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Estimating the Fire Interval Distribution for Los
Angeles County, California using Spatial-Temporal

Fire History Data

Roger Peng Frederic Schoenberg
University of California, Los Angeles

Abstract

In this paper a new method is described for estimating the fire interval dis-
tribution of a region using spatial-temporal fire history data. In Los Angeles
County, California, detailed information on fires has been available through the
use of geographic information systems (GIS) technology. The proposed estima-
tor is applied to GIS data covering the years 1878–1996 and it is shown that
fuel age appears to have a nonlinear threshold-type relationship with burn area.
The estimator is shown to be more stable than previous estimators and to have
good finite and large sample properties.

Keywords: Spatial-temporal modeling; Time-since-fire; Fire risk; Threshold re-
lationship; Maximum quasi-likelihood.

1 Introduction

The history of wildfire in Los Angeles County and other parts of Southern California is
well documented (Hanes, 1971; Minnich, 1983; Pyne et al., 1996). Fires are responsible
for significant amounts of property damage in Los Angeles County and are a subject
of research for fire managers, fire scientists, and ecologists. Because of the enormous
destructive capabilities of fires there is significant interest in developing methods for
estimating risk.

Fire incidence is known to depend critically on numerous covariates. These covari-
ates include factors such as wind, precipitation, fuel moisture, temperature, topog-
raphy, and many others. Much work has already been done examining the marginal
relationships between burn area and wind, precipitation, fuel moisture, and tempera-
ture (see e.g. Flannigan and Harrington, 1988; Renkin and Despain, 1992; Viegas and
Viegas, 1994). One particularly important component of fire risk assessment is the
fire interval distribution, defined as the distribution of the time until a given location
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reburns. Estimation of the fire interval distribution involves examining the relation-
ship between burn area and fuel age (also called time-since-fire), which is specified
for each location as the time since that location last burned.

There is some disagreement over the relationship between fuel age and burn area
in Southern California. Minnich (1983) suggested that the largest fires in recent
Southern California history are linked to the increased availability of older fuels. Using
Landsat imagery from Southern California and Northern Baja California, Minnich
claimed that the policy of total fire suppression created extensive stands of very old
age classes. These older stands, he argued, had accumulated fuels over the years
and were therefore ripe for burning. Minnich also claimed that fuel age is the most
important variable affecting the spatial properties of fires, in that fires tend to burn
up to the boundary of another (recent) fire and then stop for lack of fuel. Minnich’s
paper was highly influential and its conclusions were used as support for modern
prescribed burning policies.

Minnich’s paper contradicted some previous thinking concerning fuel age and fire
risk. Van Wagner (1978) and Johnson and Larsen (1991) suggested that fuel age has
little or no effect on risk and that it may be reasonable to assume uniform flammability
of forest stands with age. Van Wagner also noted that since large fires typically burn
through stands of many different ages, fuel age is irrelevant when looking at the larger
and more destructive fires.

More recently, Keeley et al. (1999), using data from the California Statewide Fire
History Database, provided evidence showing that the mean fire size in Southern Cal-
ifornia has not increased over time and that large fires are not necessarily dependent
on old age classes of fuels. They went further to suggest that age class manipulation
(i.e. prescribed burning) is unlikely to prevent catastrophic fires in Southern Califor-
nia. The authors examined some of the largest fires in the database and showed that
for those fires there was no apparent relationship between the proportions of fuels
burned and the age classes of the fuels (e.g. see their Figure 4).

The lack of full agreement over the precise role of fuel age in contributing to fire
risk is not surprising. In general, it is difficult to make precise quantitative statements
about fuel age. For decades researchers have been using time-since-fire maps, which
show the time of the most recent fire for every location in the study area. Johnson
and Gutsell (1994) described a useful method for summarizing and quantifying the
information stored in these maps, and for producing numerical estimates of quantities
such as the fire cycle and average fire interval. They used survivor curves to estimate
the probability of an area surviving without fire beyond a certain age, given that it
has already survived to the current day. Similar work can also be found in Johnson
and Larsen (1991) and Johnson and Van Wagner (1985).

Often, time-since-fire maps are the only information available to researchers. How-
ever, when more detailed information on the fire history is available, one can hope to
obtain a more accurate picture of reburn activity in the area. In this situation the
survivor curve method is not optimal for several reasons. First, the time-since-fire
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maps only show the most recent fires and do not contain information on the pattern
of overburning that occurs over time. This makes estimates of average reburn time
more dependent on recent observations. Second, the survivor curves, which depend
critically on the particular year of observation, tend to be statistically unstable. Fi-
nally, the parametric models suggested by Johnson and Gutsell (1994) place some
restrictions on the nature of the relationship between fuel age and risk.

In Section 2 we begin with an introductory exploration of the data used for the
current analysis. Section 3 outlines our method for estimating the fire interval distri-
bution and discusses its statistical properties. Section 4 shows the results of applying
our method to data on fire history in Los Angeles County and shows that our es-
timator tends to be more stable than the estimator corresponding to Johnson and
Gutsell (1994). Section 5 summarizes our results and outlines some subjects for future
research.

2 Los Angeles County Fire Data

Maps of Los Angeles County wildfires have been recorded by the Los Angeles County
Department of Public Works (DPW) and the Los Angeles County Fire Department.
Fire information is recorded with the geographic information systems software package
ArcInfo and stored in coverage files. In those files each fire is stored as a polygon
outlining the fire boundary and the date on which the fire originated.

The data from DPW consist of approximately 2000 fires occurring between the
years 1878 and 1996. Figure 1 shows the frequency with which different parts of Los
Angeles County have burned in the years 1878–1996. One can see that much of the
fire activity in Los Angeles County occurs in a band stretching from the northwest to
the eastern part of the county. The major exception is in the Malibu area (the region
protruding from the western part of the county) where there are some of the highest
levels of fire activity in the whole county. Additional information on topography and
precipitation were obtained from the U.S. Geological Survey and the UCLA Institute
of the Environment, respectively. In Figure 2 we see that the topography of the
County closely matches the areas of fire activity. Much of the burning occurs in
the higher elevations and around the mountains. Figure 3 shows the average yearly
precipitation in different areas of Los Angeles County. One can see that the county
is somewhat spatially homogeneous with respect to levels of precipitation.

Figure 4 shows the fire boundaries for 1980, a typical year in the dataset. The
measurement of the fire boundaries is very precise. Fire department officials estimate
that the polygon boundaries are accurate to within about 16 meters. For the purpose
of measuring burn area we regard the errors in the polygon boundaries as negligible.
Figure 5 shows the total area burned in each year of the dataset. Although there
appears to be an increase in total area burned over the years, that is at least partly
due to inaccuracies in the earlier years. For example, in the early part of the century
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smaller fires were significantly underreported. Fire department officials believe that
the data from years after 1950 are complete.

From Figure 6 one can see how fuel age may affect the spatial configuration of
fires. For the fires in 1963 and 1964, a one year interval, the 1964 fires burn up until
the border of the 1963 fire and stop (Figure 6a). However, when looking at the years
1928 and 1968, a 40 year interval, we see that the 1968 fire burns right over the 1928
fire (Figure 6b). It should be clarified that in the intervening years between 1928 and
1968, there was almost no overburning of the 1928 fires in Figure 6(b) — the 1968
fire is the first instance of significant overburning at this location.

3 Methodology

First, we define the quantity of interest, h(u), as the proportion of u-year-old fuel
expected to burn each year. If pi(u) is the proportion of u-year-old fuel which burns
in year i, i = 1, . . . , n (where n is the most recent year), and yi(u) is the amount of
u-year-old fuel available in year i, then we assume

E [pi(u) | yi(u)] = h(u). (1)

There are a few different methods one could use to estimate the function h. For
instance, Johnson and Gutsell (1994) model the the survivorship of a location based
on fuel age information in time-since-fire maps. Specifically, if T is the “lifetime”
of a location (i.e. the time until it reburns), then they propose, as an estimator of
P(T > u), the empirical survivor function defined via

Ŝ(u) =
∑
k≥u

yn(k)

/∑
k≥1

yn(k) . (2)

From (2) it is possible to get corresponding hazard estimates. It is also possible to
use a parametric model to estimate h; however, it may be preferable not to assume
a specific model. In contrast, given fire history data {pi(u), yi(u)}, i = 1, . . . , n, one
could simply use a naive estimator such as the average burn proportion

h̄(u) =
1

n

n∑
i=1

pi(u)

or perhaps the weighted average

h̃(u) =

∑n
i=1 pi(u)yi(u)∑n

i=1 yi(u)
.

Note that h̃ has a nice interpretation in the context of the current application. Since
h̃ is an average of the observed proportions of overburning weighted by the amount
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of available fuel, years for which there was more fuel available get more weight. This
scheme makes intuitive sense — if in a given year, 1% of 1, 000 available u-year-old
hectares burns, this year should influence our estimation of hazard more than an
observation of a year where 1% of 10 available hectares burns.

Alternatively, it is possible to find estimates for h via a maximum quasi-likelihood
procedure. This type of method is useful when one does not wish to specify an
entire distribution for the data but rather just the first two moments (Wedderburn,
1974). First, fix u at a particular fuel age. Suppose we have uncorrelated observations
(pi, yi), i = 1, . . . , n, where the conditional mean is E [pi | yi] = h and the conditional
variance Var (pi | yi) is some function V (h; yi). Then the quasi-loglikelihood function
q is defined by the differential equation

∂

∂h
q(h; p1, . . . , pn, y1, . . . , yn) =

n∑
i=1

pi − h
V (h;Yi)

. (3)

Solving (3) for q and setting

ĥ = arg max
h

q(h; p1, . . . , pn, y1, . . . , yn) (4)

yields the maximum quasi-likelihood estimate (MQLE) of h.
Wedderburn (1974) and McCullagh (1983) note that quasi-likelihoods behave

much like regular likelihoods and estimates derived from quasi-likelihoods share many
of the desirable properties of standard maximum likelihood estimates. For example,
under general conditions, estimates of the type in (4) are consistent and asymptoti-
cally normal (Jennrich, 1969).

The maximum quasi-likelihood procedure requires that the first two conditional
moments of pi be specified. For fixed u, the conditional mean is constant from (1).
Therefore, we only need to specify a model for the conditional variance. For the
current application, it seems reasonable to use

Var (pi | yi) = σ2 h

yi
(5)

where σ2 is an unknown constant of proportionality independent of u. The intuition
behind (5) is that if the entire study area were divided into small 1-unit pieces, and
each unit burned independently of the others, then yi would represent the number of
u-year-old pieces that are available in year i and pi would represent the proportion
that burn. In this case, Var (pi | yi) ∝ 1/yi. We believe that relation (5) provides
a reasonable approximation for the variance behavior of pi. For example, if yi is
very small, then it is more likely that either we will observe total reburning or no
reburning. Therefore, pi will be 1 or 0 and Var (pi | yi) is high. If yi is large, then
the distribution of pi is spread more uniformly between 0 and 1 and will have lower
variance. In Figure 7 the log of the sample conditional variance is plotted against
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log [h̃(u)/y(u)]. The superimposed dotted line has a slope of 1 and an intercept fitted
to the data. The linear relationship appears consistent with (5). A variant of Figure 7
was constructed using h̄(u) in place of h̃(u), however there was little difference between
the resulting figure and Figure 7.

3.1 Estimation of h(u)

A nice property of h̃ (defined in the previous section) is that if we assume the data
are conditionally uncorrelated, then h̃ coincides exactly with the MQLE of h. To see
this, note that if Cov (pi, pj | y1, . . . , yn) = 0, for all i 6= j, then the quasi-loglikelihood
for h (using (5) for the variance) is defined by the differential equation

∂

∂h
q(h; p1, . . . , pn, y1, . . . , yn) =

n∑
i=1

yi
pi − h
hσ2

.

Solving the differential equation, we get for the quasi-loglikelihood

q(h; p1, . . . , pn, y1, . . . , yn) =
n∑
i=1

yi
σ2

(pi log h− h). (6)

Maximizing (6) over h gives us the maximum quasi-likelihood estimate (MQLE)

ĥ =

∑n
i=1 piyi∑n
i=1 yi

. (7)

In addition to the already mentioned large sample properties of MQLE’s, we can
also readily obtain finite sample properties for ĥ. First, it is clear that ĥ is also
the weighted least squares estimate of h. Therefore, ĥ is the best unbiased estimate
among linear combinations of the pi’s. Second, if we assume that

E
[
pki | y1, . . . , yn

]
= E

[
pki | yi

]
(i = 1, . . . , n)

for k = 1, 2, the variance of ĥ for a sample of size n can be expressed as

Var
(
ĥ
)

=
σ2

n
E [ 1 /ȳ ] .

For larger samples, this variance formula could be used in conjunction with a normal
approximation to get confidence bounds for the individual estimates.

After computing ĥ for many different fuel ages u, we use a local linear smoother
to construct the estimated fire interval hazard curve and highlight the overall trend.
In order to assess the variability of the fire interval hazard curve without impos-
ing a more restrictive model, we construct 95% confidence bands for the curve us-
ing the bootstrap. For each fuel age u, we sample with replacement the pairs
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(p1, y1), . . . , (pn, yn) to get (p∗1, y
∗
1), . . . , (p∗n, y

∗
n). From the bootstrap samples we com-

pute ĥ∗ = (
∑
p∗i y
∗
i ) / (

∑
y∗i ). After computing ĥ∗ for all fuel ages u we refit the local

linear smoother. This procedure is then repeated 1000 times and confidence bounds
are constructed using the percentile method (Efron and Tibshirani, 1993, ch. 13).

For the larger problem of wildfire risk estimation, one could generalize the above
approach in a number of ways. Given a location z and the fuel age uz at that
location, it seems feasible to model the hazard of fire as a function of ĥ(uz) and other
meterological, topographical, and socio-economic covariates. Hence, we could have

hazard(z) = f
(
ĥ(uz), xz

)
where xz represents a vector of covariates for location z. A simple example for f
would be a linear model where

hazard(z) = ĥ(uz) + β′xz

and β is a vector of parameters. For an example of the use of linear models in fire
prediction, see Mandallaz and Ye (1997).

Note that computing pi and yi for each u involves intersecting and differencing the
fire boundaries, which are very large polygons, each with many vertices. Hence, the
computational cost can be substantial, but it is by no means prohibitive. We used
the R statistical computing environment (Ihaka and Gentleman, 1996) to write most
of the software needed to construct the estimator. For the polygon manipulations we
used the very fast General Polygon Clipper software library written by Alan Murta
(see http://www.cs.man.ac.uk/~amurta/software).

4 Results and Discussion

The result of applying our method to the Los Angeles County DPW data is shown in
Figure 8. The estimated fire interval hazard curve serves as a concise quantification
of the dependence of burn area on fuel age. Using data from the past century, it is
apparent that as fuel age increases from 1 year to 30 years, the proportion of fuel
that burns steadily increases. However, for fuel ages greater than 30 years or so, the
proportion remains nearly constant. Thus, the relationship between fire risk and fuel
age appears to be nonlinear. There is considerable scatter around the estimated fire
interval hazard curve. However, the statistical significance of this overall increase
and leveling off of the estimated curve is confirmed by the bootstrap 95% confidence
bands for the curve.

The type of nonlinear threshold relationship detected in Figure 8 is distinctly
different from the linear models in common use. However, the shape of the fire
interval hazard curve is in general agreement with our knowledge of the vegetation
in Los Angeles County. Typically, chaparral, the dominant vegetation, does not burn
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easily until it has reached about 30 years of age, while older chaparral will burn
readily (Pyne et al., 1996). The estimated fire interval hazard curve indicates that
after an area reaches a certain age, it does not necessarily become more flammable or
hazardous. One possible interpretation is that large wildfires occur when conditions
are ripe, i.e. when fuel age is at least 30 to 40 years, but that there is little distinction,
with regard to risk based on fuel age, between conditions that are sufficient and
conditions that are extreme.

It should be noted that small fires burning less than 1 acre were not included
in our dataset. Ed Johnson (personal communication, October, 2001) has pointed
out that an apparent decrease in hazard in locations having recently burned could
perhaps be partially attributed to an increase in the rate of very small undetected fires
during the vegetative regeneration cycle. However, as such small fires are thought to
account for only a tiny fraction of total burn area, it is unlikely that these fires are
solely responsible for the apparent decrease in hazard in Figure 8.

In order to take into account some of the spatial inhomogeneity of the fires, the
fire interval hazard curve was also estimated for separate sub-regions of Los Angeles
County. These sub-regions are shown in Figure 9 and their estimated fire interval
hazard curves are shown in Figure 10. Each of the curves seem to agree with the
estimated curve for the entire County; for each region there is no significant increase
in the estimated hazard curve after 25–30 years. However, only in region 3 do we see
a significant increase in hazard for fuel ages between 1 and 15 years. For regions 1,
2, and 4 it is difficult to say whether there is simply not enough data to detect an
increase in hazard or whether there is genuinely no increase.

4.1 Stability

In order to compare the stability of ĥ(u) to the estimate corresponding to the survivor
function in (2) proposed by Johnson and Gutsell (1994) we compute each estimator for
consecutive sample sizes. We start with a small subset of the dataset and progressively
increase the sample size by one year, each time computing both estimators, until the
entire dataset is used. Let hJGk (u) and ĥk(u) denote the time-since-fire estimator and
the estimator from (7), respectively, estimated from a sample of size k. Figure 11
shows both estimators for u = 1 and for increasing values of k. It is apparent that
as k increases, ĥk(u) tends to stabilize and converge while hJGk (u) continues to vary.
Note that the y-axes on the Figures 11(a) and 11(b) are different; the MQLE in 11(b)
varies on a much smaller scale.

This process is then repeated for all u. Rather than show hJGk (u) and ĥk(u) for

each u, we take the sample standard deviation of the set
{
ĥk(u) : k = 1, 2, . . .

}
for

values of u between 1 and 50. The results are shown in Figure 12. The estimator
ĥ(u) appears to exhibit significantly less variation than the survivor curve estimate.
The reason behind this is simple: ĥ(u) uses all of the data up to the current year
of observation (year k). When data from year k + 1 is added, its effect on ĥ(u) is
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counterbalanced by all of the reburn intervals recorded from years 1 to k. If ĥk(u) is
the current estimate of h(u), then given data from year k + 1, the updated estimate
for each u is

ĥk+1(u) = ĥk(u) +
yk+1(u)∑k+1
j=1 yj(u)

[
pk+1(u)− ĥk(u)

]
.

Hence, the estimate moves from its old value ĥk(u) toward the new observation

pk+1(u), but only by the fraction yk+1(u)
/∑k+1

j=1 yj(u) . By contrast, the survivor

curve method relies only on the most recent burn in each location and hence is heav-
ily dependent on the most recent observations.

4.2 Missing Data

Perhaps the simplest case of missing data is when the missing fires do not burn over
previous fires and are subsequently not burned over. Then the missing fires contribute
only to the denominators of our proportions. That is, they represent available area
that never gets reburned. If the missing fires were large, the effect of their deletion
would be to inflate the estimates of h(u) for all fuel ages. Other than this simple
case, it is difficult to say how missing data affect the estimation of h(u) since little is
known about the spatial configuration of the missing fires.

One possible method for examining the effect of missing data on ĥ(u) could be to
use a cross-validation type of procedure. Let ĥ(j)(u) represent the estimate of h(u)
computed with the jth year removed from the dataset. For each u, a simple measure
of the increased variability due to missing years of data is

γ1(u) =
1

n− 1

n∑
j=1

[
ĥ(j)(u)− 1

n

n∑
k=1

ĥ(k)(u)

]2

,

or alternatively

γ2(u) =
1

n− 1

n∑
j=1

[
ĥ(j)(u)− ĥ(u)

]2

where ĥ(u) is the estimate of h(u) using all the years 1, . . . , n. If the fire patterns
in the missing years are essentially similar to those in non-missing years, then γ1

(or γ2) may provide a decent measure of how missing data affects ĥ(u). For the
Los Angeles County DPW dataset the assumption that the missing years of data are
similar to the non-missing years is doubtful, especially since most of the missing years
are from the early 1900’s. Increases in development as well as changes in land use
and fire suppression policies since the turn of the century likely have changed the fire
burn patterns over time. In general, the availability of detailed information on fires
continues to be a major problem and the subject of missing data should be studied
more intensely in the future.
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5 Conclusions

In this paper we have presented a new technique for estimating fire interval distri-
bution of a region using detailed spatial-temporal fire history data. It has already
been noted by other authors that fuel age and the fire interval distribution are im-
portant to understanding the overall behavior of fire. The estimator presented here
can capture more complex relationships than previous methods because it does not
impose a parametric model. As a maximum quasi-likelihood estimate, we know that
ĥ(u) possesses good statistical properties such as consistency and asymptotic normal-
ity. Furthermore, ĥ(u) exhibits good finite sample behavior such as being the best
linear unbiased estimator and having a variance of order 1/n. Using our estimator,
we have shown that for Los Angeles County, the proportion of area burned increases
steadily for fuels less than 30 years old, but remains nearly constant thereafter. The
data suggest that the proportion of fuel burned and age of the fuel have a nonlinear
threshold-type relationship.

The characterization of the relationship between burn area in Los Angeles County
and fuel age is intended to be useful to fire hazard modelers. The focus on fuel age by
no means is meant to underemphasize the importance of other factors in influencing
fire risk. These other factors include land use policies, population density, and fire
prevention policies, as well as meteorological and topographic variables. For example,
the expansion of the urban-wildland interface has introduced a major proliferation of
fires in previously uninhabited areas. Also, wind is a major factor affecting the size
of wildfires. Large catastrophic fires are often driven by high winds and are generally
immune to fire suppression (Keeley et al., 1999). Examining the interactions between
these variables and their effect on burn area is still an important direction for future
research.

Finally, while Los Angeles County represents a significant fire regime, an impor-
tant direction for future research is to investigate the application of our method to
wildfire data from other regions. In particular, differences in vegetation life cycles
and spatial configurations of fuels may considerably alter the observed relationship
between burn area and fuel age.
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A Appendix: Figure Captions

1. Frequency with which different areas of Los Angeles County have burned be-
tween 1878 and 1996.

2. Centroids of fire boundaries for years 1878–1996 with elevation (meters).

3. Precipitation in Los Angeles County (average inches per year). Each number on
the plot represents the location and average yearly precipitation at each weather
station.

4. Fire boundaries for the year 1980, with elevation.

5. Total area burned in each year of the dataset (ha).

6. Overburning for different fuel ages. (a) Fires from the years 1963 (gray) and
1964 (white). There is relatively little overburning (black) — approximately 50
hectares. (b) Fires from 1928 (gray) and 1968 (white). The overburning here is
much more extensive — 237 hectares.

7. A plot of the log conditional variance of p(u) | y(u) vs. log h(u)/y(u). Given n
years of fire history data {(p1(u), y1(u)}, . . . , {(pn(u), yn(u)}, the values of pi(u)
are binned according to values of log h̃(u)/yi(u). In each bin, the variance of
the pi(u)’s is used as an estimate of Var (p(u) | y(u)).

8. Estimated fire interval curve for the Los Angeles County data.

9. Four sub-regions of Los Angeles County. The points represent the centroids of
the fire boundaries.

10. Estimated fire interval hazard curve for each of the sub-regions of Los Angeles
County.

11. Estimated values of h(1) using the (a) estimate based on (2) and (b) the
MQLE (7).

12. Standard deviations for the ĥ(u) and the estimates derived from the survivor
curve method of Johnson and Gutsell.
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B Appendix: Figures

0 2 4 6 8

Figure 1: Frequency with which different areas of Los Angeles County have burned
between 1878 and 1996.
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Figure 2: Centroids of fire boundaries for years 1878–1996 with elevation (meters).
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Figure 3: Precipitation in Los Angeles County (average inches per year). Each number
on the plot represents the location and average yearly precipitation at each weather
station.
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Figure 4: Fire boundaries for the year 1980, with elevation.
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Figure 5: Total area burned in each year of the dataset (ha).
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(a) (b)

Figure 6: Overburning for different fuel ages. (a) Fires from the years 1963 (gray)
and 1964 (white). There is relatively little overburning (black) — approximately 50
hectares. (b) Fires from 1928 (gray) and 1968 (white). The overburning here is much
more extensive — 237 hectares.
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Figure 7: A plot of the log conditional variance of p(u) | y(u) vs. log h(u)/y(u).
Given n years of fire history data {(p1(u), y1(u)}, . . . , {(pn(u), yn(u)}, the values of
pi(u) are binned according to values of log h̃(u)/yi(u). In each bin, the variance of
the pi(u)’s is used as an estimate of Var (p(u) | y(u)).
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Figure 8: Estimated fire interval curve for the Los Angeles County data.
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Figure 9: Four sub-regions of Los Angeles County. The points represent the centroids
of the fire boundaries.
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Figure 10: Estimated fire interval hazard curve for each of the sub-regions of Los
Angeles County.
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ĥ(
1)

Figure 11: Estimated values of h(1) using the (a) estimate based on (2) and (b) the
MQLE (7).
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ĥ estimate

Figure 12: Standard deviations for the ĥ(u) and the estimates derived from the
survivor curve method of Johnson and Gutsell.
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