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Abstract 
 

We study the duopolistic interaction between congestible facilities that supply 
perfect substitutes. Firms are assumed to make sequential decisions on capacities and 
prices. Since the outcomes directly affect consumers’ time cost of accessing or using a 
facility, the capacity sharing rule is endogenous. We study this two-stage game for 
different firm objectives and compare the duopoly outcomes with those under monopoly 
and at the social optimum. Our findings include the following. First, for profit 
maximizing firms both capacity provision and service quality, defined as the inverse of 
time costs of using the facility, are distorted under duopoly: they are below the socially 
optimal levels. This contrasts with the monopoly outcome, where pricing and capacity 
provision are such that the monopolist does provide the socially optimal level of service 
quality. Second, duopoly prices are lower than monopoly prices, but higher than in the 
social optimum. Hence, while price competition between duopolists yields benefits for 
consumer, capacity competition is harmful. Third, price-capacity competition implies that 
higher capacity costs may lead to higher profits for both facilities. Finally, if firms also 
care about output, this mainly affects pricing behavior; strategic interaction in capacities 
are much less affected. If duopolists attach a higher weight to output and a 
correspondingly lower weight to profits, this leads to a deterioration of the quality of 
service. 
 
 
 
Keywords: congestion, price-capacity games, imperfect competition 
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1. Introduction 

 

Many facilities, like seaports, airports, internet access providers, and roads, are 

prone to congestion.  When the volume of simultaneous users increases and capacity is 

constant, the time cost of using these facilities increases.  More generally, the quality of 

the service provided by a facility may decrease when it gets crowded.  Facility 

management can respond to quality deterioration by changing prices, but also by adapting 

the capacity of the facility.  This paper asks how capacity and price decisions are made 

for congestible facilities in an oligopolistic market structure, and compares the oligopoly 

result to the monopoly outcome and the socially optimal outcome.  

More specifically, we study the duopolistic interaction between congestion-prone 

facilities that supply perfect substitutes in the framework of a sequential game.  The 

facilities first decide simultaneously on capacities; next, they simultaneously choose 

prices, given capacity decisions.  Prices and capacities jointly determine consumers’ time 

cost of accessing or using a particular facility. The quality of service, defined as the 

inverse of time costs of using a facility, declines with crowding. We analyze the two-

stage game for two different objective functions of the congestible facilities. First, we 

assume profit maximizing facilities. Second, however, we also look at the case where the 

facilities care about output as well as profits1. For profit maximizing facilities, the 

analysis shows that at the Nash equilibrium capacities and prices, service quality is 

distorted compared to the social optimum. For plausible parameter values, it is below the 

socially optimal quality. This contrasts to the monopoly solution, in which pricing and 

capacity choice does result in the socially optimal service quality. Prices are higher under 

monopoly than under duopoly. Hence, while price competition between duopolists yields 

benefits for consumer, capacity competition is harmful. If firms also care about output, 

we find that this mainly affects pricing behavior; strategic interaction in capacities is 

much less affected. If duopolists attach a higher weight to output and a correspondingly 

lower weight to profits, this generally leads to a deterioration of the quality of service. 

                                                 
1 Recent work on airport pricing and capacity choices by, e.g., Starkie (2001) and Zhang and Zhang (2003), 
suggests that airports are likely to care about output as well as profits. For example, they may get part of 
their revenues out of concessions, implying a strong interest in output as such. 
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  The analysis of this paper is relevant to a number of situations.  Competition 

between airports in metropolitan areas (e.g. San Francisco Airport and Oakland Airport in 

the San Francisco Bay Area) is one example.  The airports are congestible, so that service 

quality declines with the number of passengers and plane movements.  If airport 

management maximizes profits2, then price decisions and capacity choices will interact 

with service quality (congestion).  A second example relates to competition between 

ports that serve the same hinterland (e.g. the ports of Long Beach and of Los Angeles in 

Southern California, or the ports of Antwerp and Rotterdam in Western Europe).  Here 

too, port capacities and port charges can be chosen by the port authorities to maximize 

profits.  Competition between internet service providers is another example, although our 

maintained no entry assumption is less straightforward in this case.  The quality of 

internet service can be measured as a weighted average of (mainly) download speed, 

upload speed and mail processing speed; the capacity (computing power, disk space and 

network capacity) that is required to keep quality constant is approximately a linear 

function of the number of simultaneous users.3  The relation between congestion and the 

need for internet access pricing is studied in, e.g., Mason (2000), who uses simpler 

representations of congestion than we do and does not consider the connection between 

capacity and price decisions, quality of service, and market power. 

Our analysis of price and capacity decisions in a homogenous goods duopoly as a 

sequential game in capacities and prices naturally builds upon earlier literature.  First, 

Braid (1986) and Van Dender (2004) study duopoly pricing decisions of congested 

facilities, but they do not consider capacity adjustments. Second, de Palma and Leruth 

(1989) do study a two-stage game in capacities and prices; however, they focus on a 

discrete demand representation (users either consume one or zero units of the good), 

which does not allow discussing the role of specific model parameters in much detail.4 

Third, Baake and Mitusch (2004) recently developed a model that is quite similar to ours, 

but mainly focus on the comparison between Cournot and Bertrand models in the pricing 

                                                 
2 At present, many airports do not act as profit-maximizers, as they are constrained by regulation and by 
long run contracts with (dominant) carriers.  In a fully deregulated environment, however, market power 
deriving from airport congestion is more likely to accrue to airports than to airlines. 
3 Personal communication with Francis Depuydt, Team Manager Integrated Service Platforms, Belgacom. 
4 In their model, the Nash equilibrium in capacities will occur where capacities are restricted up to the point 
of zero consumer surplus. 
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stage of the game. The present paper provides a more detailed analysis of Bertrand 

pricing policies, it pays more attention to the distortion of service quality in the duopoly 

case, and it contains a detailed numerical illustration of price, capacity and service quality 

levels under different market structures. Moreover, we focus on different objective 

functions.  Fourth, our analysis is closely related to an emerging literature on tax 

competition between countries or regional authorities that operate congestible road 

networks. For example, De Borger et al. (2004a, 2004b) discuss how a welfare-

maximizing government decides on tolls and capacities when the network is used by 

domestic users and by transit users, when two countries compete for toll revenue from 

transit users. In the current paper we do not focus on tolling by governments but instead 

concentrate on the interaction of private congested facilities. Moreover, we use a slightly 

simpler model structure, yielding much more transparent theoretical results.  

Finally, the present sequential capacity-price game can be contrasted to the 

literature evolving from the seminal paper by Kreps and Scheinkman (1983). They show 

that, with an L-shaped marginal cost function and with an efficient capacity-sharing rule, 

the two-stage capacity-price game yields the same result as a one-stage Cournot game in 

quantities. Later papers, e.g. by Maggi (1996), Dastidar (1995, 1997), and Boccard and 

Wauthy (2000, 2004), find that this result does not hold when marginal costs increase 

before capacity is reached (or when capacity can be exceeded at a higher marginal cost) 

or when different sharing rules are used.  In all these papers, however, the cost function 

represents costs incurred by the firm, whereas we consider an upward sloping cost 

function incurred by users of the firms’ facilities. The marginal costs incurred by the firm 

are constant, so that, if there were no congestion, our model produces the standard 

Bertrand paradox (the competitive outcome is obtained).  Note that the introduction of an 

upward sloping user cost function in combination with the consumer equilibrium 

constraint leads to ‘endogenous sharing’, as the distribution of output over the facilities is 

determined within the model, rather than through an externally defined sharing rule 

(which is required in the homogenous goods case without congestion in order to 

determine the distribution of market demand over firms). Not surprisingly, in this context 

the two-stage capacity-price game does not reduce to a one-stage Cournot game.   
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The structure of this paper is as follows.  Section two contains the theoretical 

analysis.   First, the structure of the model and the reduced form demand system are laid 

out.   Then the second stage (price competition) and the first stage (capacity competition) 

of the duopoly game are analyzed.  The duopoly solution is compared to the monopoly 

outcome and to the social welfare optimum. Finally, the role of different firm objectives 

is analyzed.  Section three then uses a numerical example to clarify the properties of the 

model and to illustrate the role of various parameters.  Section four concludes.   

 

 

2. Analytical model 

  

2.1. Model set-up 

 

There are two facilities, A and B, providing identical services. Aggregate 

willingness to pay is described by a downward sloping linear inverse demand function5  

  (1) ( A BG q qα ⇓ α ⇓= − = − + )q

where is the number of simultaneous users of facility . Consumers pay a 

price

( , )iq i A B=

A

i

p  to use facility A and Bp  to use facility B.  In addition, they incur a time cost, 

which depends on their marginal time cost .  and on congestion, which is defined as the 

ratio between the number of (simultaneous) users { }, ,iq i A B=  and a facility’s capacity 

{ }, = ,A BiK i .  Congestion can be interpreted literally, as an increase in time costs, or it 

can be taken to reflect quality of service; this declines with the extent of crowding of the 

facility. As in de Palma and Leruth (1989), we denote the inverse of capacity by iR , so 

that the time cost at each facility is { }, = , Bi iq R i A. .6  The marginal cost of capacity, 

{ }, = ,A Bic i , is assumed to be constant.   

                                                 
5 We assume linear demand to simplify some of the derivations and to keep the theoretical results 
transparent. Note that the linear demand specification given by (1) can be explicitly derived under specific 
assumptions on the form of the utility function and the distribution of the value of the service to consumers, 
see e.g. Brueckner (2004).  
6 Using inverse capacity facilitates many of the derivations below. 
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Throughout, we assume an interior solution, in which case consumer equilibrium 

requires that generalized prices (the sum of prices and time costs) at both locations are 

equal to the marginal willingness to pay.7  The game is solved by backward induction in 

sections 2.3 and 2.4; before doing so, we discuss the reduced form demand system in 

section 2.2. 

 

 

2.2 Reduced form demands 

 

The structural form of the demand system implies that marginal willingness-to-

pay equals generalized prices at both facilities, where generalized prices are the sum of 

prices and time costs.  It can be written as:   

 
[ ]
[ ]

A B A A

A B B B

G q q p q R

G q q p q R

.

.
+ = +

+ = +
A

B

A A

 (2) 

where G(.) is given by (1) above. System (2) implicitly defines the reduced form demand 

functions that express demand at each facility as a function of prices and capacities at 

both facilities.  Using superscript r for the reduced form demand functions, they can be 

written in general as: 

  (3) 
( )
( )

, , ,

, , ,

r
A A A B A B

r
B B A B A B

q q p p R R

q q p p R R

=

=

To derive the impact of price and capacity changes on demand, we differentiate 

system (2) and write the result in matrix notation: 

 A A A

B B B B B

R dq dp q dR
R dq dp q dR

⇓ . ⇓ .
⇓ ⇓ . .

− − − +    
=    − − − +    





 (4) 

Applying Cramer’s rule we immediately derive the following effects: 

 0
r

A A B

A A

dq q R
dp p A

⇓ .. − −= = <
.

 (5) 

                                                 
7 The assumption of interiority is reasonable when there is a homogenous value of time, but when 
consumer types differ by their willingness to pay for service quality, it can be shown that the pricing 
equilibrium will involve at least partial separation of types across facilities, even when price discrimination 
is allowed. 
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 0
r

A A

B B

dq q
dp p A

⇓.= = >
.

 (6) 

 ( ) 0
r

A BA A

A A

q Rdq q
dR R A

. ⇓ .− −.= = <
.

 (7) 

 0
r

A A B

B B

dq q q
dR R A

⇓..= = >
.

 (8) 

where  

 ( )( 'A B A BA R R R R. . ⇓= + + ) 0>  (9) 

is the determinant of the matrix on the left-hand side of (4). 

 To avoid confusion in interpreting the sign of the last two expressions, recall that 

R indicates the inverse of capacity.  The signs then correspond to intuition: ceteris 

paribus, a higher price at a particular facility reduces demand at that facility and increases 

demand at the other; more capacity at a facility (i.e., conditional on demand, better 

service quality) increases demand at that facility and reduces demand at the other. 

 

 

2.3 Stage two: Nash equilibrium in prices 

 

We take the point of view of facility A.  Its objective is to maximize profits: 

 max  
A

A
p A A A

A

cp q
R

π = −   

where demand is given by (3). The first-order condition can be developed as: 

 

( )( )

(.) 0

(.) 0

r
r A
A A

A

r B
A A

A B A B

qq p
p

Rq p
R R R R

⇓ .
. . ⇓

.+ =

.
+− =

+ +

 (10) 

 

It follows that: 

  (.) (.)r r B
A A A A

B

Rp q R q
R

⇓. .
⇓ .

= +
+

      (11) 
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A similar expression holds for facility B.  Note that expression (11) is 

conceptually identical to the ones obtained in Braid (1986) and Van Dender (2004). The 

optimal price, conditional on capacities at both facilities, consists of two components. 

The first one implies that each facility charges the marginal congestion cost at its facility, 

i.e. consumers pay for the marginal reduction in quality of service that their presence at 

the facility imposes on other (simultaneously present) users.  The second component is a 

positive markup over marginal external congestion cost; it increases when demand 

becomes less elastic and when the competing facility is more congestible.  Note that, in 

the Bertrand setting, congestion costs are the only source of market power: with . =0, 

prices are equal to marginal production costs (normalized to zero); otherwise said, in the 

absence of congestion costs, the textbook Bertrand paradox is obtained. 

The pricing rules for A and B are implicit representations of the price reaction 

functions (superscript R) ( ), ,R R
A A B A Bp p p R R=  and ( , ,R R

B B A A B )p p p R R= , conditional on 

capacities.  To find the slope of the price reaction function for A, write the price rule in 

implicit form as follows: 

 ( , , , ) ( , , , )r B
A B A B A A A B A B A

B

Rp p R R p q p p R R R
R

.⇓. .
⇓ .

 
= − + = + 

0 , (12) 

 

where the dependence of demand on capacities and prices, see (3), has been made 

explicit. Then use the implicit function theorem to find, after simple algebra: 

 0
2( )

R
A B

B B

A

p p
p R

p

.
⇓

. ⇓ .

.
. .= − = >.. +

.

 (13) 

 0
R
A A

A

A

p R
R

p

.

.

.
. .= − =..

.

 (14) 

 2
( ) 0

2( )

R
A B

B B

A

p R
R R

p

.
.⇓ α

. ⇓ .

.
. .= − = >.. +

.

Bp−  (15) 
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Analogous results hold for B. The price reaction functions, conditional on 

capacity, are linear in the price of the competing facility, and they have an intercept 

between zero and one, guaranteeing a unique interior Nash equilibrium in prices, for 

given capacities.  As is clear from (15), the reaction of prices to capacities at the 

competitor’s facility is not linear.  As could be expected, the expression implies that a 

marginal capacity decrease at B (i.e. a marginal increase in RB) leads to a higher price at 

A.     

Remarkably, equation (14) shows that along the reaction function, a facility’s 

price does not respond to a change in its capacity determined at the previous stage of the 

game. Intuitively, there are two opposing effects from a marginal capacity increase.  The 

first one is that, holding demand in A constant, an increase in capacity in A reduces the 

time cost in A, so reducing the optimal price. The second effect is that more capacity at A 

increases demand in A, and this increases both the time cost and the markup, raising the 

price. Given the specific model structure used (linear demands and congestion cost 

functions), one easily shows that these two effects cancel out. Of course, in more general 

models (e.g. with nonlinear congestion functions), the two effects will have opposite 

signs but their absolute size need not be identical. 

The Nash-equilibrium prices, for given capacities, are denoted ( ),NE
A A Bp R R , 

( ,NE
B A B )p R R , respectively. Formally, they are determined by the intersection of the 

reaction functions: 

  
( ) ( )
( ) ( )

, ,

, ,

NE R NE
A A B A B A B

NE R NE
B A B B A A B

,

,

p R R p p R R

p R R p p R R

=

=
 (16) 

The sign of the effect of a marginal capacity increase at A and at B on these prices is 

easily determined by differentiating system (16). We find, using (13)-(15) and the 

analogous effects for the reaction function in B:  

 0
1

R R
A B

NE
A B A

R R
A BA

B A

p p
p p R

p pR
p p

. .
. . .=

. .. −

. .

>  (17) 
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 0
1

R
A

NE
A B

R R
A BB

B A

p
p R

p pR
p p

.
. .=

. .. −

. .

>  (18) 

By (13) and its equivalent for B, the denominator of (17) is positive and smaller than one.  

By (13) and (15), the numerator is positive. Consequently, a marginal capacity decrease 

at A raises the Nash-equilibrium price at A. Similarly, a marginal capacity decrease at B 

raises the Nash-equilibrium price at A as well, see (18).  In other words, we can say that a 

more congestible system (i.e. a lower combined capacity of both facilities) is 

characterized by higher Nash-equilibrium prices. 

 

2.4 Stage one: Nash equilibrium in capacities 

   

 The first order condition for profit maximization in stage 1 is: 

 2(.) 0
NE r

rA A
A A

A A

p dq cq p
R dR R

. + +
.

A

A

=  (19) 

where 

 

0 0 0 0 0

r r r NE r
A A A A A B

A A A A B

dq q q p q p
dR R p R p R

< < > > >

. . . . .= + +

. . . . .

NE

A

 (20) 

is the total effect of a capacity change in A on demand. It consists of the direct effect, 

holding prices constant, and indirect effects through Nash equilibrium price adjustments 

at the pricing stage of the game. The signs of the partial derivatives of the reduced form 

demand system and of the Nash-equilibrium prices – indicated beneath the expressions – 

were defined in (5), (6), (7), and in (17) and (18).  It follows that the sign of (20) is 

ambiguous. As long as the first term on the right hand side (i.e., the direct effect of 

capacity on reduced-form demand) dominates the indirect effects through price reactions 

of capacity changes, it will be negative. If this is the case, marginally increasing RA – 

marginally decreasing capacity at A – reduces demand at A.   

Note that, combining (19) and (20) and using the first order condition for optimal 

pricing behavior in A (see (10)), condition (19) for optimal capacity choice can be 

formulated equivalently as follows: 
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 2 0
r r NE
A A B A

A A
A B A A

q q p cp p
R p R R

. . .+ +

. . .
=  (21) 

 

This suggests that duopolistic firms will supply higher capacity to the extent that capacity 

directly raises their demand (first term on the left-hand side) and that it does not too 

strongly reduce their demand via price adjustments by the competitor (second term): 

higher capacity in A reduces the Nash equilibrium price of the competitor B, which in 

turn reduces demand in A.     

Equation (19) implicitly defines the reaction function in capacity for facility A. 

Writing it in implicit form as  

  2( , ) 0
NE r
A A

A B A A
A A

p dq cR R q p
R dR R

. .= + −
.

A

A

=  

and applying the implicit function theorem yields the following expression for the slope 

of the capacity reaction function: 

 
2 21B

A

NE r NE NE r r
RA A A A A A

A
B R A B A B B A A

R p dq p p dq d qq p A
A

BR M R dR R R R dR dR dR
.
.

 . . . .= − = − + + + . . . . . 
 (22) 

where M is negative by the second order condition for profit maximization in capacity. 

In general, the sign of (22) is ambiguous. In view of our earlier results (see, e.g., 

(17), (18) and (20)) the first term between the square brackets is plausibly positive; 

similarly, the third is plausibly negative. Little can be said about the second derivative 

terms a priori. For plausible parameter values and in a fully symmetric case, the slope can 

be shown to be negative (see also the numerical illustration). This implies that, the 

(inverse) capacity of A declines with that of B.  Intuitively, two opposite forces are at 

play. First, more capacity in B provides A an incentive to defend its market share by 

responding with a capacity increase as well. Second, higher capacity in B reduces Nash 

equilibrium prices at both facilities. Firm A then has an incentive to reduce capacity in 

order to increase congestion and, as a consequence, its price. The downward sloping 

capacity reaction functions suggest that the second effect dominates the first.  

Finally, note that, although demand and cost functions were assumed to be linear, 

the capacity reaction function is not. This is not surprising because (see (15)) price 
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reactions to marginal capacity changes at the competitive location were shown not to be 

linear. 

We further explore the nature of price and capacity reactions, and of the Nash 

equilibrium, in Section 3.  First, however, we compare the duopoly solution to the 

monopoly outcome and to the social welfare maximum, and we briefly explore the role of 

objectives other than profit maximizing behavior. 

 

2.5 Comparing duopoly, monopoly and the social optimum 

 

Congestion (or service quality) and capacity are interdependent through 

technology.  How this interdependence affects prices and capacity choices (or service 

quality choices) depends on the market structure.  The comparison of different market 

structures provides further insight into the role of the oligopolistic interaction on which 

this paper focuses.  Here, we derive price and capacity rules for a monopolist and for a 

social welfare-maximizer.  Note that in these cases, it does not matter whether the 

problem is analyzed as a simultaneous or sequential choice of capacities and prices, as 

choices are made by a single agent, leaving no scope for strategic interaction.  We opt for 

the simpler simultaneous approach. 

Assume first that both facilities are operated by a single profit-maximizer. Profits 

are given by: 

 
, ,

( , , , )r i
i i A B A B

i A B i A B i

cp q p p R R
R= =

−∑ ∑  (23) 

and maximized with respect to the two prices and capacity levels. The first-order 

conditions can be written as: 

 

2 2

(.) 0; (.) 0

0; 0
( ) ( )

r r r r
r rA B A B

A A B A B B
A A B B
r r r r
A B A A B B

A B A B
A A A B B B

q q q qp q p p q p
p p p p

q q c q q cp p p p
R R R R R R

. . . .+ + = + + =

. . . .

. . . .+ + = + +

. . . .
=

 (24) 

These equations can be manipulated, using the reduced-form derivatives derived before 

(see (5)-(8)), to yield:  

 ( ) { }, ,i A B i ip q q q R i A B⇓ .= + + .  (25) 
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 {
1/ 2

1 , ,i
i i

q i A B
R c

. 
= . 
 

}  (26) 

Interpretation is obvious. According to (25), the price at each facility is the sum of 

the marginal congestion cost at that location and a term relating to the elasticity of 

demand.  Comparing to (11), it follows that the elasticity-related markup is higher than in 

the duopoly case.  According to (26), capacity – the inverse of Ri – is inversely related to 

the marginal cost of capacity, it is increasing in the marginal value of time, and it is 

proportional to demand at the facility. Because the monopolist fully controls all 

instruments, the monopolist’s choice of capacity does not directly take account of effects 

on the equilibrium price.  This contrasts to the duopoly case, where capacity choices do 

affect the Nash equilibrium price through strategic interactions. 

Next, assume the facilities are operated by a welfare-maximizing government. It 

maximizes the difference between total net surplus and total social costs: 

 [ ]
, ,0

( )
iq

i
i i

i A B i A B i

cG u du G p q
R= =

   
− − +      

∑ ∑∫ 

i

 (27) 

where, as before, demands are given by (3) and G is defined in (2). This last expression 

implies 

    G pi iR q.− =  

Using this information, the first order conditions can be written as: 

 

2
2

2
2

( 2 ) ( 2 ) 0; ( 2 ) ( 2 )

( 2 ) ( 2 ) 0
( )

( 2 ) ( 2 ) 0
( )

r r r
A B A

A A B B A A B B
A A B B
r r
A B A

A A B B A
A A A
r r
A B B

A A B B B
B B B

q q q qG R q G R q G R q G R q
p p p p

q q cG R q G R q q
R R R

q q cG R q G R q q
R R R

. . . .

. . .

. . .

. . . .− + − = − + −

. . . .

. .− + − − + =

. .

. .− + − − + =

. .

0
r
B =

B

(28) 

  

Again using (2), we haveG R2 , ,i i i i iq p R q i A. .− = − = . Substitution then 

immediately implies the following price and capacity rules.  

 { }, ,i i ip q R i A B.= .  (29) 
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 {
1/ 2

1 , ,i
i i

q i A B
R c

. 
= . 
 

}  (30) 

Social welfare maximization internalizes the externality: the price equals the marginal 

external congestion cost.   The capacity rule is identical to that of the monopoly case (but 

as it holds at a different price and a different level of demand, the optimal capacity level 

will be different). Interestingly, since there are constant returns to scale in the provision 

of capacity, one easily shows that optimal pricing and optimal provision of capacity lead 

to exact cost recovery in this case. To see this, note that by (29) we have that total 

revenues equal 2
i i i i

i i
p q q R.=∑ ∑ ; using (30), total expenditures can be written 

2i
i

i ii

c q
R iR.=∑ ∑ , establishing equality of revenues and expenditures. Self-financing 

facilities imply that the social welfare maximum can be implemented without 

distortionary taxes, viz. by a combination of congestion tolls and competitive pricing at 

each facility. The competitive price equals the marginal private production cost at each 

facility (which we normalized to zero). 

It is clear that marginal congestion costs are a component of the price in all 

market structures, but that the markup differs between market structures. Expressions 

(11), (25) and (29) imply that the markup is zero in the social welfare maximum, it is 

positive at the duopoly outcome and, conditional on demand and capacity levels, it is 

highest in the monopoly case. Comparing in more detail the prices, capacity levels and 

quality of service under the three market structures leads to a number of observations. 

First, while capacity levels differ between the monopoly outcome and the social welfare 

maximum, the quality levels (as measured by time costs of using a facility, i iR q. ) will be 

identical. To see this, note that the optimal capacity rules (26) and (30) imply that, both 

under monopoly and at the social welfare optimum, the time cost equals . 

Hence, a monopolist has no incentive to distort quality, as all benefits of providing it 

accrue to the firm itself. This observation is consistent with Spence (1975)

1/ 2( )ic. .i iR q =

 8, who clarifies 

                                                 
8 Spence (1975) shows that quality at the monopolists’ output level is below (above) the socially optimal 
level when the partial derivative of willingness to pay with respect to output and to quality is negative 
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that the result is contingent on the additive structure of the generalized price. Second, 

together with (25) and (29) equal quality of service levels immediately imply monopoly 

prices that necessarily exceed prices at the social optimum. Moreover, with linear 

demands, duopoly prices will not only structurally but also numerically be between those 

under monopoly and at the social optimum. Indeed, (10) implies that a duopolist will 

operate where the price elasticity of reduced-form demand equals minus one, whereas 

(24) suggests the monopolist operates at an elasticity exceeding one in absolute value.  

Third, whereas a monopolist does not distort quality compared to the social 

optimum, a duopolist does. In the duopoly case capacity choices are affected by strategic 

interactions (both at the pricing and capacity stages of the game, see (11) and (19), and 

quality of service levels will generally differ from their socially optimal values. The 

intuition is that a capacity increase reduces the generalized cost and, therefore, boosts 

demand at both facilities. This implies that the benefits of a capacity increase at one 

location partially accrue to the other. This externality is fully internalized in both the 

social optimum and the monopoly case, but it is not under duopoly. To get more intuition 

on this matter, note that (21) and (24) imply that the first order conditions for optimal 

capacity under monopoly and duopoly can, after simple rearrangement, be written as, 

respectively:  

   

 2

r r
A B

A B
A

A A A

q qp p c
R R R

. .+ = −

. .
 (31) 

 2

r r NE
A A B

A
A B A

q q p cp A

AR p R R
 . . .+ = . . . 

−

                                                                                                                                                

 (32) 

 

The monopolist takes into account the effect of raising capacity in A on demand in 

B; moreover, he controls both the prices in A and B. This allows him to fully internalize 

the effect of capacity at facility A. The duopolist operating facility A, however, can only 

take account of the indirect impact of raising capacity on its own demand via price 

adjustments by the competitor. For plausible parameter values, one expects each facility 

 
(positive).  In our linear and additive specification of demand this derivative is zero, so that the monopolist 
supplies optimal quality.   
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owner to react to the ‘leakage of benefits’ of its capacity to its competitor by providing 

less capacity. The numerical analysis in the next section confirms this suggestion. We 

find that the duopoly leads to less capacity and lower quality of service, than under either 

monopoly or maximal social welfare. 

 

 

2.6 Alternative assumptions on firms’ objectives 

 

 As many congestible facilities (airport, ports, roads) are publicly owned or are 

strongly regulated, it is reasonable to at least briefly consider objectives other than pure 

profit maximization. For example, as referred to in the introduction, Starkie (2001) and 

Zhang and Zhang (2003) argue that output is a relevant partial objective for many airports 

that generate revenues out of concessions. Moreover, recent experiences in Europe also 

suggest that the social role of airports encompasses more than profit, but that generating 

activities in itself is a valid objective, for example, for reasons of employment 

opportunities. This section therefore briefly explores the equilibria that result when 

facilities’ objectives consist of a weighted sum of output and profit.  When no weight is 

given to profits, the facilities are output maximizers. When no weight is given to output, 

they are profit-maximizers, and the analysis of the previous sections is obtained.  Again, 

we look at look at alternative ownership arrangements: duopoly refers to separate 

ownership of the facilities, monopoly implies joint ownership9.   

 

Duopoly: separate ownership 

 

Suppose each facility is interested both in generating output (e.g. because of 

lobbying by concessionary activities at an airport) and in profits.  Assume that output and 

profits receive an exogenous weight, normalize the output weight to one, and denote the 

                                                 
9 There is a potential semantic issue here, as duopoly and monopoly are usually understood to imply both a 
particular ownership structure and the profit maximization objective. Strictly speaking, when profit 
maximization is replaced by a different objective, one could argue that the duopoly and monopoly labels 
are no longer appropriate.  We stick to this terminology, however, even under conditions of output 
maximizing behavior. 
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profit weight by ∝>0.10 In stage 2 of the game, prices are set; the owner of facility A 

maximises: 

 A
A A A

A

cq p q
R

∝
 

+ −
 

  (33) 

subject to the consumer equilibrium constraints; i.e., demand in is given by the reduced-

form demands derived before. The first-order conditions lead to the following pricing 

rule, conditional on capacities:  

 1B
A A A A

B

Rp q R q
R

⇓. .
⇓ . ∝

= + −
+

 (34) 

Compared to the case of profit-maximizing duopolists, see (11), the price rule is 

amended by the extra term –1/∝.  When this term is zero (i.e. as ∝ approaches infinity), 

profits completely outweigh output in the objective, and (11) is obtained.  When ∝ 

becomes very small, output maximization becomes the main objective, and the last term 

in (34) dominates, implying a subsidy (i.e., prices become negative). For smaller ∝, 

strategic interactions become relatively less important: output-maximization is obtained 

by subsidies (and a complete disregard for congestion costs), whatever the other facility 

does. In general, the strategic capacity setting decisions pertain to the profit-maximizing 

part of the objective function (note the separable nature of (34) and the exogeneity of ∝), 

so that the structure of the first stage of the game (capacity choices) is strongly similar to 

the profit-maximizing duopoly case. 

 

 

Monopoly: joint ownership 

 

Now consider joint ownership of both facilities; it maximizes: 

 
, ,

i
i i i

i A B i A B i

cq p q
R

∝
= =

 
+ 

 
∑ ∑ − 

                                                

 (35) 

subject to reduced-form demands, i.e., satisfying the consumer equilibrium constraints. 

The corresponding price and capacity rules are: 
 

10 Using profits leads to the same results as using an exogenously defined allowable deficit. 
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 1 ; , , ,i i ip q q R i j A B i⇓ .
∝

= + − = . j  (36) 

 

1
21 ; ,i

i i

q i A B
R c

. 
= = 
 

 (37) 

The capacity provision rule is the same as for a profit maximizing monopolist (see 

(24)) and a social welfare maximizer, see (30). Not surprisingly, the price rule again 

reduces to that of a profit maximizing monopolist when 1 0∝ . . Interestingly, 

for 1
q∝ ⇓=  the welfare maximizing rule is obtained, see (29) above. Intuitively, 

1
q∝ ⇓= indicates that output is not the only objective (and becomes less important as 

output is high and ⇓ is large), because supply is ‘costly’.  

 It will be interesting to assess the effect of varying the relative weight of profit 

and output objectives on the separate and joint ownership results.  Specifically, the effect 

on service quality needs to be assessed.  These issues are explored in the numerical 

example. 

 

 

3. Numerical analysis 

 

This section explores the capacity-price game using a simple numerical example.  

The parameters of the example are given in Table 1; they were arbitrarily chosen.  While 

the solution procedure of the numerical model slightly differs from the approach used in 

theoretical analysis11, the structure of the model is identical. We discuss a central 

                                                 

=

11 The numerical model does not explicitly use the reduced-form demands, but it finds the Nash equilibrium 
by simultaneously solving a system of equations that consists of (a) the consumer equilibrium conditions, 
i.e. the structural form of the demand system, (b) the congestion functions, (c) the first-order conditions of 
the price game for both facilities, and (d) the first-order conditions of the capacity game (conditional on the 
price rules) for both facilities.  The numerical solution is subjected to the following check to confirm that 
the solution is a Nash equilibrium: 

 .  
( ) ( )( )

( ) ( )( ) { }
*, *, * *, * , * *, *

, *, * , * , * , * , , , , , 0

i i j i i j j i j

i i j i i j j i j i

R R p R R p R R

R R p R R p R R i j A B i j R

π

π

=

. .
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scenario and assess the effect of changing parameters; next we compare market structures 

and, finally, we consider the effects of different objective functions. 

 

 

3.1 Nash equilibrium – central scenario  

  

 Figures 1 and 2 depict the price and the capacity reaction functions for the central 

scenario, using the parameters reported in Table 1.  When capacities are given, the price 

reaction function is linear and positively sloped.  This says that price responses are 

positive and constant.  The function is drawn for the capacities of the Nash equilibrium; 

changing these capacities results in a parallel shift of the function.   

The capacity reaction function is not linear and it is downward sloping.  The 

negative slope implies that the optimal response to a capacity increase at the competing 

facility is to reduce capacity at the own facility.  For “low” capacity levels at the 

competing facility, the response function is concave, and for “high” capacity levels it is 

convex. In fact, it turns out that the Nash equilibrium occurs at the inflection point (where 

the absolute value of the marginal capacity response takes its maximal value).  That is, 

the Nash equilibrium occurs where the response to a capacity increase at the competitor’s 

facility would entail the largest capacity reduction at the own facility. 
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Figure 1  Price reaction function conditional on capacities 
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Figure 2  Capacity reaction function (neighborhood of the Nash equilibrium) 
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3.2 Varying parameters  

 

 In this section we assess how the solution, i.e., the Nash equilibrium, responds 

when the inverse demand function shifts, when its slope changes, when the value of time 

changes (shift of the congestion function), and when marginal costs of capacity change.  

More specifically, as illustrated by Table 1, we compare the following scenarios: 
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� Central: benchmark parameter values, randomly chosen;  

� .α<0 : reduces the intercept of the inverse demand function; 

� .⇓<0 : reduces the slope of the inverse demand function; 

� ..<0 : reduces the time cost; 

� . c<0: reduces the marginal cost of capacity. 

 
Table 1 Duopoly solution: sensitivity to parameters  
  Central .α <0 . ⇓<0 . . <0 . c<0 

Parameter Symbol      
   Intercept inverse demand α 120 110 120 120 120 
   Slope inverse demand ⇓ 2 2 1 2 2 
   Marginal cost of capacity ci 1 1 1 1 0.5 
   Marginal value of time . 1 1 1 0.5 1 
Variables       
   Demand q 51.8 47.4 103.5 52.1 52.1 
   Price pi 10.8 10.0 10.8 10.3 10.3 
   Generalized price gi 16.5 15.3 16.5 15.8 15.8 
   Output per facility qi 25.9 23.7 51.8 26.1 26.1 
   Time cost  5.7 5.3 5.7 5.4 5.4 
   Profits πi 274.6 232.8 549.2 267.2 267.2 
   Inverse capacity Ri 0.2 0.2 0.1 0.4 0.2 
   Capacity Ki 4.6 4.5 9.1 2.4 4.8 
   Consumer surplus  2,680.3 2,242.1 5,361 2,716 2,716 
   Welfare (profits + surplus)  2,954.9 2,474.9 5,909.8 2,982.8 2,982.8 

 

The results derived from Table 1 can be summarized as follows. First, as 

expected, reducing demand by shifting the inverse demand function inwards (.α<0 ) 

reduces prices, capacities, and profits.  Second and remarkably, reducing the slope of the 

inverse demand function (.⇓<0 ) does not affect the equilibrium price. This implies that 

making demand more price sensitive does not affect the Nash equilibrium prices despite 

the presence of market power.12  The mechanism underlying this result is clear from the 

table. When the demand function becomes steeper (.⇓<0 ), facilities adjust expenditures 

on capacity upward so as to keep time costs equal at a higher output level: the linear 

congestion, demand and capacity cost functions imply that setting ⇓ at half its initial 

value induces facilities to provide twice the initial capacity at twice the initial output; 

                                                 
12 The effect obviously also holds in the opposite direction.  When the slope of inverse demand is halved, 
capacity, output and profits are doubled, but prices and time costs are constant.  The result is not contingent 
on the level of the unit capacity costs, but it does require marginal capacity costs being constant. 
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time costs remain constant. Note that the result is contingent on the two-stage structure of 

the game, allowing firms to adjust capacities: in a one-stage pricing game with constant 

capacities the Bertrand price directly depends on the slope of the demand function (Van 

Dender, 2004).  Although the perfectly proportional adjustments in capacity and demand 

are specific to the linear model structure, the intuition for the result does hold in more 

general models: providing capacity contributes more to profit when demand is more 

sensitive to reductions in time costs. Hence we can expect prices not to be very sensitive 

to the demand response to a cost increase also in models with nonlinear congestion and 

capacity cost functions. Finally note that, as we will see below (subsection 3.3), the 

insensitivity of prices to the slope of the demand function also holds for other market 

structures. 

Third, given the linear model structure, a reduction of the value of time (..<0 ) 

has the same effect as the same proportional reduction in marginal capacity costs (. c<0).  

Reducing the value of time directly reduces the time cost of congestion.  Reducing 

capacity costs indirectly reduces the cost of congestion by raising capacity. Given the 

model structure, expenditures on capacity are identical for both parameter changes. They 

both intensify competition between facilities, and this leads to lower prices and higher 

output than in the central scenario. Fourth, note that profits are lower after a capacity cost 

reduction than in the central scenario, which seems counterintuitive13. The reason is that 

the cost reduction in the provision of capacity reduces costs, but also intensifies 

competition and reduces prices, indirectly reducing revenues. If the latter effect 

dominates, as it does in the numerical example, lower capacity costs reduce profits. Of 

course, this is not a general duopoly result. For example, in the numerical example 

considered, an increase in capacity costs starting from relatively high initial capacity cost 

levels does reduce profits. Moreover, the result obviously does not hold under the 

assumption of monopoly or of surplus maximization, see below.  

 

 

                                                 
13 The result appears in a starker form when, starting from identical cost levels, the cost at one location is 
increased.  When, for example, the cost at location A rises, profits at A rise and those at B decline, and the 
sum of profits rises. 
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3.3 Comparison of market structures  

 

The analysis has focused on the interaction between congestion, pricing and 

capacity decisions in a duopoly.  Clearly, the interaction also is present in other market 

structures.  This section compares the monopoly solution and the social welfare 

maximum to the duopoly. It was argued before that the social welfare maximum is 

obtainable through a combination of pure competition and optimal congestion tolls.  

Table 2 summarizes solutions under the various assumptions on market structure.  Three 

observations are noteworthy. 

First, capacities in the monopoly outcome are higher than in the duopoly; the 

same holds for prices and profits. Service quality, as captured by the inverse of time 

costs, is higher in the monopoly case than under duopoly. Consistent with the theory, 

service quality is the same in the monopoly and the social welfare maximum.  This 

confirms our earlier statement that, while the monopolist distorts output, service quality is 

optimal from the social point of view.  In contrast, duopolists compete in prices as well as 

capacities, so they cannot capture as much surplus generated by high quality as a 

monopolist can: benefits partly accrue to the competitor. Therefore, duopolists will 

supply less of it than a monopolist or a social welfare-maximizer will.  The consequence 

is lower capacities and higher time costs in the duopolistic equilibrium as compared to 

the monopoly or the social welfare maximum.  Whereas price competition under duopoly 

benefits the consumer, capacity competition is detrimental to consumer welfare. Note 

from the numerical example that, despite the quality distortion under duopoly, consumer 

surplus and welfare are lower in the monopoly case than under duopoly due to the output 

distortion of monopolistic pricing. 
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Table 2 Comparison of market structures 

  High value of time Low value of time 
Parameter  duopoly monopoly welfare duopoly monop. welfare 
   Intercept inverse demand α 120 120 
   Slope inverse demand ⇓ 2 2 
   Marginal cost of capacity ci 1 1 
   Marginal value of time . 1 0.1 
Variables   
   Demand q 51.8 29.5 59.0 52.4 29.8 59.7 
   Price pi 10.8 60.0 1.0 9.9 60.0 0.3 
   Generalized price gi 16.5 61.0 2.0 15.1 60.3 0.6 
   Output per facility qi 25.9 14.8 29.5 26.2 14.9 29.8 
   Time cost  5.7 1.0 1.0 5.2 0.3 0.3 
   Profits πi 274.6 870.3 0.0 260.0 890.5 0.0 
   Inverse capacity Ri 0.2 0.1 0.0 2.0 0.2 0.1 
   Capacity Ki 4.6 14.7 29.5 0.5 4.7 9.4 
   Consumer surplus  2,680.3 870.2 3,481 2,748.7 890.5 3,562.1 
   Welfare (prof. + surplus)  2,954.9 1,740.5 3,481 3,008.8 1,781.1 3,562.1 
    
  High slope inverse demand Low slope inverse demand 
Parameter  duopoly monopoly welfare duopoly monop. welfare 
   Intercept inverse demand α 120 120 
   Slope inverse demand ⇓ 2 1 
   Marginal cost of capacity ci 1 1 
   Marginal value of time . 1 1 
Variables   
   Demand q 51.8 29.5 59.0 103.5 59.0 118.0 
   Price pi 10.8 60.0 1.0 10.8 60.0 1.0 
   Generalized price gi 16.5 61.0 2.0 16.5 61.0 2.0 
   Output per facility qi 25.9 14.8 29.5 51.8 29.5 59.0 
   Time cost  5.7 1.0 1.0 5.7 1.0 1.0 
   Profits πi 274.6 870.3 0.0 549.2 1,740.5 0.0 
   Inverse capacity Ri 0.2 0.1 0.0 0.1 0.03 0.02 
   Capacity Ki 4.6 14.7 29.5 9.1 29.5 59.0 
   Consumer surplus  2,680.3 870.2 3,481 5,360.6 1,740.5 6,962 
   Welfare (prof. + surplus)  2,954.9 1,740.5 3,481 5,909.8 3,481 6,962 
 
 

Second, reducing the marginal value of time implies that capacity (or service 

quality) is valued less by consumers, so that less of it is provided under all market 

structures. Time costs fall with lower marginal values of time, but the reduction is 

mitigated by the reduction of capacity.  Output increases with lower values of time.  In 

the monopoly, prices do not depend on the marginal value of time, so that profits 

increase.  In the duopoloy, less congestion means lower prices, and profits fall despite the 

increase of output. 
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Third, as previously illustrated for duopoly, prices are independent of the slope of 

the structural demand function. The consequence is that the price elasticity of the 

(structural) demand function is also independent of ⇓ in each market structure.  Given 

the linear demand function, it is clear that its absolute value is largest (and above one) in 

the monopoly outcome, smaller in the duopoly, and smallest in the welfare maximum.  

Prices, time costs and, therefore, generalized prices are also constant when the slope of 

the inverse demand function varies. The mechanism generating this result was explained 

before.  The intuition is that providing capacity contributes more to profits or to social 

welfare when demand is more sensitive to reductions in time costs. This phenomenon is 

general; of course, the knife-edge result that price-elasticities remain perfectly constant 

within each market structure is particular to the linear structure of the model (i.e. to the 

additive structure of the generalized price and to the constant returns in the provision of 

capacity). 

 

3.4 Alternative objective functions 

 

We calculate the outcome of the model corresponding to Section 2.6, where a 

weighted sum of output and profits was maximized under joint and separate ownership of 

the facilities, using the parameters of the central scenario.  The key results for various 

values of ∝, the exogenous weight of profits, are summarized in Table 3. 

 
Table 3 Key Results for mixed objective  

 Exogenous weight of profits in the objective function (∝) 
 ∝−−>+inf ∝=1.5 ∝=1 ∝=0.5 ∝−−>0 
Separate ownership 
Output 51.8 52.1 52.2 52.7 56.9 
Price 10.8 10.2 9.9 8.9 0.05 
Time cost 5.67 5.69 5.71 5.75 6.14 
Capacity 4.56 4.57 4.57 4.58 4.63 
Single ownership 
Output 29.5 29.67 29.75 30.00 57.28 
Price 60 59.67 59.50 59.00 4.4 
Time cost 1 1 1 1 1 
Capacity 14.75 14.83 14.87 15.00 28.64 
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 In the leftmost column, the profit weight approaches infinity and the same results 

are obtained as under pure duopoly and pure monopoly. When the relative weight of 

output increases, output increases and prices decrease due to a lower weight on profit.  

The difference between separate (duopoly) and single (monopoly) ownership lies in the 

quality of service.  With single ownership, the quality of service is independent (and 

equal to the socially optimal level of quality) of the relative weights of profits and output.  

In the duopoly case, putting more weight on output (reducing ∝) leads to a deterioration 

of the quality of service.  As explained in Section 2.6, in the case of monopoly, with a 

profit weight of ∝=1/q⇓, the socially optimal solution is obtained.  In this example, that 

profit weight is close to zero (compare Tables 2 and 3).   

 

4. Concluding remarks 

 

We studied duopolistic competition in capacities and in prices between 

congestible facilities within the framework of a sequential price-capacity game. 

Moreover, we compared the duopoly solution to the monopoly outcome and to the social 

welfare maximum.  First, it was shown that the equilibrium level of service quality, as 

determined by the inverse ratio of demand and capacity, is lower in the duopoly than 

under either monopoly or the social optimum; given the additive structure of generalized 

prices in our model, quality levels are the same under monopoly and at the welfare 

optimum. Duopoly prices were shown to be below monopoly prices but above socially 

optimal prices. The implication is that, while price competition yields benefits for 

consumer, capacity competition between duopolists is harmful to consumers. Second, we 

showed that higher capacity costs may in fact lead to higher profits for both facilities, 

because the dampening effect on capacity provision implies higher prices. Third, the 

observation that providing extra capacity contributes more to profits (and to social 

welfare, for that matter) when demand is more sensitive to reductions in time costs 

implies, given the linear model structure, that prices were independent of the slope of the 

demand function under all market structures. Finally, we considered the effects of 

alternative objective functions. It was found that, when duopolists attach a higher weight 
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to output and a correspondingly lower weight to profits, this leads to a deterioration of the 

quality of service.  
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