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ABSTRACT OF THE DISSERTATION

Efficient Global Sensitivity Analysis of Models with High-Dimensional Input

by

Yikyung Yu
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To make useful predictions about the behavior of a system, a model of the system is

built. Complex models, such as environmental or electrochemical models, include numerous

inputs that influence the model outputs. The true values of these inputs are often unknown

and must be estimated using empirical data from experiments. The accuracy of these

estimates improves as the uncertainty associated with the inputs decreases. While careful

measurements can reduce input uncertainty, rigorous measurement of all inputs in complex

models can be prohibitively expensive due to high experimental or computational costs,

x



making it essential to prioritize which inputs to measure precisely. Therefore, it is crucial to

identify the inputs that have the greatest influence on the model outputs. Sensitivity analysis

provides a framework for distinguishing important inputs by quantifying or qualifying the

effects of inputs on model outputs. This allows researchers to focus resources on improving

the accuracy of the most influential inputs, leading to more reliable model predictions.

This dissertation applied global sensitivity analysis (GSA) to two complex models: a

groundwater flow model and a lithium-ion battery model. Two well-known GSA methods

were employed: the Morris method and the Sobol’ method. The Morris method assesses

input influence by computing the sample mean and standard deviation of elementary

effects of each input. The Sobol’ method calculates first-order sensitivity indices and total

sensitivity indices to quantify input importance.

For the groundwater flow model, the GSA results indicated that recharge flux was the

primary driver of variations in the net flux of seawater intrusion. In the lithium-ion battery

model, the thickness of the positive electrode had the greatest impact on battery life.
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Chapter 1

Introduction

When observing phenomena, scientists strive to model them to predict their behavior.

Models are constructed analytically, using systems of equations, or numerically, using

computer code. It is challenging to create a perfect model for any phenomenon or system,

as multiple models can often represent the same reality. Therefore, a model is built with

simplifying assumptions and then calibrated with observed data to enhance its accuracy

and usefulness. To improve model accuracy, numerous inputs that influence the model

outputs were included. However, the true or exact values of these inputs are typically

unknown, introducing uncertainty.

The accuracy of a model is significantly influenced by the degree of uncertainty as-

sociated with its inputs. To reduce input uncertainty, the values of the inputs must be

measured or estimated as accurately as possible. Quantifying all inputs precisely can be

challenging due to high experimental or computational costs, especially when dealing with

models with numerous inputs. To address this challenge, sensitivity analysis (SA) has been
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developed by many mathematicians and scientists.

SA identifies the inputs that exert the most significant influence on the model’s output.

By applying SA to complex, high-dimensional models, the inputs to measure or estimate

first to enhance model accuracy are prioritized. SA finds widespread application across

diverse scientific disciplines.

1.1 Sensitivity Analysis

Uncertainty arises from imperfections and simplifications inherent in any model. A

model can be a simple equation, like Newton’s second law (F = ma), or a complex computer

program. The model output is any value calculated from the model, such as force in F = ma,

net flux or head in a groundwater model, or terminal voltage, current, and concentration

in a battery model.

There are two main types of sensitivity analysis: local Sensitivity Analysis (LSA) and

global sensitivity analysis (GSA). LSA focuses on a specific region near a point of interest

within the input space. Since this method is well-suited for linear models, if a model is

linear, LSA can be used instead of GSA. Common methods of LSA include calculating the

partial derivative of the output (Y ) with respect to the input (X)(δY /δX) and the standard

deviation-normalized partial derivative (σXδY /(σY δX)).

However, applying LSA to a non-linear model will not yield reliable results. GSA

considers the entire domain of the inputs. This method is more appropriate for non-linear

models. Some common GSA methods include the Morris method and variance-based

2



methods: Fourier amplitude sensitivity test (FAST), random balanced design based on

FAST (RBD-FAST), and the Sobol method.

GSA helps choose and prioritize the most influential inputs for measurement. Since it

can be applied to any model, GSA is a valuable tool in various fields for model improvement

and calibration. GSA ranks the importance of inputs. Based on these rankings, which

factors to measure or estimate first can be determined. For complex, high-dimensional

models, GSA is typically employed.

1.2 Sampling for Global Sensitivity Analysis

The convergence rate of Monte Carlo simulations with pseudo-random numbers is

generally proportional to 1/
√
N , where N is the sample size. To reduce the number

of simulations required for a given level of accuracy, quasi-random sequences have been

developed.

Quasi-random sequences, such as the Halton sequence and the Sobol’ sequence, are

generated systematically according to specific rules, unlike pseudo-random numbers, which

are typically generated by algorithms that aim to mimic true randomness. Pseudo-random

number generators often produce sequences that exhibit some degree of correlation or

clustering. In contrast, quasi-random sequences exhibit low discrepancy, meaning they are

more uniformly distributed across the sampling space, avoiding clusters and gaps.

Figure 1.1 illustrates the distribution of points generated by pseudo-random, Halton,

Sobol’, and Latin Hypercube sequences in 2D and 3D space, demonstrating the improved

3



uniformity of quasi-random sequences.

The convergence rate of quasi-random sequences can be significantly faster than that of

pseudo-random sequences, approaching 1/N in optimal cases. The Sobol’ sequence is widely

used in many fields, including global sensitivity analysis, due to its efficient generation and

good low-discrepancy properties.

Due to the high computational cost associated with global sensitivity analysis, par-

ticularly when using methods like the Sobol’ method, parallel computing techniques are

recommended to accelerate the calculations.

4
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Chapter 2

Two Methods for Global Sensitivity

Analysis

Numerous methods for global sensitivity analysis have been developed. Prominent

examples include the Morris method [9, 2] and variance-based methods such as the Sobol’

method [19, 15, 16], the Fourier amplitude sensitivity test (FAST) [3, 1], and the random

balanced designs based on FAST [23, 14, 24]. This chapter explores the details of the

Morris method and the Sobol’ method.

2.1 The Morris Method

The Morris method was proposed as an alternative to fractional factorial designs for

analyzing deterministic computational models with a moderate-to-large number of inputs.

It employs a series of randomized one-factor-at-a-time designs [9] and is also known as the

7



elementary effects method because it is based on the analysis of so-called elementary effects.

The sample mean and standard deviation of an input are used to measure the sensitivity

of each input.

2.1.1 Elementary Effects

Suppose an output Y of a model is a deterministic scalar function of k independent

random inputs of the model, denoted by the k-element vector X = (X1, X2, . . . , Xi, . . . , Xk)

Y = f(X).

The cumulative distribution function (CDF) values of the inputs (Xc1, Xc2, . . . , Xci, . . . , Xck)

are sampled in a k-dimensional grid with pi levels for the ith dimension, where Xci takes

on values from the set {0, 1/(pi − 1), 2/(pi − 1), · · · , 1− 1/(pi − 1), 1}. For given values of

X, the elementary effect of the ith input Xi

Di(X) =
f(X1, X2, . . . , Xi−1, Xi +∆i, Xi+1, . . . , Xk)− f(X)

∆ci

, (2.1)

where ∆ci is a multiple of 1/(pi− 1), ∆ci ≤ 1, Xi+∆i is the inverse CDF value of Xci+∆ci,

and Xi +∆i ≤ sup(Xi) [9, 17].

2.1.2 Means and Standard Deviations

The effect of the ith input Xi on the output Y can be assessed by the population mean

µi and standard deviation σi of the elementary effects of Xi.

• A large positive or negative µi and a small σi suggests Xi has a strong and consistent

positive or negative effect on Y , respectively, compared to other inputs.

8



• A large absolute value of µi and a large σi indicates the effect of Xi on Y is significant

and highly dependent on other inputs.

• A small |µi| and a small σi suggests Xi has no significant effect on Y .

• A small |µi| and a large σi suggests Xi has both positive and negative elementary

effects which cancel each other out.

The influence of Xi on Y can also be assessed by the population mean E(|Di|) of the

absolute values of the elementary effects of Xi.

• A large E(|Di|) suggests Xi has a significant influence on Y .

• A small E(|Di|) suggests Xi has no significant influence on Y .

If all pi and ∆i are equal to p and ∆, there are pk−1[p−∆(p− 1)] elementary effects

for each input [9]. For instance, when k = 10, p = 4, and ∆ = p/[2(p − 1)], there are

524,288 elementary effects for each input. Assuming it takes a minute to compute a single

elementary, calculating all the elementary effects for all 10 inputs would take approximately

10 years. This computational cost is prohibitively high, rendering a full calculation of

elementary effects for most real-world models impractical.

Therefore, µi, σi, and E(|Di|) are estimated by a sample mean Di, a standard deviation

si, and a sample mean |Di| of the absolute values of the elementary effects of Xi. These

statistics serve as sensitivity measures within the Morris method [9, 2].

9



2.1.3 Trajectories

The Morris method employs an efficient sampling strategy. Instead of evaluating a

model 2rk times, where r is the number of elementary effects sampled per input and k

is the number of inputs, the concept of trajectories is introduced. A trajectory involves

systematically varying one input at a time while holding others constant, generating k

elementary effects with only k + 1 model evaluations. Then only r(k + 1) evaluations are

needed. This significantly reduces the computational burden.

Furthermore, efforts have been made to optimize trajectory selection. By strategically

choosing a set of trajectories that effectively cover the input space from a larger set

of random trajectories, the efficiency of the sampling process can be further improved.

Maximizing the distance between trajectories has been explored to achieve this goal [2].

The distance between trajectories m and l

dm,l =


k+1∑
i=1

k+1∑
j=1

√
k∑

z=1

[Xm
i (z)−X l

j(z)]
2 if m ̸= l,

0 otherwise.

(2.2)

k is the number of inputs and Xm
i (z) is the zth coordinate of the ith point of trajectory m

[2].

The optimal set of r out of M random trajectories can be selected based on the

root-mean-square (RMS) of
(
r
2

)
distances for each of

(
M
r

)
cases. For instance, if r = 4

trajectories are chosen from M = 10 random trajectories, the RMS of the
(
4
2

)
distances

Ri,j,k,l =

√
d2i,j + d2i,k + d2i,l + d2j,k + d2j,l + d2k,l

6
(2.3)

10



for each of the
(
10
4

)
cases is calculated, where i, j, k, and l are distinct integers from 1 to M .

Among the
(
10
4

)
sets of 4 trajectories, the set with the highest Ri,j,k,l would be considered

optimal, as it indicates the greatest coverage of the input space.

Four random trajectories in a 2-dimensional 4-level grid with ∆ = p/[2(p − 1)] are

shown in Figure 2.1. For example, trajectory t4 starts from a random point in the grid

(X
(4)
1 , X

(4)
2 ) = (0, 0). It then proceeds to (X

(4)
1 , X

(4)
2 ) = (2/3, 0), where X

(4)
2 remains

unchanged while X
(4)
1 increases by ∆ = 2/3. The third point on this trajectory is

(X
(4)
1 , X

(4)
2 ) = (2/3, 2/3).

0 1/3 2/3 1

X
1

0

1/3

2/3

1

X
2

t
1

t
2

t
3

t
4

Figure 2.1: Four random trajectories in a 2-dimensional 4-level grid

One catch with the optimal trajectory selection strategy is the potential for selecting

trajectories that are effectively the same but traverse the input space in the opposite

11



direction. For example, two trajectories

• t5: (X
(5)
1 , X

(5)
2 ) → (X

(5)
1 +∆, X

(5)
2 ) → (X

(5)
1 +∆, X

(5)
2 +∆)

• t6: (X
(6)
1 = X

(5)
1 +∆, X

(6)
2 = X

(5)
2 +∆) → (X

(6)
1 , X

(6)
2 −∆) → (X

(6)
1 −∆, X

(6)
2 −∆)

explore the same sequence of input combinations but in the reverse order. Therefore, the

strategy could limit the exploration of the input space.

Using these optimal trajectories, the sensitivity measures of the Morris method are

calculated.

The sample mean of the elementary effects of the ith input Xi

Di(X) =
1

r

r∑
j=1

Dj
i (X), (2.4)

where r is the number of trajectories and Dj
i (X) is the elementary effect of Xi of the jth

trajectory.

The sample standard deviation of the elementary effects of Xi

si(X) =

√√√√ 1

r − 1

r∑
j=1

(Dj
i (X)−Di(X)). (2.5)

The sample mean of the absolute values of the elementary effects of Xi

|Di(X)| = 1

r

r∑
j=1

|Dj
i (X)|, (2.6)

where |Dj
i (X)| is the absolute value of the elementary effect of Xi of the jth trajectory.

2.2 The Sobol’ Method

The Sobol’ method is a variance-based method using variance decomposition. It

calculates first-order and total sensitivity indices of model inputs to quantify the sensitivities

12



of a model output to the inputs. The indices are estimated by the Monte Carlo integration

using points in the Sobol’ sequence.

2.2.1 Variance Decomposition

The variance of a square integrable scalar function of independent random variables

having a uniform distribution on the interval [0, 1] can be decomposed into variances of

functions in different dimensions [18].

Suppose that an output Y of a model is a square integrable scalar function of p

independent random inputs uniformly distributed between 0 and 1, denoted by the p-

element vector X = (X1, X2, . . . , Xp):

Y = f(X), f(X) ∈ L2, and Xi ∼ U(0, 1) for i = 1, . . . , p.

Then the function f(X) can be represented by the sum of a constant and 2p − 1 functions

in different dimensions [4]:

f(X) =f0 +

p∑
i=1

fi(Xi) +

p−1∑
i=1

p∑
j=i+1

fi,j(Xi, Xj) +

p−2∑
i=1

p−1∑
j=i+1

p∑
k=j+1

fi,j,k(Xi, Xj, Xk) + · · ·

+

p−n+1∑
i=1

· · ·
p∑

n=l+1

fi,...,l,n(Xi, . . . , Xl, Xn) + · · ·+ f1,2,...,p(X1, X2, . . . , Xp),

(2.7)

where the means of all the functions on the right side of Equation 2.7 are zero:

∫ 1

0

· · ·
∫ 1

0

fi,...,n(xi, . . . , xn)dxi · · · dxn = 0. (2.8)

The constant and functions can be calculated by integration. For example, integrating
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both sides of Equation 2.7 with respect to x gives

∫ 1

0

· · ·
∫ 1

0

f(x)dx = f0, (2.9)

with respect to x except xi gives

∫ 1

0

· · ·
∫ 1

0

f(x)dx∼i = f0 + fi(Xi), (2.10)

and with respect to x except xi and xj gives

∫ 1

0

· · ·
∫ 1

0

f(x)dx∼(i,j) = f0 + fi(Xi) + fj(Xj) + fi,j(Xi, Xj). (2.11)

Squaring and integrating both sides of Equation 2.7 with respect to x and taking f 2
0

on the right side to the left side gives∫ 1

0

· · ·
∫ 1

0

f 2(x)dx− f 2
0 =

p∑
i=1

∫ 1

0

f 2
i (xi)dxi +

p−1∑
i=1

p∑
j=i+1

∫ 1

0

∫ 1

0

f 2
i,j(xi, xj)dxidxj

+

p−2∑
i=1

p−1∑
j=i+1

p∑
k=j+1

∫ 1

0

∫ 1

0

∫ 1

0

f 2
i,j,k(xi, xj, xk)dxidxjdxk + · · ·

+

p−n+1∑
i=1

· · ·
p∑

n=l+1

∫ 1

0

· · ·
∫ 1

0

f 2
i,...,l,n(xi, . . . , xl, xn)dxi . . . dxldxn + · · ·

+

∫ 1

0

· · ·
∫ 1

0

f 2
1,2,...,p(x1, x2, . . . , xp)dx.

(2.12)

By the definition of variance and Equations 2.8 and 2.9, the variance of Y

V (Y ) =

∫ 1

0

· · ·
∫ 1

0

f 2(x)dx−
(∫ 1

0

· · ·
∫ 1

0

f(x)dx

)2

(2.13)

=

∫ 1

0

· · ·
∫ 1

0

f 2(x)dx− f 2
0 , (2.14)
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the variance of fi(Xi)

V (fi(Xi)) =

∫ 1

0

f 2
i (xi)dxi −

(∫ 1

0

fi(xi)dxi

)2

=

∫ 1

0

f 2
i (xi)dxi, (2.15)

and the variance of fi,...,n(Xi, . . . , Xn)

V (fi(Xi)) =

∫ 1

0

· · ·
∫ 1

0

f 2
i,...,n(xi, . . . , xn)dxi . . . dxn

−
(∫ 1

0

· · ·
∫ 1

0

fi,...,n(xi, . . . , xn)dxi . . . dxn

)2

(2.16)

=

∫ 1

0

· · ·
∫ 1

0

f 2
i,...,n(xi, . . . , xn)dxi . . . dxn. (2.17)

Substituting Equations 2.14, 2.15, and 2.17 into Equation 2.12 gives

V (Y ) =

p∑
i=1

V (fi(Xi)) +

p−1∑
i=1

p∑
j=i+1

V (fi,j(Xi, Xj)) +

p−2∑
i=1

p−1∑
j=i+1

p∑
k=j+1

V (fi,j,k(Xi, Xj, Xk))

+ · · ·+
p−n+1∑
i=1

· · ·
p∑

n=l+1

V (fi,...,l,n(Xi, . . . , Xl, Xn)) + · · ·+ V (f1,2,...,p(X)).

(2.18)

V (Y ) is decomposed into the variances of 2p − 1 functions in different dimensions.

2.2.2 First-Order and Total Sensitivity Indices

The Sobol’ method calculates first-order and total sensitivity indices, which quantify

the influence of each input on the variance of an output.

The variances on the right side of Equation 2.18 can be expressed as variances of
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conditional expectations of Y :

V (fi(Xi)) = V

(∫ 1

0

· · ·
∫ 1

0

f(x)dx∼i − f0

)
= V

(∫ 1

0

· · ·
∫ 1

0

f(x)dx∼i

)
(2.19)

= V

(∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , Xi, . . . , xp)dx1 . . . dxi−1dxi+1 . . . dxp

)
= V (E(Y |Xi)), (2.20)

V (fi,j(Xi, Xj)) = V

(∫ 1

0

· · ·
∫ 1

0

f(x)dx∼(i,j) − fi(Xi)− fj(Xj)− f0

)
(2.21)

= V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)), (2.22)

V (fi,...,n(Xi, . . . , Xn)) = V (E(Y |Xi, . . . , Xn))− · · · − V (E(Y |Xi))− · · · − V (E(Y |Xn)).

(2.23)

V (fi,...,n(Xi, . . . , Xn)) is called the nth-order effect of Xi through Xn on Y . For example,

V (fi(Xi)) is the first-order effect of Xi on Y and V (fi,j(Xi, Xj)) is the second-order effect

of Xi and Xj on Y . A higher-order effect does not include lower-order effects.

The sum of the effects including Xi is called the total effect of Xi on Y :

V (fi(Xi)) +

p∑
j=1
j ̸=i

V (fi,j(Xi, Xj)) +

p−1∑
j=1
j ̸=i

p∑
k>j
k ̸=i

V (fi,j,k(Xi, Xj, Xk)) + · · ·+ V (fi,j,...,p(Xi, Xj, . . . , Xp)).

(2.24)

It can also be expressed as the difference

V (Y )− V (E(Y |X∼i)), (2.25)

where X∼i is all the inputs except Xi.
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The first-order sensitivity index of Xi is defined as

Si =
V (E(Y |Xi))

V (Y )
, (2.26)

which is the ratio of the first-order effect of Xi on Y to V (Y ). The second-order and

nth-order sensitivity indices are defined in similar ways with Equations 2.22 and 2.23.

The total sensitivity index of Xi is defined as

STi =
V (Y )− V (E(Y |X∼i))

V (Y )
(2.27)

=
E(V (Y |X∼i))

V (Y )
(by the law of total variance), (2.28)

which is the ratio of the total effect of Xi on Y to V (Y ).

The sensitivity of Y to Xi is quantified by Si and STi. Xi with a high Si or STi greatly

influences Y .

2.2.3 Sensitivity Index Estimation

First-order and total sensitivity indices are estimated by the Monte Carlo integration.

Points in the Sobol’ sequence are used for the estimation [19, 15] since the Sobol’ sequence

is a low-discrepancy quasi-random sequence [20]. The points are scrambled to avoid using

the point at the origin [11].

The variances of Y , the first-order and total effects of Xi, and f0 can be estimated by
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the Monte Carlo integration [18]:

V (Y ) =

∫ 1

0

· · ·
∫ 1

0

f 2(x)dx− f 2
0

≈ 1

N

N∑
s=1

f 2(x(s))− f 2
0 (2.29)

V (E(Y |Xi)) =

∫ 1

0

(∫ 1

0

· · ·
∫ 1

0

f(x)dx∼i

)2

dxi − f 2
0 (2.30)

≈ 1

N

N∑
s=1

f(x
(s)
i ,x

(s)
∼i )f(x

(s)
i ,x

′(s)
∼i )− f 2

0 (2.31)

V (Y )− V (E(Y |X∼i)) = V (Y )−

(∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

f(x)dxi

)2

dx∼i − f 2
0

)

≈ V (Y )− 1

N

N∑
s=1

f(x
(s)
i ,x

(s)
∼i )f(x

′(s)
i ,x

(s)
∼i ) + f 2

0 (2.32)

f0 =

∫ 1

0

· · ·
∫ 1

0

f(x)dx

≈ 1

N

N∑
s=1

f(x(s)) (2.33)

where x(s) is the sth point of a set of random N points, x
(s)
i is the ith element of the sth

point, x
(s)
∼i is x

(s) except x
(s)
i , and x

′(s)
∼i is the sth point of another set of random N points

except x
′(s)
i .

For a model with p inputs, N points in the 2p-dimensional Sobol’ sequence are sampled

to form a N × 2p matrix:

S =



x1,1 x1,2 · · · x1,i · · · x1,p · · · x1,p+i · · · x1,2p

x2,1 x2,2 · · · x2,i · · · x2,p · · · x2,p+i · · · x2,2p

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

xN−1,1 xN−1,2 · · · xN−1,i · · · xN−1,p · · · xN−1,p+i · · · xN−1,2p

xN,1 xN,2 · · · xN,i · · · xN,p · · · xN,p+i · · · xN,2p.


(2.34)
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S is then partitioned into two N × p matrices, A and B, where

A =



x1,1 x1,2 · · · x1,i · · · x1,p

x2,1 x2,2 · · · x2,i · · · x2,p

· · · · · · · · · · · · · · · · · ·

xN−1,1 xN−1,2 · · · xN−1,i · · · xN−1,p

xN,1 xN,2 · · · xN,i · · · xN,p


(2.35)

contains the first p columns of S and

B =



x1,p+1 x1,p+2 · · · x1,p+i · · · x1,2p

x2,p+1 x2,p+2 · · · x2,p+i · · · x2,2p

· · · · · · · · · · · · · · · · · ·

xN−1,p+1 xN−1,p+2 · · · xN−1,p+i · · · xN−1,2p

xN,p+1 xN,p+2 · · · xN,p+i · · · xN,2p


(2.36)

contains the remaining p columns of S.

A matrix

B
(i)
A =



x1,p+1 x1,p+2 · · · x1,i · · · x1,2p

x2,p+1 x2,p+2 · · · x2,i · · · x2,2p

· · · · · · · · · · · · · · · · · ·

xN−1,p+1 xN−1,p+2 · · · xN−1,i · · · xN−1,2p

xN,p+1 xN,p+2 · · · xN,i · · · xN,2p


(2.37)

is obtained from B by replacing its ith column with the ith column of A. Similarly, another
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matrix

A
(i)
B =



x1,1 x1,2 · · · x1,p+i · · · x1,p

x2,1 x2,2 · · · x2,p+i · · · x2,p

· · · · · · · · · · · · · · · · · ·

xN−1,1 xN−1,2 · · · xN−1,p+i · · · xN−1,p

xN,1 xN,2 · · · xN,p+i · · · xN,p


(2.38)

is obtained from A by replacing its ith column with the ith column of B.

The first-order sensitivity index of Xi can be estimated by

Si =
V (E(Y |Xi))

V (Y )

≈
1
N

∑N
s=1 f(B(s, :))(f(A

(i)
B (s, :))− f(A(s, :)))

1
2N

∑N
s=1(f

2(A(s, :)) + f 2(B(s, :)))−
(

1
2N

∑N
s=1(f(A(s, :)) + f(B(s, :)))

)2 (2.39)

and the total sensitivity index of Xi can be estimated by

STi =
E(V (Y |X∼i))

V (Y )

≈
1
2N

∑N
s=1(f(A(s, :))− f(A

(i)
B (s, :))2

1
2N

∑N
s=1(f

2(A(s, :)) + f 2(B(s, :)))−
(

1
2N

∑N
s=1(f(A(s, :)) + f(B(s, :)))

)2 , (2.40)
where A(s, :) is the sth row of A [16, 6, 8]. AB is preferred over BA due to its better

distribution of points [16].

2.2.4 A Simple Linear Model

For a simple linear model, first-order and total sensitivity indices can be calculated

analytically and empirically.
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Suppose Y is the sum of four independent random variables Xi:

Y =
4∑

i=1

Xi,

where Xi ∼ U(0, 1).

Then the mean of Xi

E(Xi) =

∫ b

a

xif(xi)dxi

=
1

b− a

∫ b

a

xidxi

=
b− a

2

=
1

2
for i = 1, 2, 3, 4.

Therefore, the mean of Y

E(Y ) = E(X1 +X2 +X3 +X4)

= E(X1) + E(X2) + E(X3) + E(X4)

= 2.

The variance of Xi

V (Xi) = E((Xi − E(Xi))
2)

= E(X2
i )− [E(Xi)]

2

=

∫ b

a

x2
i f(xi)dxi −

(
b− a

2

)2

=
1

b− a

∫ b

a

x2
i dxi −

(
b− a

2

)2

=
(b− a)2

12

=
1

12
for i = 1, 2, 3, 4.
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Therefore, the variance of Y

V (Y ) = V (X1 +X2 +X3 +X4)

= V (X1) + V (X2) + V (X3) + V (X4)

=
1

3
.

The first-order sensitivity index of Xi

Si =
V (E(Y |Xi))

V (Y )

=
V (E(Xi +Xj +Xk +Xl))

V (Y )

=
V (Xi + 3/2)

V (Y )

=
V (Xi)

V (Y )

=
1

4
for i = 1, 2, 3, 4

and the total effect sensitivity index of Xi

STi =
E(V (Y |X∼i))

V (Y )

=
E(V (Xi +Xj +Xk +Xl))

V (Y )

=
E(1/3)

V (Y )

=
1

4
for i = 1, 2, 3, 4.

The first-order sensitivity indices were estimated for four different sample sizes using

points in the Sobol’ sequence. As the sample size increases, estimated first-order sensitivity

indices converge to the analytical indices as illustrated in Figure 2.2.

The total sensitivity indices were estimated for four different sample sizes using points

in the Sobol’ sequence. As the sample size increases, estimated total sensitivity indices
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Table 2.1: Estimated first-order sensitivity indices of all four inputs (Ŝi) for different

sample sizes

23 27 210 213

Ŝ1 0.0545 0.2501 0.2502 0.2500

Ŝ2 0.1938 0.2569 0.2502 0.2500

Ŝ3 0.1745 0.2510 0.2502 0.2500

Ŝ4 0.0335 0.2565 0.2503 0.2501
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Figure 2.2: Convergence of estimated first-order sensitivity indices of all four inputs (Si)

(Sanalytical is 0.25.)
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converge to the analytical indices as illustrated in Figure 2.3.

Table 2.2: Estimated total sensitivity indices of all four inputs ( ˆSTi) for different sample

sizes

23 27 210 213

ˆST1 0.4333 0.2497 0.2502 0.25

ˆST2 0.2566 0.2509 0.2502 0.25

ˆST3 0.2430 0.2512 0.2502 0.25

ˆST4 0.2606 0.2509 0.2501 0.25
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Figure 2.3: Convergence of estimated total sensitivity indices of all four inputs (STi)

(STanalytical is 0.25.)
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Chapter 3

Preventing Seawater Intrusion with

Global Sensitivity Analysis

3.1 Introduction

Freshwater is essential for agriculture. However, the majority of Earth’s freshwater is

stored as seawater, which is unusable for irrigation due to its high salinity. Groundwater is

the most readily accessible freshwater source in many regions, but its availability is limited.

Overpumping of groundwater can lead to land subsidence, including the formation of

sinkholes. Near coastlines, freshwater depletion can induce seawater intrusion, contaminat-

ing freshwater aquifers.

Groundwater flow models are used to simulate and predict groundwater movement,

incorporating factors such as geology, recharge rates, and pumping. While valuable, these

models contain inherent uncertainties due to measurement errors and simplifications of
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real-world complexities. Data used to construct these models can have varying levels of

accuracy, and models may not perfectly represent all real-world processes.

Global sensitivity analysis (GSA) can identify the most influential inputs in a model.

Applying GSA to a groundwater flow model allows for the determination of the input

parameters that most significantly affect the risk of seawater intrusion.

Identifying the most important input parameters in groundwater models enables

the development of more targeted management strategies, informs decisions regarding

sustainable groundwater use, and contributes to the protection of this vital resource for

future generations.

3.2 Methods

The Morris method and the Sobol’ method were employed to perform global sensitivity

analysis of a groundwater flow model.

Sensitivity Analysis Library in Python (SALib) [6, 7] was used to sample points for

both methods.

Modular Three-Dimensional Finite-Difference Ground-Water Flow Model with a Newton

Formulation (MODFLOW-NWT) from USGS [10] was used to calculate the heads of the

model after 372 monthly stress periods from January 1985 using the points from SALib as

the input values.

Zonebudget (ZONBUD) [5] was used to calculate inflow and outflow across the boundary

after the periods, December 2015 using the heads from MODFLOW-NWT. The sum of
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inflow and outflow is the net flux of seawater intruding into the aquifers.

MODFLOW-NWT and ZONBUD were run in MATLAB with Parallel Computing

Toolbox to save time.

SALib was used to calculate the sensitivity measures of both methods.

3.2.1 The Groundwater Flow Model

Ventura Region Groundwater Flow Model (VRGWFM) [22], which is a model of

aquifers in Ventura, California, was used in MODFLOW-NWT for the analysis.

MODFLOW-NWT uses the finite different method to calculate heads. The governing

equation it solves is the groundwater flow equation.

The three-dimensional groundwater flow equation with anisotropic and heterogenous

porous medium is derived by combining Darcy’s law with the equation of continuity [25, 12]:

Ss
∂h

∂t
+

∂q

∂x
+

∂q

∂y
+

∂q

∂z
+W = 0, (3.1)

where h is the hydraulic head [L], W = W (x, y, z, t) is the volumetric flux per unit volume,

and Ss = Ss(x, y, z) is the specific storage of the porous material [L−1].

From Darcy’s law, the specific discharge or flux in each direction is

qx = −Kx
∂h

∂x
(3.2)

qy = −Ky
∂h

∂y
(3.3)

qz = −Kz
∂h

∂z
, (3.4)

where Kx, Ky, Kz are the hydraulic conductivity in the x, y, and z directions [L/T ].
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Substituting Equations 3.2, 3.3, and 3.4 into Equation 3.1 and rearranging results in

∂

∂x

(
Kx

∂h

∂x

)
+

∂

∂y

(
Ky

∂h

∂y

)
+

∂

∂z

(
Kz

∂h

∂z

)
−W = Ss

∂h

∂t
. (3.5)

3.2.2 The Output and Inputs of the Model

The output of the model for global sensitivity analysis is the net flux of seawater

intruding into the aquifers of the model across the general head boundary specified in the

General-Head Boundary file for MODFLOW-NWT.

The inputs are 17 horizontal hydraulic conductivity in several layers and zones, 4

vertical hydraulic conductivity in different layers and zones, 4 storativity in different layers

and zones, the recharge flux, the interface hydraulic conductance, and the streambed

hydraulic conductance. All 28 inputs are listed in Table 3.1.

3.2.3 Settings for the Morris Method

All the inputs were assumed to be uniformly distributed within ±10% of their nominal

values because the distributions of the inputs are unknown. 500 trajectories were randomly

generated, and 10 optimal trajectories were selected from them. The number of grid levels

were set to four. Since there are 28 inputs, 10 × (28 + 1) = 290 points were sampled.

The sample means of the absolute values of elementary effects of all 28 inputs and the

sample standard deviations of the elementary effects of all 28 inputs were calculated.
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Table 3.1: The 28 inputs of the groundwater flow model

Input name Input description

X1 Horizontal hydraulic conductivity in layer 1 zone 11 [ft · day−1]

X2 Horizontal hydraulic conductivity in layer 3 zone 9 [ft · day−1]

X3 Horizontal hydraulic conductivity in layer 3 zone 12 [ft · day−1]

X4 Horizontal hydraulic conductivity in layer 5 zone 9 [ft · day−1]

X5 Horizontal hydraulic conductivity in layer 5 zone 10 [ft · day−1]

X6 Horizontal hydraulic conductivity in layer 5 zone 12 [ft · day−1]

X7 Horizontal hydraulic conductivity in layer 6 zone 11 [ft · day−1]

X8 Horizontal hydraulic conductivity in layer 6 zone 12 [ft · day−1]

X9 Horizontal hydraulic conductivity in layer 6 zone 13 [ft · day−1]

X10 Horizontal hydraulic conductivity in layer 6 zone 19 [ft · day−1]

X11 Horizontal hydraulic conductivity in layer 7 zone 4 [ft · day−1]

X12 Horizontal hydraulic conductivity in layer 7 zone 5 [ft · day−1]

X13 Horizontal hydraulic conductivity in layer 7 zone 10 [ft · day−1]

X14 Horizontal hydraulic conductivity in layer 7 zone 12 [ft · day−1]

3.2.4 Settings for the Sobol’ Method

All the inputs were assumed to be uniformly distributed within ±10% of their nominal

values because the distributions of the inputs are unknown. A base sample N was set to

1024 which is a power of 2. Since there are 28 inputs, 1024 × (28 + 2) = 30720 points in
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Table 3.1: The 28 inputs of the groundwater flow model (Continued)

Input name Input dsecripton

X15 Horizontal hydraulic conductivity in layer 8 zone 12 [ft · day−1]

X16 Horizontal hydraulic conductivity in layer 9 zone 4 [ft · day−1]

X17 Horizontal hydraulic conductivity in layer 9 zone 5 [ft · day−1]

X18 Vertical hydraulic conductivity in layer 6 zone 4 [ft · day−1]

X19 Vertical hydraulic conductivity in layer 6 zone 11 [ft · day−1]

X20 Vertical hydraulic conductivity in layer 6 zone 13 [ft · day−1]

X21 Vertical hydraulic conductivity in layer 7 zone 12 [ft · day−1]

X22 Storativity in layer 9 zone 12

X23 Storativity in layer 10 zone 12

X24 Storativity in layer 11 zone 12

X25 Storativity in layer 13 zone 12

X26 A multiplier for recharge flux

X27 A multiplier for interface hydraulic conductance

X28 A multiplier for streambed hydraulic conductance

the 56-dimensional Sobol’ sequence were sampled.

The first-order and total sensitivity indices of all 28 inputs were estimated with 95%

confidence intervals.
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3.3 Results

Results of global sensitivity analysis, performed using the Morris method and the Sobol’

method, are detailed in this section.

3.3.1 Results from the Morris Method

Figure 3.1 shows estimated means of the absolute values of elementary effects (|Di|) and

estimated standard deviations of the elementary effects (si) for all 28 inputs (i = 1, . . . , 28).

Three inputs with estimated means greater than 1× 107 are marked with their names (X26,

X27, and X28).

The estimated mean and standard deviation for X26, |D26| and s26, are 1.2779×108

and 0.1239×108, respectively. |D27| and s27 are 0.1749×108 and 0.0254×108. |D28| and

s28 are 0.2282×108 and 0.0434×108. The estimated means and standard deviations for

the others are smaller than those for the three inputs. All estimated means and standard

deviations are listed in Table A.1.

3.3.2 Results from the Sobol’ Method

Of the 30720 evaluations, 168 fail to converge in at least two stress periods. However,

since these failures represent only 0.5469% of the total (runs), their output values were

included in the sensitivity index calculations.

Figures 3.2 and 3.3 show 95% confidence intervals for the first-order and total sensitivity

indices, respectively, for all 28 inputs. Both figures look very similar to each other.
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Figure 3.1: Estimated means (|Di|) and standard deviations (si) of the (absolute) values

of elementary effects for all 28 inputs (Three inputs with estimated means greater than

1× 107 are marked with their names.)

The 95% confidence interval for the first-order sensitivity index of X26, S26, is 0.9539

± 0.0749. The 95% confidence intervals for S27 and S28 are 0.0182 ± 0.0126 and 0.0259 ±

0.0155, respectively. The 95% confidence intervals for the first-order sensitivity indices of

the other inputs are around zero, including it. All confidence intervals for the first-order

sensitivity indices are listed in Table A.2.

The 95% confidence interval for the total sensitivity index of X26, ST26, is 0.9443 ±

0.0635. The 95% confidence intervals for ST27 and ST28 are 0.0178 ± 0.0016 and 0.0250 ±
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Figure 3.2: The 95% confidence intervals for the first-order sensitivity indices of all 28

inputs

0.0024, respectively. The 95% confidence intervals for the total sensitivity indices of the

other inputs are around zero, including it. All confidence intervals for the total sensitivity

indices are listed in Table A.2.

3.4 Discussion

Both the Morris method and the Sobol’ method yield the same results. When the

output of interest is the net flux of seawater intruding into the adjacent aquifers, X26,

the recharge flux, is the most influential input to the groundwater flow model. X27, the
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Figure 3.3: 95% confidence intervals for the total sensitivity indices of all 28 inputs

hydraulic conductance of the interface between the aquifer cells and the boundary, and

X28, the streambed hydraulic conductance, are relatively important inputs. The other 25

inputs have negligible influence on the output.

Four scatter plots were created to see the correlation between the output Y and each of

four inputs: one important input (X26), two relatively important inputs (X27 and X28), and

one unimportant input (X1). Figure 3.4a indicates a negative linear correlation between Y

and X26. This suggests that increasing recharge flux reduces seawater intrusion into the

aquifers.

The first-order and total sensitivity indices of the first 25 inputs are zero since the 95%
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Figure 3.4: Scatter plots of output Y as a function of input Xi (i = 26, 27, 28, and 1)

confidence intervals for the first-order and total sensitivity indices of the first 25 inputs

include zero, which means they have no effect on the output. Therefore, their values can

be fixed at their nominal values to simplify the model.
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3.5 Conclusion

If aquifers are located near the ocean, excessive groundwater pumping can lead to

seawater intrusion. To prevent seawater from infiltrating the underground aquifers, the

recharge flux must be carefully monitored and controlled. The flux can be monitored by

measuring the hydraulic heads along the boundary and controlled by limiting groundwater

extraction and implementing artificial recharge.

Additionally, more detailed information on the hydraulic conductance of the interface

between the aquifer cells and the boundary and the streambed hydraulic conductance

would improve predictions of the net seawater intrusion flux.

The global sensitivity analysis was conducted assuming independent inputs uniformly

distributed. Further research is needed to investigate the impact of correlated inputs.
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Chapter 4

Extending Battery Life with Global

Sensitivity Analysis

4.1 Introduction

Batteries are ubiquitous in modern life, powering everything from smartphones and

laptops to electric vehicles. Among various battery technologies, lithium-ion batteries have

become dominant due to their high energy density. However, accurately predicting the

performance and lifespan of lithium-ion batteries remains a significant challenge.

The increasing demand for electric vehicles and the growing emphasis on renewable

energy sources necessitate advancements in battery modeling. Accurate battery models

are crucial for several key areas: optimizing battery design and manufacturing; developing

advanced battery management systems (BMS) that enable real-time monitoring and control

of battery operation for safe and efficient use; and predicting battery degradation to
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accurately forecast battery performance over its lifetime, optimizing maintenance schedules

and ensuring safe operation.

4.2 Methods

The Morris method and the Sobol’ method were employed to perform global sensitivity

analysis of a lithium-ion battery model.

Sensitivity Analysis Library in Python (SALib) [6, 7] was used to sample points for

both methods.

The Doyle-Fuller-Newman (DFN) model in Python Battery Mathematical Modelling

(PyBaMM) [21] was used to simulate 1C constant-current discharge using the points from

SALib as the input values.

SALib was used to calculate the sensitivity measures of both methods.

4.2.1 The Doyle-Fuller-Newman Model

There are many lithium-ion battery models: single particle model, multiple particle

model, the Doyle-Fuller-Newman (DFN) model, and so on. The DFN model was used for

the analysis.

A set of governing equations for the DFN model is followed.

The volume-average approximation for conservation of charge in the solid phase of the

porous electrode can be described as follows [13]

∇ · (σeff∇ϕ̄s) = asF j̄, (4.1)
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where σeff is the effective conductivity in the solid phase, ϕ̄s is the average of electric

potential in the solid phase, as is the specific interfacial surface area, F is the Faraday’s

constant, and j̄ is the average of the Butler-Volmer flux density.

The solid-phase mass conservation equation:

∂cs
∂t

=
1

r2
∂

∂r

(
Dsr

2∂cs
∂r

)
, (4.2)

where cs is the lithium-ion concentration in the solid phase, r is the radius of spherical

particles the solid phase, and Ds is the diffusion coefficient in the solid phase.

The volume-average approximation for charge conservation in the electrolyte phase of

the porous electrode, which is

∇ · (κeff∇ϕ̄e + κD,eff∇lnc̄e) + asF j̄ = 0, (4.3)

where i0 is the exchange current density The volume-average approximation for mass

conservation in the electrolyte phase of the porous electrode:

∂(ϵec̄e)

∂t
= ∇ · (De,eff∇c̄e) + as(1− t0+)j̄. (4.4)

The Bulter-Volmer equation couples these four equations and is expressed as

j̄ =
ī0
F

[
exp

(
(1− α)F

RT
η

)
− exp

(
−αF

RT
η

)]
(4.5)

The boundary conditions for the conservation of charge in the solid phase of the porous
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electrode equation are

−σeff
∂ϕ̄s

∂x

∣∣∣
x=0

=
iapp
Asurf

(4.6)

σeff
∂ϕ̄s

∂x

∣∣∣
x=δ−

= 0 at the negative electrode (4.7)

σeff
∂ϕ̄s

∂x

∣∣∣
x=L−δ+

= 0 (4.8)

−σeff
∂ϕ̄s

∂x

∣∣∣
x=L

=
iapp
Asurf

at the positive electrode (4.9)

The boundary conditions for the solid phase mass conservation equation (concentration in

the electrode active material) are

∂cs
∂r

∣∣∣
r=0

= 0 (4.10)

−Ds
∂cs
∂r

∣∣∣
r=Rs

= j̄ (4.11)

The boundary conditions for the conservation of mass in the electrolyte phase of the porous

electrode are

De,eff
∂ce
∂x

∣∣∣
x=0

= De,eff
∂ce
∂x

∣∣∣
x=L

= 0. (4.12)

The boundary conditions for the conservation of charge in the electrolyte phase of the

porous electrode are

κeff
∂ϕ̄e

∂x

∣∣∣
x=0

= κeff
∂ϕ̄e

∂x

∣∣∣
x=L

= 0. (4.13)

4.2.2 The Output and Inputs of the Model

The output of the model for global sensitivity analysis is the time it takes until the

terminal voltage hits the lower cut-off voltage which is set to 3.105V.
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The inputs are the current collector thickness, the electrode thickness, the current

collector conductivity, the current collector density, the current collector specific heat

capacity, and the current collector thermal conductivity for both positive and negative

electrodes, as well as the separator thickness. All 13 inputs are listed in Table 4.1.

Table 4.1: The 13 inputs of the lithium-ion battery model

Input name Input description

X1 Negative current collector thickness [m]

X2 Negative electrode thickness [m]

X3 Separator thickness [m]

X4 Positive electrode thickness [m]

X5 Positive current collector thickness [m]

X6 Negative current collector conductivity [S ·m−1]

X7 Positive current collector conductivity [S ·m−1]

X8 Negative current collector density [kg ·m−3]

X9 Positive current collector density [kg ·m−3]

X10 Negative current collector specific heat capacity [J · kg−1 ·K−1]

X11 Positive current collector specific heat capacity [J · kg−1 ·K−1]

X12 Negative current collector thermal conductivity [W ·m−1 ·K−1]

X13 Positive current collector thermal conductivity [W ·m−1 ·K−1]
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4.2.3 Settings for the Morris Method

All the inputs were assumed to be uniformly distributed within ±10% of their nominal

values because the distributions of the inputs are unknown. 500 trajectories were randomly

generated, and 10 optimal trajectories were selected from them. The number of grid levels

were set to four. Since there are 13 inputs, 10 × (13 + 1) = 140 points were sampled.

The sample means of the absolute values of elementary effects of all 13 inputs and the

sample standard deviations of the elementary effects of all 13 inputs were calculated.

4.2.4 Settings for the Sobol’ Method

All the inputs were assumed to be uniformly distributed within ±10% of their nominal

values because the distributions of the inputs are unknown. A base sample N was set to

1024 which is a power of 2. Since there are 28 inputs, 1024 × (13 + 2) = 30720 points in

the 56-dimensional Sobol’ sequence were sampled.

The first-order and total sensitivity indices of all 13 inputs were estimated with 95%

confidence intervals.

4.3 Results

Results of global sensitivity analysis, performed using the Morris method and the Sobol’

method, are detailed in this section.
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4.3.1 Results from the Morris Method

Figure 4.1 shows estimated means of the absolute values of elementary effects (|Di|) and

estimated standard deviations of the elementary effects (si) for all 13 inputs (i = 1, . . . , 13).

One input with an estimated mean greater than 100 is marked with its name (X4).

The estimated mean and standard deviation for X4, |D4| and s4, are 724.6988 and

6.4513, respectively. The estimated means and standard deviations for the other inputs are

zero or close to zero. All estimated means and standard deviations are listed in Table A.3
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Figure 4.1: Estimated means (|Di|) and standard deviations (si) of the (absolute) values

of elementary effects for all 13 inputs (One input with an estimated mean greater than 100

is marked with its name.)
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4.3.2 Results from the Sobol’ Method

Figures 4.2 and 4.3 show 95% confidence intervals for the first-order and total sensitivity

indices of all 13 inputs, respectively. Both figures look very similar to each other.
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Figure 4.2: 95% confidence intervals for the first-order sensitivity indices of all 13 inputs

The 95% confidence interval for the first-order sensitivity index of X4, S4, is 0.9995

± 0.0704. The 95% confidence intervals for the first-order sensitivity indices of the other

inputs are around zero, including it. All confidence intervals for the first-order sensitivity

indices are listed in Table A.4.

The 95% confidence interval for the total sensitivity index of X4, ST4, is 0.9995 ±

0.0599. The 95% confidence intervals for the total sensitivity indices of the other inputs
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Figure 4.3: 95% confidence intervals for the total sensitivity indices of all 13 inputs

are around zero, including it. All confidence intervals for the total sensitivity indices are

listed in Table A.4.

4.4 Discussion

Both the Morris method and the Sobol’ method yield the same results. When the

output of interest is the battery life, X4, the positive electrode thickness, is the most

influential input to the lithium-ion model. The other 12 inputs have negligible influence on

the output.

Two scatter plots were created to see the correlation between the output Y and each

46



of two inputs: one important input (X4) and one unimportant input (X2). Figure 4.4a

indicates a positive linear correlation between Y and X4. This suggests that increasing the

thickness of the positive electrode increases the battery life.
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Figure 4.4: Scatter plots of output Y as a function of input Xi (i = 4 and 2)

The first-order and total sensitivity indices of the 12 inputs are zero since the 95%

confidence intervals for the first-order and total sensitivity indices of the 12 inputs include

zero, which means they have no effect on the output. Therefore, their values can be fixed

at their nominal values to simplify the model.

A comparison of the terminal voltage curves having the minimum and maximum life is

shown in 4.5.
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Figure 4.5: A comparison of the terminal voltage curves having the minimum and

maximum life

4.5 Conclusion

For the lithium-ion battery model, the influence of 13 inputs on battery life during

a 1C discharge rate was investigated. Specifically, the thickness of the positive electrode

emerged as the most influential input. These results suggest that thickening the positive

electrode can lead to increased battery life.

The global sensitivity analysis was conducted assuming independent inputs uniformly

distributed. Further research is needed to investigate the impact of correlated inputs.
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Chapter 5

Conclusion

Global sensitivity analysis (GSA) was performed on two complex models—a groundwater

flow model and a lithium-ion battery model—to rank the importance of their input

parameters. Two well-established GSA methods were employed: the Morris method and

the Sobol’ method.

For the groundwater flow model, both methods consistently identified recharge flux as

the most influential input with respect to seawater intrusion.

In the lithium-ion battery model, the thickness of the positive electrode was identified

as the most influential input for battery life.

A key assumption of the Sobol’ method is the independence of input parameters.

However, real-world input parameters may exhibit dependencies or correlations. Future

research could explore advanced techniques for handling correlated inputs within the Sobol’

framework.

Applying GSA to models across various disciplines enables the effective identification
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and prioritization of key inputs, leading to improved model reliability and predictive

capabilities. GSA results can improve model structure optimization, reduce computational

cost, and enhance model accuracy.
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Appendix A

Detailed Research Data

The data used for the global sensitivity analysis are presented in this appendix. All

values in the tables, except for zeros, are presented in fixed-decimal format with four

decimal places, consistent with the MATLAB ‘short’ format.

In the SALib implementation of the Morris method, the random number generator

seed was set to 1. This ensures reproducibility of the results, as setting the seed to 0 did

not consistently generate the same sample across different runs.

sample(problem, 500, num levels=4, optimal trajectories=10, seed=1)

A.1 The Groundwater Flow Model

Table A.1 presents the sample means and standard deviations of the (absolute) values

of the elementary effects. Table A.2 presents the 95% confidence intervals for the first-order

and total sensitivity indices.
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Table A.1: The sample means (|Di|) and standard deviations (si) of the (absolute) values

of the elementary effects for all 28 inputs of the groundwater flow model

i |Di| si

1 0.0032×108 0.0027×108

2 0.0559×108 0.0177×108

3 0.0005×108 0.0003×108

4 0.0578×108 0.0208×108

5 0.0067×108 0.0042×108

6 0.0002×108 0.0002×108

7 0.0104×108 0.0008×108

8 0.0006×108 0.0005×108

9 0.0136×108 0.0007×108

10 0.0006×108 0.0006×108

11 0.0107×108 0.0007×108

12 0.0586×108 0.0050×108

13 0.0017×108 0.0016×108

14 0.0091×108 0.0022×108

A.2 The Lithium-Ion Battery Model

Table A.3. presents the sample means and standard deviations of the (absolute) values

of elementary effects. Table A.4 presents the 95% confidence intervals for the first-order
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Table A.1: The sample means (|Di|) and standard deviations (si) of the (absolute) values

of the elementary effects for all 28 inputs of the groundwater flow model (Continued)

i |Di| si

15 0.0002×108 0.0000×108

16 0.0117×108 0.0007×108

17 0.0174×108 0.0013×108

18 0.0160×108 0.0008×108

19 0.0103×108 0.0008×108

20 0.0133×108 0.0009×108

21 0.0012×108 0.0007×108

22 0.0026×108 0.0006×108

23 0.0006×108 0.0001×108

24 0.0002×108 0.0002×108

25 0.0011×108 0.0005×108

26 1.2779×108 0.1239×108

27 0.1749×108 0.0254×108

28 0.2282×108 0.0434×108

and total sensitivity indices.
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Table A.2: The 95% confidence intervals (CI) for the first-order (Si) and total sensitivity

indices (STi) for all 28 inputs of the groundwater flow model

i CI for Si CI for STi

1 0.0000 ± 0.0002 0.0000 ± 0.0000

2 0.0016 ± 0.0037 0.0015 ± 0.0001

3 -0.0000 ± 0.0000 0.0000 ± 0.0000

4 0.0024 ± 0.0046 0.0025 ± 0.0002

5 0.0000 ± 0.0006 0.0000 ± 0.0000

6 -0.0000 ± 0.0000 0.0000 ± 0.0000

7 0.0001 ± 0.0007 0.0001 ± 0.0000

8 0.0000 ± 0.0000 0.0000 ± 0.0000

9 -0.0004 ± 0.0009 0.0001 ± 0.0000

10 0.0000 ± 0.0001 0.0000 ± 0.0000

11 0.0001 ± 0.0007 0.0001 ± 0.0000

12 0.0017 ± 0.0042 0.0019 ± 0.0002

13 0.0000 ± 0.0001 0.0000 ± 0.0000

14 0.0001 ± 0.0007 0.0001 ± 0.0000
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Table A.2: The 95% confidence intervals (CI) for the first-order (Si) and total sensitivity

indices (STi) for all 28 inputs of the groundwater flow model (Continued)

i CI for Si CI for STi

15 0.0000 ± 0.0000 0.0000 ± 0.0000

16 -0.0002 ± 0.0008 0.0001 ± 0.0000

17 0.0002 ± 0.0011 0.0002 ± 0.0000

18 0.0001 ± 0.0009 0.0001 ± 0.0000

19 0.0001 ± 0.0008 0.0001 ± 0.0000

20 0.0001 ± 0.0010 0.0001 ± 0.0000

21 0.0000 ± 0.0001 0.0000 ± 0.0000

22 -0.0001 ± 0.0001 0.0000 ± 0.0000

23 -0.0000 ± 0.0000 0.0000 ± 0.0000

24 0.0000 ± 0.0000 0.0000 ± 0.0000

25 0.0006 ± 0.0011 0.0001 ± 0.0003

26 0.9539 ± 0.0749 0.9443 ± 0.0635

27 0.0182 ± 0.0126 0.0178 ± 0.0016

28 0.0259 ± 0.0155 0.0250 ± 0.0024
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Table A.3: The sample means (|Di|) and standard deviations (si) of the (absolute) values

of the elementary effects for all 13 inputs of the lithium-ion battery model

i |Di| si

1 0 0

2 15.3023 6.7669

3 0.0563 0.0107

4 724.6988 6.4513

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

10 0 0

11 0 0

12 0 0

13 0 0
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Table A.4: The 95% confidence intervals (CI) for the first-order (Si) and total sensitivity

indices (STi) for all 13 inputs of the lithium-ion battery model

i CI for Si CI for STi

1 0 ± 0 0 ± 0

2 0.0007 ± 0.0020 0.0006 ± 0.0000

3 -0.0000 ± 0.0000 0.0000 ± 0.0000

4 0.9995 ± 0.0704 0.9995 ± 0.0599

5 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0

7 0 ± 0 0 ± 0

8 0 ± 0 0 ± 0

9 0 ± 0 0 ± 0

10 0 ± 0 0 ± 0

11 0 ± 0 0 ± 0

12 0 ± 0 0 ± 0

13 0 ± 0 0 ± 0
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