memory. Several research papers demonstrate the

potential benefits of HSA in analytical workloads and database operations [60, 135, 78].

However, with the limitation in the shared main memory bandwidth and the power

constraint from dark silicon problem [68, 126], such integrated GPUs [40, 39, 99] can

only accommodate less than 20% of the streaming units and so deliver only moderate

performance compared with high-end, discrete GPUs [39, 99]. In fact, due to their

streaming nature [106], many GPGPU applications require higher memory bandwidth

and have different memory access patterns than most CPU applications. Hippogriff will

help systems with discrete GPUs deliver better performance and energy efficiency on

data-intensive and GPU-intensive applications, by significantly reducing the data transfer

overhead as well as capitalizing on the superior internal GPU memory bandwidth.

3.6 Summary

The widespread use of accelerators, high-speed storage devices and peripherals in

heterogeneous computing platforms calls for more advanced intra-computer interconnect

as well as a thorough rethinking of the data transfer model.

This paper presents Hippogriff, a system that efficiently handles data transfers

in heterogeneous systems. As the Hippogriff API needs only the source and destination

for the data transfer, Hippogriff makes the best choice regarding data routes. We also

implement NVMeDirect to provides a direct, peer-to-peer data transfer mechanism inside

Hippogriff.

With NVMeDirect bypassing the CPU and main memory, Hippogriff brings

1.17× speedup for single program applications, and reduces the energy consumption

by 14%–17% while improving the energy-delay by 20%–26% for different data sizes.
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Hippogriff is especially effective in servers with low-end CPUs, and can speedup applica-

tions by 1.2×. With Hippogriff optimizing the data transfers by choosing the proper data

route, we demonstrated an average speedup of 1.15×–1.25× for multi-program GPU

workloads.
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Chapter 4

Boosting the Utilization of Heteroge-
neous System Resources

The previous chapter describes how to provide efficient data transfer in heteroge-

neous computing systems. However, that is the first step towards efficient heterogeneous

computing. This chapter will further introduces how to improve the system performance

and efficiency by boosting the utilization of system resources (e.g., the GPU and the

SSD), in the context of MapReduce.

To tackle data-intensive computing problems, the conventional MapReduce re-

sorts to scaling out for parallelism [61, 6]. Recent research [45, 115, 96] reveals such

parallelism gained by adding nodes comes at the cost of efficiency, while a scale-up

configuration can achieve comparable or better performance by adding resources to a

single node, given the modest dataset sizes of many analytics jobs [66, 111, 42].

An attractive way to scale up MapReduce is to utilize the massive parallelism and

the high inner-bandwidth of GPUs. Existing work demonstrates that GPU MapReduce

frameworks can achieve up to 160× the performance on a single GPU compared to their

CPU counterparts [123].

However, there is one critical piece still missing: handling I/O efficiently. While

mainly focusing on offloading computation from CPUs to GPUs, most GPU MapReduce

58
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systems neglect the impact of the bandwidth mismatch between I/O devices and the GPU.

In addition, lack of efficient I/O handling and scheduling may lead to underuti-

lization of system resources. For example, a GPU task will have to wait until its input

is ready before its computation on the GPU starts. As a result, when the I/O device is

busy with transferring the data, the GPU might be idle. Simply increasing the number of

processes/tasks cannot solve this problem, and might even cause resource contention [93]

among processes/tasks if without proper coordinating. In fact, our profiling of a state-

of-the-art GPU MapReduce framework reveals that, even with multiple processes, the

GPU utilization can be lower than 20% while the I/O device is idle for almost 50% of the

time. This inefficiency will undermine the potential performance gains from scaling up

MapReduce with GPUs.

In this chapter, we present SPMario, a GPU framework that scales up MapReduce

with optimized I/O handling and task scheduling, to address the above problems. SPMario

runtime includes a scheduler and multiple containers. The scheduler dispatches tasks

to containers, while the containers provide the execution environment for the tasks and

enforce the execution order. To further improve the performance and resource utilization,

SPMario proposes I/O Oriented Scheduling to coordinate task execution in a way that

minimizes idle time of the resources, and pipelines the I/O operations, the data transfers

between the host and the GPU, and the GPU kernel execution.

We implement the SPMario prototype on a server with an NVIDIA Tesla K20

GPU and a high-end PCIe SSD. Our experiment results show that for the single job cases,

SPMario can achieve up to a 2.28× speedup over the baseline in job execution time,

and yield up to 2.12× GPU utilization and 2.51× I/O utilization. When scheduling two

jobs together, SPMario with I/O Oriented Scheduling outperforms with round-robin by

up to 13.54% in execution time, and 12.27% and 14.92% in GPU and I/O utilization,

respectively.
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The remainder of the chapter is organized as follows. Section 4.1 introduces the

background and discusses the problem of I/O handling and resource underutilization.

Section 4.2 describes the design and implementation of SPMario. We then introduce the

I/O Oriented Scheduling algorithm in Section 4.3, and evaluates the SPMario prototype

in Section 4.4. Section 4.5 discusses the related work. Finally, we summarize this chapter

in Section 4.6.

4.1 Background and Motivation

This section provides a brief overview of the GPU and MapReduce, as well as

GPU MapReduce. We then discuss the problem of I/O handling and resource underuti-

lization.

4.1.1 The GPU and MapReduce

GPUs have gained sustained popularity in general purpose computation for their

massive parallelism. The GPU is a processor comprised of multiple SIMD streaming

multiprocessors, or SMs. It organizes threads into thread blocks that execute functions

called kernels, and the current hardware cannot preempt a running kernel. GPU program-

ming frameworks such as CUDA [23] and OpenCL [7] ease the process of accelerating

the original serial programs.

MapReduce [61] represents another form of parallelism to process data on a

large scale. To write a MapReduce application (a “job”, users just need to provide two

primitive functions called Map and Reduce. The MapReduce framework will apply

the Map function on input data blocks (“chunks”), and produce a list of intermediate

key-value pairs. The Reduce function produces the results with these pairs.

Given the parallelism possessed by both GPUs and MapReduce, it seems natural

to pursue the possibility of scaling up MapReduce systems with GPUs. For one thing,
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by offloading the computation to the GPU, a single machine can drastically boost its

performance. For another, the MapReduce programming model and interface can simplify

GPU programming, allowing users to focus on the application logic.

4.1.2 I/O Handling and Resource Underutilization

While many efforts are made to improve the performance of GPU MapReduce

systems [77, 79, 56, 85, 52, 50, 55, 58, 123, 86, 133] and to employ GPUs in Hadoop

[70, 124, 137, 69, 32, 117], there are two important problems neglected or not well

addressed by the existing solutions: the efficient I/O handling and the resource utilization.

Because the current programming model deems the GPU as a co-processor [118],

most existing GPU MapReduce frameworks do not consider I/O handling. They either

assume the entire datasets loaded into the host DRAM already, or leave the hassle of

handling I/O to the operating system. Thus, the existing scale-up GPU MapReduce

frameworks have limited scalability, and cannot handle large datasets.

In addition, few GPU MapReduce solutions aim to pursue better utilization of

system resources. Indeed, it is admittedly difficult to achieve good occupancy and full

utilization of the GPU with user-provided kernels, while the lack of kernel preemption

prevents efficient multitasking. Thus, many systems leave individual GPUs underutilized1.

For example, the GPU and I/O utilization are only 19.01% and 36.25%, respectively,

when we run a 16K×16K matrix multiplication (MM16K) with the default single worker

process in GPMR [123], an optimized GPU MapReduce library for both individual GPUs

and clusters, as shown in Figure 4.1.

Could multi-tasking help solve this underutilization problem? Our first obser-

vation reveals that, although simply raising the number of processes/tasks might
1We define the GPU utilization as:

utilization = active time
total time ,

where active time measures the accumulated time when SMs are running, and total time is the total time
span of the job execution. We also apply this definition to describing the I/O utilization in this chapter.
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Figure 4.1. GPU and I/O utilization of MM16K for baseline GPMR. All data
are normalized to the single process case (1p) for comparison. For 1 process (1p),
the GPU and I/O utilization are only 19.01% and 36.25%, separately. Increasing
the process number (from 1p to 4p) only brings 3.44% and 6.30% improvement
on the GPU and I/O utilization, respectively, and reduces the execution time by
15.40%.

marginally help, it could result in serious resource contention without proper coor-

dination, which will in turn prevent further utilization and performance improve-

ment. Figure 4.1 shows the utilization of the GPU and the I/O can only improve by

3.44% and 6.30%, respectively, and the total execution time only decreases by 15.40% in

MM16K, when increasing the number of processes from 1 to 4 for the same amount of

the job. At the same time, however, the average per-chunk (64MB here) I/O access time

increases drastically from 29.4ms to 102.8ms, as shown in Figure 4.2. The substantially

increased I/O time will also lengthen the task’s completion time.

In fact, the problem of resource contention is not unique in GPU MapReduce [93],

yet it becomes deteriorated in a GPU scale-up configuration, because MapReduce tasks
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Figure 4.2. Avg. per-chunk I/O time of MM16K for baseline GPMR. For
the same amount of job, the average per-chunk (64MB) I/O time drastically
increases from 29.4ms to 102.8ms with the increase in the number of processes
(from 1p to 4p), since these concurrent processes tend to compete for I/O during
the same period of the time.

come in waves [136], and concurrent tasks tend to compete not only for the I/O

resources, but also for the non-preempted GPU. Some NVIDIA GPUs (like K20) do

support running multiple kernels concurrently when possible [5]. But this best-effort

feature cannot guarantee its effectiveness. Figure 4.1(a) shows even though the execution

time does decrease with more processes, the GPU active time does not shrink accordingly.

Then how to coordinate these concurrent tasks to avoid contention effectively?

Our second observation is that, a task kernel cannot proceed before its input chunk

is ready on the GPU. Usually users have little control over which GPU kernel to run;

it is the CUDA runtime and driver that determine the concrete kernel launch sequence.

But by enforcing the order of supplying the input, we can accordingly control the kernel

execution sequence. In addition, our third observation reveals that, for typical GPU

MapReduce tasks, a single chunk with the size of 64MB or 128MB is enough to

saturate the I/O bandwidth, even for a PCIe SSD. For example, in Figure 4.2, the read

bandwidth for the single process is ∼2.17GB/s, and our PCIe SSD can sustain ∼2.2GB/s.
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Figure 4.3. System architecture.

With the above three key observations, we design and implement a GPU MapRe-

duce framework, SPMario, to improve the resource utilization and performance. By

employing the proposed I/O Oriented Scheduling, SPMario can allow multiple tasks and

jobs to share the GPU efficiently. We will use the term “process” and “task” interchange-

ably in this chapter, since a task runs in a process.

4.2 Design and Implementation

This section describes the design and implementation of our SPMario proto-

type. We first give an overview of the system architecture, and then introduce the key

components and optimizations in detail.

4.2.1 System Overview

As depicted in Figure 4.3, SPMario includes a global scheduler, and one or more

containers. The scheduler picks a container to monopolize the full I/O bandwidth within a
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quota, and the chosen container decides the concrete task execution order. Each container

has a single I/O manager to do I/Os for all its own tasks. The container collects task

status, and enforces the task execution order by asking the I/O manager to supply input

data to tasks following the decided order. After a data chunk is ready, the task process

invokes the GPU MapReduce Engine inside that container to process the chunk. The

SPMario runtime tracks the system resource usage including the I/O chunk buffers and

the GPU device memory.

4.2.2 Scheduler

The centralized scheduler accepts jobs from users and dispatches tasks to different

containers, based on job configurations and system resource availability. It can implement

different scheduling policies like priority-based and round robin, by controlling the

number of containers a job can have to run tasks and the I/O quota for each container.

SPMario iteratively processes tasks, so it keeps one mapper and/or one reducer for each

task in a container. Thus, having more containers for a job means higher degree of

parallelism; and assigning a larger I/O quota to a container means longer run time within

each scheduling cycle for the container.

The scheduler picks at most one container to run at any time. If the current

container runs out of quota, the scheduler will schedule another container. The scheduler

monitors the job execution and balances the system loads.

4.2.3 Container

A container, as shown in Figure 4.3, is analogous to a node in the scale-out

configuration, and provides the execution environment for its tasks. A container accepts

a list of tasks dispatched by the scheduler. The I/O manager inside each container serves

I/Os to tasks. We mainly discuss the input I/O thread since the output is not on the critical
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path.

Similar to other MapReduce implementations, SPMario reads inputs from SSDs

into fixed-size chunks (default is 128MB and configurable). But in SPMario, it is the

dedicated input thread inside the I/O manager that performs I/Os, while in other systems

individual tasks fetch their own inputs independently. For example in Hadoop [6], each

mapper employs its corresponding RecordReader method to fulfill I/O requests. In these

systems, individual tasks are not aware of their peers’ I/O behaviors. As a result, multiple

I/O streams tend to compete for the I/O resource when running concurrently, leading to

the resource contention problem [93].

The dedicated I/O thread in SPMario’s I/O manager, on the other hand, allows

scheduled tasks to take turns enjoying the full SSD bandwidth within the assigned I/O

quota. This is the key to implementing the task scheduling in SPMario. By choosing the

order of supplying input data, the container is able to enforce the execution order of tasks

with the help of the I/O manager.

The I/O manager maintains two chunk buffers (for input and output) allocated on

the pinned host DRAM for each running task. To achieve better performance, SPMario

fully explores the opportunities to optimize data transfer. First, the input thread puts

an input chunk into one of the available ring buffer slots, and immediately returns to

perform the next I/O. If the ring buffer for the current task is full, the I/O thread will not

block but seek to do I/Os for other tasks. The dedicated non-blocking I/O thread allows

SPMario to overlap I/O operations with asynchronous GPU operations, so SPMario can

be very efficient even when only one process is running.

Moreover, SPMario assigns a separate CUDA stream for each chunk in the

chunk buffer, so multiple streams (even from different processes with the help of CUDA

MPS [22]) can run in parallel, while still preserving the order between asynchronous

memory copy and kernel execution inside each stream. SPMario further pipelines
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operations including I/O, data transfer between the CPU and the GPU, and GPU kernel

execution to reduce execution time.

4.2.4 GPU MapReduce Engine

After a task gets a chunk ready in its chunk buffer, it continues to invoke the GPU

MapReduce Engine to process the chunk. We implement the GPU MapReduce Engine

(“GMR Engine”) based on GPMR [123].

Like GPMR, GMR Engine has four stages: Map, Bin, Sort and Reduce. In the

Map stage, the mapper runs map kernels on inputs to emit key-value pairs, and allows

doing Partial Reduction to reduce the data transfer and host DRAM usage. GMR Engine

then partitions the key-value pairs into buckets, and sends them to the right reducer in the

Bin stage, where a binner thread will collect and distribute the pairs. The sorter sorts the

pairs, and the reducer produces outputs. The GMR Engine has a default I/O handler for

simple file formats, and can accept customized handlers to deal with complex formats.

Our primary focus is the scale-up configuration, but we can easily apply our

design to a scale-out configuration, by adding another level of scheduler for scheduling

jobs to different nodes, while leaving the current scheduler and containers for jobs and

tasks on a specific node. We leave this as future work.

4.3 I/O Oriented Scheduling

SPMario aims to achieve both good performance and high resource utilization, so

we propose I/O Oriented Scheduling. There are three core aspects of the scheduling: First,

it attempts to keep I/O devices (SSDs) busy to maximize the I/O bandwidth; Second,

it enforces the task execution order by controlling the I/O order to reduce resource

contention; Third, it tries to schedule tasks with different I/O and kernel patterns together

to improve the overall resource utilization.
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The concrete scheduling is twofold: the scheduler first chooses a container to

monopolize the full I/O bandwidth within its assigned quota; the scheduled container

then executes the chunk-based task scheduling to determine the task execution order.

Algorithm 1: Container Scheduling.
1 Given the current scheduling policy Pl:
2 for container c ∈C do
3 pr← getPriority(c,Pl) ;
4 quota← getQuota(c, pr) ;
5 status← scheduleContainer(c,quota) ;
6 updateStatus(status) ;

Algorithm 1 shows the process of assigning I/O quotas to containers. The sched-

uler loops through all containers to make sure no container is starving. SPMario is able

to support priority-based scheduling policy, by changing the I/O quota assigned to each

container.

After getting its quota, a container executes Algorithm 2 to do the specific task

scheduling. For the convenience of the description, we assume the fixed-size chunks for

now. Given a chunk of a task t, as well as the sum of the kernel execution time and the

data transfer time between the CPU and the GPU for the chunk, we first define Rt (Line

2) as the ratio of this sum to the I/O time on the chunk. Within its quota, the container

decides the task execution order. It always begins with selecting a task with the maximum

Rt from the tasks with the highest priority, to make a big initial deposit (Rt unit) for the

following tasks (Line 13 - 16). To decide which task to schedule next, the container

first deducts 1 unit from the deposit for this upcoming task’s chunk I/O (Line 18), and

evaluates if the deposit left is enough for another task’s chunk after this upcoming task.

If it is, then the container can choose any task (with higher priority) as this upcoming

task, and our algorithm selects a task that has not been scheduled before to be fair (Line

18 - 22). But if it will run short of the deposit for the task after the upcoming task, the

container will try to find one with the maximum Rt as the upcoming task, to increase the



69

Algorithm 2: Task Scheduling inside a Container.
1 Define:
2 Rt = (kernelTime+dataTrans f erTime)/IOTime.
3 Qt, the queue for tasks not scheduled.
4 Qr, the queue for tasks scheduled to run.
5 while true do
6 quota←getQuota();
7 deposit← 0;
8 while quota do
9 if Qt is empty then

10 quota← 0;
11 return the control to the scheduler;

12 else
13 if first chunk in the current round then
14 //Select the task with
15 //the highest priority and max Rt
16 (T,Rt,cquota)←getTaskRt(Qt);

17 else
18 deposit← deposit−1;
19 if deposit ≥ 1 then
20 //Select the one
21 //not being scheduled yet.
22 (T,Rt,cquota)←getTaskFair(Qt);

23 else
24 //Select the task with the
25 //highest priority and max Rt
26 (T,Rt,cquota)←getTaskRt(Qt);

27 deposit← deposit +Rt;
28 pushQr(T,cquota);
29 quota← quota− cquota;

deposit (Line 23 - 26).

To support various-sized chunks, we just need to modify the values of Rt based

on the smallest chunk size accordingly. In addition, the algorithm requires the knowledge

of the I/O time, the time of the data transfer between the CPU and the GPU, and the

kernel execution time for a given chunk. While it is easy to estimate the first two, the
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kernel execution time requires more efforts. We can either get this information from

the users, or SPMario can profile the kernels within the first several runs. We do not

implement the profiling in our current prototype, and will leave it as future work.

4.4 Evaluation

We evaluate SPMario and show the experimental results in this section. We

also present a case study to demonstrate SPMario’s effectiveness in accelerating GPU

programs.

4.4.1 Experimental Platform

We conduct the experiments on a server with a 4-core Intel Xeon E52609V2 CPU

at 2.5GHz and 32GB DDR3-1600 DRAM. The server contains an NVIDIA Tesla K20

GPU with 5GB GDDR5 memory, which connects to the server through 16 lane PCIe 2.0

with 8GB/s bandwidth. The storage is a 768GB high-end PCIe SSD connecting to the

server with 4 lane PCIe 3.0, and can sustain 2.2GB/s for both read and write. We run

Ubuntu Linux kernel 3.16.3 with CUDA Toolkit 7.0.

4.4.2 Benchmarks

We run the experiments with four different applications on SPMario, including:

Matrix Multiplication (MM), K-Means Clustering (KMC), Linear Regression (LR), and

Image Grep (IG).

The first three are representative GPU MapReduce applications: MM has longer

I/O time than the kernel, but the I/O and the kernel time are comparable. KMC is a

compute-intensive application with longer kernel time than I/O. For LR, its kernel is

much shorter than I/O. We use cuBLAS library [8] to implement MM for maximum

performance, and extend KMC and LR from GPMR to support big datasets.
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Table 4.1. Dataset sizes and chunk sizes of the benchmarks. For MM16K and
MM32K, their dataset sizes are smaller than the actual input sizes, because we
do not assume any caching.

MM16K MM32K KMC2K KMC4K LR2K LR4K
Total Input Size (GB) 17.4 135.2 32 64 16 32

Chunk Size (MB) 64 128 128 128 128 128

We test each application on two sizes of datasets, as shown in Table 4.1, with

1, 2, and 4 processes on the baseline2, while with 1, 2, and 3 on SPMario, because the

SPMario scheduler occupies one of the four CPU cores. We also run four pairs of these

applications to show the effectiveness of SPMario’s scheduling policy.

To demonstrate SPMario’s ability in parallelizing GPU applications, we port a

well written GPU application imgrep [9] (IG) to SPMario. IG takes a given image as

the target, and tries to i“grep” the target image from a pool of candidates. The mapper

function performs grep to emit “1” if finds the target image, or “0” otherwise, and the

reducer collects the count.

4.4.3 Intra-Job I/O Oriented Scheduling

We evaluate SPMario’s I/O Oriented Scheduling for individual jobs against

GPMR [123] as the baseline, since very few other GPU MapReduce systems are both

open sourced and with good code quality. To be fair, we optimize the default GPMR with

streams and MPS enabled.

To better understand the results of all applications, we first discuss the results of

16K×16K Matrix Multiplication (MM16K) as an example.

We compare the baseline and SPMario in the execution time and GPU utilization

for MM16K with different processes in Figure 4.4(a). Even when only one task is running,

SPMario effectively overlaps the task’s GPU kernel execution with I/O, reducing the

2We did run up to 16 processes but reached the peak performance and utilization with 4 processes for
all the applications, so we only report the results for up to 4 processes here.
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execution time by 35.14 %. With the increased degree of parallelism, the baseline can

also reduce the execution time, but SPMario keeps outperforming the baseline by 35.03 %

for 2p, and by 33.2 % for 4p (3p for SPMario). Increasing the task number improves

the GPU utilization for the baseline (from 19.08 % to 22.52 %), but improves more for

SPMario (from 27.85 % to 31.93 %).

Figure 4.5(a) shows the breakdown of the active/idle time for the total I/O time

span. For both the baseline and SPMario, the active I/O time remains the same when

increasing the task numbers, because the I/O bandwidth is saturated. But compared to

the baseline, SPMario drastically reduces the idle I/O time (by 73.79 % for 1p, 87.71 %

for 2p, and 88.32 % for 4p/3p, separately) via its effective task scheduling.

One of the main factors causing the inefficiency of the baseline is resource

contention. As illustrated in Figure 4.6(a), the average per-chunk I/O time of the baseline

rises rapidly from 29.38 ms to 102.79 ms, while remains almost unchanged in SPMario,

indicating severe I/O contention among different tasks in the baseline. The contention in

I/O resource prevents the baseline from efficiently pipelining its GPU and I/O operations,

resulting in more GPU and I/O idle time.

To demonstrate the effectiveness of SPMario, we conduct more experiments

on 32K×32K MM (MM32K), KMC with 2048 million elements (KMC2K) and 4096

million elements (KMC4K), LR with 2048 million elements (LR2K) and 4096 million

elements (LR4K). Figure 4.4 and Figure 4.5 depict the results of GPU and I/O utiliza-

tion, and Figure 4.6 shows average per-chunk I/O time for each set of the experiments.

Table 4.2 summarizes the improvements of SPMario over the baseline.

In all the experiments, we observe similar results: For the single task case,

SPMario can reduce the execution time by overlapping GPU kernels and I/O operations.

With the increase in the task number, SPMario can continue to improve the GPU and

I/O utilization, by reducing the I/O contention and the idle I/O time through deliberate
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Table 4.2. The percentage improvement of SPMario over the baseline for
individual jobs. SPMario can reduce the execution time by up to 48.0%, and
improve GPU and I/O utilization by up to 84.0% and 91.56%, respectively,
compared to the baseline.

# of
Tasks

Exec. Time
↘ (%)

GPU Util.
↗ (%)

I/O Util.
↗ (%)

MM16K
1 35.14 45.9 53.69
2 35.03 45.61 54.35

4/3 33.20 33.50 45.63

MM32K
1 40.93 63.88 69.07
2 48.00 84.0 91.56

4/3 45.65 62.93 74.7

KMC2K
1 29.17 41.34 41.26
2 8.44 -1.3 7.87

4/3 19.31 13.37 23.55

KMC4K
1 31.37 45.55 45.87
2 12.92 3.57 13.51

4/3 24.38 20.97 32.1

LR2K
1 8.52 9.34 9.66
2 0.78 0.97 3.14

4/3 3.28 2.78 3.75

LR4K
1 16.39 0.43 3.7
2 0.40 0.27 3.69

4/3 3.57 0.27 0.93
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scheduling.

It is worth noting that for both KMC (in Figure 4.4(c) and (d)) and LR (in

Figure 4.4(e) and (f)), the baseline execution time increases with 4 tasks, due to the rise

in the idle I/O time. This indicates the effect of I/O contention has overwhelmed the

benefit of parallelism (Figure 4.5(c) and (d) for KMC, and Figure 4.5(e) and (f) for LR).

Also the improvement by SPMario for LR is limited, because LR is I/O dominant: it

spends less than 2 % of its execution time in GPU computation, while devoting most to

I/O operations. As a result, SPMario has less chances to overlap the GPU kernels with

the I/O operations.

Overall, with up to three processes, SPMario is able to achieve a 2.28× speedup

over the original single process baseline in job execution time, and yields up to 2.12×

GPU utilization and 2.51× I/O utilization.

4.4.4 Inter-Job I/O Oriented Scheduling

To test SPMario’s effect on scheduling multiple jobs, we run four pairs of jobs,

including [MM16K, KMC2K], [MM16K, LR2K], [MM16K, KMC4K], and [KMC2K,

LR4K]. We choose these job pairs because: First, the jobs in each pair have close dataset

sizes and execution time. Second, these combinations cover all the three different types

of jobs.

Currently there is no job scheduler supporting multi-job scheduling on GPUs, and

the GPMR cannot run multiple applications together either. So instead of using GPMR

as the baseline, we use SPMario with round-robin as the baseline to compare against

SPMario with I/O Oriented Scheduling.

It is not easy to further squeeze any improvement out of the highly optimized

SPMario jobs, since SPMario has already removed most idle I/O time for individual jobs,

as we see in section 4.4.3. However, SPMario’s I/O Oriented Scheduling is still able
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Figure 4.7. GPU and I/O utilization comparison of co-scheduling between
SPMario with round-robin and I/O Oriented Scheduling. Even compared to the
already highly-optimized SPMario with round-robin, SPMario with I/O Oriented
Scheduling is still able to further shrink the idle time for higher utilization and
better performance.
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to find optimization opportunities, as shown in Figure 4.7. Table 4.3 summarizes the

improvement in percentage. Limited by K20’s device memory (5GB), SPMario is only

tested to schedule two jobs together, but it can schedule more with bigger device memory

(e.g., 12GB in K40).

Table 4.3. The percentage improvement of SPMario with I/O Oriented Schedul-
ing over round-robin for co-scheduling. When scheduling two jobs together,
SPMario with I/O Oriented Scheduling can reduce the total execution time by up
to 13.54 %, and improve GPU and I/O utilization by up to 12.27 % and 14.92 %,
respectively, compared to with round-robin. The most gain is from the job pair
[KMC2K,LR4K], due to the fact that KMC has longer kernel execution than
I/O, while LR has a very short kernel.

Exec. Time
↘ (%)

GPU Util.
↗ (%)

I/O Util.
↗ (%)

[MM16K,KMC2K] 7.92 10.63 9.17
[MM16K,LR2K] 12.59 1.80 11.65

[MM16K,KMC4K] 6.53 7.18 7.03
[KMC2K,LR4K] 13.54 12.27 14.92

4.4.5 A Case Study

To demonstrate the effectiveness of SPMario, we run the SPMario version of

IG against the original one. The original IG includes improvements such as supporting

multiple loading threads, and using a ring buffer to overlap I/O with GPU computation.

We configure the original IG with four loading threads, and compare it with SPMario

running with three tasks. We generate 1200 TIFF files with the average size of 30 MB.

The results in Figure 4.8 show that SPMario can reduce the total execution time by

33.4 %, while improve the GPU and I/O utilization by 50.73 % and 55.02 %, respectively.

SPMario allows users to focus on the job-specific logic while leaving the opti-

mizations, such as overlapping I/O with computation, and automatically increasing the

number of tasks to provide more parallelism to SPMario.
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Figure 4.8. GPU and I/O utilization of imgrep.

4.5 Related Work

Following the success of MapReduce [61] and Hadoop [6] on CPU clusters, great

interests have arisen in applying the MapReduce programming model to GPU systems

and employing GPUs in existing MapReduce systems.

Stand-Alone GPU MapReduce Frameworks: Mars [77] is among the first attempts

to port the MapReduce model to GPUs. Catanzaro et al. [52] build a framework with

a constrained MapReduce model for Support Vector Machine problems. MapCG [79]

avoids some inefficiency of Mars with atomic operations and provides source code

portability between CPU and GPU. Some efforts utilize the shared memory in a GPU [85,

55]. Grex [50] takes a step further by using parallel input data split and load-balance data

partitioning. Chen et al. [56] explore different schemes to run tasks on both the CPU and

the GPU on an integrated architecture. These early studies mainly focus on offloading

computation to the GPU, and can only handle datasets smaller than GPU memory. On

the contrary, SPMario can efficiently handle large datasets.

GPMR [123] is a GPU MapReduce library for both single node and GPU cluster.
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It utilizes chunking to handle datasets bigger than GPU memory, but does not consider

I/O accesses. PMGMR [57] improves its single-node predecessor MGMR [58] for bigger

datasets, by loading a large chunk into the DRAM and pipelining on small blocks of that

chunk. But using slow hard drive disks may underutilize the multiple GPUs. Moim [133]

implements a multi-GPU MapReduce framework to explore the parallelism of both CPUs

and GPUs and supports load balancing. MATE-CG [86] provides generalized reduce API

to run jobs on both CPUs and GPUs. Glasswing [64] uses a 5-stage pipeline to improve

the performance of a hybrid MapReduce system with OpenCL. Although it also claims

to “scale vertically”, its vertical scalability merely means getting better performance with

a better device (e.g., “scale” from a CPU to a GPU), while still running a single task on

each device. This is very different from SPMario, in which we explore to scale up GPU

MapReduce with running multiple concurrent tasks and even jobs on a single GPU.

None of the above GPU MapReduce frameworks or systems explore the potential

of sharing a single GPU among multiple jobs, or improving the system utilization. On

the contrary, SPMario employs I/O Oriented Scheduling to efficiently overlap I/O, data

transfer between the host and the GPU, and GPU kernel execution, and to schedule

multiple jobs to run together to better utilize the I/O and GPU resources.

Hadoop GPU Extensions and Scheduling: Many previous works [70, 69, 32, 124]

focus on invoking GPU kernels from Java code. Systems like [75, 137, 113] further

explore to automatically generate GPU kernels.

Scheduling in Hadoop is well investigated [136, 35, 72], but these general schedul-

ing cannot schedule GPU tasks. Shirahata et al. [117] propose a dynamic profiling based

method to schedule map tasks on CPUs and GPUs, and HeteroDoop [113] uses tail

scheduling scheme to achieve load balance.

These Hadoop GPU extensions and scheduling do not support GPU sharing,

nor I/O optimizations for GPU execution, since the I/O handling has to go through
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the standard Hadoop I/O path. Realizing the importance of I/O in scheduling, Hadoop

YARN [10] has considered disk I/O as another form of resource together with CPU and

DRAM [11]. It avoids over-allocation to provide tasks with guarantee in bandwidth,

response time, and I/O isolation. However, statically limiting each task’s bandwidth

would not help to increase the overall system utilization. SPMario has direct control

over I/O, so it can coordinate I/O accesses among different tasks, improving the resource

utilization while avoiding the resource contention.

Scheduling in Heterogeneous Systems: Scheduling in heterogeneous systems is an

active research area. Qilin [91] provides a new API and exploits methods to adaptively

map tasks to CPUs and GPUs. Ravi et al. [108] study the problem of scheduling jobs

on both the CPU and the GPU on both a single node and a cluster. TORQUE [12] is

a popular scheduler for heterogeneous clusters. But they do not consider GPU sharing

or I/O in scheduling. PTask [110] proposes OS abstractions to provides a system level

solution for GPU task scheduling, and is complementary to SPMario. Its budget-based

scheduling policy looks similar to SPMario, but it does not consider I/O and will block

GPU invocation when the budget is negative, while in SPMario we can continue to

schedule I/O operations even when the GPU is busy.

4.6 Summary

GPUs offer massive parallelism and high inner bandwidth, and provide an at-

tractive option for scaling up MapReduce jobs. To better utilize the advanced hardware

for large datasets, GPU MapReduce frameworks require efficient I/O handling and task

scheduling for both performance and resource utilization. In this chapter, We present

SPMario, a GPU MapReduce framework to improve the utilization of both GPU and

I/O resources, and share the GPU among concurrent tasks. Experiments on three rep-
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resentative jobs and a case study show SPMario is able to accelerate job execution and

boost resource utilization by removing idle I/O time with the proposed I/O Oriented

Scheduling.
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Chapter 5

Exploring the Algorithms and Fine-
grained Scheduling for Heterogeneous
Computing

In the previous two chapters, we have discussed the more general problems

of I/O handling and system resource utilization in heterogeneous computing. In this

chapter, we will focus on providing better algorithm and fine-grained scheduling support

in heterogeneous systems for an important application, the web search engine.

In large-scale information retrieval services, search engines serve as the key

gateway to rapidly growing data sets and must provide relevant results with consistently

low latency. For example, web search engines have to respond to tens or hundreds of

thousands of queries per second, over tens of billions of pages with the total size of

multiple terabytes [63], all while keeping response times 300 ms [83]. To provide scala-

bility, current search engines resort to massive, coarse-grain parallelism by distributing

queries across large compute clusters. To meet their latency goals, they rely on clever,

highly-optimized algorithms that exploit intra-query parallelism.

Previous work explores intra-query parallelism by increasing the number of CPU

threads[122, 125, 83, 76] that process each query (Figure 5.1(a)). Existing studies also

leverage the parallelism that GPUs [63, 44] can provide (Figure 5.1(b)) and can obtain

84
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Figure 5.1. Intra-query parallelism schemes.

impressive speedup compared to CPU solutions [44]. Because queries may have different

characteristics, some queries may run better on GPU, while others run better on CPU.

So a heterogeneous system with CPU and GPU can achieve better overall performance

by running a query either on the CPU or the GPU based on its characteristics [63]

(Figure 5.1(c)).

However, the characteristics of a query can change as the query executes. While

the early stages of a query’s execution may run well on a GPU, the later stages are often

a better fit for the CPU. Therefore, running an entire query solely on CPU or GPU in a

(Figure 5.1(a), (b), and (c)) may not achieve the best query processing performance. This

suggests that a dynamic fine-grained approach that can schedule operations within the

processing of individual queries to the suitable processors (Figure 5.1(d)) will lead to

better performance.

In this chapter, we present Griffin, a search engine that combines two innovations

to provide improved performance. First, Griffin uses both the CPU and GPU to process

queries and migrates executing queries between the GPU and the CPU as their character-

istics change. Griffin decides when and where to execute query operation without a priori

of the query’s characteristics. To make a proper decision, Griffin considers overheads
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due to data transfer between CPU and CPU and GPU memory management as well as

the system load.

Griffin addresses these challenges with a dynamic intra-query scheduling algo-

rithm that breaks a query into sub-operations and schedules them to the GPU or to

the CPU based on their runtime characteristics. Griffin uses this scheduling algorithm

to divide work between a state-of-the-art CPU-based search implementation and new

GPU-based search kernel called Griffin-GPU.

Griffin-GPU is the second key innovation in Griffin. Griffin-GPU combines two

components. The first is a parallel implementation of the Elias-Fano compression [128]

algorithm that provides fast decompression and a high compression ratio. The second is

a load-balancing merge-based implementation [3] of parallel list intersection.

Our experiments on the real world query dataset [13] show that, Griffin speeds

up the query processing by 10x and 1.5x compared to a highly optimized CPU-based

search engine and Griffin-GPU running alone, respectively. Griffin also reduces tail

latency: it reduces the 95th, 99th, and 99.9th percentile latencies by 10.4x, 16.1x and

26.8x, respectively, compared the CPU-only implementation.

This remainder of this chapter is organized as follows. Section 5.1 introduces

the background of query processing, and discusses the characteristics of CPU and GPU.

Section 5.2 describes the design and implementation of Griffin. We then evaluate the

Griffin prototype in Section 5.3. Section 5.4 discusses the related work. Finally, we

summarize this chapter in Section 5.5.

5.1 Background

The rise of search as a “killer app” on the Internet as well as the increase in the

amount data available via search has lead to highly optimized web search algorithms and

implementations. These algorithms aim to maximize performance (in terms of latency
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Figure 5.2. The Search Architecture [83].

and bandwidth) and minimize memory and/or storage requirements. As a result, these

algorithms store indices in specialized compressed formats that make minimize data

storage while still allowing for fast search.

The fastest and most space-efficient search engines also tailor the compressed

data structures and algorithms to match the hardware that will perform the search. As

a result, the best techniques for a CPU-based search engine will differ from the best

techniques for a GPU-based search engine.

Below, we describe the typical search architecture in web search engines, and

state-of-the-art approaches of query processing on CPU and GPU.

5.1.1 Search Architecture

To cope with the high volume of the web index (consisting of billions of web

documents) and the search queries, the search engine usually adopts a two-level architec-

ture [63, 83], as shown in Figure 5.2. The first level is the aggregator, and the second

level are index serving nodes (ISNs). Hundreds of ISNs store the whole web index for

billions of web documents, each responsible for a subset of the whole index. If the result

of a query is cached, the aggregator will return the result from the result cache directly
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to the user. Otherwise, the aggregator distributes the query to a group of ISNs, each of

which executes query processing, and return the results to the aggregator. The aggregator

then collects the results, and return the most relevant results back to the users.

5.1.2 Query Processing

Query processing is at the heart of search engines and it is the focus of this chapter.

The most important query processing data structure is the inverted index, which consists

of many inverted lists. There is one inverted list for each possible search term, and the

list for a term holds the document IDs (docID) of the documents (e.g., web pages) that

contain that term. The inverted lists usually store the docIDs in sorted order. The inverted

index needs to be as compact as possible to minimize the cost of the memory needed

to store it, so search engines usually store it in compressed form and decompress it as

needed.

To process a query, the search engine first loads the inverted lists of the query

terms into memory (if necessary), and decompresses them. Then, it computes the

intersection of the lists, yielding the set of docIDs that contain all the search terms.

To compute the full intersection, the search engine performs a series of pair-wise

intersections. The intersection usually starts with the two shortest inverted lists (i.e., the

two rarest search terms) to reduce unnecessary overhead. This yields an intermediate list

of docIDs, and the search engine then computes the intersection of this resulted list with

the next longer inverted list. The process repeats until all the lists have been incorporated

or the list of matching docIDs is empty.

The basic algorithm for computing the intersection of two sorted inverted lists is

similar in spirit to merge sort: The search engine scans the sorted lists and records the

docIDs they have in common. Modern search engines use sophisticated data structures

like skip lists and skip pointers (Figure 5.3), to allow the algorithm to skip large portions
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block0 block1 block2 blockn
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skip pointers

Figure 5.3. An example of an inverted list with skip pointers. The skip pointers store the
offset and the first value of each inverted list block, and can support binary search to fast
locate the required blocks.

of the lists during the scan.

Next, the search engine calculates a relevance score for each of the documents

using document metadata (e.g., the frequency of term in the document or the documents

popularity), sorts the documents according to this score and returns the top K results

(e.g., enough to fill the first page page of search results).

Below we describe these three key operations in more detail.

Index Compression and Decompression

Since inverted index can be large, compression is necessary to save memory and

storage space and to reduce data transfer time. Aggressively-optimized search engines

may even keep the entire inverted index in memory spread across several machines. Thus,

higher compression ratio is important as is decompression speed. Compression speed is

less critical since it only occurs when the search engine prepares a new index (usually

offline).

There have been many proposed compression schemes for inverted lists [140].

Many compression techniques in modern search engines start by computing the deltas
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1 21 3 9 13 29 1 18 47 68 42

100,121,163,172,185,214,282,300,347

21,42,9,13,29,68,18,47

next 1 next 3

regular values exceptions

start pos. of 
exceptions

Figure 5.4. An example of PforDelta encoding. Given a sequence of docIDs `(t) =
(100,121,163,172,185,214,282,300,347), the corresponding sequence of d-gaps is
`(d) = (21,42,9,13,29,68,18,47). Here we have b = 5 bits, so the exceptions are (42,
68, 47). We use 5 bits to represent each of the regular values as well as the pointer (the
gray positions) to the next exception element. The value of exceptions are stored at the
end of the sequence.

(a.k.a d-gaps) between two consecutive docIDs. PforDelta [141] is a state-of-the-art

d-gap-based compression scheme that provides a good tradeoff between decompression

speed and space overhead [138, 134].

Given a sequence of d-gaps `(d) calculated from the sequence of ascending

docIDs, PforDelta compresses d-gaps by choosing the smallest b such that a vast majority

of elements (e.g., 90%) can be encoded in b bits. These are called regular values. It then

encodes the d-gaps |`(d)| values by allocating |`(d)| b-bit slots, and leaves the values that

cannot be represented in b bits (called exceptions) at the end. Each exception takes 32 bits

while each regular value takes b bits. In order to indicate which slots are exceptions, it

uses the unused b-bit slots to construct a linked list, so that the b-bit slot of one exception

indicates the offset of the next exception. In the case where two exceptions are more than

2b slots apart, it adds additional exceptions in between the two slots. Figure 5.4 shows a

example.

To avoid decompressing the entire list, the algorithms usually store d-gaps into

blocks of, for example, 128 elements [138]. Each block contains the range of docIDs in

the block so the algorithm to quickly determine whether a block contains any docIDs of
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interest.

List Intersection

List intersection is the key operation of query processing. It scans and intersects

over several inverted lists of corresponding terms to find the common docIDs.

There are many intersection algorithms. We use SvS [59], a popular choice. It

orders the lists from shortest to longest and computes partial intersections starting with

the shortest two lists. This improves performance since the run-time of the merge step

depends strongly on the length of the shortest list. For example, if we search “EuroSys

Belgrade 2017”, the search engine may subtract and divide the terms into three inverted

lists for terms “EuroSys”, “Belgrade”, and “2017”, respectively:

`(EuroSys) = (11,15,17,38,60),

`(Belgrade) = (3,5,8,11,13,15,17,38,46,60,65),

`(2017) = (2,4,6,11,13,14,15,19,25,33,38,60,70).

And the result of the intersection is the common docIDs in the three inverted lists:

`(EuroSys)∩ `(Belgrade)∩ `(2017) = (11,15,38,60).

Top-K Scoring

Search engines aim to return the most relevant results to users, and this process

usually includes two steps. (1) Similarity computation: for each matched document d in

the result set, compute the similarity (or score) between q and d according to a ranking

function; (2) Ranking: find the top ranked documents with the highest scores. In this

chapter, we follow a typical ranking model, BM25 [109, 119], to determine the similarity

between a query and a document. This model and its variants are widely used in many
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modern search engines such as Lucene [14].

Let,

qt f : term’s frequency in query q (typically 1)

t f : term’s frequency in document d

N : total number of documents

d f : number of documents that contain the term

dl : document length
Then,

Similarity(q,d) = ∑
t∈q

(Similarity(t,d)×qt f )

Similarity(t,d) = t f · (1+ ln
N

d f +1
)2 · ( 1

dl
)2

Typically, each entry in the inverted list contains a document frequency (in

addition to document ID and positional information). When a qualified result ID is

returned, its score is computed by using the above equations.

5.1.3 Query Processing on CPU

Most search engines execute decompression, list intersection, and top-K oper-

ations on CPU. CPU is good at dealing with complex logic, and its advanced prefetch

and branch handling can provide high performance and efficiency. As a result, CPU

is able to run both sequential merge, especially when the data accesses exhibit ample

spatial locality. When the two lists involved in the intersection have similar lengths, the

algorithm must access most of the items in both lists, leading to that locality. As a result,

CPU performance on the merge is high. Alternately, if the length difference between the

two lists is large, CPU can perform binary search with the help of skip pointers to skip

large portion of unnecessary computation including decompression and comparison. In

this case, the CPU clock speed and aggressive branch handling will still perform well.

On the other hand, CPUs cannot exploit the large amount of fine-grain parallelism
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that exists in query algorithms [81], due to the limited number of cores. The CPU accounts

for over 70% of the response time [76] in search workloads and an even larger fraction

when the query has many terms, since there are more decompression, intersection, and

top-K computations to perform. As result, the fine-grain parallelism that CPUs cannot

exploit is a significant missed opportunity.

5.1.4 Query Processing on GPU

GPUs offer on way to exploit the parallelism that CPUs cannot. Compared to

CPUs, GPUs are able to provide massive parallelism with hundreds or thousands of

simpler cores. GPU hardware multithreading and fast context switching can hide both

arithmetic and memory latency, as well as avoid dependency stalls by overlapping thread

execution. What is more, its SIMD execution model can amortize the overhead of

instruction fetch and decode, and harness data parallelism [34]. In addition, GPU have

much higher inner bandwidth (as high as 208GB/s in NVIDIA K20) than CPU.

On the other hand, GPUs incur substantial startup overheads related to data

transfer and memory allocation, and they have limited memory (e.g., 5GB in NVIDIA

K20). However, these costs occur just once, so running larger, more complex query

operations on the GPU can amortize them.

Decompression on GPU A good parallel decompression algorithm should be efficient

on GPU without sacrificing high compression ratio or fast decompression speed. The

state-of-art CPU decompression method PforDelta is a poor match for GPU implementa-

tion, because it maintains a linked list to store the exception pointers that it must process

sequentially. This leads to slow global memory accesses and thread divergence.

List Intersection on GPU GPU list intersection algorithms often rely on parallel binary

search. When the length difference between the two lists involved in the intersection is
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large, parallel binary search reduces the search space quickly. In addition, since binary

search can skip many blocks in the longer list, it also reduces the number of blocks that

the GPU must decompress.

However, GPU binary search is not very efficient since it makes coalescing

memory accesses difficult and can lead to branch divergence. This divergence leads to

idle threads and reduced performance. Even worse, when the length difference between

the two lists is large, the binary search is more likely to reach its worst case complexity

log(N). This will lead to more frequent divergence, since the vast majority of the items

from the longer list will be missing in the shorter list. In addition, as each thread is

accessing a different area of the memory, there is little opportunity to coalesce accesses

leading to lower memory bandwidth.

When the lengths of the two lists are close, the benefit of reducing search space

in the binary search will decrease. In Section 3 we find that, empirically, the benefits

fade as when the ratio of lists sizes falls below 128x. These situations are quite common:

according to the real-world dataset we are using, about 64.69% actual intersections

contain the lists with the ratio of the length less than 128.

Parallel merge-based search is an alternative to binary search that is likely to be

more efficient in these cases. A merge-based algorithm will allow for cache line reuse

among neighboring threads and reduce the number of global memory, since the algorithm

can load data in to the faster thread-shared memory. We describe our novel merge-based

algorithm in the next section.

5.2 Design and Implementation of Griffin

This section describes the design and implementation of our Griffin prototype.

Griffin consists of three main components: Griffin-GPU, the CPU query processing

component, and the scheduler. Griffin-GPU implements the advanced parallel algorithms
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on the GPU. The CPU query processing component implements state-of-the-art CPU

query algorithms [141, 59, 109]. The scheduler decides whether to run the current query

operation on the GPU or CPU.

5.2.1 Griffin-GPU

Griffin-GPU executes query operations on GPU and relies on two key algorithms:

a novel parallel decompression scheme called Para-EF encoding to compress and de-

compress inverted lists, and a parallel merge-based intersection algorithm to efficiently

intersect inverted lists on the GPU.

Parallel List Decompression

A suitable encoding scheme for Griffin-GPU has to satisfy three requirements:

(1) high decompression speed; (2) high compression ratio; (3) highly parallel.

Based on these three requirements, we adopt an encoding scheme called EF

(Elias-Fano) encoding. The basic idea of EF encoding first appeared in 1974 [65], and

Vigna “rediscovers” it in 2013 [128] and finds it has both higher decompression speed

and compression ratio than the PforDelta.

To compress a sequence of integers, EF encoding divides each integer into high

bits and low bits, and encodes them into the low-bits array and the high-bits array. For

the list with n integer elements and U as the maximum possible value, the low-bits array

stores the (fixed) b = blog U
n c bits of each element contiguously. The high-bits array then

stores the remaining upper bits (with variable lengths) of each element as a sequence of

unary-coded d-gaps of these elements. To decompress these integers, we just need to

recover the high bits from the unary-coded d-gaps array, find its corresponding low-bits,

and concatenate them. Figure 5.5 illustrates the basic encoding and decoding of EF

scheme in detail with an example.
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Figure 5.5. An EF encoding example. For the original integer sequence (5,6,8,15,18,33),
upper bound U = 36, thus b = blog 36

6 c= 2. The low-bits array on the right stores the
low b bits of the original sequence, while the unary-coded d-gaps array on the bottom
left encodes the high-bits array. Each encoded element in the d-gaps array ends with “1”,
and the number of “0s” inside an element represents the value of d-gap. The accumulated
number of “0s” gives the actual high-bits value.

Algorithm 3: Parallel EF Decompression.
Input :EF-compressed high-bits array hb array, low-bits array lb array,

and the number of low bits b
Output :Decompressed array decmp array

1 for each thread i do
2 ps array[i]← popcount(hb array[i]);
3 ps array[i]← pre f ix sum(ps array[i]);
4 count = ps array[i]− ps array[i−1];
5 while j < count do
6 index array[ j+ ps array[i−1]]← i;
7 j← j+1;

8 Recover high bitsi from hb array[index array[i]];
9 decmp array[i]← (high bitsi << b) | lb array[i];
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Griffin-GPU is the first GPU search engine to adopt EF encoding, and we provide

the first parallel EF decompression implementation Para-EF decompression, as described

in Algorithm 3.

The algorithm first computes the population count (popcount) for each element

in the high-bits array hb array in parallel (line 2) to know how many original (decom-

pressed) elements each 32-bit word in the hb array encodes. Then, it calculates the prefix

sum (using an efficient GPU-friendly algorithm) from the popcount result and store it in

the temporary ps array(line 3).

Our algorithm separates the actual decompression into two phases: schedul-

ing and decompressing. It first uses the prefix sum result to schedule and assign de-

compression tasks to thread (line 4-7), so that each thread will decompress a value

from the corresponding word in hb array and deliver it to the final decompressed ar-

ray decmp array. For example, if ps array[0] = 13, then thread 0− thread 12 will

decompress element 0− element 12 from word 0 of hb array. If ps array[1] = 20,

then thread 13− thread 19 will decompress element 13− element 19 from word 1 of

hb array. After the task distribution, each thread recovers the high bits an element and

concatenate its corresponding low bits to get the decompressed element (line 8-9).

We have implemented this algorithm in CUDA [23], which provides a popcount

instruction, popc [15]. In addition, we use the parallel prefix sum to reduce the

dependency in the original serial EF decompression. We store a look-up table in the

shared memory of the GPU to further improve the performance of recovering the high-bits

array. We also store the temporary arrays in shared memory.

Parallel List Intersection

Griffin-GPU’s list intersection algorithm divides list intersection operations into

two class, depending on the relative sizes of the two lists. The cross-over point between
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the two techniques is a parameter of the algorithm that we determine empirically in the

next section.

When difference between list lengths is large Griffin-GPU uses parallel binary

search with the skip pointers. Griffin-GPU first does binary search over the skip pointers

instead of the long list to identify chunks that may contain that elements in the short list.

After this step, it only transfers, decompresses, and processes those chunks.

When the difference between the list lengths is small Griffin-GPU uses a parallel

merge-based intersection algorithm based on GPU MergePath [73], which, in turn, is

based on derives from [101]. The goal of the algorithm is to reuse cache lines between

neighboring threads, and reduce the accesses to the global memory by loading and

accessing data in the shared memory.

GPU MergePath divides the list intersection into two stages: partitioning and

merging (Figure 5.6). In the partitioning stage, we divide the list into partitions that each

potentially contain common elements from both lists. GPU MergePath sizes the partitions

so a pair of partitions will fit in the GPU’s shared memory. And then in the merging

stage, we merge the two sub-lists inside each non-overlapping partition to get the final

intersected results. The merging threads can run concurrently without synchronization.

The biggest challenge and the core of implementing this algorithm on GPU

efficiently is to partition lists to achieve load balancing and eliminate the need for

synchronization. Figure 5.6 shows an example of even partitions and their boundaries.

Instead of blindly doing binary search or deciding the partitions statically [63, 44],

we first consider the process of merging list A and B from a different perspective. We can

visualize this process as a merge path from the top-left corner to the bottom-right corner

of an |A|× |B| grid (Figure 5.7), allowing only right and downwards directions. Because

both list A and B are sorted, we always have:
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Figure 5.6. An Even Partition Example. The partitions divide elements from list A and
B into 4 partitions (P0,P1,P2,P3). Each partition evenly contains 4 elements of both lists
to do intersection independently later.

For all j′ > j,

i f A[i] < B[ j], then A[i] < B[ j′].

Thus, merging the two lists is transformed to the process of finding the merge

path through this matrix. We can construct such a path executing the following two

operations:

• Advance rightward by one step, if A[i] ≤ B[i];

• Advance downward by one step otherwise.

The merge path is essentially the history of decisions made during the merge, and

exactly one such path exists.

We can use the existence of this path to locate the p partitioning points for A

and B. We can find these points by drawing p cross diagonals from the top-right to the

bottom-left of the grid. Because the cross diagonals and the path are in the opposite

directions, they must meet at some intersections, and they are the partitioning points.

These points and diagonals have some interesting properties:
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• Given a partitioning point Pi j, we must have A[i] = B[ j], or A[i] is the lower bound

into B for the current partition.

• For a point on a diagonal Pi j, i+ j = |diagonal|, where |diagonal| is the distance

from the top-left origin to the position where the diagonal intersects with the axis

of list A.

We can use the above two properties to do binary search along each diagonal (in

parallel) to find the point where it crosses the merge path, and then uses these points to

partition A and B. Figure 5.7 illustrates the operation of MergePath.

The p partitioning points divide the all the elements from A and B into p partitions

evenly, thus the process of finding these points ensures that the merge stage is perfectly

load balanced. After discovering these p partitioning points, we can eventually do the

serial merge inside each partition. For more detail about this algorithm, please refer

to [73].

Previous work [3] provides an efficient CUDA implementation of MergePath.

Top-K Selection

The final stage of query processing is identifying the top-K query results to

return to the user. We evaluated three top−K ranking function in Griffin-GPU: GPU

bucketSelect [36], GPU radixSort, and CPU partial sort (provided by the C++ STL).

GPU bucketSelect is a fast parallel K-selection algorithm. We use it as the first

step of top−K selection by selecting the K−max value, and select all the top−K values.

The GPU radixSort is a brute-force solution, which just sorts all values in the list in

parallel, and we pick the top−K values. The CPU partial sort returns only the top-K

values.

We sample the list of full results for 100 queries and ran these three top-K algo-

rithms on them. We found that the CPU implementation provides the best performance
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Figure 5.7. A Merge Path example. Say we want to intersect list A =
(1,3,4,6,7,9,15,25,31) and list B = (1,3,7,10,18,25,31) with 4 partitions (so p = 4, and
each partition has (|A|+ |B|)/p = 4 elements evenly). In the grid, we draw 4 diagonals,
and they intersect with the merge path shown with arrows at 4 points (P0, P1, P2, P3).
Thus, partition 0 contains (1,3) from A and (1,3) from B, partition 1 contains (4,6,7)
from A and (7) from B, partition 2 contains (9,15) from A and (10,18) from B, and
partition 3 contains (25,31) from A and (25,31) from B. If we get these 4 partitions, we
can run merging on them concurrently, and get the intersection results: (1,3,7,25,31).
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find the suitable boundaries for the partitions. Yet this is not
addressed by any of previous work in GPU search engine and
parallel query processing.

In Gemini, we exploit a GPU merging algorithm called
GPU Merge Path [?], that derives from [?]. Instead of blindly
doing binary search or deciding the partitions statically, the
authors in [8] propose to takes the process of merging as if a
path walking down from the top-left corner to the bottom-right
corner of an |A|x|B| grid. Because both input array A and B
are sorted, we always have that if A[i]< B[ j], then A[i]< B[ j′]
for all j′ > j. Thus, merging is transformed to the process of
finding that only path with comparisons. When A[i]<= B[i],
the path advances to the right by one step, otherwise, the path
moves down by one step. This path is essentially the history
of decisions in executing a merge, and this path is unique.
So once we know the path, we will actually find the order of
merging the two input arrays.

To locate this path, we can sequentially do all the compar-
isons, or we can also first locate several points (the partition
points) on the path to reduce the search space, and then do
some local search to fix the path. To do this, we can draw
cross diagonals from the top-right to the bottem-left of the
grid. Because the cross diagonals and the path are in the op-
porsite directions, they have to meet at some point. And we
can use binary search to find these points of intersection on
the cross diagonals in parallel. The process of finding these
points ensure that the merge stage is perfectly load balanced.
After discovering this partition poinst, we can eventually do
the serial merge in each partition. For more detail about this
algorithm, please refer to [].

We refer to [?] for an efficient implementation, by first
dividing the problem into tiles with workloads of constant size
with binary search on the global memory, and then breaking
it further into threads with even workloads via fine-grained
search.

4.3. Hybrid Query Processing in Gemini

With the advanced algorithms, Gemini-GPU can efficiently
process queries on the GPU in many cases. However, we
find there are also cases when GPU may not perform better
than the CPU as expected in part of processing individual
queries. For example, when we implement the top-K function
in Gemini-GPU, we compare the three different implemen-
tations: GPU bucketSelect, GPU radixSort, and CPU par-
tial_sort (provided by the C++ STL). GPU bucketSelect is a
fast parallel K-selection algorithm developed by [?]. We use it
as the first step of top-K selection by first selecting the K-max
value, and select all the top-K values. The GPU radixSort is a
brute-force solution, which just sorts all values in the list in
parallel, and we pick the top-K values. The CPU partial_sort
returns only the top-K values.

We sample 100 lists of different sizes (from 1K to 10M) sep-
arately after the intersection from Gemini-GPU’s run on our
dataset, and run the above three different top-K implementa-

tion on these lists. Although the GPU bucketSelect algorithm
claims better performance than other parallel K-selection or
top-K algorithms such as radixSelect [?], to our surprise, we
find that among the three, the best performance is from CPU
partial_sort, as shown in Figure 1.

One of the main factors contributes to this result is that, usu-
ally the size of list intersection is relatively small, and cannot
saturate the GPU to fully utilize its potential computation.
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Figure 1: Top-k evaluation

Inspired by this result, we further sample intersections with
compressed lists from our dataset to check GPU’s effectiveness
on query processing. Because with the intersection proceed,
the length gap between the two lists involved will increase (the
number of intersected elements decreases), we are interested
to know how the ratio would affect the performance of our
Gemini-GPU. So we select 100 intersection list pairs individ-
ually with different length ratios, in the range of [1, 16), [16,
32), [32, 64), [64, 128), [128, 256), [256, 512), [512, 1024),
and [1024, ∞). To have the meaningful average time, we also
limit the length of the longer lists to be around 1M 2M. We run
the different configurations on the CPU and on Gemini-GPU,
and get the average latency. The result is shown in Figure 2.

We observe that Gemini-GPU can keep outperforming its
CPU counterpart when the gap ratio is relatively small. This
is because in these cases, almost all of the data blocks in the
intersected lists need to be decompressed, leaving little chance
for skipping with binary search to win. Thus, Gemini-GPU
can utilize the parallel EF decompression as well the parallel
MergePath algorithm to efficiently merge the two lists. How-
ever, when the ratio reaches some points between 64 and 128,
the performance of the CPU implementation starts to catch
up. And with the ratio increasing, the latency of Gemini-GPU
continues to drop, but the latency of the CPU implementation
decreases more. This is because when the length difference be-
tween the two lists is large enough, relatively less data blocks
need to be decompressed, and the skipping with binary earch

5

Figure 5.8. Top-K evaluation.

(Figure 5.8). We suspect the poor showing of the GPU algorithms is due to the small

number of results (queries rarely result in more than several thousands matches). These

small input sizes cannot saturate the GPU or amortize the GPU’s overhead.

5.2.2 Hybrid Query Processing in Griffin

The performance of list intersection in Griffin-GPU relative to the CPU implemen-

tation depends strongly on the relative sizes of the lists at hand: Griffin-GPU performs

best when ratio of list sizes is relatively small, and the CPU performance better the

difference is large.

As query processing proceeds, the length difference between the two lists involved

will increase for two reasons. First, one of the two lists constitutes the intermediate

results for the query, and this list shrinks monotonically during execution. Second, the

query algorithm starts with the smallest two lists, so the algorithm intersects the list of

intermediate results with larger and larger lists.

To understand the performance of Griffin-GPU and our CPU implementation
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can quickly reduce the search space. At this time, the modern
CPUs with speculative execution and branch prediction can
address the branch divergence effectively, while the GPU’s
SIMD advantage in high throughput and parallelism is weak-
ened.
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Figure 2: Observation

To address this issue while provide an efficient solution to
utilize the overall heterogeneous system, we propose a length
ratio based Hybrid Query Processing in Gemini to use both the
GPU and the CPU to cooperately process queries, based on our
above observation. This hybrid query processing is a two-fold
method. When a query arrives in the system, the scheduler
first decides if the current query is suitalbe for running on
Gemini-GPU or on the CPU, depending on the lengths and
length ratio of the initial two intersected lists, as well as other
factors such as the system load. We choose the ratio of 128
as the scheduling criterion. If the query is scheduled to run
on Gemini-GPU, after the intersection of the two initial lists
for a query, the system will then check if the length ratio of
the two lists in the next round is bigger than 128. If positive,
the query will continue to run on Gemini-GPU by loading
more data blocks to the GPU. Otherwise, the intermediate
intersected list will be send back to the CPU, and the rest
of the query will execute on the CPU. Because the length
ratio will have to increase, there is no chance for the query to
go back to Gemini-GPU. The detailed algorithm is shown in
Algorithm ??.

An interesting problem in this scheduling is how to run
the half-way query pushed out from Gemini-GPU. As we
describe earlier, the system maintains a separate task queue for
Gemini-GPU and each core of the CPU. So when the half-way
query gets back, it should skip the line and insert in the front
end in the queue of a CPU core to resume as soon as possible.
Otherwise, the first half accelerated execution on Gemini-GPU
would be wasted, and the overall latency for this query may
be too long. We leave this as our future work.

The verify the correctness of choosing the ratio of 128 as
the scheduling criterion, we also check the actual number
of unique data blocks to be decompressed during the above
intersection tests with different length ratios. The finding is
presented in Figure ??. We can see that when the ratio is equal
to or lower than 128, the number of blocks to be decompressed
is more than 10K. However, when the ratio is beyond 128, the
number of decompressed drop down to less than 3K, which
indicates that the amount of computation decreases, while
skipping with binary search is preferred.

The rationale behind this is that, each data block con-
tains 128 elements. When the length ratio is below 128, it
is more likely to decompress more data blocks. When the
ratio is bigger than 128,

5. Experiments
In this section, we experimentally evaluate the performance of
Gemini and answer the following questions:
•
•
•
5.1. Methodology

We compare Gemini with a highly-optimized CPU-only search
engine and GPU-only search engine.

Hardware. Our CPU and GPU models, specifications.

Datasets. There are two types of datasets: web data and
query log. The web data is a collection of 41 million Web
documents (around 300GB) crawled in 2012.1 It is a standard
benchmark in the information retrieval community. We parse
the documents and build inverted lists where each entry in the
list contains document ID and document frequency [?]. The
query log contains 150,000 real queries from the TREC2 2005
and 2006 (efficiency track).

5.2. Micro Benchmark

5.2.1. Decompression Figure 3 demonstrates that the GPU
runs decompression much faster than the CPU.
5.2.2. List Intersection Figure 4 shows the performance of
list intersection with different solutions.
5.2.3. Top-k Evaluation

5.3. Overall Performance

5.3.1. Latency Figure 5 shows the latency comparison.

5.4. Case Study: Long Tail Execution

Figure 7 compares the long tail execution.

6. Related Work
This is the related work section.

1http://www.lemurproject.org/clueweb12.php
2http://trec.nist.gov/

6

Figure 5.9. Observation.

on lists of different size, we randomly select 100 intersection list pairs in each of the

following ratio ranges: [1,16), [16,32), [32,64), [64,128), [128,256), [256,512) and

[512,1024). To have the meaningful average time, we also limit the length of the longer

lists to be in the range of [1M,2M]. We measure the run time of Griffin-GPU and our

CPU implementation for each set of pairs. Figure 5.9 contains the results.

Griffin-GPU outperforms the CPU version when the list lengths are with a factor

128. In these cases, almost all of the data blocks in the intersected lists need to be

decompressed, leaving little chance for binary search to avoid decompression. Thus,

Griffin-GPU can utilize the parallel EF decompression as well the parallel merge-based

intersection algorithm to efficiently merge the two lists. In addition, the GPU-related

overhead of kernel invocation, memory management, and data transfer from CPU to

GPU can be well amortized.

For larger ratios, the performance of the CPU implementation surpasses the GPU.

As the ratio increases, the latency of Griffin-GPU continues to drop, but the latency of

the CPU implementation decreases faster. This is because when the length difference
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between the two lists is large, performing binary search allows the algorithm to avoid

decompressing large portions of the list. At this time, the modern CPUs with speculative

execution and branch prediction can address the branch divergence effectively.

The value of 128 as a cross over point between GPU and CPU is supported both

by our empirical measurements and by formal analysis. First, we compress 128 elements

inside each data block with EF encoding. Let R and S be two lists where |R| ≤ |S|. Let

λ = |S|
|R| , then, we show that if λ > 128, it is more likely to skip unnecessary data blocks:

λ > 128⇐⇒ |S||R| > 128⇐⇒ |R|< |S|
128

In other words, when λ > 128, the number of elements in the short list (R) is smaller

than the number of blocks in the long list (S). Thus, there exists at least one block in S

that is irrelevant. As an example in Figure 5.10, R contains 5 elements and S contains 8

blocks, and two elements in R are mapped to the same block in S. As a result, there are 4

blocks (white color) in S that can be skipped.

R

S

Figure 5.10. An example explaining the ratio choice.

Similarly, we can also show that if λ ≤ 128, then all the blocks in S are relevant.

That is because λ ≤ 128⇐⇒ |R| ≥ |S|
128 , which indicates that the elements in R are likely

to be mapped to all the elements in S.

To exploit the crossover point between the performance of the GPU and CPU

implementations, Griffin uses both the GPU and the CPU to cooperatively process queries.

When a query arrives in the system, the scheduler first decides if the current query is

suitable for running on Griffin-GPU or on the CPU, depending on the length ratio for the
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two shortest inverted lists. If the ratio is less than 128, Griffin begins execution on the

GPU.

After each intersection, the system will check if the length ratio of the two lists

in the next round is less than 128. If it is, processing continues on the GPU. Otherwise,

Griffin transfers the intermediate results to the CPU and executes the rest of the query

there.

5.3 Evaluation

In this section, we experimentally evaluate Griffin to answer the following ques-

tions:

• What is the performance of Griffin-GPU?

• How effective Griffin is as a hybrid GPU/CPU search engine to process queries

cooperatively?

• How much can Griffin improve the tail latencies?

5.3.1 Methodology

In our evaluation, we run real-world queries over inverted lists generated from real

web data. We compare Griffin against both a highly-optimized CPU-only implementation

and GPU-only implementation with state-of-the-art algorithms. In this chapter, we

assume the whole dataset resides in the main memory.

We conduct the experiments on a server with a 4-core Intel Xeon E52609V2

CPU at 2.5 GHz and with 64 GB DDR3-1600 DRAM. The server installs an NVIDIA

Tesla K20 GPU with 5 GB GDDR5 memory, which connects to the server through 16

lane PCIe 2.0 with 8 GB/s bandwidth. We run Ubuntu Linux kernel 3.16.3 with CUDA

Toolkit 7.0.
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5.3.2 Benchmark

The benchmark used in our evaluation includes two parts: the queries and the

web data. The queries we run are from the query logs collected from the TREC [13]

2005 and 2006 (efficiency track), which contain 150,000 real queries. The web data

clueweb12 [16] is a collection of 41 million Web documents (around 300 GB) crawled in

2012. It is a standard benchmark and widely used in the information retrieval community.

We parse the documents and build the inverted lists each entry of which contains a

document ID and the corresponding document frequency [94].In our experiments we use

126,865 queries over about 100GB of these web documents with our limited disk space.

To have a better understanding of the benchmark, we first analyze the inverted

lists and the queries we use. Figure 5.11 gives the size distribution of the inverted list

involved in our experiments. Most lists are of the size between 1 K elements and 1 M

elements. Figure 5.12 shows the distribution of the number of terms for the queries.

About 27% queries contain only 2 terms, 33% contain 3, and 24% contain 4.
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Figure 5.11. Inverted list size distribution.
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Figure 5.12. Number of terms distribution.

5.3.3 Performance of Griffin-GPU

We run several micro benchmarks to test the performance of Griffin-GPU in

decompression and list intersection.

Decompression

Griffin-GPU implements the Para-EF decompression algorithm described in

Section 3, and we compress the inverted lists into 128-element blocks. We compare the

average compression ratio of the EF scheme to that of the state-of-the-art PforDelta over

all the inverted lists in our tests. EF scheme can achieve an average compression ratio of

4.6, which is 1.4x better than PforDelta (Table 5.1). In addition, we also observe that the

compression ratio of the EF scheme will increase with the size of the inverted list, and it

can be as high as 11.6x on a list with 106 M elements.

Table 5.1. Compression ratio comparison.

Scheme PforDelta EF
Compression Ratio 3.3 4.6
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To demonstrate the decompression speed of Griffin-GPU, we randomly select

about 7 K lists with lengths ranging from 1 K to 10 M and group them by size. We run

both the Para-EF decompression of Griffin-GPU and CPU PforDelta decompression on

these lists. Figure 5.13 depicts the average decompression time for each of the groups,

and shows the speedup of Griffin-GPU over the CPU PforDelta decompression. When

the lists are very short (e.g., of ∼ 1K or ∼ 10K elements), the speedup is relatively low

(< 2). With the increase in the list size, however, the speedup increases from ∼11x to

∼29.6x. There are two reasons for this result. First, a longer list with more elements

is more likely to saturate the GPU with higher degree of parallelism than a short list.

Second, decompressing a longer list requires more computation, and this amortizes the

overhead of data transfer and GPU memory allocation.
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Figure 5.13. Decompression speed comparison.

List Intersection

To see how Griffin-GPU’s parallel merge-based intersection performs compared

to CPU merge, CPU binary, and parallel binary search, we run the experiments of list
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intersection with these four methods on selected pairs of lists from our dataset. The list

pairs have comparable list lengths (the two lists either have similar lengths or the length

of the longer list is less than 16x longer than the shorter list), and their lengths ranges

from 1 K to 10 M.

Figure 5.14 shows the performance of list intersection with these different meth-

ods. We can see that with the relatively longer lists, both CPU merge and Griffin-GPU

merge outperform their binary search counterparts. This is because when two lists have

comparable lengths, merge-based methods can make better use of the cache and local

memory of the processor. We also notice that Griffin-GPU’s merge can achieve a up to

87.35x speedup over the CPU merge.

CPU binary search is slowest in these cases, while GPU binary search can achieve

a speedup up to 102x over its CPU counterpart due to the parallelism. However, Griffin-

GPU merge can still have up to 2.29x speedup over the very fast GPU binary search.
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Figure 5.14. List Intersection Comparison.
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5.3.4 Overall Performance

To verify Griffin’s effectiveness as a hybrid GPU/CPU search engine that pro-

cesses queries cooperatively, we test the end-to-end query processing latency with Griffin

against a highly-optimized pure CPU search implementation and Griffin’s own pure GPU

implementation (Griffin-GPU). We first divide the 126,865 queries into different groups

based on the number of terms present in the queries, and then run the three different

configurations on each group to get the average latency. From Figure 5.15 we can see

that, Griffin can consistently outperform the pure CPU search and the Griffin-GPU, with

an average speedup of ∼ 10x and ∼ 1.5x, separately.
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Figure 5.15. End-to-End query latency comparison.

5.3.5 Case Study: Tail Latency Reduction

Reducing tail latency is very important for interactive services like Web search,

since very long tail latency will significantly affect the quality of service as well as the

user experience. To see if Griffin can effectively reduce tail latency of the queries, we
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compare the latency distribution of the pure CPU solution (Figure 5.16a) and Griffin

(Figure 5.16b).
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Figure 5.16. Query latency distribution.

Figure 5.17 compares the tail latency of the CPU search versus Griffin. As we

can see, Griffin can achieve a speedup of 6.6x, 8.3x, 10.4x, 16.1x, and 26.8x, for 80th,

90th, 95th, 99th, and 99.9th percentile response time over the CPU search.
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Figure 5.17. Tail latency reduction with Griffin.
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5.4 Related Work

Parallelizing query processing with GPU. There have been some efforts in paral-

lelizing query processing with GPU. Ding et al. [63] are among the first to explore the

possibility of building search engines with GPU. However, the decompression algorithm

they use is hard to achieve both high compression ratio and fast decompression speed

at the same time, and their Parallel Merge Find intersection does not consider load

balancing for GPU. They do propose to schedule individual queries to either GPU or

CPU to improve the overall system performance. Wu et al. also propose a CPU-GPU

cooperative computing method for list intersection [132]. But different from Griffin,

both of the two only consider scheduling the whole queries, neglecting the changing

characteristics of the queries during runtime.

Ao et al. [44] propose a new linear-regression-based compression scheme and list

intersection method. But this assumes the linear properties of the datasets, and may not

perform well on some datasets [44]. In addition, they also assume caching all the inverted

lists in the very limited on-board memory of the GPU (in their case 1.5GB with NVIDIA

GTX 480 card). This will save much overhead of data transfer between CPU and GPU,

and that of GPU memory allocation. However, this may be less practical nowadays, even

considering only caching the most frequently accessed data, given the rapid growing

volume of data today.

Parallelization in interactive services to reduce response latency. Adaptive job

scheduling in multiprogrammed environment has been studied [48, 49, 71, 95]. The

scheduler assumes no a priori, and can adjust the degree of parallelism as the job executes

based on the job characteristics. Similarly, Griffin can schedule part of a query to either

CPU or GPU based on the changing query characteristics.
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Degree of Parallelism Executive (DoPE) proposed by Raman et al. [107] provides

an API for users to choose different parallelism options. The runtime will dynamically

decide the degree of parallelism accordingly. To reduce the average response time of

Web queries, Joen et al. [83] propose adaptive parallelism. The algorithm chooses

different degrees of parallelism for requests in advance, based on the system load and the

requirement of requests. Griffin could also adopt these techniques to implement flexible

scheduling.

To achieve load balance among threads when applying multithreading in query

processing, [122, 125, 83] explore intra-query parallel algorithms for lower response

time and better load balance. While in Griffin, the merge-based intersection algorithm in

Griffin-GPU can automatically achieve load balancing partitioning of indices.

To reduce tail latency, instead of directly considering the system load and work-

load characteristics, Jeon et al. [84] adopt machine learning to predict request service

demand, and parallelize the predicted-to-be-long requests accordingly. Haque et al. [76]

outperforms [84] by using Incremental Parallelism, which can dynamically increase

parallelism to reduce tail latency. It pre-computes parallelism policy offline using in-

formation such as request service demand profiles and hardware parallelism, and adds

parallelism as specified during runtime according to system load and request execution

process. This method is very effective in reducing tail latency, and is complementary

to Griffin. Because Griffin dynamically schedules parts of queries to CPU and GPU

cooperatively, decompression and intersection of longer lists tend to run on GPU with

massive parallelism and high throughput. As a result, Griffin can reduce the latency

of many long queries if run on CPU. Griffin can combine the incremental parallelism

techniques to further lower tail latency.
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5.5 Summary

In the face of rapidly growing data sets and query loads in large-scale interactive

information retrieval services, search engines must provide relevant results with con-

sistent, low response times, which is very challenging. This chapter presents Griffin, a

search engine that explores the intra-query parallelism by adaptively scheduling parts

of a query to GPU or CPU, to reduce the average response latency. Griffin introduces

two GPU algorithms in Griffin-GPU: (1) a parallel EF decompression that provides

both high compression ratio and fast decompression speed; and (2) a merge-based list

intersection that achieves load balancing partitioning and efficient merging. We evaluate

Griffin in a big dataset with real world queries and inverted lists generated from web data.

The experimental results demonstrates that Griffin’s adaptive scheduling can achieve an

average speedup of 10x compared to a highly-optimized CPU implementation, and 1.5x

compared to Griffin-GPU. We also show that Griffin can effectively achieve a speedup

of 6.6x, 8.3x, 10.4x, 16.1x, and 26.8x, for 80%, 90%, 95%, 99%, and 99.9% percentile

response time over the CPU search.
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Chapter 6

Conclusion

In the age of big data, the enormous yet ever-growing volume of data demands

great compute power and I/O handling ability. Heterogeneous computing systems,

especially those with GPUs, are able to deliver exceptional performance with better

energy efficiency, granting us the power to deal with the huge amount of data.

This dissertation has explored the systems and algorithm support for efficient

heterogeneous computing with GPUs, from three closely related aspects with three

different systems, respectively. The first system, Hippogriff, targets on providing efficient

I/O management and data transfer mechanisms. It identifies the importance of efficient

data transfers in GPU computing, and improves the overall system performance and

efficiency with two technologies. Hippogriff first enables efficient direct data transfers

between the SSD and the GPU, and then dynamically chooses the best data transfer

route for the GPU. By bypassing the CPU and the host DRAM for data transfers,

Hippogriff achieves 1.17× speedup for single program applications, and reduces the

energy consumption by 14%–17% while improving the energy-delay by 20%–26% for

different data sizes. By optimizing the data transfers with automatically choosing the

proper data route, Hippogriff gets an average speedup of 1.15×–1.25× for multi-program

GPU workloads.

The second system, SPMario, focus on improving the system resource utilization
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in the context of MapReduce. It scales up MapReduce with the GPU via optimized

I/O handling and task scheduling. SPMario makes three unique observations in GPU

MapReduce systems. First, simply raising the number of processes/tasks may result

in severe resource contention, despite the limited performance improvement it might

bring. Second, a task kernel cannot proceed before its input chunk is ready on the

GPU. Third, for typical GPU MapReduce tasks, a single chunk of 64MB or 128MB is

enough to saturate the I/O bandwidth, even for a PCIe SSD. Based on these observations,

SPMario proposes I/O Oriented Scheduling to coordinate concurrent task execution in a

way that minimizes the idle time of the system resources while avoiding I/O contention.

Compared to other GPU MapReduce frameworks, SPMario is the only one that observes

and solves the resource contention problem, and allows multiple processes to share the

GPU efficiently.

Griffin is the third system presented in this dissertation. Griffin is a heterogeneous

search engine to explore new parallel algorithms and task scheduling in heterogeneous

computing with GPUs. To meet the rigorous requirement of query latency in Web

search, Griffin uses a dynamic intra-query scheduling algorithm to break a query into

sub-operations, and adaptively schedules them to the state-of-the-art CPU search imple-

mentation and to our new GPU-based search kernels, based on the ever-changing runtime

characteristics of the queries. As far as we know, Griffin is the first heterogeneous search

engine that explores the intra-query parallelism, and considers the runtime query charac-

teristics. Griffin’s adaptive scheduling can achieve an average speedup of 10x compared

to a highly-optimized CPU implementation, and 1.5x compared to Griffin-GPU. Griffin

can also effectively achieve a speedup of 10.4x, 16.1x, and 26.8x, for 95%, 99%, and

99.9% percentile response time over the CPU search.

In conclusion, this dissertation demonstrates we can improve the performance and

efficiency of heterogeneous computing with GPUs, by utilizing the systems and algorithm
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support presented in this dissertation. With our three systems, we have examined and

discussed the problems that are important to the design and implementation of efficient

heterogeneous computing systems with GPUs, from the underlying data transfers, to the

task scheduling and resource utilization, and to the high level algorithm designs. We

believe that the design and technologies uncovered and proposed in this dissertation will

bring us one step further towards building heterogeneous computing systems with better

performance and efficiency.
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