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Using Camera Traps and AI to Improve Efficacy and Reduce Bycatch 
at Goodnature A24 Rodent Traps in Hawaii 
 
Lisa H. Crampton and Erica M. Gallerani 

Kauai Forest Bird Recovery Project, Pacific Cooperative Studies Unit, Hanapepe, Hawaii 

Mari K. Reeves 

Pacific Islands Fish and Wildlife Office, U.S. Fish and Wildlife Service, Honolulu, Hawaii 

 
ABSTRACT: Camera traps provide an unobtrusive means to monitor wildlife presence and behavior. Yet there is a steep learning 
curve associated with their deployment. Camera model, settings and position, target behavior, and technicians’ skill greatly influence 
the success of camera trapping. Furthermore, data storage and management are complex, as copious photos occupy considerable 
storage space. Finally, evaluating large numbers of digital images is time-consuming for low frequency events; in each of our trials 
we amassed 10,000-50,000 photos, of which 6-20% were target animals. The application of artificial intelligence (AI) to digital image 
datasets can greatly increase efficiency, but few existing algorithms have been trained on small animals. We embarked on a camera 
trapping project to assess interactions of target (rodent) and non-target (bird) species with 125 GoodNature A24 rat traps deployed in 
rainforest sites on Kauai, Hawaii, following several observations of non-target mortality. While our long-term goal was to use camera 
trap data to suggest modifications to traps that would maintain target kills while minimizing bycatch, the short-term goal presented in 
this manuscript focused on perfecting our camera trapping program and AI to classify photos of small animals. Specifically, we 
described lessons learned regarding 1) the performance of several camera models, 2) camera placement, 3) data management, and 4) 
artificial network training and development. First, we report on field studies assessing Bushnell TrophyCam HD, Bushnell HD, 
Reconyx HyperFire, and Reconyx HyperFire2 models on a variety of settings, distances, and angles with respect to the traps. Camera 
model and placement at traps are critical to capturing images amenable to AI development, as is variation in the training dataset. 
Second, we outline our data management and sharing protocols. Third, we describe the development of preliminary AI models to 
review and sort camera trap data. Early models reduced the workload of reviewing camera trap data by correctly classifying photos 
of rats, birds, humans, pigs, and empty frames. We expect these results to further improve with more training data. These results will 
greatly enhance the efficacy of several camera trapping studies that we have recently undertaken and help us modify traps to avoid 
bycatch. 
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INTRODUCTION 

Invasive species, such as rats, are one of the main 
drivers of island endemic extinction, and the Hawaiian 
archipelago is not immune to their effects; 63% of 
Hawaii’s endemic birds have gone extinct (Leonard 2008). 
On the island of Kauai, five of 13 historically known 
songbirds have disappeared in the last 40 years. For the 
eight remaining songbird species, invasive rats (Rattus 
spp.) have been implicated in reduced female, juvenile, 
and nestling survival (VanderWerf et al. 2014, Hammond 
et al. 2015, Hammond et al. 2016, Paxton et al. 2018). The 
endangered Puaiohi (Myadestes palmeri), which is 
endemic to Kauai, numbers 487 (95% CI: 405-579) 
individuals and is geographically restricted (Crampton et 
al. 2017). Rodent predation is likely the primary factor 
limiting this species (USFWS 2006, Atkinson et al. 2014, 
VanderWerf et al. 2014, Paxton et al. 2018). The Puaiohi 
experiences poor female and juvenile survival due to rat 
predation on nests and fledglings (Tweed et al. 2006, 
VanderWerf et al. 2014). Rats and mice also compete with 
forest birds by consuming fruits and invertebrates. Thus, 
effective rodent control to benefit Puaiohi and other 
songbirds is a high priority for the state of Hawaii (Hawaii 
DLNR 2015). 

Since 2015, we have suppressed rodent populations 
with Goodnature A24 rat traps in critical bird habitat in 

rainforest sites on the Alakai Plateau on Kauai. Approxi-
mately 325 traps are active at two grids in the Alakai. 
Monitoring with ink plates has shown a four-fold decrease 
in relative rodent abundance on trapping grids versus 
reference plots (L. H. Crampton, unpubl. data) over this 
time period but we have not had the resources to investi-
gate whether this level of suppression has led to significant 
increases in bird survival, and we continue to observe signs 
of predation on trapping grids (L. H. Crampton, unpubl. 
data). Meanwhile, we recently discovered that several 
birds, including Puaiohi, had been killed by A24 traps, 
which raised the question of whether the benefits of rodent 
control in terms of bird survival outweighed any inadvert-
ent mortality or injury of birds or other non-target species. 

To answer this question, we urgently needed to 
determine a) how often non-target species were hurt or 
killed by A24 traps, and b) how to modify traps to avoid 
bycatch while maximizing rodent control. To do so, we 
implemented several studies in which we modified traps 
by raising them or adding blockers and manipulated lure 
type to reduce attractiveness to birds. To help us interpret 
the results of these studies, we decided to deploy wildlife 
camera traps at individual rodent traps. Assessing which 
cameras to deploy and what settings and placement to use 
to record small animals in tropical environments, and how 
to manage and process camera trap data from remote areas, 
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became a project of its own, the results of which are 
described here. 

Camera traps have tremendous promise as an unobtru-
sive means to monitor wildlife presence and behavior (e.g., 
Rovero et al. 2013, Trolliet et al. 2014, Newey et al. 2015). 
Yet there is a learning curve associated with their deploy-
ment. Moreover, they generate enormous amounts of 
photo data that must be managed, sorted, and stored 
(Newey et al. 2015). Thus, we turned to artificial intelli-
gence (AI) to increase our efficiency in identifying photos 
containing animals (e.g., rodents, birds) of interest. 
Because most efforts in this field have focused on large 
animals (e.g., Tabak et al. 2018, Falzon et al. 2020, 
Weideng et al. 2020) we needed to amass a training dataset 
for small animals in a tropical environment to train new 
neural network algorithms, which required us to manage, 
share, and manually sort tens of thousands of photos. The 
purpose of this paper is to describe what we learned in 
terms of a) the performance of various camera models, b) 
proper placement of cameras on traps, c) management of 
photo data, and d) development of AI to speed up photo 
processing. We hope this effort will help other researchers 
better implement camera trapping and AI to improve their 
trapping and pest control efforts. In a sense, it is an investi-
gation of “best management practices” for camera trapping 
for small animals in tropical rain forests. The results of the 
trap modifications informed by this project will be 
presented in a second manuscript currently in preparation. 

 
METHODS AND RESULTS 
Study Area 

The project focuses on the eastern portion of the Alakai 
Plateau on Kauai, Hawaii (22°7'18"N and 159°33'48"W), 
a ~70km2 area of relatively pristine, wet (> 6,000 mm rain 
per year) montane forest dominated by ohia lehua 
(Metrosideros polymorpha). Other tree and shrub species 
include olapa (Cheirodendron trigynum), lapalapa (C. pla-
typhyllum), ohia ha (Syzygium sandwicensis), kawau (Ilex 
anomala), ohelo (Vaccinium calycinum), and kanawao 
(Broussaisia arguta). Many of these species bear flowers 
and fruit important to native birds as food but also 
consumed by rats. This area, which is remote, roadless and 
drained by numerous deeply incised streams, is owned and 
managed as a wilderness area and forest reserve by the 
State of Hawaii. The camera trapping studies were 
conducted at a 125-trap grid covering ~80 ha of this forest 
where all eight remaining songbird species native to Kauai 
occur. 
 
Camera Trapping 

We conducted several different studies in the winter of 
2018-2019 to assess the impact of several variables on 
camera performance: camera model, distance from target, 
horizontal offset, video vs. still, and sensitivity. These 
issues have been reviewed by other authors (e.g., Rovero 
et al. 2013, Trolliet et al. 2014, Newey et al. 2015), but their 
focus has been on large animals. One question we 
attempted to answer was whether small animals, such as 
birds (~15-40 g) and rats (~70-300 g) would trigger the 
motion sensor in a tropical environment (i.e., would the 
difference between their body heat and the background 
environmental temperature be great enough, or would we 

need to use the time lapse setting set at a frequent trigger 
interval?). In all studies, the lens of the camera was approx-
imately level with the bottom of the trap (i.e., approxi-
mately 12 cm high; it was not above the trap or vertically 
angled down at the trap). In future studies, we will experi-
ment with angled traps to reduce the background noise 
from plants and glare from the flash. Following the 
suggestions of Newey et al. (2015), we programmed all 
cameras in the office prior to deployment in the field, then 
double checked the settings in the field. We used lithium 
batteries in all cameras, as recommended by the user 
manuals. 

In the first study, we compared the performance of 
three Bushnell Trophy Cam HDs and three Reconyx 
Hyperfire PC800s. Both cameras are equipped with a 
motion sensor mode, in which the interruption of an 
infrared beam by movement of a warm object in the 
camera frame (e.g., an animal or a sunlit leaf moving) 
causes the camera to take a picture; they can also be 
programmed to take photos at set intervals (time lapse 
mode). Performance was measured in terms of motion 
sensor efficacy (number of photos taken in motion sensor 
mode) and durability (total number of photos taken). 
Cameras were deployed in pairs (one of each brand) on 
traps, with the settings described in Table 1 and Table 2. In 
some cases, a third camera was set on video to assess how 
much action was missed by the still photos. Over several 
weeks, we experimented with different distances between 
the camera and the trap (1-3 m). In the second study, we 
experimented with the time lapse setting (1 min vs. 60 min) 
with five pairs of two Reconyx cameras pointed at the 
same object. The goal of this experiment was to determine 
if the motion sensor was working well enough to allow us 
to rely on it instead of the 1-min time lapse, which 
generated thousands of photos and rapidly depleted the 
batteries (similar to Newey et al. 2015). 

These two studies showed that the Bushnell 
TrophyCams did not capture as many photos on motion 
sensor mode as the Reconyx Hyperfires. Also, Bushnell 
 

 
Table 1. Bushnell TrophyCam HD settings in December 

2018 - January 2019. 

Parameter Setting 

MODE Camera  

Image size  5M 

Image format Full Screen 

Capture Number 3 photo 

LED control Medium 

Camera name N/A 

Video size 640X480 

Video length 10S 

Interval  10S 

Sensor Level High 

Format No* 

TV Out NTSC 

Time Stamp On 

Set Clock Change if necessary 

Field Scan On 

A Start: 0:00 Stop: 23:59 

Interval 1 min 

Coordinate Input Off 

Video Sound Off 

Default Set  Cancel 



 

 3 

Table 2. Reconyx Hyperfire settings in December 2018 -
January 2019; the only change thereafter was to use a 60-
min time lapse. 
Category Parameter Settings 

Trigger Motion Sensor On 

Trigger Sensitivity High 

Trigger Pics per Trigger 3 

Trigger Picture Interval RapidFire 

Trigger Quiet Period No 

Time Lapse AM period 
On /Start: 12:00 am 
Stop: 12:00 pm 

Time Lapse PM period 
On/Start: 12:00 pm 
Stop: 12:00 am 

Time Lapse Interval 1 min 

Resolution Resolution 3.1MP 

Night Mode Night Mode Balanced 

Night Mode Illuminator On 

Date/Time/Temp Y/Mon/D/H/Min/Temp 
Correct date and time 
and F 

Codeloc Codeloc Ignore 

User Label User Label 
View and change if 
doesn’t match 

Use Defaults Use Defaults Cancel 

 
cameras often stopped taking pictures shortly after they 
were set. Therefore, we discontinued use of the Bushnells, 
although they were more affordable. For our purposes, we 
preferred to spend more money on fewer, more reliable 
cameras (see Newey et al. 2015 for discussion of Reconyx 
vs. Bushnell). Furthermore, a high-quality image such as 
produced by the Reconyx was a paramount concern for 
future image recognition algorithms (Rovero et al. 2013). 

They also showed that the Reconyx motion sensors 
captured most of the activity at traps (mean 227 photos, 
range 40-520 photos on motion sensor vs. mean 26 photos, 
range 10-60 photos on time lapse). In subsequent studies, 
we stopped using the 1-min time lapse in favor of a 60-min 
time lapse setting that acted as a “time stamp” so we would 
know when the battery failed. On the 1-min time lapse, the 
lithium batteries lasted less than two weeks. On the 60-min 
time lapse, they lasted greater than 16 weeks (they were 
still working when we removed the cameras). The reliabil-
ity that we observed from the Reconyx motion sensors 
contradicts the results of Newey et al. (2015), who found 
that the Bushnells they deployed in motion sensor mode 
failed to detect 49-68% of the animals documented by 
paired cameras set in time-lapse mode. This discrepancy 
may reflect the professional quality of the Reconyx 
cameras. 

We determined that a 1-m distance between camera 
and trap was optimal. The camera was close enough to be 
triggered by the animal of interest and the photo had little 
background “noise” but was not so close that the animal 
was out of focus or obscured by the reflection of the flash. 
We also learned that cameras should face the trap along a 
north-south axis to not be blinded by sun at its lowest 
angles (Newey et al. 2015). It is critical to thoroughly clear 
vegetation in front of the camera and behind the trap so that 
it does not falsely trigger the camera in response to 
photosynthesis or cause reflected sunlight to obscure the 
camera lens. It is better to attach the camera to a tree or 

rectangular stake than a smooth, round post such as PVC, 
because round posts allow the camera to move and lose 
focus on the object of interest (in this case the rodent trap).  

Finally, it is essential to ensure that the rodent trap is in 
the center of the camera frame. The best option is to use 
the “walk test” function of the Reconyx camera; after 
setting the camera in this mode, the technician should 
move to the trap, cause some motion around the trap, then 
remove the data storage card from the camera and put it in 
a card viewer or second camera (if weather permits). 
Alternatively, if the weather is poor and one does not want 
to open up cameras, one can put a second camera (e.g., a 
point in shoot or even the camera of a mobile phone) in 
front of the trail camera, take a picture, and review the 
photo on the second camera’s display. The time spent 
ensuring proper position during camera trap deployment 
far outweighs the cost of realizing when cameras are 
retrieved that they were focused on the wrong object for 
several weeks.  

In our last study, we deployed one Reconyx Hyperfire 
(HF) and two Reconyx Hyperfire 2s (HF2) at each of eight 
randomly selected A24 traps. The goal was to investigate 
the effect of camera model, sensitivity, and position with 
respect to the trap on camera performance. We placed all 
cameras 1 m from the rodent trap, pairing one HF and one 
HF2 directly in front of the trap and next to each other (to 
compare performance of HFs and HF2s), and one HF2 at 
an offset or oblique angle to the rodent trap, 14-45 cm 
away from the paired cameras (to assess impact of 
environmental variability in the camera frame on the 
number of photos captured). For the first five days, one of 
the HF2s was set on “high” sensitivity and the other on 
“very high”; the HF was left at its highest setting, “high.” 
We randomly alternated the different HF2 sensitivity 
settings between the two positions (centered vs. offset). 
After five days, all cameras were switched to the “high” 
setting. We used three different mixed effects regressions 
with these variables (camera model, sensitivity setting, and 
offset position) as fixed effects and trap location as a 
random effect; number of photos was the dependent 
variable.  

This analysis showed that the HF2s performed better 
than the HFs, taking on average 284 ±1.15 photos (212-
380) vs. 361 ±1.15 (270-482) photos per deployment (b = 
0.24 ±0.02, p < 0.001), with the very high sensitivity 
setting capturing more photos than the high setting on the 
HF2s: 351 ±1.16 (219-392) photos vs. 293 ±1.16 (260-
469) photos per deployment (b = -0.18 ±0.03, p < 0.001). 
The offset position resulted in fewer photos than the cen-
tered positions (284 photos vs. 340 photos on average; p < 
0.001). Consequently, we determined that it was not 
possible to mix and match Reconyx models and settings in 
future camera trapping projects, where we wanted to use 
the number of photos as an index of animal activity around 
the trap, and that it was best to position the cameras in front 
of the trap (Trolliet et al. 2015).  

A final lesson learned was that there was a lot of 
variation among traps in the amount of animal activity. 
Thus, it was important to try to place cameras at every trap, 
or at least most traps, and stratify the traps by environ-
mental variables that might influence animal activity. If 
there are not enough cameras available to cover most or all 
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traps simultaneously, we recommend moving cameras to 
new traps every few weeks. In our study, we divided our 
traps into five groups. The 16 HF2s were randomly 
assigned to 16 of the traps within the group. Approxi-
mately every 14 days, we moved the 16 cameras to a new 
group, such that over three months, cameras were placed 
on traps in all five groups. This practice increased our 
sample size of traps sampled, so it improved our power to 
detect differences among traps, even though the sample 
size in terms of total number of photos captured may have 
been similar to an experimental design in which cameras 
were left at the same trap for three months. It was also 
important for the neural network models to experience 
variation due to their tendency to overfit specific photo 
data, as described below. 

 
Data Management 

Camera trapping generates large amounts of data, 
stored on easily lost or misattributed data storage (SD) 
cards. A plan must be developed to track locations of 
cameras and the SD cards associated with each deploy-
ment for each camera. We assigned an ID name and two 
SD cards, A and B, to each camera (for example, camera 
001 had cards labeled 001A and 001B). We also used SD 
card wallets for transportation, organization, and storage of 
cards. Before beginning field work, we entered all cameras 
by ID name into a cloud-based database developed by 
Natural Resource Data Solutions (NRDS; https://nrdsdata 
.com/). We also recommend using the “User Label” 
feature in Reconyx cameras to label each photo with the 
camera ID. In the field, we tracked the deployment 
location of those cameras using a spatially enabled mobile 
application provided by NRDS. In the application, we 
noted camera ID, GPS location, card ID, and variables 
such as camera offset, time lapse, sensitivity, battery level, 
and number of photos taken. These data were uploaded to 
the NRDS database. 

Upon first deployment, the camera’s “A” SD card was 
used, when it was time to check or move the camera, the 
“A” card was removed and replaced with its “B” card. The 
A card was taken back to the office, downloaded, reformat-
ted, and readied for redeployment on the third camera 
check. Downloaded photos were categorized in Windows 
Explorer folders by date, trap ID and camera ID. Wallets 
always contained two-three extra cards in case some SD 
cards became corrupted and could not be read by the 
camera. 

The size of the dataset was formidable at 24 GB with 
hundreds of thousands of photos taken by the 16 cameras 
deployed during the six-month study. The raw data from 
field cameras typically contained large numbers of false 
positives or motion-triggered photos that were not of 
interest (e.g., non-target animals or humans). For example, 
in one dataset of 56,500 photos collected with Reconyx 
HFs set on motion sensor +60-min time lapse setting, only 
3,500 (6.2%) contained animals of interest; the remainder 
were mostly empty time lapse photos, with a few consist-
ing of plants moving and people walking by. However, the 
16,095-photo dataset from the HF vs. HF2 comparison 
(also on motion sensor +60-min time lapse setting) 
consisted of 20% (3,279 photos) of rats, cats, mice, and 
pigs, perhaps because of the greater sensitivity of the HF2s. 

The 1-min time-lapse we used in early deployments to help 
gauge sampling time until battery failure also increased the 
number of empty frames. Empty frames can cause a sub-
stantial drain on resources including storage capacity and 
time required for image sorting (Newey et al. 2015). Each 
field technician underwent a learning curve to proficiently 
deploy cameras to limit the number of unwanted photos of 
moving vegetation or photos not focused on traps. The 
transition to hourly time-lapse was a big time-saver. 

To develop training data for neural network develop-
ment we sorted photos manually. From January-
September 2019, we sorted photos in Windows Explorer 
folders, using a variety of software available on Windows. 
We tracked progress in an Excel spreadsheet containing 
camera deployment data we exported from the NRDS 
database. For each camera deployment folder, we counted 
the number of photos in the folder and entered that in the 
corresponding camera deployment row in the spreadsheet. 
If there were animals in the photo, we recorded the species 
of animal in the photo, the number of pictures, the photo 
ID of the first photo with an animal, the photo ID of the 
last photo with an animal, whether the animal tripped the 
motion sensor, how many photos were in the animal series, 
the time in 24:00 format, the temperature, and whether the 
camera was on its day or night setting. We then moved 
photos with animals into new folders: birds (to species if 
possible), deer, empty, people, pigs, rats, mice, and cats. 
We estimated that we would need approximately 1,000 
photos/category to train the convoluted neural network we 
are using for this project (D. Morris, pers. commun., 
Norruzedeh et al. 2018). Because our cameras captured 
few photos of deer, cats, and pigs, we are collaborating 
with other groups who have focused camera traps on these 
species to obtain more training data. 

The photo-labeling process was time-consuming and 
labor-intensive in the Windows software we were using. In 
October 2019, NRDS created a desktop photo sorting 
application, which greatly eased the burden of viewing and 
labeling photos. The application was connected directly to 
the database where the camera deployments, checks, and 
removals were recorded. Users simply selected a folder 
containing camera trap photos they intended to sort and the 
corresponding camera check in the database. Animal 
observation records were then created in the same database 
whenever a person assigned a photo or set of photos to a 
specific taxon. The photo sorting application also stored 
the folder of photos as “not reviewed,” “pending,” and 
“complete” to track sorting progress, and only uploaded 
the labeled photos of interest to our cloud-based storage 
system, which was important because this effort led to 
gigabytes of data.  

This project consisted of partners based throughout 
Hawaii, Alaska, and Colorado, so we faced the common 
challenge with camera trapping projects of sharing large 
amounts of data among different institutions (Newey et al 
2015). Despite technology-forward intentions, we often 
resorted to saving the images to external hard drives and 
physically mailing them, leading to device failure and lost 
time. An early plan to account for this amount of data and 
its path through the sorting and modeling process would 
have helped us be more efficient. We have moved toward 
cloud-based services, including Dropbox, Azure, Amazon, 
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and Google, which facilitate data storage and use by 
multiple project partners, and initial development and 
subsequent re-training of the models. We communicated 
among users to ensure that the same photos were not 
viewed twice. The NRDS app’s built-in feature of marking 
a folder’s status as reviewed or not prevented redundan-
cies, but only if the viewers did not change the folder or 
filenames. Among partners, we also had to ensure that we 
could reduce the amount of observer bias in interpreting 
the image data (Meek et al. 2015). All partners viewing 
photos needed to be able to consistently identify the 
animals in the photos to the appropriate taxa grouping, 
which proved challenging at first (e.g., rats versus mice or 
birds to species). 

 
Algorithm Development 

Here we offer a short summary of lessons learned while 
developing a neural network model to sort our photo data. 
We followed the lead of Norouzzadeh et al. (2018), who 
applied these techniques to a large camera trap dataset 
from the African Serengeti, building on the work of 
Gomez-Villa et al. (2017). These models, and others that 
have sought to refine them (e.g., Tabak et al. 2018, Falzon 
et al. 2020, Weideng et al. 2020), have focused on classify-
ing large mammals in grasslands or open forests, so we 
needed to adapt them for small animals in tropical 
rainforests.  

Neural network models comprise a branch of machine 
learning in which computers can “learn” to do tasks 
without being explicitly programmed to do them. The 
subfamily of models we used (deep and convoluted neural 
networks) learn the project-specific objective by fitting 
complex and multilayered numerical algorithms to training 
data that show the computer the input and the desired 
output with a labeled data set. In this case, the training data 
was the sorted and tagged photos, and the output was the 
animal captured in them (e.g., rat, bird, human, pig, or 
empty). To fit the algorithm, we first converted the photo 
into its underlying numerical data (three layers on each of 
the red, green, and blue color spectra were assigned a 
numerical value for each pixel in each image). The neural 
network was trained by running a randomly selected subset 
of the photos through the algorithm, checking which 
predictions were right or wrong, and then adjusting the 
numerical connections between the layers accordingly.  

Our initial goal was to develop a model to classify 
photos into animals of interest (i.e., birds and rodents) 
versus animals we were not interested in for this project 
(e.g., humans, pigs, cats, deer) and empty frames with only 
a trap. Hoping to avoid some of the laborious manual photo 
sorting required to generate training datasets, we ap-
proached Microsoft AI for Earth, which had developed an 
object detector model that sorts “animals of interest” from 
empty frames. In our photos, the model needed to find 
animals while ignoring the traps and the ever-changing 
illumination of plants, logs, and other objects in the forest 
understory. Although the existing Microsoft model can 
remove recurring objects (e.g., rodent traps) in photo 
frames, and is trained to classify species (https://github 
.com/microsoft/SpeciesClassification), it did not work 
well on small cryptic rodents and birds in the forest, 
because it was designed for large mammals in open 

ecosystems. We therefore manually sorted photos to gen-
erate our own set of project-specific training data, which 
we intend to share with Microsoft so they can improve 
their existing object detector and species classifiers.  

It is relatively easy to train a model using the freely 
available tutorials provided by the Google/Tensorflow 
team (https://www.tensorflow.org/tutorials), but the field 
is rapidly growing (e.g., Tabak et al. 2018, Weideng et al. 
2020). Even a year ago, it was challenging to read the 
photos into the numerical array format used by the models, 
but this step has since been streamlined by new packages 
like keras.preprocessing (https://keras.io/) and tf.data 
(https://www.tensorflow.org/guide/data ). With so many 
new products entering this field many it can be difficult to 
keep straight how the programs and packages interact with 
each other (https://www.tensorflow.org/guide/keras 
/overview). 

 We initially used R (https://www.r-project.org/) to man-
age photo data, convert photos into arrays, and develop the 
deep learning models using the keras package (https:// 
keras.rstudio.com/). However, we soon switched to coding 
in Python, because that is the native programming lan-
guage for Tensorflow. Currently, we are programming in 
R Studio (Version 1.2.5033), using R markdown [R 
version 3.6.0 (2019-04-26) “Planting of a Tree”], which 
allows us to hybridize our code, running R and Python in 
the same script to drive the Keras and Tensorflow programs. 

Although these software programs are open source, 
managing them on a personal computing platform is 
sometimes problematic (but see Falzon et al. 2019 for 
some arguments in favor of using personal computers). On 
a desktop or virtual machine, all Keras and Tensorflow 
packages (also called dependencies in R and Python) must 
be loaded into the same computer, and the version that 
each of the other programs is expecting must be used. 
Cloud-based computing systems troubleshoot complex 
version issues with dependencies so that the underlying 
programs (Keras and Tensorflow) can actually develop the 
neural network models, saving considerable time for the 
modeler. A grant from Microsoft’s AI for Earth program 
is allowing us now to use their cloud services on Azure in 
the coming months so we can focus on model development 
rather than software management.  

Another consideration was getting our models into a 
format where they could be used by non-specialists (i.e., 
development of a user interface). There is a non-trivial role 
for software developers in this step, and we were fortunate 
to be working with partners at NRDS and Microsoft.  

We have not yet completed the step of using neural 
network models to predict new data and sort our photos, 
due in part to its technical difficulty, and in part to the 
organizational and administrative hurdles we described 
above. We hope to have a complete set of training data by 
the end of July 2020 and to finalize the model development 
step and implement these models to sort photos in our data 
management pipeline in summer 2020.  
 
Initial Training Results and Validation  

The models we have trained to date performed well on 
validation data. We first trained a three-layer deep neural 
network model, which attained up to 97% accuracy in 
classifying images into rat or not rat. All failures of this 

https://github.com/microsoft/SpeciesClassification
https://github.com/microsoft/SpeciesClassification
https://www.tensorflow.org/tutorials
https://keras.io/
https://www.tensorflow.org/guide/keras
https://www.r-project.org/
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model were false positives: it predicted that a rat was 
present when it was not. That said, these models are prone 
to overfitting the training data (i.e., memorizing all aspects 
of the photo, including the setting or branches of a repeat-
edly photographed tree) so these accuracy estimates we 
derived early in the process on limited data were likely an 
exaggeration of actual model accuracy. Overfitting to the 
training data can be checked by comparing the accuracy 
and loss curves for the training data and the validation data, 
which the modeler withholds from the training step but 
checks predictions against during the modeling process, as 
the model progresses through its learning epochs. If these 
curves are very far apart in their predictions (e.g., the 
model is predicting with 90% accuracy on the training data 
and only 70% on validation data on which it has not been 
trained), the model is likely overfit to the training data. The 
modeler can address overfitting by increasing the amount 
or complexity of the training data or by introducing 
regularization parameters into the model, like the dropout 
layers discussed below. 

Next, we developed a convoluted neural network 
classifier to recognize animals in camera trap images (i.e., 
human, pig, deer, bird, rat, mouse, empty). Initial tests 
resulted in approximately 70% accuracy on validation 
data. We improved model fit by adding two dropout layers 
at a value of 30%. Dropout layers reduce the propensity of 
neural network models to overfit the training data, by 
removing a pre-defined percentage of the connections 
between the layers in the network (https://www. 
tensorflow.org/api_docs/python/tf/keras/layers/Dropout?h
l=zh-cn). We tried several options, with the model per-
forming best at 30%. This step improved model accuracy 
from an initial approximately 70% to between 88% and 
94%, depending on the run-input data varied with each 
model run due to our randomization procedures with the 
input photographs. We also tried several different model 
optimizers (i.e., Adam, stochastic gradient descent, and 
RMSprop) and had the best results with the Adam 
optimizer (Kingma and Lei Ba 2017). Katib (https://github 
.com/kubeflow/katib) enables users to test different model 
hyperparameters like changing optimizers and varying 
dropout layers and their rates for neural network models 
systematically and reproducibly. We have not used Katib 
or tools like this yet, so our success with the Adam 
optimizer and a 30% dropout rate were ad hoc. Other tools 
are constantly being developed by the machine learning 
community for the purpose of profiling neural network 
models and hyperparameter tuning.  

 
CONCLUSIONS 

Camera traps are a powerful and seemingly easy-to-use 
tool that can efficiently record information not readily 
observable by humans. However, without careful planning 
for each phase of a camera trapping project (i.e., camera 
deployment; photo storage, sharing, and storing; and data 
analysis), a lot of time can be wasted capturing and manag-
ing unusable photos (e.g., of the wrong object), unidentifi-
able photos (e.g., because the storage card or storage folder 
was not properly labeled or tracked), or photos that take up 
storage space but are never viewed. Thus, it is important to 
think many of these issues through in the office prior to 
embarking on the project, plan for the costs of data 

management and storage, and model development while 
funding the project, and incorporate pilot studies in easily-
accessible sites with lots of animal activity to perfect tech-
nicians’ techniques of camera positioning given project 
objectives. Proper training for technicians can also reduce 
false positives and the amount of data to be managed. 

In our experience in a wet, inaccessible environment, 
the money we spent on more expensive cameras was well 
spent, in terms of image quality, sensitivity of the motion 
sensor, and durability. The tradeoff was that we could 
afford fewer cameras. We compensated for the limited 
number of cameras by moving them often to capture the 
variation among traps, thus increasing our effective sample 
size. Moving cameras frequently cost field technician time 
but had an added advantage of ensuring that cameras were 
working and focused on the correct object. 

It is critical to answer the following data management 
questions before beginning: Where will the photos be 
stored? How will we sort them? Will we store all the data, 
or only the useful data? How will we prevent mix-ups of 
SD cards? How will we track camera locations? How will 
we back up our data? How will we share it? Do we want 
to integrate AI into our data management pipeline and if 
so, how? What kind of statistical models do we want to use 
to analyze the sorted photos?  

In our case, we had our Database Assistant (EMG) take 
a key role in this project, so our data flow was centralized. 
Although her position is primarily office-based, she 
understood the preliminary field work so understood all the 
potential obstacles. The involvement of partners with dif-
ferent expertise in coding and databases was a game-
changer. Working with the NRDS database was another 
critical decision that greatly improved many stages of data 
management from camera location, to SD card deployed, 
to photo sorting and backup. NRDS may also prove to be 
a great user interface for the AI once it is fully developed. 
As discussed, cloud-based storage for photos and software 
also has many advantages but can be costly. If all these 
aspects are considered prior to camera deployment, camera 
trapping can be used to great advantage to enhance pest 
control and management. 
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