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ARTICLE

Natural selection favoring more transmissible
HIV detected in United States molecular
transmission network
Joel O. Wertheim1*, Alexandra M. Oster2, William M. Switzer 2, Chenhua Zhang3,4, Nivedha Panneer2,

Ellsworth Campbell2, Neeraja Saduvala3, Jeffrey A. Johnson2 & Walid Heneine2

HIV molecular epidemiology can identify clusters of individuals with elevated rates of HIV

transmission. These variable transmission rates are primarily driven by host risk behavior;

however, the effect of viral traits on variable transmission rates is poorly understood. Viral

load, the concentration of HIV in blood, is a heritable viral trait that influences HIV infec-

tiousness and disease progression. Here, we reconstruct HIV genetic transmission clusters

using data from the United States National HIV Surveillance System and report that viruses in

clusters, inferred to be frequently transmitted, have higher viral loads at diagnosis. Further,

viral load is higher in people in larger clusters and with increased network connectivity,

suggesting that HIV in the United States is experiencing natural selection to be more

infectious and virulent. We also observe a concurrent increase in viral load at diagnosis over

the last decade. This evolutionary trajectory may be slowed by prevention strategies prior-

itized toward rapidly growing transmission clusters.
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Natural selection is the process by which the differential
reproductive success of an organism with particular trait,
whose variance in the population has a genetic under-

pinning (i.e., is heritable), leads to change in a population. In
human immunodeficiency virus (HIV), a trait that is likely
shaped by natural selection is viral load, the concentration of HIV
in blood1,2. Viral load is an established proxy of HIV sexual
infectiousness: the probability of viral transmission per sexual
event3–6. Set-point viral load (SPVL), the stable viral load during
the asymptomatic stage of HIV infection7, is a heritable viral trait
in antiretroviral therapy (ART)-naïve individuals that influences
both HIV transmission and rate of disease progression8–18.

Measuring natural selection associated with SPVL is not
straightforward, because higher viral loads are also associated
with higher infectiousness6,19,20. Higher SPVLs in untreated
persons result in higher infectiousness and shorter progression
times to acquired immunodeficiency syndrome (AIDS)21,22. A
log10 increase in viral load is associated with a 100% increase in
per-event HIV transmission risk, and even smaller increments of
0.3 log10 and 0.5 log10 increase per-event transmission risk by
20% and 40%, respectively, underscoring the potential impact of
viral load on HIV spread at the population level20. Importantly,
higher infectiousness due to increased viral load may not neces-
sarily result in more transmission at the population level, because
higher SPVL comes with an associated increase in the rate of
disease progression that limits the duration of time over which
transmission can occur1,2. To measure the strength and direction
of natural selection on viral load, an approach must capture
differential reproductive success of viral variants across multiple
individuals over time.

Clustering in an HIV-1 molecular transmission network can
serve as a proxy for transmission rate of the virus across multiple
individuals and, thus, for efficiency of spread in a population23–26.
The primary drivers of this population-level variability in HIV
transmission rates are host transmission risk behavior, host
demography, and the underlying connectivity of partner net-
works23,27,28. Nonetheless, recent advances in HIV surveillance
facilitated by the availability of viral sequences from antiviral drug
resistance testing has allowed the analysis of large national
sequence databases and the concomitant ability to identify viral
traits that may impact HIV spread23,24,27,28. In recent work with
the United States National HIV Surveillance System (NHSS)
database, we have used the frequency of viral genetic clustering in
a molecular transmission network as a proxy for viral transmis-
sion fitness, or the relative rate of spread of a given viral genotype
across the population. Using this approach, we were able to assess
how drug resistance-associated mutations (DRAMs) alter trans-
mission fitness29. We found that HIV strains containing the
DRAM M184V significantly reduced genetic clustering compared
with wild-type HIV, reflecting a stark decrease in transmission
fitness. In contrast, other DRAMs, such as K103N or L90M, had
transmission fitness that was similar to or exceeded wild-type,
permitting the establishment of large self-sustaining reservoirs of
drug-resistant virus. In support of our approach, a highly para-
meterized phylodynamic analysis estimating the transmission fit-
ness of strains containing DRAMs in the Swiss HIV cohort
reached identical conclusions30.

Having shown that the relative frequency of genetic clustering
in a large transmission network successfully approximated the
transmission fitness of HIV containing DRAMs29,30, we posit that
the same approach can also be used to identify and characterize
differences in transmission fitness of cocirculating wild-type HIV,
by examining the frequency and intensity of clustering of HIV
with different SPVLs. Here, we employ this molecular epide-
miological approach to answer the question of whether circulat-
ing wild-type strains of HIV in the United States differ in their

transmission fitness and whether frequently transmitted viruses
(those in genetic clusters) are more infectious than less frequently
transmitted (nonclustered) viruses.

In this study, we analyze viral load data as a marker of infec-
tiousness and genetic clustering as a marker of the relative trans-
mission fitness from >40,000 well-characterized ART-naïve
individuals, with an HIV diagnosis in the United States NHSS
database. We report robust evidence that frequently transmitted
strains, which are found in genetic transmission clusters, have
significantly higher viral loads than nonclustered viruses. This
finding, combined with an associated increase in viral load at
diagnosis over the past decade, suggests that circulating HIV strains
in the United States are under natural selection favoring higher
infectiousness. We discuss the implications on HIV prevention
efforts targeted to interrupt transmission clusters and on the
broader evolutionary trajectory of HIV infectiousness and virulence.

Results
Molecular transmission network. Of the 251,754 individuals in
the NHSS database with a reported HIV-1 polymerase (pol)
sequence, 41,409 were ART-naïve at diagnosis and had a reported
HIV-1 subtype B resistance genotype performed within three
months of diagnosis (see Methods for detailed inclusion criteria).
Using pol sequences from these 41,409 individuals (31,285 of
whom had wild-type virus containing no DRAMs), we inferred a
total of 4366 molecular transmission clusters using a genetic
distance threshold of ≤0.015 substitutions/site in HIV-TRACE
(HIV TRAnsmission Cluster Engine)31, comprising 17,688 per-
sons (42.7%). Of the 33,285 individuals with wild-type virus,
24,028 (72.2%) had a reported viral load measurement taken
three months prior to or one-month post genotyping and 9015
(37.5%) of these individuals were genetically linked to another
wild-type virus in this network (Table 1). As expected for indi-
viduals with recent infection32, a higher frequency of clustering
was observed for individuals with HIV diagnosed in earlier stages
of infection, highlighting the importance of stratifying our ana-
lyses by stage of infection (Table 1).

Viral load across the transmission network. We detected a
robust association between viral load and clustering in the
inferred molecular transmission network (Table 2; Fig. 1).
Infections diagnosed during stages 1, 2, and 3 had significantly
higher first viral load measurement, if they were clustered in the
network (Fig. 2a). For individuals with HIV diagnosed during
stage 1 infection, the first viral load measurement was used as a
proxy for SPVL. The median SPVL in clustered individuals was
0.110 log10 copies/ml higher than in nonclustered individuals,
after adjusting for epidemiologic and laboratory covariates
(multivariate linear regression; p < 0.001). Clustered individuals
with HIV diagnosed during stage 2 and stage 3 had 0.107 log10
and 0.050 log10 copies/ml higher viral load than nonclustered
individuals, respectively (multivariate linear regression; p < 0.001
and p= 0.010). There was no significant difference in viral loads
in clustered versus nonclustered individuals with HIV diagnosed
during stage 0 (multivariate linear regression; p= 0.496).

To provide a rough approximation of the impact of higher viral
load on transmission fitness in our dataset, we inverted the
regression analysis to estimate the effect of viral load on
clustering. For infections diagnosed during stage 1, a one log10
increase in SPVL increased the adjusted odds of clustering by
1.12: a 12% increase in relative fitness advantage (multivariate
logistic regression; p < 0.001).

Viral load over time. We examined temporal trends in first viral
load postdiagnosis from all ART-naïve individuals (i.e., both
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clustered and nonclustered) with a reported subtype B genotype
and no evidence of DRAMs. These viral loads increased sig-
nificantly over the time period analyzed for infections diagnosed
during stages 1, 2, and 3 (univariate regression; p < 0.001; Fig. 3).
For individuals with stage 1 infection at diagnosis, viral load has
increased an average of 0.016 log10 copies/ml per year. In 2007,
median SPVL at diagnosis was 13,020 copies/ml, and by 2016 it
was 22,100 copies/ml. Over the period of a decade, SPVL
increased by over 0.2 log10 copies/ml in this population. Similar
patterns were seen for individuals diagnosed with stage 2 and
stage 3 infection. This association between viral load and year of
diagnosis was robust in the univariate and multivariate regression
models (Table 2; Fig. 3). We detected no such association for
infections diagnosed at stage 0, possibly owing to the fewer
number of cases, shorter time frame of reporting, and the rapidly
shifting dynamics of viral load during acute infection33.

The frequency of clustering also increased over the time period
analyzed (Supplementary Fig. 1), although it has been relatively
stable since 2009. Nonetheless, the inferred association between

clustering and viral load was robust to the inclusion of year of
diagnosis as a covariate in the regression model. This association
was also robust to the inclusion of demographic and transmission
risk factor covariates (Table 2), which are consistently found to be
major factors of variation in transmission rate across molecular
transmission networks23–26.

We found no evidence of a significant interaction between
clustering and year of diagnosis on viral load in the multivariate
regression model, at any stage of infection at diagnosis.
Therefore, the rate of increase in mean viral load over time
was not significantly different in clustered and nonclustered
individuals. If natural selection is acting to increase viral load, the
strength of this selection has not changed over the time period
analyzed. Moreover, this increase in viral load over time is
occurring across the entire sampled HIV population, rather than
only in clustered viruses.

Progressive effect of network connectivity on viral load. The
more connected an individual was in the network (i.e., increase in

Table 2 Relationship between attributes and viral load in the multivariate linear regression analysis for individuals with wild-
type virus in the inferred molecular transmission network, stratified by stage of infection at diagnosis, United States.

Variable Attribute Adjusted beta/significance

Stage 0 Stage 1 Stage 2 Stage 3

Clustered Yes 0.053 0.110*** 0.107*** 0.050*
No Ref Ref Ref Ref

Birth sex Male 0.230 0.180*** 0.160*** 0.025
Female Ref Ref Ref Ref

Transmission risk factor Male–male sexual contact Ref Ref Ref Ref
Unknown/other 0.216 −0.073* −0.094*** −0.016
Heterosexual contact −0.045 −0.156*** −0.103*** −0.042
Injection drug use 0.625 −0.013 −0.035 −0.073
Male–male sexual contact and injection drug use 0.217 0.073 0.045 0.051

Race/ethnicity Black/African American Ref Ref Ref Ref
Hispanic/Latino 0.135 0.100*** 0.122*** 0.097***
Other −0.019 0.109* 0.076* 0.089*
White 0.108 0.156*** 0.183*** 0.126***

Diagnosis age (years) 13–19 −0.263 0.024 0.117*** 0.045
20–29 Ref Ref Ref Ref
30–39 0.017 0.036 0.029 0.027
40–49 0.215 0.154*** 0.090*** 0.065*
50–59 0.031 0.141*** 0.094*** 0.059*
60+ 0.021 0.272*** 0.232*** 0.058

Δ 100 CD4+ counta — −0.063*** −0.002 −0.094*** −0.249***
Diagnosis year — 0.010 0.016*** 0.010*** 0.008**

***p < 0.001; **p < 0.01; *p < 0.05
aIncrease of 100 CD4+ cells/mm3

Table 1 Median viral load (VL) in clustered and nonclustered individuals at different stages of HIV infection at diagnosis in
people with wild-type virus, United States.

Stage # Cases Median VLa Clustered Nonclustered ΔLog10 VLb

# Cases (%) Median VLa # Cases (%) Median VLa

All 24,028 48,966 9015 (37.5%) 45,107 15,013 (62.5%) 51,286 −0.056
0 476 78,093 257 (54.0%) 81,730 219 (46.0%) 74,580 0.040
1 5914 18,700 2787 (47.1%) 22,517 3127 (52.9%) 16,330 0.140
2 9337 38,470 3991 (42.7%) 46,266 5346 (57.3%) 33,423 0.141
3 7280 122,000 1528 (21.0%) 144,619 5752 (79.0%) 119,031 0.085
Unknownc 1021 33,200 452 (44.3%) 37,250 569 (55.7%) 30,125 0.092

aFirst reported VL (copies/ml) three months prior to or one-month post genotyping
bDifference in median log10 VL between clustered and nonclustered cases
cIndividuals with an indeterminate stage of diagnosis75

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13723-z ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5788 | https://doi.org/10.1038/s41467-019-13723-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

D
en

si
ty

2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Log10 viral load Log10 viral load
2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

Stage 0 diagnosesa b

c dStage 2 diagnoses Stage 3 diagnoses

Stage 1 diagnoses

Fig. 1 Density distributions for log10 viral load at diagnosis by network clustering. Viral loads (copies/ml) for individuals with a stage 0, b stage 1, c stage
2, and d stage 3 infection at diagnosis are displayed separately. Viral loads (copies/ml) from individuals who clustered in the network shown in red;
individuals who are not clustered in the network shown in blue; overlap shown in purple. Median values are depicted as dashed lines.

–0.2

–0.1

0.0

0.1

0.2

0.3

D
iff

er
en

ce
 in

 lo
g 1

0 
vi

ra
l l

oa
d

0 1 2 3 0 1 2 3 0 1 2 3

–0.2

–0.1

0.0

0.1

0.2

0.3Distance ≤0.015 Distance ≤0.005Distance ≤0.010

Δ Δ≥1 ≥10≥2 ≥3 ≥4 ≥5 ≥10≥5

Node degree centrality Cluster size

a b

Stage of infection at diagnosis Network connectivity

Fig. 2 Increase in viral load for clustered versus nonclustered individuals. a Betas from the multivariate regression model for the difference in log10 viral
load (copies/ml) in clustered individuals versus nonclustered at different stages of infection at diagnosis and different genetic distance thresholds:
≤0.015 substitutions/site, ≤0.010 substitutions/site, and ≤0.005 substitutions/site. Stage of infection is denoted by color. b Betas from the multivariate
regression model for difference in log10 viral load for individuals diagnosed at stage 1 infection with increasing node degree centrality (i.e., number of
genetically linked partners) and cluster size relative to nonclustered individuals. Error bars represent the 95% confidence intervals for these estimates of
beta. Node degree centrality compares individuals with at least that degree versus nonclustered individuals. Hence, node degree ≥1 in b is equivalent to
clustered versus nonclustered depicted in a. Cluster size compares individuals in clusters of at least that size versus individuals in clusters of small sizes
(i.e., cluster size ≥5 versus cluster size <5). Δ denotes the difference in log10 viral load for each increase in node degree centrality or cluster size. Network
constructed at ≤0.015 substitutions/site. Sample sizes (n) for statistical tests are provided in Table 1.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13723-z

4 NATURE COMMUNICATIONS |         (2019) 10:5788 | https://doi.org/10.1038/s41467-019-13723-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


network degree centrality), the greater the increase in viral load at
HIV diagnosis. For cases diagnosed at stage 1, the addition of
each additional genetic partner was associated with higher SPVL
increasing 0.051 log10 copies/ml for each additional genetic link
(Fig. 2b; multivariate linear regression; p < 0.001). This associa-
tion was also observed when we examined this relationship
restricted individuals who were already clustered (i.e., with at
least one genetic partner) in the network, with a viral load
increase of 0.042 log10 copies/ml for each additional genetic link
(multivariate linear regression; p= 0.004). Therefore, this asso-
ciation is progressive across the network connectivity and not due
to the difference between clustered and nonclustered individuals.

When comparing individuals with increasingly higher degree
centrality (i.e., 1–10 genetically linked partners) against nonclus-
tered individuals, the impact on SPVL is increased from 0.110
log10 for degree ≥1 to 0.177 log10 copies/ml for degree ≥10
(Fig. 2b). The same relationship between increased network
connectivity and higher viral load was also detected in infections
diagnosed during stage 2 (Supplementary Fig. 2).

We observed a similar relationship between increased network
connectivity and higher viral load at diagnosis when examining
cluster size (stage 1 in Fig. 2b; stage 2 in Supplementary Fig. 2).
The addition of each member to a cluster was associated with
higher SPVL for cases diagnosed at stage 1 within that cluster
(multivariate linear regression; p= 0.001). Further, individuals in
clusters with five or more members had 0.076 log10 copies/ml
higher SPVL than individuals in clusters with fewer than five
members (multivariate linear regression; p= 0.008). Individuals
in clusters with ten or more members had a 0.073 log10 copies/ml

higher SPVL compared with individuals in clusters with less than
ten members (multivariate linear regression; p= 0.019).

Adjusting for time since infection at diagnosis. A potential
confounder when assessing the relationship between viral load
and clustering in a molecular network is time between infection
and diagnosis. Neglecting to stratify by diagnostic stages pro-
duces a counterintuitive result wherein the median viral load is
actually higher in nonclustered individuals than clustered indi-
viduals (Table 1); however, this pattern is due to the dis-
proportionate number of nonclustered individuals with HIV
diagnosed during stage 3, who typically have viral loads an order
of magnitude greater than individuals with HIV diagnosed
during stage 1.

The lack of an association between viral load and clustering for
individuals with HIV diagnosed at stage 0 is difficult to interpret.
Viral load during the acute and early stages of HIV infection is
highly dynamic, increasing and decreasing by an order of
magnitude within days or weeks33. Further, stage 0 had the
smallest sample size of any group in our analysis (n= 476;
Table 1) and was not determined for all but a handful of cases
prior to 2014 (Fig. 3; Supplementary Fig. 1), decreasing our power
to detect modest effects on transmission fitness.

Within each analysis stratified by stage of infection at
diagnosis, we also included CD4+ count at the time of viral load
measurement as a covariate, because CD4+ levels will decrease as
disease progresses, accounting for additional variance in viral load
due to time since infection34. In the multivariate analysis, CD4+
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count was negatively associated with viral load for infections
diagnosed during stage 0, stage 2, and stage 3 (multivariate linear
regression; p < 0.001; Table 2). However, for infections diagnosed
during stage 1, there was no association between CD4+ count and
viral load (multivariate linear regression; p= 0.095).

Viral load in the presence of DRAMs. DRAMs can affect both
HIV-1 replicative and transmission fitness29,30,35–37. Therefore,
we investigated the effect of common DRAMs on viral load. ART-
naïve individuals with HIV diagnosed at stage 1 with L90M or
K103N viruses had similar SPVL to individuals with wild-type
virus. In contrast, individuals with HIV encoding a nucleoside
reverse transcriptase inhibitor (NRTI) mutation with negative
transmission fitness effects29 had significantly lower SPVL (NRTI
median 11,436 copies/ml versus wild-type median 18,700 copies/
ml; linear regression; p < 0.001). This decrease in SPVL of 0.21
log10 copies/ml in individuals with these NRTI mutations likely
contributes to their observed lower transmission fitness relative to
individuals with wild-type virus.

Remarkably, we observed the same relationship between
clustering and viral load in ART-naïve individuals with DRAMs
as was observed in individuals with wild-type virus (Table 3).
The strongest association was observed in individuals with
L90M-encoding virus, where we detected a 0.367 difference in
the median log10 SPVL in clustered versus nonclustered
individuals (linear regression; p= 0.003). For individuals with
K103N or NRTI DRAMs, the magnitude of this association was
similar to that detected in wild-type virus, though this
association did not reach statistical significance for individuals
with NRTI DRAMs (linear regression; p= 0.075). We did not
detect evidence for an interaction between clustering and these
DRAMs on SPVL, even in L90M where the difference in SPVL
between clustered and nonclustered individuals was three times
greater than observed with wild-type virus. The absence of a
significant interaction may be due to lack of power, as there were
only 80 people with HIV diagnosed at stage 1 encoding L90M
included in our analysis.

Permutation analysis. Network-based outcomes (e.g., clustering,
degree centrality, and cluster size) are nonindependent and, thus,
violate a fundamental assumption of the regression techniques
implemented here. Therefore, we performed a network permu-
tation analysis to assess the relationship between viral load and
clustering in people with wild-type virus. We found no evidence
to suggest that network structure was biasing these regression
analyses. For infections diagnosed at stages 1, 2, or 3, the observed
median viral loads in clustered individuals was greater than that
in nonclustered individuals (stage 1, p≤ 0.0001; stage 2, p≤
0.0001; stage 3, p= 0.0004; Supplementary Fig. 3). For infections

at stage 0 infection, as in the regression analysis, there was no
difference in observed and permuted viral loads (p= 0.4849).

Sensitivity analyses. The relationship between viral load and the
molecular transmission network in people infected with wild-type
virus was robust. More conservative genetic distance thresholds
are more likely to identify more recent and direct transmission
partners38,39. Nonetheless, our findings were unaffected by using
more conservative genetic distance thresholds of 0.01 and
0.005 substitutions/site to construct the molecular transmission
network (Fig. 2a). Similarly, excluding the 1547 people who
reported injection drug use did not affect our results (Supple-
mentary Fig. 4), possibly owing to their rarity as well as sexual
transmission of HIV among people who inject drugs in parts of
the United States40,41. Restricting our analyses to only the 23,997
ART-naïve individuals with HIV diagnosed since 2011, thereby
excluding years in which reporting was lower, did not produce
meaningfully different results (Supplementary Fig. 4). Further-
more, varying the timing of first viral load measurement (i.e., first
reported viral load; viral load closest to date of genotyping; and
viral load closest to, but not after, date of genotyping) did not
affect our results (Supplementary Fig. 4). Finally, univariate
regression analyses were broadly consistent with these findings
(Supplementary Table 1), though the relationship between clus-
tering and first viral load in infections during stage 3 dissipated.

Discussion
Using a comprehensive molecular epidemiological approach, we
investigated whether circulating wild-type subtype B strains of
HIV in the United States differ in their transmission fitness and if
frequently transmitted viruses in genetic clusters are more
infectious than less frequently transmitted, nonclustered viruses.
We found that that frequently transmitted viruses identified in
genetic clusters in the inferred United States NHSS HIV-1
molecular transmission network are associated with higher viral
load. Elevated viral loads associated with inferred higher trans-
mission frequency are consistently seen across stages of HIV
infection at diagnosis and in both wild-type and drug-resistant
viruses. We also note that this effect was progressive with
increased network connectivity, whereby higher viral loads were
detected in individuals with a greater number of genetically linked
partners and in larger clusters. We also observed a concomitant
increase in viral load at HIV diagnosis over the past decade. Thus,
these findings provide strong evidence of higher infectiousness in
HIV strains frequently transmitted across the molecular trans-
mission network. We conclude that circulating HIV subtype B
strains in the United States are under natural selection to become
more infectious.

Our findings also suggest an evolutionary trajectory toward
higher HIV virulence, as higher viral loads increase the rate of

Table 3 Median viral load (VL) in clustered and nonclustered individuals with HIV diagnosed at stage 1 infection in people with
drug-resistant virus, United States.

DRAM # Cases Median VLa Clustered Nonclustered ΔLog10 VLb p valuec

# Cases (%) Median VLa # Cases (%) Median VLa

L90M 80 20,992 39 (48.8%) 26,100 41 (51.3%) 11,200 0.367 0.003
K103N 674 20,939 286 (42.4%) 24,884 388 (57.6%) 18,300 0.133 0.033
NRTIs 260 11,436 69 (26.5%) 15,250 191 (73.5%) 10,533 0.161 0.075
Wild-typed 5914 18,700 2787 (47.1%) 22,517 3127 (52.9%) 16,330 0.140 <0.001

aFirst reported VL (copies/ml) three months prior to or one-month post genotyping
bDifference in median VL between clustered and nonclustered cases (not adjusted for epidemiologic and laboratory covariates)
cSignificance of association between clustering and log10 VL linear regression for individuals with DRAM(s) in linear regression model
dWild-type virus containing no DRAMS showing same results as in shown Table 1 for individuals with HIV diagnosed during stage 1 infection
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disease progression21,22. Individuals with higher viral loads are
more infectious but have less time to transmit before AIDS and
death, compared with individuals with lower viral loads who are
less infectious but who will have more time to transmit before
death. Fraser et al. hypothesized that in the absence of ART,
selection would favor viruses that establish an intermediate SPVL,
which maximizes infectiousness and opportunity for transmis-
sion1,2. For example, in Uganda, the highly virulent and infec-
tious HIV-1 subtype D is being outcompeted by the lower
virulent and less infectious HIV-1 subtype A, suggesting that the
less infectious viruses that can persist longer have higher trans-
mission fitness in that population10,42. In contrast, Herbeck et al.
predicted that the adoption of universal test-and-treat, where all
persons with an HIV diagnosis receive suppressive ART and the
duration an individual can transmit virus is predominantly lim-
ited by the time between infection and diagnosis, will dampen the
selective disadvantage of higher SPVL resulting in more trans-
missible, higher virulent HIV43. Our study does not find direct
evidence to support the hypothesis that the current test-and-treat
strategy is increasing selective pressure on HIV to evolve to be
more transmissible or more virulent in the United States. Rather,
this evolutionary trajectory toward higher transmissibility of
HIV-1 subtype B in the United States appears unchanged during
the test-and-treat era. However, we cannot exclude the possibility
that our approach was not sensitive enough to detect a shift in the
strength of selection.

The strength of natural selection measured in wild populations
tends to be modest44,45, with a majority of estimates of differ-
ential reproductive success (i.e., selective coefficients) <15%.
Studies of selective coefficients for in vivo HIV mutations suggest
that most adaptations increase replication by only 0.5–2.0%,
though some mutations have larger effects46–48. The magnitude
of differential reproductive success estimated here is in line with
these expectations. Specifically, a 0.11 log10 copies/ml median
increase in viral loads among clustered wild-type infections may
be modest. Nonetheless, a viral load increase of 0.3 log10 copies/
ml has previously been shown to increase HIV transmission by
20%20. Hence, the eventual impact of this selection at the
population level may be important, as evidence by a 0.2 log10
copies/ml increase in viral load at diagnosis between 2007 and
2016. We note that this rate of increase in SPVL of 0.016 log10
copies/ml per year reported here is remarkably consistent with a
previous meta-analysis that reported an increase in SPVL of 0.013
log10 copies/ml per year between 1984 and 201049. This con-
sistency suggests that a change in HIV transmissibility and
virulence is not a recent phenomenon.

Our finding of progressively higher viral loads in larger clusters
is important as individuals in an HIV-1 molecular transmission
network whose cluster or are in disproportionately growing
clusters represent priority populations for public health inter-
vention to interrupt transmission39,50–52. Thus, public health
interventions informed by molecular epidemiology that prioritize
rapidly growing clusters with higher transmission rates may have
the added benefit of prioritizing individuals with higher viral
loads. Therefore, molecular epidemiological-initiated response to
growing clusters could counteract the selection and propagation
of more transmissible and virulent HIV, supporting further the
implementation of these interventions.

Genetic clustering approaches are subject to well-characterized
biases53,54. Extensive over-sampling of particular subpopulations
or risk groups can be misinterpreted as elevated transmission
rates relative to under-sampled populations53,54. Clustering
methods are also biased toward detecting clusters comprising
individuals with HIV diagnosed early in infection (as reported
elsewhere32 and seen in Table 1), because individuals separated
by shorter genetic distances likely have experienced less time

since the transmission event. In fact, previous characterizations of
viral load in HIV-1 molecular transmission networks have also
detected a small increase in viral load in clustered indivi-
duals19,28,55–57; however, the confounding effects of over-sampled
subpopulations, ART exposure, and time since diagnosis has
previously precluded robust inference about the relationship
between viral load and transmission fitness. This study was
designed specifically to control for these biases. We adjusted for
potential confounders like demographic and risk factor data,
stratified the analyses by stage of infection at diagnosis, and
explored progressive effects across the network. For individuals
with HIV diagnosed at stage 0 (i.e., acute/early infection), these
biases would inflate the viral load estimates for clustered indivi-
duals; however, outside of stage 0 infections, these effects would
bias our results toward the null expectation. Individuals with HIV
diagnosed later in infection, who are far more numerous than
stage 0 cases, have higher viral loads and are less likely to cluster.
Importantly, the biases discussed here would not propagate their
effect across the network, and we consistently found evidence for
a progressive association between viral load and network con-
nectivity. As our previous work estimating the fitness cost of
DRAMs demonstrated, despite the inherent shortcomings of
molecular transmission network analysis, molecular network
analysis can be an effective tool for identifying viral character-
istics associated with increased transmission fitness29,30.

Another potential source of bias concerns assigning stage of
infection at diagnosis using CD4+ count at diagnosis, which can
be complicated by the observation that individuals with higher
viral loads can experience rapid CD4+ decline58. Hence, some
individuals who had only recently been infected with HIV would
be categorized as having stage 2 infection, rather than stage 1.
This misclassification would again bias our results toward the null
expectation, because viral load for individuals diagnosed with
HIV at stage 2 have higher viral load than individuals diagnosed
with HIV at stage 1.

We acknowledge that we did not have access to data on
coinfection with sexually transmitted pathogens, which have
previously been shown to be associated with genetic clustering19,
viral load59–61, and HIV transmissibility62,63. Coinfection status
could act as a confounder in our primary statistical analysis
(Table 2; Fig. 1). However, like the other discussed potential
sources of bias, one would not expect the effect of these coin-
fections on viral load to propagate across the network (as seen in
Fig. 2b and Supplementary Fig. 2). For example, although infec-
tion with hepatitis C virus is predictive of HIV transmission
risk64,65 (and vice versa66–69), there is little overlap in path or
timing of their transmission histories70.

In conclusion, we analyzed a large HIV surveillance database
from the United States and showed that subtype B HIV-1 strains
have evolved to be more transmissible and virulent. Nonetheless,
public health interventions that identify rapidly growing clusters
and interrupt their growth—as advocated under the current
Ending the HIV Epidemic initiative71—may have the added
benefit of slowing HIV evolution toward higher transmissibility.

Methods
Study population. The NHSS database comprised 251,754 individuals with an
HIV-1 pol (protease and partial reverse transcriptase) sequence reported to Centers
for Disease Control and Prevention (CDC) as of December 2016. We restricted our
analysis to the 41,409 individuals who were documented to be ART-naïve at HIV
diagnosis, had a reported HIV-1 resistance genotype (≥500 nucleotides) performed
within three months of diagnosis, virus identified as subtype B, and did not report
perinatal HIV exposure. We restricted our population to ART-naïve individuals,
because viral load in ART-experienced individuals will reflect drug adherence
rather than viral genetic underpinnings. These infections were diagnosed during
1999–2016, and 96% of which occurred after 2006, when collection of molecular
data through HIV surveillance accelerated in the United States (Supplementary
Fig. 1). The NHSS database also includes epidemiologic and laboratory data,
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including date of diagnosis, CD4+ count and viral load results, reported trans-
mission risk factor, and demographic data (e.g., birth sex, age at diagnosis, and
race/ethnicity).

We considered only reported viral load measurements taken prior to or up to
one-month post genotyping, a proxy for viral load at the time of diagnosis. For
each individual, we determined the earliest viral load measurement sampled within
this time frame. For infections diagnosed during stage 1, this viral load was used as
a proxy for SPVL. Sensitivity analysis was also performed using the viral load
measurement closest to the date of genotyping and the viral load measurement
closest to, but prior to date of genotyping. Viral load measurements <200 copies/ml
(indicating viral suppression) or ≥1 million copies/ml (above the limit of viral
quantification assay precision) were excluded from our analysis.

HIV-1 subtype B pol sequences were identified using COMET72. We
characterized the 108 DRAMs from the CDC surveillance drug resistance mutation
list73 using Sierra74. Stage of infection at diagnosis was determined using the US
HIV surveillance case definition75. Stage 0 corresponds to early or acute infection
recognized by a negative HIV test within six months of HIV diagnosis33. Stage 1 is
defined by CD4+ T-cell count ≥500 cells/mm3 of blood; stage 2 is defined by CD4+

count between 200 and 499 cells/mm3; and stage 3 is defined by CD4+ <200 cells/
mm3 or an AIDS-defining illness. Stage 0 classification superseded CD4+-based
classifications.

This study constitutes analysis of HIV public health surveillance data and is not
considered human subjects research.

Molecular transmission network analysis. We used HIV-TRACE to construct a
molecular transmission network31. We selected the earliest pol sequence for each
individual and aligned these sequences to the HXB2 pol reference sequence
(positions 2253–3749), calculated pairwise TN93 genetic distance76 among all pairs
of sequences, and assembled transmission clusters by connecting pairs of
sequences ≤0.015 substitutions/site diverged (using a nucleotide ambiguity frac-
tion31 of 1.5%). Individuals who were linked to ≥1 other individual were deter-
mined to be clustered in the network. This approach has previously been used for
analyses of HIV surveillance data in the United States27,29,77,78. Sequences that
were highly similar (≤0.015 substitutions/site) to the HXB2 reference sequence
were filtered from the database prior to analysis.

We also constructed molecular transmission networks using more conservative
genetic distance thresholds (i.e., 0.01 and 0.005 substitutions/site) and performed
additional analyses excluding people who reported injection drug use.

Regression analyses. We investigated the relationship between viral load and
clustering in the molecular transmission network using a multivariate regression
analysis framework. Birth sex, transmission risk factor, race/ethnicity, age at
diagnosis, year of diagnosis, and first recorded CD4+ count after diagnosis were
included as covariates. Regression analyses were stratified by CD4+ stage at
diagnosis75, excluding individuals with an unknown stage of infection at diagnosis.
To ensure that any inferred association between clustering and viral load was not
confounded by transmitted drug resistance, we considered only individuals in the
transmission network whose earliest genotype was wild-type without DRAMs.
Therefore, to be clustered in the network meant that both the individual and at
least one genetically linked partner had wild-type sequences.

DRAMs. We also investigated the association between viral load and clustering in
individuals with transmitted drug resistance. We explored this association in ART-
naïve individuals with HIV diagnosed during stage 1 infection with L90M (n= 80),
K103N (n= 674), and the NRTI mutations which we previously documented had
negative effects on transmission fitness (n= 260; T69N, D67N, M184V, K219Q,
T69A, E44D, A62V, T69D, K70R, T215Y, K219E, K219R, T215I, F77L, D67G, and
M184I)29. Clustering in these analyses meant that both the individual and at least
one genetically linked partner shared the same DRAM.

Molecular transmission network permutations. We assessed the relationship
between viral load and clustering through 10,000 random permutations of viral
loads across the molecular transmission network. For each permuted network, we
calculated the ratio of median viral loads in clustered and nonclustered individuals
with wild-type virus, stratified by stage of infection at diagnosis. These permuta-
tions were used to generate a null expectation against which we compared these
ratios from the observed network.

Disclaimer. The findings and conclusions of this report are those of the authors
and do not necessarily represent the official position of the Centers for Disease
Control and Prevention.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data analyzed in this article were collected and analyzed as part of CDC routine
surveillance activities reported by 30 state and local health departments (see
Supplementary Table 2 for list). This analysis was conducted by only CDC employees and
contractors. CDC is not permitted to share or distribute any surveillance data due to an
Assurance of Confidentiality authorized under Section 308(d) of the Public Health Service
Act (USA). Therefore, these data cannot be made publicly available by the authors. Each
state has primary authority for determining whether their laws and regulations permit
data submission to GenBank or other open databases. State and local health departments
also have ability to determine whether and when these data can be shared with other
researchers, as has occurred for previous studies on HIV surveillance data41,52,79–82.
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