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DEFORMATION ENERGY QF A CHARGED DROP.
III. FURTHER DEVELOPMENTS

3 - *
Wladyslaw J.> Swiatecki
INTRODUGCTION

A theory of any dynamical process is based on the Hamiltonian
associated with the system under consideration. For any nuclear
phenomenon, including nuclear fission, the Hamiltonian is a many-body
expression with complicated and imperfectly known interparticle forces.
Some progress in understanding nuclear fission may be made by replac-
ing this complicated Hamiltonian with a simple expression, namely that
belonging to a uniformly charged liquid drop, and studying--instead of
the theory of the fission of a nucleus--the theory of the fission of such a

drop.

The Hamiltonian of a drop, considered as a dynamical system,
consists of two parts, the potential and kinetic energies associated with
a given deformation, H =V + T. A prerequisite for a theory of the
division of a drop is an adequate knowledge of V and T in the relevant
regions of the deformation space.

This paper is an introduction to a discussion of certain aspects
of the many-dimensional ''maps' of the potential energy V, considered

" as a function of the deformation coordinates. Such maps have been

studied in the past on several occasions. In the course of a more recent
attempt some unexpected, though elementary, features of the problem
have come to light, which have suggested the need for a more compre-
hensive approach in the discussion of the disintegration of a charged
drep. In the present studies such a more general approach will be
attempted.

Two features of the potential-energy maps (which are them-
selves functions of the fissionability parameter x, specifying the amount
of charge on the drop) follow from elementary considerations. First,
the spherical shape is a configuration of equilibrium and, for x < 1,
there exists a potential energy 'hollow'' corresponding to the stability
of the spherical shape against all small distortions. ‘Second, for very
large distortions, by which we mean configurations of separated frag-
ments, there must be a number of potential-energy ‘valleys, ' each
valley corresponding to a given number of equal fragments separating
to large distances. These valleys are discrete in the sense that going
from one valley to another requires the surmounting of configurations of
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relatively higher potential energy. For example, in order to convert
the configuration of two fragments at infinity to a configuration of three
fragments at infinity one must, in general, go over intermediate con-
figurations .of higher energy. This is analogous to the familiar barrier
(2 saddle-point pass) that separates the configuration of one fragment

. (the original sphere) from the configuration of two fragments at infinity.

The suggested appearance of the potential energy map is then that of
a number of valleys separated from one another by a number of barriers

and saddle-point passes.

" The depth of the bottom of a valley below the level of the
original hollow corresponds to the energy released in the division of
the drop into the corresponding number of fragments. The number of
valleys for which energy is released increases with x. The general
formula for the energy difference betweenn equal fragments at infinity
and the original drop is

AVn. - ( 1/3

s .

where

ZZ/.A /
o2
(Z°/A),

c=r (0,5 (0)_ ’
c s
with (Z /A ~ 50 for a nucleus.

The quant1tles EC(O) and E (0) are the electrostatic and surface
energies of the original drop

“The above energy differences are plotted in F1g 1 as functions

“of x for several values of n.. A scale 6f x from 0 to 1 is glven as well

as an 111ustr%t1ve scale of Z /A from 0 to 50. The energy is given in
units of E and also in Mev, for a nominal value of Eg 0) equal to
700 Mev. o . .

At x = 0 the positive values of AV_ correspond to the energy

‘that must be supplied to an uncharged dropnto accomplish division. As

the charge on the drop is increased division itito two equal fragments
begins to release energy, for x >0.35121. Soon after, divisions into
three and four equal fragments become exothermic, and by the time
x=0.71 is reached (corresponding to nuclei in the weighborhood of
uranium} divisions into five, six, seven, eight, and nine fragments

‘also release energy. Uptox = 0 61098 (Z2 A = 30.5), division into

two fragments releases the most energy. Beyond this point andup to C
= 0.86502 (Z /A 43.3) division into three fragments takes over

f1rst place and division into two fragments falls to second, third, and

fourth places. Atx = 0.86502 division into four fragments begins to
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release most energy and continues to do so up to x = 1.11726

(Z2/A = 55.9). At x = 1, the critical value at which the sphere first
becomes unstable against small spheéroidal distortions, the placing is:
4,5,3,6,7,8,2,9,10, Two is in seventh place. Configurations
of up to 20 fragments at infinity have energies below the energy of the
original sphere.

The amount of energy released does not, of course, by itself
determine the outcome of the complicated dynamical process of an
actual disintegration of a drop, whether into two, three or more
fragments, but the following interpretation of the general appearance
of Fig. 1 has suggested itself. For a low charge on the drop, when
the surface energy is relatively most important, a division into the

lowest number of fragments is favored. As the charge is increased

and economies in the surface energy become less important in relation
to the release of electrostatic energy, divisions into miore and more
fragments come up for consideration. For some sufficiently high
charge, when the electrostatic energy release becomes the dominant
factor, one would eventually arrive at a situation where the drop would
disintegrate in a violent manner into a large number of fragments (a
phenomenon that, under suitable conditions, may be observed when a
condenser is suddenly discharged through a droplet of water).

In connection with Fig. 1, one may also remark that the-

_ spher1ca1 configuration of a charged drop is an extraord1nar11y stable

one in the sense that it remains a local energy minimum long after it
has ceased to be an absolute minimum {(at x>0.35121, when two
separated fragments have a lower energy), and when it finally does
become unstable at x = 1, sufficient charge has been accumulated to
make a division into as many as 20 fragments exothermic. This situa-
tion at x = 1 may be contrasted with the conditions for x around 0.4
when, of the cases shown in Fig. 1, division into two fragments is the
only one that releases energy.

A second elementary way of exhibiting the qualitative change
in the energy relationships of a disintegrating drop as the charge is
increased from relatively low values towards x = 1 is to plot the energy
of a drop as a function of a spheroidal distortion. Figure 2 shows the
deformation energy AV/E Osjas a function of the ratio of the major
axis to the minor axis of a spheroid, calculated according to the

formula

“In practice it is better to use a globule of a conducting liquid suspen-
ded in an insulating medium of the same specific gravity. I am grateful
to Knud Oleson of the Institute of Physics, Aarhus University, Denmark,
for beautiful demonstrations of such disintegrations.
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where e = eccentricity =N 1-(a2/c2), and a, ¢ = minor and major semi-
axes, respectively,

The different curves in Fig. 2 refer to different values of x.
At the lower x values the drop is stable against spheroidal distortions
of any magnitude, but as x approaches 1 very elongated shapes become
energetically available. The interpretation again suggests itself that
with increasing x a transition takes place from conditions governed
largely by the stabilizing influence of the surface tension towards an
explosive situation associated with the predominance of the electrostatic
repulsion. The special stability of the spherical shape is once more
in evidence in the fact that by the time the barrier against small -
deformations finally vanishes at x =1, violently distorted shapes--
like the spheroid with an elongation of 10 to 1--are already available
energetically.

Returning to the consideration of the energy releases plotted
in Fig. 1, it would be necessary, strictly speaking, to include in a
comprehensive account of the fission of a drop a discussion of the role
played by the different modes of division as soon as they became
energetically available with increasing x. So long as a new division
mode is only barely possible there would be some justification in dis-
regarding it in favor of the more exothermic alternatives. As far as
Fig. 1 is concerned there is, however, little justification at x values
around 0.7 to 0.8 for smglmg out for cons1derat1on the division into

two fragments. There is even less justification for this in the case of

x close to 1, when divisions into up to 8 fragments release more energy
than a division into two. In this connection we note also that the
geometrical appearance of the saddle-point shape for x greater than
about 0.75--i.e. near spherical for x ~1 and cylinderlike for x ~0.75 "
(see Fig. 8, ref. 2) --offers no hint as to the number of fragments into
which the drop might divide after passage of the saddle in the potential
energy barrier. Inothérrwords, as far as the saddle-point shape is
concerned, the drop is not yet "committed' on the question of how
many fragments will be formed. Only as x decreases below about 0.7
does the saddle-point shape begin to suggest a more and more pro-:

"nounced commitment to a division into two fragments, in general

accord with the emergence of a preference for such a division at low’
x values, discussed in connection with Fig. 1

‘The conclusion suggested by the above discussion is that drops

with x values in the neighborhood of 0.7 to 0.8, corresponding to heavy

4=
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nuclei, should perhaps be regarded as being in a transition region,
somewhere between the situation where a division into only two frag-
ments might be expected, and a region where a more explosive dis-
integration takes over. In particular, Figs.1l and 2 suggest that at
=1 the possibility of a rather well-developed situation of the latter
kind has to be kept in mind.

Where, precisely, the region of x = 0.7 to 0.8 is located in
relation to the two limiting situations is a quantitative question, and
so also is the question as tb the number of fragments that may be

. expected to be produced in a disintegration of a drop with some given

value of x. For values of x in the neighborhood of 0.5 or higher the
answer is not obvious on qualitative grounds, and no quantitative in-
vestigations of this problem are available in the published literature.
There would appear to be at present no justification for confining the
discussion of the fission of a drop, whose charge approaches the limit
for the stability of the spherical form, to a consideration of divisions into
two fragments only. Indeed, keeping in mind Fig. 2, it would appear
that at x ~1, when long cylinderlike configurations are accessible,
several possibilities might be available for reassembling such a cylind-
der into different numbers of fragments. The reassembly could be
effected by rippling the surface of the cylinder with an appropriate
number of constrictions and then proceeding with the over-all elonga-

‘tion. The process might bear some resemblance to the disintegration

of a jet of liquid into separate droplets, considered in connection with
fission by Hill and Wheeler, 4 aénd in connection with jets of water in
many classical investigations. o

We may note that if we classify the different types of axially

symmetric ripples superimposed . on a spheroidal surface according
to the number r of mwodes that they introduce (i.e., according to a
quantity related to the average wave length of the ripple), with r an
even number for reflection symmetric ripples and odd for asymmetric
ripples, then r = 0 is excluded on account of volume preservation and
r=1 is excluded if we keep the center of mass fixed. A ripple with r=2
could be taken to correspond to an over-all elongation or contraction of
the spheroid, and if this is adopted the dependence of the energy on a
distortion of this type would be qualitatively as in Fig. 2. Thenext
case, r = 3, introduces a single waist asymmetrically on one side of
the median plane and this, if carried sufficiently far, divides the drop
into two unequal fragments. Reversing the sign of the amplitude of the
ripple would produce the mirror image of the configuration. The case

= 4 would lead to one waist at the center (and so to a division into two
equal fragments) if taken with one sign, or to two waists and three
fragments (two of them equal) if taken with the opposite sign. Similarly,
for any given r, the ripple would tend to produce a reflection-symmetric
string of fragments, 3 r or 3 r + 1 in number, depending on the sign
of the ripple. Any odd r would tend to produce an asymmetric string

of (r + 1)/2 fragments.

-5
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For sufficiently high values of r the increase in surface
energy associated with such ripples would make the energies of the
corresponding shapes excessively high, so that for any given x one
would expect the configurations with a relatively small number of )
r1pples to be the most easily accessible ones.

‘ In view of our previous discussion of Figs. 1 and 2 it would
appear that, except at low values of x, it is necessary to investigate

. the role played by at least a few of the lowest types of ripples. In

terms of the potential-energy valleys associated with divisions into
different numbers of fragments, the possibility would have to be .
investigated that, at x values not too far below 1, several of these
valleys might be accessible, with the corresponding saddle-point
passes at energies relatively low or negative with respect to the
spherical configuration.

In available studies of the potential-energy surfaces of charged

drops with x values usually in the neighborhood of 0.75, no evidence

for the existence of several distinct saddle point passes is apparent
(except for certain of the results of Frankel and Metropolis, 12 which
could be considered as providing some indirect evidence). It should

be borne in mind, however, that in all existing studies of the problem
attention was focused on the neighborhood of one definite saddle point,
namely that associated with the barrier determining the stability of the
spherical form, and no systematic search for other shapes of equili-

“brium --especially of a more elongated kind--has been described in

the published literature.

At very low values of x the existence of many discrete
equilibrium configurations, or saddle-point shapes, is indeed well
known, a limiting case for x — 0 being axially symmetr1c configura-
tions of different numbers of equal spherical fragments in contact.
The energies of these saddle-point shapes are so far known only for
small x, in which case the first one or two powers in an expansion in

x are readily calculated. We find, to first order in x, the general

formula
AV : ‘ .
n o, 1/3 1 \ 5 1 1 2 3
< O " (n '”+2X<nz73 - 1/ Y653 | w1 oz Tws
.S
ot 375 + n-1 +.... : (3)

The second term in the braces represents the mutual electrostatic
energy of n tangent spheres. (Compare the discussion of the case

n=2 in Reference 5.) These energies are plotted in Fig. 3, where the
energy of the conventional saddle-point shape is also shown (see Ref. 2J.
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The question of the relation of these families of equilibrium
shapes to the rippled cylindrical figures conjectured as possible
saddle-point shapes marking the entrances to the different valleys for
larger values of x will be taken up presently. We conclude this
introduction with two remarks. _

First, there exists at the present time no theory of the
fission of an idealized liquid drop, not even as regards the broadest
quahtatlve features. Second, there would appear to be more *'struc-
ture'' in the problem than is 1mp11ed by conventional presentations,
essentially because of the possibility that a drop with a charge
approaching the critical value for the instability of the spherical con-
figuration might have to be regarded as being in a transitional region
of charge values, on the way towards a type of disintegration more
drastic than a simple division into two parts.

QUALITATIVE CONSIDERATIONS

In this section we attempt to gain insight into the general .

features of thée potential-energy map relevant to the disintegration of

a charged drop by way of elongated, axially symmetric configurations.
We make use of qualitative arguments, supplemented by the fragmen-
tary quantitative results available at present. These are mostly for
rather small distortions of the drop {the region of the potential-energy
hollow'around the spherical configuration and the associated barrier
and saddle-point shape) and for very large distortions.the valleys
corresponding to separated fragments). In the intermediate region
"we have available the family of spheroidal shapes whose energies are
known exactly, and which we shall use as a backbone in our attempt -
to elucidate the quahtat1ve features of the intermediate region, in
particular the way in which the valleys at large distortions somehow
come together and then are joined to the conventional saddle-point
pass leading out of the spherical configuration. We would like to
.stress at the outset that this problem is still unsolved, and the
'speculations-described in this section are in no sense implied to con- - "
stitute a solution; the answers to the many questions involved will be
provided only by a satlsfactory quantitative treatment. '

In order to plot the potential energy-of a distorting drop an
infinitely many-dimensional map would be required. We shall
_attempt to illustrate our discussion of the potential energy of axially
and reflection-symmetric shapes by sketches in two dimensions,
using two coordinates labeled "ay'" and ”a4". The origin, ”°2” =0 ,
~and "ayg" =0, is: taken to correspond to the spherical shape, and for
small values of these parameters they may be interpreted quantitatively
as the coefficients of P, and P, in an expansion of the surface of the
drop in Legendre polynominals. For larger distortions only a quali-
tative correspondénce with the Legendre polynomials is implied, and
for very large distortions, when separate fragments are beginning to

-7-
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form, these coordinates should be imagined as going over into some
su1tab1e set capable of describing such shapes.

- A spheroid of a glven eccentricity when expanded in Legendre
polynom1als defines a certain set of coefficients ap, a4, ..., and the
family of spheroidal distortions of increasing elongation would appear
as a curve in the a,, a, diagram as indicated in Fig. 4. The energy of
a drop with x X'l distorting along this curve increases for small
elongations and may then go through a maximum, followed by a
minimum, if the value of x is sufficiently close to 1 (see Fig. 2). In

. any case, for a sufficiently large elongation the total energy is an

increasing function of the elongation, corresponding to the fact that
the electrostatic repulsion tending to increase the elongation is finally
exceeded by the opposing tendency of the surface tension.

In order to proceed with the division, one of several courses
is open to the system: introduction of one or more constrictions in
the spheroid decreases the surface tension around the perimeter of
the neck or necks, and if the constrictions are sufficiently deep the
surface tension is unable to withstand the electrostatic repulsion,
further elongation of the system is possible, and the drop can proceed
towards division into a number of fragments. In other words, as the
constriction or constrictions are deepened the initially positive grad-
ient of the energy with respect to elongation (i.e., the tendency for
the spheroid to contract) changes sign and gives place to a negative
gradient (tendency to increase the elongation).

In order to translate the above physical considerations into
a qualitative potential energy map in the 'a,'", '"ay'' diagram, consider
first the case when just one constriction is introduced halfway across
the spheroid. This corresponds to moving away from the ''curve of -
spheroids' in Fig. 4. More specifically, it follows from the geometry
of distortions of the type of P, and P, that the motion is in a general
direction of decreasing "a4' and increasing "a,, ' i.e., into a region
below and to the right of the curve of sphero1ds in Fig. 4 If this
deviation is continued sufficiently far the total energy should become
a decreasing function of the over-all elongation, corresponding to the
breaking up of the drop into two separating fragments.  We have
indicated this in Figs. 4 and 5 by sketching in, below the curve of
spheroids, a valley presumed to lead to the two-fragment valley
known to be present at large distortions,

Consider now the case in which the amount of "a,'" is in-
creased, 1i.e.., one moves away from the curve of spheroids in an
upward direction. Geometrically this corresponds to introducing two
constrictions situated symmetrically on either side of the median =
plane of the spheroid. If this distortion is carried far enough the
energy should again become a decreasing function of the elongation and
the system should be able to divide into three fragments. We have
indicated this by sketching in the three-fragment valley in the upper
part of Figs. 4 and 5.
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Proceeding to greater.elongations and introducing a larger
number of constrictions, we could similarly sketch in the valleys lead-
ing to divisions into four or more fragments, although there would be
need for more than two dimensions in the plots of the maps. In Fig. 5
we have made an attempt to indicate the four-fragment valley by imagin-
ing part of the diagram to refer to deviations from the line of spheroids
" in a new dimension.

: The over-all picture implied by these considerations is of a
number of valleys, corresponding to disintegrations into different
numbers of fragments, clustering around the locus of elongated,
cylinderlike shapes along which the drop is still undecided as to how
many fragments will be produced.

The low regions in Fig. 5 are shown separated from one an-
other by regions of high potential energy, so that the crossing from
one valley to another involves passage over a saddle in the energy.
Three such saddle points appear in Fig. 5, separating the configuration
of one fragment from that of two, two from three, three from four.
Thus the least energy necessary to convert a configuration of one frag-
ment into two fragments at infinity would be the threshold energy cor-
responding to the conventional saddle point A, whereas the least energy
for conversion of two fragments into three would be the energy of the
saddle point B, and so on. The geometrical appearance of the saddle-
point shape A is known for x 2>0.6 (Fig. 8 in Ref. 2). It represents a
balance between the tendency for further elongation and the tendency to
return to the spherical shape. According to our qualitative discussion
we would expect the saddle-point shape B to be in the general form of
an elongated figure with two necks, the amount of neck1ng and the
proportions of the figure being adjusted so that there-is a balance be-
tween the tendency of the drop to disintegrate further into either two
or three fragments and the tendency for the system to return to the
spherical shape. Similarly the saddle-point shapes marking the en-
trances to the n-fragment valleys would be expected to be in the gen-
eral form of rippled cylindrical figures with proportions adjusted to
ensure an (unstable) equilibrium with respect to different types of dis-
integration as well as with respect to a return to a spherical shape.

As regards the dependence of these saddle point shapes on x,
it has usually been assumed that, for x << 1, the saddle-point shape A
goes over into the configuration of two equal tangent spheres. More
generally we might expect that since the disruptive tendency of the
electrostatic repulsion decreases with decreasing x, the necking in for
any one of the rippled saddle-point shapes would have to be carried
further, as x decreased, before a balance could be achieved between
the surface tension and the electrostatic repulsion. :

The above qualitative features are indeed exhibited by the
familiar saddte-point shapes for x: << 1’ mentioned in the Introduction,
and we shall eventually assume that the rippled cylindrical figures of
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equilibrium introduced in Fig. 5 go over with decreasing x into these
configurations of spherical fragments joined by small necks. At pres-
ent this has not, however, been established by actual calculations over
the intermediate values of x. (In particular the relation of the conven-
tional threshold for x - 1 to the threshold associated with n = 2 for

x ¥< 1 has not been established).

In order to gain some further insight into the possible appear-
ance of these less familiar saddle-point shapes with many necks we may
note that the family of an infinite number of spherical fragments in con-
tact is also a limiting member of the family of axially symmetric sur-
faces of constant total curvature, familiar in the theory of soap films.
(See, for example, Ref. 6.) These surfaces, the 'unduloids', may be
generated by the curve traced out by a focus of an ellipse imagined to
be rolling along the axis of symmetry. The configuration of tangent -
spheres in contact results when the ellipse is made to degenerate into
a straight line joining its foci. It is further shown in the above reference
that the longitudinal tension that a liquid surface in the form of an
unduloid is capable of supporting is proportmnal to thesquare. d the minor axis of
the ellipse. In an elongated charged figure in the general form of an
unduloid, the longitudinal tension due to the electrostatic repulsion
would be greatest in the middle and would fall off towards the tips. This
suggests that a qualitative picture of the rippled saddle-point shapes
discussed previously is perhaps provided by a figure traced out by a
focus of an ellipse imagined to be rolling on the axis of symmetry, the
ellipse becoming gradually slimmer as the ends are approached and
degenerating finally into a straight line when tracing out the tips of the
figure

Concerning an estimate of the threshold energies associated
with the above saddle-point shape s, we may add the following remarks
to the formula for x << 1 given in the Introduction (Eq. (3)). The
approx1mat10n represented by that equat:mn and plotted as the straight
lines in Fig. 3 corresponds to assuming the saddle-point shapes to be
strings of equal tangent spheres and increasing the charge on them

. without'allowing the shapes to adjust themselves under the influence of

the electrostatic repulsion. An estimate of the effect of a read_]ustment
was made by a calculation to the next order in the expansion in powers

of x,” using a crude variation method in which the shape was assumed to
be in the form of spherical fragments joined by small cylindrical necks
and the total energy was made stationary with respect to the radii of '
the fragments as well as the radii and lengths of the necks. The effect

of the readjustment was to lower the thresholds, as indicated by the

last term in the resulting expansions in the cases for n = 2 and n =3:

i

0.259921 - 0.215112x - 0.,219x_2 + ol
® | | (4)

: 2
—0) ~ 0.442250 - 0.370792x - 0.213%" + ... )

-10-
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For n = 2 the deformation energy is plotted in'Fig. 6 as a
function of the two available parameters, the separation between the
fragments (or, equivalently, the length £ of the neck}) and the radius
r of the neck. The saddle occurs when the length of the neck is equal
to its diameter, which, in units of the radius of the original spherical
drop, is given by

2r _ 1 _ 2/3 '
R - ﬁaa._(5/6)2 X+ ... .

A departure from the saddle shape in the sense of an increased
2 and a decreased r leads to the two-fragment valley, whereas a decrease
of £ and an increase of r would make the fragments coalesce and lead
back to the spherical shape (see Fig. 6]).

For n =3 the saddle configuration occurs when the radius of
the inner fragment exceeds very slightly the radius of the outer ones:

(r

‘and the connecting necks have 1enz%,th equal to diameter, as before,
(but with Zr/RO equal to (25/54) Departures from the saddle
shape could lead to one, two, or three fragments.

/Ry = (35/432)32/3 ¢+ ...,

. -r
inner - outer

The small -x approxxmatlons to the thresholds (Eq. (4)) are
_shown in Fig. 3.

For larger values of x no calculations of the thresholds in
question are available for n >2. In so far as the saddle point shapes
may be in the general neighborhood of elongated cylinderlike configur-
ations, estimates of the energies of such configurations are of interest.
In F1g 7 the energies of spheroids of various eccentricities (the same
as in Fig. 2) are plotted against x and the trends are compared with
the trends in the thresholds for x << 1. In Fig. 8 a similar comparison
is made for estimated energies of cylinders with hemispherical ends.

_ The above estimates are quite inadequate to answer quantitat-
ively the important question of the relative order of the threshold
energies for any given value of x, except when x is small. It would
seem, however, that with increasing x one or more of the thresholds

for n > 2 might cross and fall below the conventional thre shold (n 2)
paralleling perhaps in a general way the crossings that occur in t.he
plot of the relative energy releases in Fig. } since both Fig..land

Figs. 7 and 8 reflect the tendency towards divisions into more . and
‘more fragments with increasing x. With reference to the map in Flg 5
this would appear as an over-all sinking of the energies of the mofe
elongated configurations represented by the central and upper-right-
hand portions of Fig. 5. As a result of this sinking-the energies of one
or more of the saddle points B, C, ... could fall below the level of the
conventional saddle point A. A situation of special interest would occur

-11-
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if one or more of these crossings of thresholds took place before x
reached the value 1. In that case a drop distorted away from the spher-
ical shape to just beyond the first threshold A would still not be
committed energetically to a division along the two-fragment valley,

but would have available a choice of several valleys, the number of
possibilities depending on how many of the other saddle points lay at
energies below that of A. In such circumstances the process of

fission of a drop.would have to be regarded as of a higher order of
complex1ty, in the sense of involving the competition between several
d1st1nct modes of disintegration.

- With decreasing x the energies of the relatively more elongated
shapes would increase relatively more rapidly than the energy in the
immediate neighborhood of the spherical configuration and the elongated
saddle shapes would successively exceed the energy of A and the
associated n-fragment valleys would, one by one, cease to be available
(at least as far as low-energy disintegrations are concerned in which
only just enough energy is provided to overcome the threshold A). .In '
this way the qualitative circumstances of disintegrating drops would
experience an abrupt change every time an intersection occurred
between two threshold curves in a plot against x of the type attempted

- in Figs. 3, 7, and 8. Below some critical value of x where the last

such intersection occurred, the two-fragment valley would presumably
be the only available one.

When the potential-energy map is translated back into physi-
cal considerations, the situation implied is as follows. The possibility
of a division of a drop into a given number of fragments should be
regarded as being governed by the magnitude of the elongation of a
cylinderlike configuration which is accessible for a given charge on
the drop and at a given energy. Up to a certain value of the charge,
configurations sufficiently elongated to make the introduction of two
waists favorable are not accessible (at energies corresponding to the
conventional threshold). A drop elongated to beyond the conventional

. saddle po1nt has then no alter’natlve but to introduce one waist and

divide in“two,

As the charge is increased, however, there will come a
point at which the drop may continue its elongatlon beyond the con-
ventional saddle point without introducing a waist (and so committing
itself to a division in two) and in this way reach a cylinderlike con-

figuration long enough to make the introduction of two waists

favorable. In these circumstances two alternatives are open to a
dividing drop: after the initial elongation away from the spherical
shape the drop may either begin to neck in at relatively moderate
elongations towards a dumb-bell configuration, or it may go on with
the elongation and then neck in along two waists towards a three-frag-
ment configuration. At higher charges (or, for a given charge, at
higher energies) the alternative of still greater elongations, at which
the introduction of three or more necks is favorable, would become
accessible.

-12-



UCRL-3991

We note here a characteristic difference between the above
considerations and the classical discussion of the disintegration of an
uncharged (or slightly charged) cylinder of liquid into separate drop-
lets. In the latter case the cylinder is unstable against, ripples whose

‘wave length exceeds the circumference of the cylinder, ~ but the con-

figurations of disintegrated fragments are not associated with discrete
potential-energy valleys. The only true energy minimum is that
associated with the configuration in which all the liquid is reassembled
into a single sphere and the energy of any other configuration, like
that of two fragments, may be decreased continuously towards this
minimum (by the transfer pof material from one fragment to the other).
The observed disintegration of a cylinder or jet of water into a more
or less characteristic number of droplets per unit length of jet is the
result of dynamical aspects of the situation, involving the competi-
tion between the increasing instability against ripples of increasing
wave length and the increasing inertia involved in the reassembly into

" large drops (consult Ref. 6). On the other hand, in the case of a

sufficiently charged drop, there exist definite potential-energy

valleys associated with divisions into two, three, or more fragments
(Fig. 1), and, apart from dynamical considerations, the potential
energy itself already shows preferences for divisions into certain
numbers of fragments. The more complex structure of the potential
energy map shown in Fig. 5, exhibiting several valleys and thresholds,
is associated with the presence of a charge on the drop.

In Figs. 9(a), 9(b), and 9(c) an attempt is made to illustrate
the conditions on the two sides of a critical x value at which there
occurs a crossing between two threshold-energy curves. For pur-
poses of illustration we have assumed that the crossing takes place

at a value x, less than unity between the thresholds for n = 2 and n = 3.
(This couldfte the last crossing to occur with decreasing x. )

In Fig. 9{a), representing the case for x >x,, both the two-
and three-fragment valleys:.are energetically available and an actual
disintegration of a drop would involve a competition between two

"modes, one associated with the two-fragment valley and the other with

the three fragment valley. In this connection it may be noted that the
fact that the deforming drop has entéred the three-fragment valley
does not necessarily mean that the final result of the disintegration
will be three fragments. For this to be the case one would have to
ensure, in addition, that after entering the three-fragment valley by
way of some two-necked saddle-point shape B, the deformation pro-
ceed in a manner sufficiently symmetric as regards the further
necking in of the two constrictions to lead to a breaking off of both
end fragments. If this condition were not satisfied the result would
still be two fragments, in general unequal in size. It might be that
an actual division into three fragments would begin to occur with
appreciable probability only for x values significantly in excess of the
minimum value where the three-fragment valley first became ener-
getically available, i.e., only after the énergetic advantages of a

13-
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division into three fragments had been able to assert themselves ina
sufficiently decisive manner. In a range of x values only moderately

in excess of the minimum, the conditions for a sufficiently simultan-
eous breaking off of the two necks might be satisfied but rarely, and
after the severance of one neck the remainder of the drop, repre-
senting a system with a smaller ratio of electrostatic to surface energy,
might fail to complete division, thus remaining as a single relatively
large fragment. (For example, if a fraction k of a drop with a uni-
form charge corresponding to a value x is broken off, the remainder

is characterized by a new x value given by (1-k)x . With x = 0.75

and k = 1/3, this would give X ew - 0.5. As suggested by Fig. 8 of

-Ref, 2 the distortion necessary to carry such a fragment over the

barrier against further division is considerable, and in cases where
the necking in was less advanced the fragment would in general re-
main undivided. (Compare the similar discussion in.Ref. 4.) The
possibility should be kept in mind that, in effect, the competition
between the two-fragment valley and the three-fragment valley might
be, under certain circumstances, a competition between a symmetnc
and an asymmetric division mode.

Similarly, divisions that make use of the n = 4, 5, 6,

- valleys need not necessarily lead to disintegrations into four, five,

six, ... fragments, but could produce a variety of results, depending
on the value of x and the dynamic aspects of the process. (This is-not
to say that each mode would not be associated with more or less
characteristic features that would distinguish it from divisions pro-
ceeding by way of other valleys.) The probability of an actual division
into three or more fragments would be expected to increase with x,

‘Returning to Figs. 9(a) to (c), . we note the sudden qualitative
change in the conditions governing the disintegration of the drop as x
falls below x Whereas for x > x;. the disintegration would be the
result of a compet1t1on between two qualitatively different modes, for
x < x7 the system is suddenly forced on energetic grounds to go
entirely by way of the two-fragment valley, at least in cases in which
only just enough energy is available to carry it over the first saddle.
point: A. (With increasing energy the characteristics of a competition
would reappear when the threshold B was exceeded. )

The possible occurrence of such discontinuous changes even
within the framework of a classical model of an idealized drop is a
feature which should, perhaps, be taken as an indication of the rich-
ness of hitherto unexplored phenomena that may be revealed in a
thorough quantitative study of the oscillations and disintegration of a
charged liquid drop..

The foregoing discussion of the potential-energy map has been '
confined to elongated, axially symmetric shapes. We shall not attempt
to discuss systematically the more general cases, but we may note
that there certainly exist many other shapes of equilibrium of a
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charged drop. Examples that suggest themselves are oblate and ring-
shaped configurations; families of equilibrium shapes that degenerate
into the sphere at the higher x values, at which the sphere loses
stability against distortions proportional to the higher spherical har-
monics {some of these may be related to the shapes we have dis-
cussed), configurations in the form of a thick, spherlcal shell with a
hollow center (see Ref. 11); and nomaxially symmetnc shapes,of
which a limiting form for x = 0 would be, for éxample, a set of three

equal tangent spheres with triangular symmetry, joined by small

necks

One special class of equilibrium shapes whose existence may
be of some significance, at least for questions of principle, consists
of numbers of unequal, separated spherical fragments. For two
equal fragrnents at 1nf1n1ty the total energy is always stationary with
respect to changes in all parameters specifying the configuration,
1nclud1ng a change in the relative size of the fragments. If the charge
is sufficiently high (x >1/5) there exists, in addition, a conf1gurat1on
of two unequal fragments whose energy is stationary, being a maximum
with respect to a change of relative size. The significance of these
new saddle-point configurations is in part relatéd to the definition of
the conventional threshold energy as the least energy necessary to

_divide a drop in two. It is clear that to divide a drop into very un-

equal parts requires only a small amount of energy, unrelated to the

.conventional threshold. In fact, for a vanishingly small fragment,

this energy becomes equal to the surface energy of the new droplet
formed, the change in the ¢lectrostatic energy being of higher order
in the droplet size. As the new fragment increases and the release
of electrostatic energy compensates the increase in the surface, the
total energy of two such fragments at infihite separation goes through
a maximum and then decreases towards the negative value associated

-with the energy release in a division into equal parts. The energy at’

the maximum -- the threshold associated with the new saddle-point
shape mentioned above -- is the least energy required to divide a_
drop into comparable parts by a sequence of configurations in which

a very long and thin filament, of negligible energy, is first emitted
and then matter is transferred along this filament to a spherical
swelling at its far end. The threshold for this type of division is com-
pared with the conventional threshold in Fig. 10. For x < 0.724 a
drop could be divided into two comparable fragments using less energy
than the conventional threshold energy.

The existence of a maximum in a plot of the energy of two
sufficiently charged fragments against the ratio of their sizes sug-
gests the possible existence of yet another family of equilibrium
configurations. For two fragments not at infinity but at some finite
s’éparation their energy is modified by their mutual interaction. An
example is the familiar case of {(unequal) tangent spheres whose
energy for different values of x has been plotted in Fig. 9 of Ref. 12.
As before, and essentially for the same reasons, there exists, for
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ra sufficihetly high charge (x >3/5), ‘a maximum in the energy for un-

equal fragments, as well as a minimum for equal fragments. These ‘
conf1gurat1ons however, are no longer equilibirum shapes, because the’
energy is not stationary with respect to a separation of the fragments

- under the influence of the electrostatic repulsion. On the other hand,

if a pair of fragments is brought into still more intimate contact by
establishing a neck of matter between them -- i.e., deforming the
system towards the configuration of an undifferentiated ‘drop -- the
electrostatic repulsion may be overcome by the surfaceé tension, and
the fragments, instead of separating, coalesce. This suggests that
starting with any given ratio of sizes of fragments the energy would
possess a maximum as a function of a separation coordinate for some
intermediate degree of differentiation of the fragments. (This is
essentially the same as saying that in the course of the removal of some
given amount of matter from a charged drop the potential energy will,
in general, go through a maximum.) Since, as we saw, there may
exist a maximum also with respect to relative fragment size, the ques-
tion arises as to the existence, for not-too-small values of %, of an
asymmetric figure of equilibirum adjusted in such a way that its energy
is stationary (a maximum) both with respect to a change in the degree
of differentiation of the fragments and with respect to a’changeé in their
relative sizes. :

This p0551b111ty has been examined by studymg the energy of
two unequal spheres connected by a cylindrical neck of length £ and
radius r. When the charge on the drop is low (x << 1) the neck is
small and its electrostatic energy and volume are of higher order than
its linear dimensions and its surface area. In thl)s approximation the
deformation energy of the system in units of E is given by

AV = (U3 e w30y w ax (03 s w3 4
S
5  UW 5 Uw !
+ = ‘ ) 2% = vo= 4
ER VATV 3 O3, w752 | R,

- -
1 | r 4 r ‘l
+ - — ’ 5 = 3 3
PR (RO} J

-

‘where U and W are the fractional volumes of the two fragments (U+W=1),

The first term contains the surface energy of the fragments, the second
the electrostatic energy of touching spheres, the third gives the decrease
of the electrostatic energy-when the fragments move apart through a

~distance £, and the last term is the surface energy change due to the

neck

' Fof U = W the above expression may be made stationarby for
any value of x by a suitable choice of £ (=2r). The associated shape is
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then an estimate of the symmetric saddle- pomt shape for x << 1, as
discussed previously.

At the point x = x,, where

x = (<12 + 18 N2)/35 = 0.384452,

there occurs a ''point of bifurcation, '""and for x >x, there exist, in
addition to the symmetric one, two reflected asymme%rlc configurations
of equilibrium. The degree of asymmetry of these configurations in-
creases with increasing x in a manner characteristic of such b1furcat1ons
namely proportmnally at first to Nx-x. x1. A few illustrations of these
shapes are given in Fig. 11 and their energies are plotted in Fig. 10.

The value x, ~0.38 is an estimate, based on a method approx-
imately valid for x é< of the point at which the conventional symmetric
saddle-point shape becomes stable against asymmetry: above this
value it is '"flanked' on either side by an asymmetric shape of equilib-
rium of higher energy. Conversely, with decreasing x the two ''peaks"
at asymmetric configurations come together and stability of the symmet-
ric saddle against a symmetry is lost at x ~0.38. (Compare the trend
with x in the stability against asymmetry of the conventional saddle-
point shape for x - 1, plotted in Fig. 16.)

The significance of these asymmetric equ111br1um shapes has
not been investigated, but since they represent a maximum in the energy
as regards fragment ratio, they would appear to be associated with
particularly unfavored modes of disintegration: for still more asymmet- "
ric divisions, like the emission of a small droplet, less energy would
be required because the division is then altogether less drastic. For
more symmetric divisions better use can be made of the electrostatic
repulsion to help the system over the barrier. The above asymmetric
shapes of equilibrium might play a role in a discussion of the-competi-
tion between the many different modes in which an excited drop may
dissipate its energy, ranging from the emission of small droplets to
more conventional types of fission. Our discussion suggests that, ex-
cept for small values of x, intermediate modes of disintegration might
be expected to be less favorable than either extreme.

The existence of still further configurations of eguilibrium of
a charged drop, associated with bifurcations along the other families
of rippled saddle-point shapes, is suggested by the possibility of ad-
justing the relative sizes of three or more unequal fragments in such a
way that the total energy becomes stationary. The problem exhibits
many formal analogies with the classical discussions of the forms of
equ111br1urn of rotating liquid masses, associated with the names of
Pmncare Darwin, Jeans, Liapounoff, and others. (See, for
example, Ref. 13).
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The above speculations are fntended to underline the fact that
the discovery, classification, and evaluation of the shapes of equilib-
rium of a' charged drop are at present outstanding unsolved probkéms
in the theory-of the disintegration of a liquid drop.

QUAN'T-ITAT IVE TECHNIQUES

In this part we report some progress towards a quantitative
treatment of the problem of a dividing drop. The technique used was
an expansion of the shape of the drop about a spheroid, described with
the aid of prolate spheroidal coordinates, and the calculation of quan-
tities of interest in powers of the deviation from the spheroid. {Consuilt
Refs. 2, 3,7, and 8 for such expansions.) Depending on the number of
terms retained and the rate of convergence of the expansions, this
method should enable one to investigate quantitatively a more or less
extensive neighborhood of the curve of spheroids in Fig. 5. Such
expansions have proved to be accurate in the neighborhood of the saddle
point A, for a range of x values, and if they turn out to be adequate also
in the neighborhood of the other saddle points a quantitative treatment
of the essential stages in the disintegration of a drop may be feasible
along these lines.~

It has been found possible to derive general formulae for ob-
taining expansions of the surface and electrostatic energies of a dis-.
torted spheroid of any eccentricity for a general distortion described
by an arbitrary number of spheroidal harmonics and to any order in the

- distortion. We shall summarize some of the results obtained, keeping
in mind applications of expansions of this type also to aspects of the
problem other than the potential-energy maps. (For example, the -
study of the dynamics of the disintegration. ) We shall present, there-
fore, not only the final formulae for the potential energies but also an ¢
outline of the technigiles used in these nth-order expansions, as well as
some tables of coefficients, which, being associated with geometrical
aspects of a distorted spheroid, would be useful also in more general
applications. ' '

1. Volume and Center of Mass of a Distorted Spheroid.

The shape of the axially symmetric drop will be specified in
prolate spheroidal coordinates &, n, ¢ (see Refs. 2, 9) by giving 7
as a function of §,

n(€) = ng [1 + nZO a, P, (£)] — no + A(E) = mg [1+8(E)].

The case n(§) = ny corresponds to a spheroid of eccentricity e = 'qo-lp
whose major and minor semi-axes will be denoted by c and a. The
volume VO =(4/3) T'razc'\ will be taken equal to the volume (4/3)1rR03 of
a sphere of radius Ry. The relation. of €, m ¢ to cylindrical polar -
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coordinates p, z, ¢ is
L
K(1-£2)2(n°- 1)
z =k §n,
¢ =¢ ,
The constant k is half the distance between the foci; k = ec = c? - a‘2 .

The lengths of three orthogonal d1splacements associated with small
changes d§, dn, d¢ are given by 'h d§ h,dn, h,d¢, where

S AL
. . M _gz 2
h1 k — s
v 1-¢

/-2 2\

k <"1 'g >2

2 1.2 ’
e 0! -1

L
2

ojr

1

=
il

1t

.h3 k(l £)2(n2-1); h.h_h =k3(n-2-§2).

The chang‘e in volume associated with the distortion A(£) is

Notd A
8V=:j. dgj d'qj dq>hhh3

1

= 2nk3.n 3 j d¢& (6+62+ -1—63-1‘] —;gzﬁ) .
0 A 3 0
Integrals of the type 1
j §7dE
will occur frequently, we 1ntroduce the expan31ons
_ 1
r Z (r) . (r) _ 21 +1 f r
6 . - ¢ Pi(ﬁ) ; cy = > A P15 d§ .
Forr = 0: _
c (O)= 1, c.(0)=0 for i > 0.
0 i 4
- Forr =1 c.(l)=a,
i i
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. . +
The coefficients c(r 1) can be generated from a recurrence
relation obtained as follows: ’ '

1 1
(r+1) _ 2i+1 ro. _ 2i+l .
4 = 7 S dEP;67- 6 = — S € P,
' -1 -1
o0 o0
n n m m
0 : 0
i .
21;1 Z /., f{(imn)a_c (r) ,
m n
1 .
where (imn) = S d§ Pipmpn , (see Ref. 2), and the sums
A : '
Z s are over all nonvanishing combinations of (imnb).
m n (r)

The tabulation of the coefficients cy

, defining the expansion
of the- rth power of '

o -
> a'nP.i:l

B n=0
is a purely algebraic problem which can be carried out, once and for

ali, insiepen’dently of the particular application contemplated. Tables
of cj are given later. :

We note the following results:

r _ 2 (r)
S 8 Ppdb= 5y o,
|
1 0 ‘ 0
T _ 2 (r)
j 8 <% a,P, ) d§ = Zo T3 B A B
i)
1 T °° ' > > | Zi | (r)
: P, b.P. | d¢ = ; ijk)a.b, .
_51 ’ <%: a‘ 1><Zo iFi) 9 i, 3, k=0 = | (k2,05 %1

Using these relatlons, we find for the relat1ve change in volume, 6V/VO,
where V = (4/3) RO = (4/3)1Tk (T]o - Mp), the exact expression
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&

2 . : ‘ '
' | o sv _ o -2y ()2 -2 (1), 5 (2), o By
o - Vo L2 (3-mp TV eg - gmg ey H3eg g ) =
s no _1 ) .. .
2,-1 2, . 2 2 , Nt} AN .
(1-e7) - {(3-e )ao -gea, + 3 Z 5T +% >_:L:Z
’ 0 p,q,l‘:O

(pqr) o.paqar} .

-The special case in which the spheroid degenerates into a
sphere corresponds to taking the limit e—0, kno - RO .

The z coordinate of the center of mass of the.distorted shape
is given by '

1 . 1’]0+A 2m

—

dfdndg hyhoh, z

3 =
1 ‘.1’]0'+A 27
ﬂ) 3 S dg dnd¢ h hh,
o1 0

The denominator is the distorted volume V = V0 + 6V;
evaluation of the numerator leads to the result:

vi= 2aRr Y. (1-e8)7 Y3 {(cl(l) +—§-c1(2‘) + c1(3) i% c.l(4)) ;

: (1) , 3 (2) 3 (2) ‘
5°1 35 tggcp t 3y )1

2. The Surface Energy

The surface area of the distorted drop is given by

, 1 - 2w -
A= j 5 «/_(hldg )+ (hzdn)z h,d¢ =
) =1 ¢R0 |
| o ) |
| 2 | at J(n?-€2) (2= 140162 an/ag)?] =
el . " ‘. | —ll \‘ .
ar2 (1B ae Jitoe?e?) x?ctey) |
' : - -1
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where

_n _
=1 =1+56,
T

y = (1-£%) <§§> .

Considering the integrand as a function of x and y and expand-
ing in a Taylor series about the point x = 1, y = 0 we find.

00 0 ’ .
. : {  _n+s
w2 2)-2/3 R L 8""s
A = 2mR, (1-e j d L £ "n's! 825 v
n=0 s=0 ) X y
: ’ 1 1
(x%-e?E%)2 ,(xz—e2+y)2}
' | %=1
y=0
Introd_ﬁci'ng'the expansions .
.
AEED U A NN
i=0
[ ants 2 2,23 2. 4 ? (n, s)
————— (x"-e"E7)%(x"-e"4y)2| = /) C P, (£),
9x 0y | L :
1’ : } =1 i=0
- x=
y=0
we may write S -
A 1 2.-2/3 S 5 1
By= —2— =l A L2
4TrR0, . ‘ n=0 s=0 T
w .
15, k=0 k
- r)x

The coefficients di(r+l) may be calculated in terms of di;

by means of the recurrence relation

2 L L
m n

d.(r+1) - 2i+l (AN (imn) d (1_)(21 (r)‘
i “m n

22



UCRL-3991

For r = 0 ,dO(O) =1, di(o) =0 fori >0.

In order to find di(l) we proceed as fplloWs:

LI | |
L () 2itl [ e <(1_gz)v %g> (%_g_»
-1 '

i - Z

. Now we have

down to P, if i odd or

n

dpP, - '
1= . .
-'*-az‘ (21—1) Pi-l + (21—5) P1_3 + ... 0
: A : to 3131 if i even
98 = (o wa, ta, ... )P, +3la, ta, ta, +.. )P+
© dE 172 "4 00 274 76 T
+ 5(0.3'+ ag ta, + )P2 +
o0
= Z . Bum ,
m=0
where »
B_ = (2m+lj(a 41 T T s T ) s
also T e 0
' a gz) ds _ N 52) Py AN n(n+l)
o dg A dg - n 2n+l
: n=1 n=1
=]
x (Pn—l - Pn+1) = Z AnPn ’
. n=0
where . '
x _ o (n-1)n (n+1)(n+2)
Ay=- 2n-1 %n-1 * 2n+3. “n+1

Hence the starting values d.l(l) for use in the recurrence re-

1) are found from

ai“): 21;1 Z Z (imn) BmAn
m’ :n

1étion for di(r
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The coefficients Ck(n’ s) are obtained as follows:

: n+s . % R 1 a v n+s '
L N R 2-e2+y>f} { ° _ Fx z>} -
Ox 9y %=1 9x & %=1
y=0 v z=B2
= (F_ 1 ,
’ x=1
' z=B?2
where
1 - e2 +ty,
FZ' = (x2 -1l +a”) (x -1 +'z)-=(x2—_ 1)2 + (xz— 1)(0,2 +z)+ 0.22,
with
1
(1-e%£%)7
1
B = (l-ez')2
F__ denotes the nth derivative with respect to x and the sth

derivative With respect to z.

Recurrence relations for the successive derivatives of ¥ are
obtained by differentiating Fz, equal to G, say. By equating the differ-
ent powers of x and z in the Taylor expansions of G and F - F we obtain
the following relation between the differential coefficients of F and G:

Gk,f Z Z m n i k m; £-n (5)
kg : m' (k- m)'n' (£-n)! )

- m=0 n=0 L :
On_the left the G are simple coefficients of which only a

few (with the lowest kandkl)ldiffer from zero. Thus, atx =1, z = B’Z,
we find v '

_ 2x2 -
,G—GB G40—Z4,
) _ 2 2 _ 2
GlO—Z(a +B7), GOI—a ,
G.. =8 + 2(a®+B%) G, , =2

20 o 11 ’
G, = 24, ; G, =2

30
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k, 4 vanish, | |
The right-hand side of Eq. (5) may be regarded as providing _
a relation between F times the highest occuring derivative of F and the
lower derivatives, assumed known. In this way the successive
* derivatives of F are readily generated.

All other G

, : For example, in an expansion to third order in the coefficients
- ‘ a,, the six quantities F, ¥, , F__, F_. . F__, F.. have to be calculated
atx =1, z = BS We fing 10 207 730" To01" 711

F = Ba,
=B la + Ba-!

F10-B 94-Bq R |

Foo=B B3 a+@+25"hats(B)a?,

Fao = (-3B"2 +3B"°)a + B~ ! . 3B 3)a ! + (-3B - 3B71) o3

o+ (3B‘)a"5 ,

_ 1. -

'FOI = _%B a,

: -3 -1 -1
F, = -3B a+%Bv e .
‘Making use of the expansions o
ot = (1-e%37/2 = § p Wp g,

k=0

where ‘D, (r) are coefficients for which recurrence relations are given
in Ref. 5(, we find

(0, 0) (1)
Cy BDk
(1,0) _ o-1,.(1) 5 (-1)
Ck VB’ D, + BDk ,
2, 0) -1 -3 1 - - ' -
, ¢ % = 8183 b, M+ Bazm ] p "1+ (-B)p, -3,
c, 30 - (-387343575)p (1) 4 6B~ '1-3873)D (-1 '+(-3B-3B'1)D("-_3')+
"k k k k
\ (_5) . .
(0,1) _ 3 o-1 (1),
Cx = 2B D |
(1, 1) _ 1 p-3p (1) ) o-1 (-1)
. | Ck = -3 B D, +5 B Dk . N
: The higher-order terms are obtained in a similar manner.

In this way all the coefficients entering the expansion for the relative
surface area (or the relative surface energy Bs) may be calculated by
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means of recurrence relations for which'general formulae are available -
for any eccentricity and any distortion specified by

5=Zap
n n

3. The Electrostatic Energy .

i

‘The electrostatic energy of a distorted spheroid is g1ven by

» 1 Ng+d
.[A f d§dnd¢hhh / 7 ’
1 17 0

L
dé ' dn' dét h lh Zh 3 PP

-
1
Nll—

where PP! is the distance between the points (é , &) and (£, 0%, &%)
Here A .stands for n06(§) and A' for noﬁ(ﬁ').

If the distorted shape is considered as made up of two parts,

the spheroid and the distortion, we may decompose Ec into three terms:

E ..+ E . . . s ,
¢ spheroid distortion +E1nteract1on

where

E .= 1 .
spheroid 2P _ 'Vspher01d,
: spheroid
=1 v '

distortion ~ 2P distortion ’
distortion .

interaction - P Vspheroid,
distortion

where v are the electro_static'poten_tial’s produced

_ - spheroid’ Vdistortion
by the parts indicated.
We shall derive a general formula for Ec’ using a method out-

lined by N. 'Mudd in Ref. 10, according to which the potential of a

- finite distortion (in regions of space outside the distortion itself) may
be represented as a superposition of the potentials due to a series of
suitable surface charges.

The potential due to a finite distortion A is
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: 7 .
1 2w nptd hllhnzh )
= ! ! o e ———
dist ~ P f d?f d¢ f dn PP’ |
-1 0 yl

: Expanding the integrand in a Taylor series and integrating -
term by term, we find :

1 27 nO+Au
e | T a9 o
Lo
© b, P . [ ] |
Z (n'-mg)™  aP  [hihi b, _
—— =

NP | PP'

p=0"~ o
n _no

0 (5)P*] np“ap <h'lh'2h'3>>

P f [ déid¢* Z ) ‘8 n“p' PpT
n'=ng

Mudd“é method consists in interchanging the order of 1ntegra—

tion with ré spect to (&', ¢*) and the differentiations with respect to n':
q ',OQ e : ' Tl0p+18p 1 2w - (6,)p+1h,,2 o
: = N 0 iht. 8 L -& ‘ ‘
Vdist BT | " 5P f f h')dgh 390" —ppr——
p=0 : -1 0 . .
ﬂ~—ﬂ0

In so far as this interchange i‘s justified (this question has
not been studied adequately) the poteqtial Vdist has now been expressed
‘as a sum from p = 0 to infinity of n0p+1/(‘p+‘1)5 times the pth derivative
with respect to 1'] , evaluated at n' = Mg of the potgntial of a series of
)p+1h' distributed on a spheroid given

surface charges equal to p(8° 2
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by n' = constant.

The general formulae for the internal or external potentials

(v or v>) at a point n, §, ¢ due to any surface distribution of charge ¢
on a spheroid defined by 1 = Ng» are given in Ref. 9. (Ch. 5, Problem
89). For example,

Viene = ) ) M PTmRTE) cosme, (1)
n=0 m=0 '
where
2 1 2w
- ]
M= D(2-6 )k Hzn+1)[}“4§2;J ) [ [ B ™)
' -1 0

.cosmé- ¢ h h3d§ do .

Here P m Qnm are the associated Legendre polynomials of the first

and second kind, respectively. In our case the surface charges are in
“the form : o

so ‘that we have

o0
' _ 3 2 g2 '
Chhy o = ek (n,° -'E%) Z c P_(£).

. nh:
 Re-expanding, we may write

hh,o = pk’ Ej X no, c)P_(£),

where the expansion coefficients Xn are related to the Ch through

(a1 2 1, 2 n(n+l)
%o 0 )7 ey ez E“o 3 -3 1)(Zn+3T:,
(it (@2) oy
| " (Zot3)(26%5) Cn+2 - | a
Su}‘:)stitutionbin-.Eq, (7) gives

< (&, n) = 4npk’” 20 P €) - P (MQ (ny)X (14 c).
n=
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Applying this result to (6), we find for the inside potential of
a fm1te distortion the expressmn

‘o0 0

< . 2 2 1 ' |
v (n, €) = 4mpk” 1 Z ) Z P (&) W_(n,): P _(n),
dist -0 p=0 pHIY 2o op 0 n
where '
RPN i \ (o)
Woap(Mo) = 7 Q (M) X (n'c )
% . ) nl:no

Si'_r‘nilarly the outside potential of a surface chargev

o
‘p“hZ Z ¢ nPn .
' 0

on a spheroid Mg is
o0

v’ (€, m) = 4 ok’ Z P_(£) Q. (m) P (ng) X_(ny c),
n=0

and the outside potential of a finite distortion is

Ia

SN

Ydist (n.8)'= 4mpic®ng” Z (pl+"'1f:! 2 P () - U (ng) * mpQ (m),
n=0 '

where

P-2 4P .
n 0 .

. _ )0 ‘ , o (ptl)

np(nO) - P Pn(n“) Xa (n', c 0

81] ' . . nl:no

. Mudd{s method gives the potential both inside and outside the
distortion, but as one crosses into the distortion there is'a discon-
tinuity in the second and higher derivatives of the potential, so that
the formulae derived above do not apply for points within the distortion.
In ofder to overcome this limitation we make use of the fact that if,
instead of considering the distortion by itself, we consider it-simul-
taneously with the spheroid, then there is no discontinuity in any
-'derivative of the total potential (i. e., that due to spheroid plus dis-
tortion) when crossing from the inside of the spheroid into the dis-
tortion in regions wherethe new surface is outside the old, and sim-
ilarly there is no discontinuity when crossing from outside the '

-29-



UCRL-3991

spheroid into the distortion in regions where the new surface is inside
the old. Hence the appropriate expression for the total potential may
be carried over intothe region of the distortion and then, by subtraction
of the potential due to the spheroid (known everywhere), the potential
inside the distortion may be obtained.

Consider in partiélular_the case when the new surface is
entirely outside the spheroid. Then we have

d1 St (at points within distortion = Vdist (dist) .

= Vnew Shape(dlst) vsph(dlst)

= Vsph + dist(dl.St) - Vsph(dlst)
_ < C oy >
= Vsph + dist(d1st) - vsph(d1st) .

The first term in the last line means that the expression for
theztotal potential appropr1ate to the inside of the spher01d may be
used also in the region of the distortion, since there is no discontinuity
across the surface of the spheroid. Finally we obtain

. _.< . < . >
Vdist (dist) = vsph(dlst) + Vdist (dist) - Vsph (dist) .

In this way we have expressed the unknown Viist (dist) in

terms of {;éist’ which is available. Using the above relation, we find
= 1, < < > e
Eaist T Eint = P [ [2 Vgon * Vdist = Veph) * Veph ]

il

< > 1 < | ’
v +.Vsph)+ vd1st] . | (8)
The inside ‘and outside potent1a1s due to a uniformily charged-

sphero1d are obtained by an integration over contributions due to
- spheroidal shells of charge 7'to n' + dn'. The result can be written _

< §-4‘lk2i P (E)- L (nn)
V~.Sph(ny »"’ T pK -6 : n( )' n(rlos n)a

S |
(n &) = 4mpi® ) P(E) " K_ (g, m),

- n=0

>
vsph

. _ o
P (W) X (n) dn' + P () |

T, (X (),
1 : ul '
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Mo |
K =Q(n) fl P, (") Xy (n') dn',
Xqg (n') = né % ’

o2
he) = - =
Xy ) 3

- X (n?)

n 0 for n > 2.

Evaluation of the integrals givés

Lo =‘[% (n03 - Mg) Qqglng) {rg)l-noz] - 51- n,

L =lg (UOS'T‘O)QO(“O)" AR R AN

2

) (n03-n0)Q0(n0)] n",

2

1 3
KO = 'g' (T]O - 710) QO (T]) ’

_ 1.3 ‘ |
sz“ --3-(710 "T]o) QZ (T]) 9‘
K., = 0

where

The electrostatic energy of the spheroid may be obtained by

an integral over v ,  with the result

. sph’ _
N (1) I 1/3 o L L (0)_ 16 22 5

Egpn TEc T (g7 - mph T Qpimg) 1 E T = qpme Ry
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- With %(v<' + v> )and .l Vi st available we now substitute

in Eq. (8)and carry out the final integration over the distortion, using
for the second time the trick of expanding the intégrand in a Taylor
series, mterch_angmg the order of integrations and differentiations, and

~integrating term by term (after having first replaced

2 4 ‘
2 2 ‘ . ‘
Zo (n™ - §%) Pn Gn by % Pn= Xn {n, G) a}c‘corvdmg to
Eq. (7a))
N R S
dist sph sph . ,
1 2x Nt 2 ,
= [ ] atde dnh1h2h3' 4mpk® S P(6) Gy (ng, ) =
Z1 0 g R 0
2 a5 oo, 020 S
= 8 pk f dag - f Z P (g) X (m, G) =
‘ 0
o Mo | |
A & el )Pt lePx 4(n G)
2 2.5 [ » E: (6)P7L " ) Mo , o
=0 -1 _ p=0  ‘PTl) onP -
5 , 1™ "o
4 - P-4,pPy
P X Mo ’ v§: Skl E: 2n+t] n 9 nP
o N N &=o' n
- Proceeding similarly, vwe'obtair_l
R 1 2w ngedA .
1 1 : 0 L2 2
o] [ 7 2 = > p [ ? d§d¢ dnh h2h3 ° 4§~ka ’l‘]o'_
dist 21 0 e
. ) 0 /:
o % -
) L P (E)" W__(n)P_ ()=
270 . (vp+1)l! o n np''0 n
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2.5 5 1
=2mp k™1 / / d€d¢ Z ; ; Z P (£) -

| 0 )1 74 P, q=0 (p+1)v.. (q+1)! neo ®

2 q-2459
: n o

m=0 , y

225 5 « o ! = 2 "o '
= anfpin® ) Y ETEET 2 2a71 apt10)Ung (o)

‘ , p=0 g=0 _ n=0

Expressing all energies in units of the electrostatic energy of
“the sphere, Eé(o), and using k = R /(n03-n0 1/3

0 , we obtain the final
result » ' .
, E
~ ¢ - (o3 ") 1/3
BC = E—(b-)- = (e Q ( )
c .
L 2,-5/3 1 . 1 (p+1) 1,
+ 15 (1-¢e7) . Z ] z - c T | )+
_ =0 (p+17e 5=0 2n+l n np
15

2,-5/3 = ! < EEPRI t
+ (l-e ) T T Z ,.(,76
-2 g_’qzo (pt1)F(q+1)! ;

where _ b :
T (n.) = {n.P7% ji—jiﬂiiliz -
np' 0 ) 0 8np' ' ’
n=1,

(n )=‘ n P! 27 X h]c(p+lh Q (n)

npq 0 : 0 anp n NP n

=1
2 aq +1
00 x (e (g

| ="M

The above formula, which, when worked out, gives a power
expansion in the coefficients a,, a,, a, ... , was obtained by use of
Eq. #8), 'derived on the assumption that the distortion is entirely out-

side the spheroid. This means that, in the first place, the formula
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is justified only in a part of the deformation space of the a_'s, namely
the part where ag satisfies a certain inequality ag > f(aj, ar, ... )

- ensuring the required coundition. If the total electrostatic energy,
considered as a function of aj, has no singularities in the neighborhood
in question, the same power expansion holds also for other small
distortions, even when the new surface does intersect the old. It has
been verified exp11c1t1y that assuming the new surface to be entlrely
inside the old and u51ng the resulting formula, :

E f dvo )4V ]
= p BX \4 3 V.. ,
dlst | nt dist sph sph dlst |
leads to the same power expansion for Ec as before, but the validity
of the formula has not been verified explicitly in the case in which the
old and new surfaces intersect. The problem of the range of va11d1ty
of the above expansions requires further analysis.

4. Expansions About a Sphere

By taking the limit no - @ we obtain expansions about the
spher1ca1 shape: '

. 2 .
) a .
6V < n 1 '
me— =  3a.+3 Z + = ZZL (pgr) a_a a
. V0 » 0 n=0 Zn+l 2 P, q, r=0 _ parx
44 WL, @, Blp1, @ (9)
Vz = -3—TI'R0 {cl + 5c +?1 + I .

In the case of the surface area the expression

: ,8n+s
Fan= —ﬁ F (x, z)

0x 0z
Z:
z =B2
becomes
n+s Er—
F =)8 x N x2—1+z =
n, s n
0 x 0z .
1
=1
1 -10 -3 . R
= 5. = (s factors) = (2-2s)(2-2s-1} ...

(n factors).

Hence we have
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s - °°z i _21_ .-21_ .'% (s factors) - (2-2s}(2-2s-1) - (n factors)
) o &S = n! s!
— c.(n)d.(s)
1 1
L T 2i41

i=0

In reducing the formulae for the electrostatic energy we make
use of the following limiting expressions for - « :

(2n)! n

° 2™ (n!)?

Zn(n' )2
Qn('ﬂ) - a1t n P

which lead to

Gn'/GO - 0forn > 0.

We {ind further v
‘ +1 2 +1
X (7, clatlly L 2 (atl)

2
xn(n’G) - 7] Gn °

Hence only the term with n = 0 survives in the sum over Tnp(no):

P : '
- p-4 0° 1 3 1 2.2 1 4
Toplmo! = 4M0™ 5 g n* g g oz
| =1,

1 1 -1 ;
S, 3 54 -2, -2forp=0, 1, 2, 3, 4 respectively,

3 3 2 -
= 0 for p > 4.

The expression anq (.1_110) tends to
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!
. l
p-1 _8_‘)_ (pt1) 2% (n! )2 -n-1/
"o p 1 n TZot)r - " X
_ . q . . '
% ,noq 2 .9 1,]2 C"ﬁ(q+1) (r;?.n). . ~
Bnq 2 (n! oo
11-'710
(p+1)  (q+1) '
- n n . J 4 xn+2 oP -n+l
2nt+l t 959 BYp ,
x=y=1

Henc_ev the formula for the electrostatic energy reduces to

c - 1y, 5 2y 5 (3) 5 (4) 1. (5)
= (or 1+5Co *2% "~ 3% 3% -~ 7% ¢
c . o o .
| B (p+1) (q+1)
c, |
"7 % Z: (P+” (q+ﬂ' g‘:o (zn+1)° .

X (n+2)(n+1).'..,. (q factox;s) . '(—n+1_’)(-n)'°'_‘(p factors).

So far the most extensive applications of the general formulae
have been made to the study of the energy in the ne1ghborhood of the
spherical shape. We shall present the results of an expansmn in wh1ch

the distortion was specified by
' 5

ROV VTR (1) o P (cos ol =

n=1

-1
Rg(1+6),

where n = 0 is not included in the sum, and \is a scale factor provi-
dmg an alternative way of preserving the volume. It is given by

(V + 6V)/V where Vo + 6V is the volume of the shape
Ro (1+5) : : o

The energies were worked out to the sixth order in a small
quantity u, the different coefficients a, being regarded as of different
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orders in u, according to the following scheme: a, of order uz, a,and
a, of order u, ay and a. of order u?. This choice was designed so
that terms contri uting ?o an expansion of the conventional threshold
energy to sixth order in the quantity (1-x) would be retained automat-
ically. Terms involving a,, which are also required for this purpose,
were included later, as well as certain terms in a-. In this connection
we should like to hote that our criticism in Ref. 2 of Nossoff's state-
ment that a,, is of order (1-x)® was incorrect .

5. The Coefficients cn(p) and da(p) .

The coefficients Cn(p)’ specifying the expansion of the pth
power of §, would occur in any problem where distorted spheres or
spheroids were used, and they are given, therefdre, as fully as they are
available. The calculations were made with six decimals, all of which
are reproduced, although rounding off errors affect. the last digit. The
selection of the terms retained is based,broadly speaking, on the
scheme explained above. The coefficients are: v

Forp=0

c0=1, all other'c's equal to zero.
Forp=1

€9 =0 ¢y Tap cp=apcy3Tag ¢ Tay o5 =ag.
Forp=2

= 0.333333a12 + o.zoooomag + 0,142857_a32 + 0:111111a42~+ 

€o
: 2
+ 0.»090909@5 .
Cl- = 0.800000(1.1-(12 + 0‘,514:.2860,20.3 + 0.,380952(1.3{14 + 0.3037030(140.5.
C2 = 0.666667q1 + 0,'8571430‘10'3 + 0.285714(12 + 0.5714290294_f
. . 2 , 2 2
+ 0.1904760,3 + 0.432901(13(15 + 0. 144300(14 + 0. 116550_0,5 .
cy = l.ZOOOOOalo,2 + 0.888889(110.4 + 0,533334a2a3 + O.606061a2a5 +
+ 0.36363?a3a4 + 0.2797200,40,5 .
_ ' ’ ' : 2 ‘ _
<:4 = 1.142857(110.3 + 0.909091a1a5 \+ 0.5142860.2 + 0.51948_1(:1.20.4 =+

+0.233766a,° + 0.359640a,a, + 0.161838a,” + 0.125874a, .
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+0.952381a

cg = l.vllllllala4 2(13 .+ O.512820a2a.5f+ 0.439_5600.30,4 +
+ 0.3076920,40,5.
- . 2
¢ 1.090909a1a5 + 0.90909‘10,20,4 + 0“432901a3 + 0,4242420,30,5 +
' 2 | 2 . -
+0.202020a,” +0.142602a,°.
cq = 0.8811200.20.5 + 0.8158520,3&4 .
Cg = 0.783217(130.5.
Forp=3
_ 2 A '
Co = 0.400000c‘11 o, + 9,514286qla2a3 + 0.380952(110.3(1.4 + 0,303030(11(14(15 +
- 3 2 ' 2 -
+ 0.0571430,2 + 0.17142902 0.4 :{'_'0.1142860.20.3 + 0,259740a_2a3q5 +
2 2 2 '
+ 0.,0865800.{2a4 + 0,0699300.20.5 + 0.,077922«:),3 a, + 0.119880 aza 0, +
+ 0.017982 3 + 0.041958 2
. a, . azag”.
c l= 0.942857(1 a. 2 + 0.657143a,a 2 + 0.514286a Zu 4+ 0.737663a,a,a, +
1 172 : 7173 T 2 3 ’ 27374
2 ' 3 2
‘+0.233766a2 ag + 0.0935060.3 + 0.269730a3 ‘o + 0568,5714a10,2a47 +
+0.506493aa,° |
. 124 -
> .
c, = 1.571429a, "o, + 1a714286a1a2a3 +1.2294380,a50, + 0,779221(110.2(15 +
+0.428571a> + 0.792208a.a.2 + 0.595738a.a 2 + 0.4805200,a % +
: a7 *2%3 ' 2% T 2%5
2 ) '
+ 9.4675330.2 <J.4 + 0.679321u2a305 + 0,4915090.3 0.4 +
+ 0.749251(130,4(15- ;
_ 2 ‘ P 2 ' ' 2 .
C3 = 1.533333(11 a3 + 1‘,2.000(:)01'.7.10,2 + 1.7212130.10.20.4 + 0.654546a1a3 +
. ‘ , |
+ 1.2.58'7420.10.3(15 + 1.109092 qz a, + 1.376224a2a3a4 +
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. - 2 3 2
0489510.204(15 + 0.4755240,2 ag +I:O..337O63a3 + 0.4195800.3 ag +

f 2 . 2
4—0.678322a3a4 + 0.534348a3a.".

i
—

+ 0.

il

= 3.

.212988a1a

A734§652a2a
.643352a2d
.558442a
.588387a
.629372a
.559441a

.628572a

.359640a

0.

.186814a Za

4 3
.151848a3' + 0,,5030260.3 ag-

a -+00280520a23 +1.Q72328a22d -+O.88471602a32 +

4

273

2

+ 0.87212._8a3 ay-

3%s
' 2

L2 2 2
857143a,d,” + 0.989011aa," +0.747253a,%a; + 1.057143a, 0, +

4—0.219780a33-+0.839689a32a5,

3%4

3

: 2 _ 2
a a3+0,233767aZ -+O.?01299a2 a4-+0,649351a2a3. +

172

: 2
azag + 0.5958750.3- ay

(NS0 W IS

. 3 ' ’ .
a, +0.185109a,”.

2
2%3 -

4

2. 2 2 2 :
+ 0.438095(11 a, + 0.,6857140.10.Z a; +

2
1 %2

, ' 2. 3
.9835500.1&20.30.4 + (,).31168.8&1«12 ag + 0.124;675(:!.10.3 +

a -+0,085714a24-+o.316883a22a32'+

1%3 %5

2

2 2 ‘ 2 3
.2382950.2 ay + 0.19220802 ag + 0.1246’76(1Z ay +

. 5 > .
.271728(1.Z azog + 0,393207_a2a3 a, + 0.599401(120,3(140.5 +

4 3 2 2 . 2 2
0481520.3 + 0.0799200.3 ag + 0.1938060.3 a, + 0.1526710.3 ag.

3 2
a

+ 1.433767(110.2

ear 3 3
65_4546(12 ay + 0.4963040._2a3 +0.914285a,0a, 4
272729 2 + 0.827173 3 + 0.259741 4 + 0.815186 3 +
a0, a, . aja, . o . ay oy,

2
AL f}°678322a

2
+»1,870131a2a oy +

2
2 %3%g 3
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3

- a3 2 S ‘ 2 -
03 = 1.5272?3a1q2 + 3‘3474128(110,20.3 + 101076930.2 0.3. + 2.6181840.2 0.30._4 +
+0.783217a-3a, +0.850350a.0.> + 2.112711a-a.%a. + 0.6752784. a
-783¢217a37ag + 0. 2%3 -112711a,a57ag + 0. az ay.
_ 4 , 2 2 4
Cy = 0.366833(12 + 1.6831180.2 a, + O.,‘2‘1‘7053(13 :
= 1.230770a.a, + 1.106658a.a.°>.
cg = 1. aytag 1. a,a,
~ 4 2 2 4
ce = 0.187013a,% + 1.503439a,%a,% + 0.225795a, %
Forp=5
= 1.090910a.a.%a. + 0.827173 3 4 0.051948 540 2037960 %a . +
cg = 1. ‘alaz as . 1730050, . a, . a, a,
3 2 ' 3 : 2 2
+ 0.395605(12 ay +0.55944la,7aza, + 0'9350650'.2 aza, t

4 + 0;5030260.20 3_a + 0,1205850.340.4.,

+0715184802a3 3 Qg
¢y = 0 to the required order in u.
. = 0.264735a. + 1.894773a.3a.2 + 0.767762a.a. *
2 = 0. 2 : 2% *O 203 -
c. = 1.326341a. %0 + 2.1497340.%a.> + 0.1807424.°
3= L. 2 @3 12.149734a,7a," + 0.180742a,7.

The coefficients dn(p) specifying the expansion of the pth power of

(1—§2)(d6/d§); are giyven-belo_w, again with a selection of terms based
on the '"'sixth-order' expansion discussed previously. .

Forp=20
d, =1, all other d'n‘ﬁs equal-to zero.

Forp=.1
' 2 2 2 2.
dg = 0.666667a,“ +1.200000a,” + 1.714286a;° + 2.2222220,° +

+ 2.7272730.52'.

d, = 2,490000a_la2 + 4.114285(12(13 + 5.7/14285(1.3(;4 + 7.2727/2"70,40,5.
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2

. 2.
2 + 5.714285(120.4 + 1.7142860.3 +

= 3.428572a aj + 0.857142a

1
2

+17.792208a;a, - 0.666667a,° +2.453101a,” + 3.146853a,°.

5

= 4.44444ba a, + 1.600001a 0, + 7.272729a,a; + 3.-53‘6363(13@4 -

5 (

_2.4000000.1a2 + 5.314686a4‘a

p=2

-5.454547a1a5-%1.558441a2a4-+0,467532a3 -+3f95§044a3&5-
- 3.4285720.1(13 + l._6183820.4Z - 2.057'1420.22 + 2.5174820.52'.-

= 1.538462(120.5 + 0.4395_606130;.4 - 4ﬂ4:444450.‘10.4 + 3.0769220.4(15 -
- 5.714285(120,3.

- . 2 .2

= —5.4545490.1(15 - 0.2020200.4 - 7‘,272728(12(14 + 1.28342395 -
- 2

- 3.896 1-050,3 .

= - 8.811190a2a5 - 9.790209(13(14.‘

= - 11,748256a3a5..

= 4.1142850.120.2Z + 5.485716(1.120,32 + Z°057142a24 + 13,464933u22a

2 2

2 ' 2 - 4
-+ 16.,30369“50,Z ay + 1974205810,_‘2 ag + 4.7184830.3 +

'+ 28.771222a

2 2 2

3 Oy +

+ 33.002302(13;' + 8,228568q10.22va3

%5

2

a

+19.948055a,a,a 4 >

192 + 25.31’86810.20.3

3y +57.542450a 050 0, +

374

3 2 3
+ 11,508496a1a3- ag + 1,246’?51a2 ay +

+ 1.9948060.10,3
+5 754246:1 3a. - 7.480518a.a.%a
3% : 3 % "~ (- 1%2 %5

+2.589410a,%a
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} 3 ) 3
d1 = 15‘,7090:850.2 ajy + 262393680.2@3
d. = 18.701302a.a.2%a- + 1.870127a.% + 14.865133a_3a . +25.894098a.%a.2 +
2 : 1%, O3 : 2 ' 2 94 T2 2 %3

+38.841177a.%a.a. + 16.879128a. 0.3 + 92.067936a.a.2a , +

: 2 %3%g : 1%3 : 293 9%y
4 3

+8.055944a," + 47.049420a, ..
d, = 0.402796a 30, + 22.153850a 30, + 32.223771a Za‘ a, - 6.981816a,a 3 +
3 =0 2 93 1 22.153850a, a, + 32, 2 @3%4 7 0.981816a;a," +

¥ 12.889508a.a.> + 75.346808a.a,%a. + 29.696412a, 0, -

12, 2%3 ' 2%3 95 -096412a;"a,

-<1.61187a.a.a 2

19293 - -

_ 2 2 4 4
dy = - 18.6437560,%;% - 4.7904080," + 0.426489a,"
d. =22.153836a.° 32.020693a.a.,>
5 = . 0.2 (13 - - 0.20.3 -

B 2 2 4 4
d, = -35.642471a,%a,” - 14.8220884," - 0.748051a,"

For p = 3
d =3.884112a.0 +62.145826a.%a,% + 104.185712a,%, % +
| 2 2 %3 2 %3
. 6 '
4 15.315209a,°.

6. The Electrostatic and._;Surfaée Energies

- The electréstatic and surface energies as well as the scale
factor \3 were first calculated for the shape R0(1+6). The energies
of the volume-preserving shape \~ 1R0(1_+6) were then found by
' 5

multiplying by vthe’ scaling factors A"~ and )\"2, respectively.

The result was
- (0) _
Bc - EC/EC -
= 1.000000 - -0,200000022 ] 0.204081«132 _ 0.,185'186a42 -
4
2 2 . ‘
-0.1652890.5 + 0,133333u1 a, - 0.195919a1q2q3 - 0.272108(110;,3«14 -
0.275483 0.038095 a_> - 0.171430a.%a, - 0 1251710 0.2 . -
-0.275483a,a,a, - 0. 95 a,” - 0. aploy - 0125 5850
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-0.3350750. a
-0.194610 aza
+ 0.;‘3972'?80.'
- 0_.046551d a
-+ 0. 534345a

+ 0.0303,4'.2@‘2

4

+ 0.1668120.3

+ 0.4459440.10.2 a

3

+ 0.271293012 a

+0.147106a,a

- .0.,8271880.240.

= /w (0) _
Es/-Es -

]

- 0.342858a.a
- 0.173160a,a
5.20,,20.20120(1
0.11988a,° -

- V. G4
- 0.377143a,
- 0.773483a 4

-2, 493507(1 a

3%5

1%2%3
1%4%5

% - 2.025974a,%a

- 0.115440a,a

a, - 0.029970a

475 4

+ 0. 440816(110L2

S
,Cag +0.035622a,
32 +0.383651a, 24

azag + 0._311275(1

3 2 2
+ 0.036620(13 ag +0.419291c,4 ay

3 5 +0.397171a

2
3

4 4 0.425058a

2%3 : 2%3

-2
3

- 0.038095a,,°

3%5
- 0.057720a,a
0..027972(1‘40.5
2
3
, 2 2
- 4.009191a3 ay

- 3. 164835(1

234

-43-

274

3 0.076287a

%4

+ 0.4518100,230.

- O.750764d22a

- 0.051948a,a

2%4

2. 0.647619«112@

. 0.103835a

4%s5

3

a3

2 . .
583 q‘4--l‘- 0.374710a

j05 0.554265

25

34 - 0.197173a

- '0,114286a2

4 - 0.266667a,
2 :
- Q,0466 20_«1

2
2

- 2.48 2406022«1

- 4.5928200.3201,

2
93 %4

UCRL-3991 -

Zasz - 0.111317a,%, -

3 74

% 4 0.601358a.%a.2 +

ng3 +0.418193a a

1 72

234

+0.082156a.a.%a, + 0.208163%,4

173 75

2 0.305995a22a

3 ,
18,93 3 O‘,:0465_08a.2

2
a, a

2
4

+ 0, 1298650,3 a

+0.318544a,%a. % +

2
5

2230405 *
‘ 2
3 95
5 . . 4
+0.208406a, %,

320.4 +

6
4 0,182.?6_4022 -

6,

3

1.000000 + 0.4000000;22 + 0.714286a32 + 1.oooooom4‘2 +1.272727a

)

2%5
- 1,066668a120 -

2

4 .

2
5

- 7.192806a,a

(10)

2
5

20.4 - 0.076191a,a,” -

23

- 0'.»2539680710.3(14

2
- 0 0799200.3 405 -

2
3

2

- 2.973027a 'Zas. -

- 1.028571a,a

2345

+ 0.0326520,230,

4

;

+



0.249351a a;> - 1.438562a,a

0.719281a, a

3 %5 + 0,_935065m

-+

2.875068(_110,2(13

-+

3

+-

» 3
4.266212a2u3 ag

2 4
+ 5.42,-’-}0810.2 a;

2

173

192

+ 1. 0019620. 6

2

> +0.101126a,”
2.264404 a_>a.a. + 5.2141000.°a
& 609 2 5 " 7 2

+ 1.,0575910,340.

05
Qg
+
3

4
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- 0. 155844:0.23

+ 2.063377a S

2

cx,.4 + 0.841368@2034 4

6

+0.309053a,° + 3.414835a, "0, % +

a, - 0.323676a 2

+ 1.3134440.230.

2 %3%g -

o+

.
3

(11)

The center of mass of the shape undergoing the distortion may
be held fixed at the origin by making a; a suitable function of the other

’ah"s, in such a way that the expression for z, given by Eq.

(9), is equal-

to zero. Working within the "sixth-order" approx1mat1on the following

expression for a, was used:

ay = - 0;77.14290.20.3_

+ 0.069996q23a3 +0.495071a

- Of233766a 20.5

- 0.269730a 2.u5

2
+0.4114290, a,

2%3

3 :
0.093506a;" - 9.571428%@4

- 0.454545a

:0,051950u2a3a4

+ ...

Subst1tut1on of this expression in Eqs. (10) and (11) resulted

in the following formulae:

B =
c

+

4% °

= 1.000000 --0.200000022 - 0.204081«132 - 0.1851860.42 - 0.165289«152 -

0.0380950,23 - 0.171430a 2

274

—-

- 0.029970a

{0._ 1946 10a3a4q5

+

3

-44-

2 %4

43 - 0.076287a,a,.> + 0.208163a,

- O._12.5171a a

0.115440a.a.° - 0.103835(12(152

30,685_4830.220,- z 0.3836510.220,

2
4

273 T 273

. =2 B
0,111317a3 a, -

4
475
2, 2

-+ 0.,3059950.2 d. +

5

2 . 0.335075a.a.a. -

5
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+ 0.03265.2(1230.4 +0.0303420,%a 0, + 0.633141a,a,%a, +

3%5
4

+ 0.676280a 3

. 3 .
+ 0‘.036620413 a5v+

5

20;30'40.5 +0.166812a

: : 2 2 ’ 2 .2
+ 0.574781(13 ay + 0.3»18544(13 ag

0,0700‘25«1_23:1’3

-+ 0,,208406@240. -

+0.046508a, ay

+

2 a3 ' - 2 2
+ 053_3520}12 a3g5 - 0‘.,0044(30@2 Az oy

. 4 e 3 4
0.137946(120.3 + 0741_45260.20,3 ag + 0.134953a.3 a, =

+

6 %,° 2a,* - 0.2005040,° + ...

= 0.730318a,"a,” - 0.925053a,

0,1827640.2
T (12)

1.000000 + 0.4000000,22 + 0.714.2.860.32 + 1'.0000000,4-2 +

2 0.0380950.23 ) 0.11'4286@22:1‘4 . 0,07'6”1-91@2(132 )

+ ’1,272727(15

2 . ) 2
5 - 0.051948«13 a, -

2
- 0.046620a2a 4

ag - 0.05772-0&20.

0. 1731600.'20.

3 4

4

3 ® 03771430, -

0.079920a,a,a, - 0.011988a,

1

—.0.027‘972«14a_5

- .2 2 2 2 7 2 2 o3
1.761483a,“a,” - 2.4824060,%," - 2.973027a,% " - 0.155844a,"a, -

0;3236"7610.; azag ‘- 2,?‘72998’020,3. a, - 6.88,11180.2(130,40.5 -
: , 4 ; 3 2 2, 2 2
,0.773,4_830.3 - 0.719281(13 ag - 3..863977(13 a, - 4.592§20a3 ag + |

: 5 . 4 3 2
+ 0_.101126_(12 -+ 0.633047a2 o, +1.807157a, a,

. 3 v
+ 1.623;160,2 aza; +

2

4
3 % ¥

+ 7.4036370.2 a + 1.0657840.2@ + 5.4684400,2@3 ag + 1.-223825(13 ay -

3

6 4 2 4

. ‘ . 2 - 6
0.309053a," +1.159778a, a;  + 2.356770«12 ay” +1.025278a," +.

-+

(13)

In comparing the coefficients of the terms up to fourth order
in a with the explicit formula of Ref. 3, an error was found in Nossoff's
formula for Bc in the term resulting from the condition of a fixed center .
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of mass (the téerm in a_ a

m;Fl » n+1’ disc‘g‘ssed in Rgf. 2).

Nossoff's expressmn (Ref 2)

w v
. +45 (4n-7) (otl) (m+21) — a_a . aa o+
" m, n=2 (2m+‘1)(2r‘n+3)(2n+1) (2n+3)
“should be replaced by
. o . '
m+1 ~ (n+1)(4n’ -n 6)
+90\Z . Lt v a_.a_ ,.a_a + ...
Lr_ﬁ,n 2 (2m+1)(2m+ﬂ (2n+1) (2.n+3)2 m m-+l n‘ n+1. :

i

After this correction all the coefficients up to fourth order are

. «consistent;. as:regards both B and B (except for rounding off errors
in the last dec1ma1) - o : :

Additional terms involving a, and a consiﬁé’r‘ed a_é of order
u”, were evaluated d1rect1y by use of Nossof s {corrected) formula.
(The center of mass is therefore fixed, and a, does not appear). The

result was

B, =Eq. (12) -

2 _ : - 3
- 0'1479280'.6 = 0,3066160.20,4(16 - 0.0221310,2 a -

i

2% - 0.171483a

0.1333330.7 - Q..155522a3 3859 —. Q.2'7{'972'00.30"{_10,7 -

2 377

2 2 2
0.058923a a, " + 0.185206(12 a, + .

'B_ = Eq. (13) +

2 | agar 3
+1.538461a,° - 0.139860a,a,a, + 0.50349%a, 0, +
L annar 2 2 ‘ ' ‘
+1.800000a,, % - 0.066600a, a, - 0.065268a,a.a, - 0.108780aja a, -

o . 2 2.
- 0.117482(1_20,50.7 + 2_.0;13986(1'2 azo, +0.000000a,a;"a, -

2

- 0.033786a,a,” - 0.01964la,a.” - 3.985256a,%a,” + ...

277

0.27768502a.§a7 -"0,0§6478a 20. a. - 0.0032260203206 - 0.084465a2a72

(15)
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" The above formulae, together with Nossoff's fouf-th order’
expressions, provide a fairly comprehenswe description of the engrgy
of a slightly distorted drop possessmg axial symmetry. Only a
fraction of the information contained in them has been explored. In
the following sections we present some of the results of applications
that have been made. '

7. Small Symm-etric Distortions

Confmmg ourselves to. symmetrlc distortions, we may write
the total deformation energy in units of E (0), given by (Bs-l) +
+ Zx(BC-l), as
3

gSYn? = (0.000000 + 0.400000u)a,” + (—0.114285 + 0.076190u)u2 f

2 4

+(0.194142 - 0509301611)«125 +

~+(0.039183 - 0.41632611) + (-0. 457144 + 0. 34285811)0,
2
4

30.
“2

+ (0.629630 + 0.370370u)a

+1:0.288600 + 0.230880u)a a %

274

+ (-0 090538 - O 065306u) 4

6
%2
2

+(-1.715102 - 0,767304u)a2 @,

+ (1.049859 - 0.416812u)a 40.4 +

+ { 0.056475 + 0 365528u) >

2 4 (-0.071928 + .0.05994011)0.43 +
+(0.459233 + 0.044263ula,a, + (1.242604 + 0.295858ua, ” +

+(-0.753093 + 0.613233u)aja 0, + (16)

Here u stands for 1-x.’

The above function of @.2, ays and ag is stationary for several
distinct sets of the three variables {in addition to a, =a, =6 = 0).

For x values in the range 0.7 to 0.1, however, all but one of the sets
occur at distortions so large that the expansion is not expected to be
reliable, and it is not known whether any s1gn1f1cance is to be
attached to those saddle points,

"The family of the conventmnal saddle -point shapes which

includes the sphere for u = 0 may be stud1ed by solving the system of
equations :
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in successive orders of u. The result is

(03)gp = 2.333333u - 1.226170u’ + 9.499768u° - 8.050944u”
tag)y, = 1.976474u” - 1.695026u> + 17.741912u” + ... (16a)
- : 3 '
(ag)g, = - 0.949967u” + ...

Substitution in Eq. (16) gives the expansion to order (l-x)
the threshold energy, '

gsp = 0.725926u3 - 0,330239114 + 10920798115 - 0.21.2537u6 + ... (1'7.)

No coefficient in this expressi'ori would be affected by the
inclusion of further terms in the expansion of the deformatlon energy
in powers of a . :

Because of the cancellatlon of large terms there is a 1oss of .
accuracy, especially in the last term, which may amognt to several
units in the fourth decimal place in the coefficient of u

. The saddle-point shapes, as calculated in four orders of approxi-
rnatlon forix = 0.7, are compared in Figs. 12(a), (b}, (c), (d) with the
shape calculated in Ref. 2. Figure 13 shows a comparison of the
trends with x in the radius vectors of these shapes at angles of .0°, 40",

and 900,

In F1g 14 the 'sixth-order expansmn for the threshold energy
is compared with prevxbus calculatlons

The above results, which glve the energy and location of the
saddle point as a function of x, may be modified to yield the energy of
a drop with a fixed x, distorted anywhete along the family of saddle-
po1nt shapes as specified, for example, by Eq. (l6a), or by the shapes
in Fig. 8 of Ref. 2. Let us label this sequence by a parameter t, equal
to the value of 1-x at which the shape in question is a saddle-point
shape (compare Ref. 4). Let the quantltles (Bg-1) and (B, -1), con- -

sidered as functions of t, be denoted by f(t) and g(t), respectively.
Then the deformation energy (always in units of Eg ( )) of a drop

'carrylng a charge correspond1ng to a value x (=1- u) and deformed to

a shape specified by t is a functlon of u and t which we shall write as

£ (u, t):

_4__.8!-
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it

£ (u,t) = £(t) + 2xg(t)

]

£(t) + 2g(t) - 2uglt).

Taking u = t corresponds to selectlng a sequence of saddle-
point conf1gurat10ns whose energy :

© E(u, u) = f(u) + 2(1-u)g(u) = F(u) - (18)

is a function that gives the threshold for a given u, and to which an

approx1mat1on is prov1ded for example by Eq (17)
As outlined in Ref 2, the functions f and g may be derived

from the key function F as follows. At the saddle point the energy is
statmnary with respect to all d1sp1acements so that we have

[
ot ). . o
t=u

f1(u) + 2g¥(u) - 2ugt(u) = 0,
On the other hand it follows fi"_Om Eq. (18).that

Fi() = £1(a) + 2g'(u) - 2g(u) - 2ug'(a) .

Combining the se equations, we find

g(u) = - 1 Fiu).
With.. g available, f follows from Eq. (18):
' f(w) = F(u) + Fi(u) - uF'(u) .

The relative electrostatic energy ‘along the t—fam11y of shapes
| B_ 1+g(t) 1-1.088889 t +0.660478 t3 . 4.801995 ¢t 4 0_.637611‘1:5
and th:_e ﬂrelat1ve surface energy is | - _

= 14_{_£(i) = 142.177778 t° - 2.772808 ;3 +10.594707 t_4 - 8.958414 t°
+1.062685 t° + |

The total deformation energy for any u, t can now be wr1tten
ent1re1y in terms of F and its derivative: :

. §(u, t): F(t) + (u-t)F(t) .

-49-
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We verify that the derivative
8€(u, t) "
3t ° ((u—t)F. (t)
vanishes for u = t.

The second derivative of the energy with respect to t is

8% (u, t)

= - Ft) + (u-t)F"(t) .
ot :

For a saddle-point shape this becomes -F'"(u), where

Fr(u) = 4.355556u - 3.962868u% + 38.415960u° - 6.376110u" + .

It follows that for an x value at which the threshold function
F(u) is concave upwards, a t-type distortion away from the saddle point
is towards decreasing energies, but when F(u) is convex, a t- type dis-’
tortion is towards increasing energies, The former situation occurs
when x is close to 1; the latter is exemplified, for example, in the
limiting case of x << 1, discussed earlier. At an x value where there
is a point of inflexion in F, a t-type distortion corresponds to moviang
away from the saddle point along an equipotential. ‘

Limited studies of the ne1ghborhood of the family of saddle -
point shapes were made, as regards both symmetric and asymmetric
distortions. For small symmetric dev1at10ns we may write the

additional distortion energy £ - gsp as
22, 2 . |
£ - gsp ="ax  + by +cz + 2dyz + Zexz + 2fxy,
where
- ' sp.
X = ay-a,
]
y =a4-0,°F
L sp
2 = ag-ag ",

and a, b, c, d, e, and f are functions of u.

-The expression for- £ - § sp may be thought of as an equation

. of a famﬂy of equ1potent1a1 surfaces of second degree. For ucxlose to
0 they are families of hyperb 0101ds centered at the point x =y =z = 0.

A change OvaO_Ol‘dlnateS,,
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x' = kx +ly + mz,
y'iUx+vy+wz,

zV = px + qy + rz,

may be used to transform to principal axes, so that £ - § _ becomes
sp

' 2 Y 2
- = ! 8 i
§’ gsp, NoxIT ANy 4 Nz
The eigenvaluesr)\z, )\4, )\6 are found by solving the déterminant
a- \ - f e
f b -\ d = 0
e d c-\

They may be used to study the ‘"'stiffness'' of the saddle-point
shapes against the distortions correspondmg to displacements along
the principal axes whose orientations in a,, G4 Qg Space, as given by

the direction cosines klm, uvw, pqr, may be found by standard methods.
The 'usual procedure of solving to successive powers in u gave the
followm.g expansions::

X, = - 0.399995u - 0.476892u° + 6.830759u> + 4.221224u* + ... |
X, = 0.629630 - 0.303030u - 7.064607u + ...
N = 1.242604 + ...

The functions )\Z and )\4 are: plotted in Fig. 15.

8. Asymmetric Distortions -

Consider the energy associated with an asymmetric distortion
specified by @), A3, OG5 Gy around the symmetric saddle-point shape.

. For small distortions the" problem again reduces to the study of
equipotential surfaces of second degree, this time in four dimensions
and with four principal axes. ' Along one of these axes, the one assoc- °
iated with a shift of the center of mass without intrinsic change of
shape, the energy is found to be constant. The equipotential surfaces
are therefore four-dimensional cylinders with three-dimensional

cross sections in the form of ellipsoids or hyperboloids. (For x =1
the axis of the cylinders is the oy axis. For x < 1 the axis points in

some general direction in a;, @3, Gg, Q- Space. ‘The constancy of thet

C.51-
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energy along this axis would be exact in a many-dimensional space
with all the a, .'s displayed; in a limited subspace like the one we are

con-51der-1_ng the constancy holds only up to a certain order in u).

Instead of studying the equipotential surfaces in four dimen-
sions we may restrict ourselves to a study of a suitable section of the
cylinder by a three-dimensional hyperplane in four dimensions. Two
cases are considered. In'the first the plane is taken at rlght angles
to the axis of the cylinder, so as to contain the remaining three prin-
cipal axes. The stiffness of the system against d1stort10ns along these
principal axes may then be studied as before.

The second case corresponds to studying a section of the
four-dimensional cylinder by a hyperplane so oriented that points with-
in this plane correspond to distortions that leave the center of mass of
the drop at the origin. Contrary to what was expected, the normal to
this plane does not coincide with the direction of the axis of the four-
dimensional cylinder (representing pure shifts of the center of mass),
except in the case x = 1, when the saddle-point shape is a sphere. As x
decreases below 1 the two directions diverge at a rate proportional at
first to (1-x). The ellipsoidal or hyperboloidal families of three-
dimensipnal surfaces defined by the new section of the cylinder are
therefore not identical with the previously mentioned family containing
the principal axes.

. We illustrate the second case first. It mmay be verified that

‘taking a section of the four-dimersional cylinder by the '"constant-
cefiter-of-mass plane' and then projecting the resultlng three-dimen-

sional figures from the space defined by the section onto the three-
d1mens1ona1 space of the a3, Gg and a, coordinates corresponds,

algebralcally, to using the expressions for the deformation energy in
whlch has been eliminated by the center-of-mass condition (Eqgs. (14)

and (15)). The result may be written
£E- ¢ = aa,% +ba % + ca,’ + 2da,a. + 2eaa + 2fa,a
sp 3 5 7 U5 377 3%5 >

where a, b, c, d, e, f are functions of u (different from the functions of
Section 7). Diagonalization of this expression led to the following
expansion for the eigenvalue >\3 (which belongs to a; in the sense that

it reduces to the coefficient of u,32 in the limitu — O}

A, = 0.306122 - 0.353739u - 3.206288u” +7.442375u” -

- (3.837496)u?

This result is plotted in Fig. 16. The last.term is not the

. 4
exact coefficient of u”, because one of the combinations of a, s
necessary for its evaluation was not available.
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v As an_illustration of the more direct procedure, in which the
diagonalization is carried out without the elimination of a,, we present

the results of a more restrlcted calculat1on in Wthh a, and a, were
6 T
not mcluded and the express1on :

- 2 2 2
§__- gsp =aa,; + ba.3 + co.-5 + 2da3a5 + 2e a1a5 + Zfo.la3

~was brought to principal axes. The functions a, b, c,d, e, f (nbt
the same as before) are given explicitly by

0.0 + 0.0u + 2.460000u” # ...",’

a = )

b= 0.306122 - 0.353739u - 4.770074u” + 9.009821u> + 37.569611u* + .
c = 0.942149 - 0.262770u - 12.415024u” + ... ,

d=0.0- 0.983864u + 0.119320u’ + 2.218091u° + ... ,

e =0.0+0.0u+1.547881u° + ... , |

£=0.0 - 0.857142u - 0.281225u> + 10.455021u> + ...

"The elgenvalues )\1, )\3, )\5 were found to be given by

0.0 + 0.0u +70,0u

>
"

p = 0 ~ ’
A, = 0.306122 - 0.353739u - 3.892004u° + 13.944823u° + 6.586599u”,
Ap = 0.942149 - 0:262770u - 10.893095u°.

. Some of the higher-order terms in the above expressions
.would be affected by the 1nc1us1on of further combinations of a's in
the energy expansions.

In the space of a;, @3, ag the orientation of the !'pure center-

of-mass shift' axis was found to be specified to lowest order in u, by
the following unnormalized direction cosines (1.0, 2.800000u, 0.0u).
This is the direction along which the energy is constant; it may be
verified directly, by a purely geometrical re-expansion of the symmet-
ric shape about an axially displaced origin, that this is indeed the
direction of an over-all center-of-mass shift.

The unnormalized direction cosines of the normal to the
""constant-center-of-mass plane' are given to lowest order in u, by
(1.0, 1.800000u, 0.0u).

The above examples are meant as illustrations of the methods

that may be used in a systematic mapping of the potential energy of a
charged drop. As regards quantitative results it would seem that for
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x values below about x = 0.8 expansions about spheroids rather than
spheres are necessary. In the case of the threshold energy, however,
the sixth-order expansion in (1-x) would appear to be remarkably
accurate down to x = 0.7 or perhaps even lower. This may be
associated with the fact that the threshold energy, unlike the other
quantities for which power expansions have been considered, is
invariant with respect to the choice of d1stort1on coordinates, and its
rate of convergence in an expansion in powers (1-x) is governed by

" the criterion (1-x) << 1, rather than by the related but not identical

criterion a, << 1.
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APPENDIX
. | 1
4 : Some of the coefficients (pqr) = f P P P _df, supple-
. . . _1‘ p q r

menting the more restricted table of Ref. 2 are given below.

(156) = 12/143 ~ (457) = 560/21879
’ (167) = 14/195 (477) = 4536/230945
(178) = 16/255 S
(556) = 160/7293
(277) = 112/3315 (558) = 980/46189
(279} = 72/1615 . (5,5,10) = 1512/46189
- _ - (567) = 840/46189
(347) = 70/1287 (578) = 720/46189
(356) = 14/429 :  {5,7,10) = 1540/96577
(358) = 112/2431 | (5,7,12) = 4752/185725

(367) = 336/12155
(378} = 504/20995
(377,10) = 80/2261

r“
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Fig. 1.

The energy released in the division of a drop into n equal

parts, as function of the fissionability parameter x. .

e -



A

UCRL-3991

0.5 x=/070 /075 0.80 [0I5
i 085 —
ool ' —ol0
s, L 090 _|
W B |
~
> B |
<

005 —005 <

X= 100

00 105 30 90 100_~j10 oo

Fig. 2. The deformation energy for spheroidal distortions as function
of the ratio of axes, for different valueg of x. The unit of energy
in this and the following figures is E_', the surface energy of

"~ the undistorted drop. ' '
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> ' CONVENWONALTHRESHOLD_
FOR (1-X) <<|
! | | | | ] | ] |

X

Fig. 3.

the energy of the conventional threshold for x - 1.

The energies of families of saddle-point shapes for x << 1 and
The dotted

lines correspond to the first-order approximation, the dot-dash

N . . . .
curves correspond to an estimate of the second-order approximation.
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TO 2 FRAGMENTS

Fig. 4. An attempt to illustrate schematically the relation of the
potential-energy valleys associated with divisions into different
numbers of fragments to the locus of spheroidal distortions in
the space of deformation coordinates specifying the shape of
the drop. » ,
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Fig| 5', A schematic map of several potential-energy valleys separated
" 'from one another and from the hollow around the spherical con-
figuration by saddle points A, B, C. The map corresponds to the
case when the energies of the saddles are in the order E(A) < E(B} <
-E(C). The dashed line represents the locus of spheroidal distortions.
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0.20

{0)
S

0

Fig. 6. The deformation energy of the symmetrical configuration of
twé equal spherical fragments connected by a small cylindrical
neck of length £ and radius r, plotted as function of r/R and

ﬁ/RO; where RO is the radius of the original sphere. An expres-

.sion valid approximately for x << 1 was used, with the value

= 0.384 inserted in the equation. The saddle point is indicated
by an arrow and the directions 1ead1ng to the one- and two-frag-
ment valleys are shown.

-62-



UCRL-3991

o

oo

[

Fig. 7. Threshold energies for x << 1 and the deformation energies of
spheroids with various ratios of semi-axes, c: a, plotted as
functions of x.
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-Fig. 8. Threshold energies for x << 1 and the estimated deformation
‘ - - energies of cylinders with hemispherical ends, for different ratios
of the semi-axes, c: a. The surface energies are exact but the
electrostatic energies of the cylinders were estimated by replacing
them with strings of 2, 4, 6,8, 10, or 12 tangent spheres with the
, ) same volume and the same over-all length 2c. (Hence the sequence
. _ of fractional ratios c: a.)
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Fig. 9. Three maps showing ' schematically the relations between the
' two- and three- fragment valleys for different valies of x. In

(a) the threshold B is higher than A, E(B) >E(A), and low-energy
fission must proceed by way of the two-fragment valley. In (b)"
E(B) = E(A) and in (c}) E(B) < E(A), and a competition between

_the two valleys would be involved.
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. Fig. 10. The energies of two symmetric a(nd two asymmetric families

‘ of equilibrium shapes (in units of Eg )y plotted as functions of x.
The line AG refers to two equal spherlcal fragments at infinity
(compare Fig. 1). Beyound the point of bifurcation at x = 1/5 two
unequal fragments at infinity also have an energy stationary with
respect to all deformations - this energy is shown by the curve
EF. The curve ABC is the conventional threshold (interpolated on
the assumption that the curve for x — 1 goes over into the curve
for n = 2 when x << 1). Beyond the estimated point of bifurcation
at x ~ 0.38 an asymmetric configuration of equilibrium with energy
given by the curve D appears The curves EF and BC intersect

at x = 0.724.
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(@) © X= 0100
(b) -_ X= 0.384
) C:Q X= 0.60l

RIS

o

11. Configurations of equilibrium estimated by making the energy
stationary for a restricted family of shapes consisting of two
spheres joined by a cylindrical neck. A further approximation was

the use of an expression for the energy that is valid only when the

neck'is small. The cases (a) and (b) réfer to the symmetric saddle
point shapes. Beyond x ~0.38 asymmetric equilibrium shapes
illustrated by (c) and (d), appear.: The energies of the shapesca(a), -
(b), (c¢), (d) are given by the curve AD in Fig. 10. -
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I. TO ORDER(I-X)

(a)

/
IV. TO ORDER({1-%)*
(APPROXIMATE)

Fig. 12. The conventional saddle-point shape for x = 0.7, as calculated

in four approximations using an expansion about the spherical
shape. The circles refer to the saddle-point shape calculated in
Ref. 2, based on expansions about spheroids. The last figure; (d),
is not the exact result to fourth order in (1-x): with the avail-

able expansion coefficients, agp and aZP could be calculated to

order (1-x)4, but agp only to order (l-x)3 and agp was not in-
cluded at all, although it would be of order (l-x)4f.‘
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Fig. 13. The radius vectors of saddle-point -shapes (in units of RO)

plotted against x for g = 0°, 400,, 90°. The four sets of curves
labeled I, II, III, IV! refer to calculations to order (1l-x),

(l-x)z, (1-_x)3 and (1—x)4, but the last one suffers from the
limitations mentioned under Fig. 10. The points on the right are
from expansions about spheroids, Ref. 2.
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Fig,

14. The energy of the conventional threshold (in units of E (0) and

d1v1ded by (1- x) ), plotted against x. The four curves labeled
I, II, III, and IV correspond to expansions for the threshold to

order (1-x)3, (1~x)4, (1‘-x)5, and (1—x)6. The coefficients of all

terms, including the last, are exact. The circles are from Ref.
2; in the range of x values from 0.6 to 1.0 they differ frorn the
fifth- or sixth- order curves by 1ess than 11%.
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Fig. 15. The stiffnesses )\2 and A, of the conventional saddle-point
- shape against distortions along two of the principal axes in a,
Qys Og Space, plotted against x in different orders of approximation:

e . to first, secorid, third, and fourth powers of (1-x) in the case of
Xz'and to the first and second powers of (1-x) in the case of )\4.
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 Fig.

16. The stiffness of the conventional saddle-point shape associated
with a distortion along a principal axis in a,, 0g, a, space (see

text for a more precise definition of )\3), The same remarks as

in the legend to Fig. 13 apply to the four orders of approximation
labeled by I, II, III, and IV,
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