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Oxygen Metabolism Responses to an Unknown Neural
Stimulus
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Brain and Mind, University of California San Diego, La Jolla, California, United States of America

Abstract

Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood
Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood
flow (CBF) and cerebral oxygen metabolism (CMRO2) that occur in response to neural stimuli. To date, however, the range of
neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related
design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of
using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow
fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is
unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals
through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of
our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD
experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly
we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus,
suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic
and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged.
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Introduction

Functional hyperemia is a phenomenon by which blood flow to

a volume of brain tissue increases rapidly and dramatically in

response to a local increase in neural activity. Though still poorly

understood, functional hyperemia is thought to play an important

role in the maintenance of homeostasis in the brain, and its

dysfunction has been postulated to play a role in the etiologies of

several cerebral vascular and neurodegenerative diseases [1].

Functional Magnetic Resonance Imaging (fMRI) has become a

popular method of studying functional hyperemia in humans, both

because it is non-invasive and because it is capable of imaging

large volumes of tissue with good spatial and temporal resolution.

The most commonly used fMRI technique today is blood

oxygenation level dependent (BOLD) imaging. Contrast in BOLD

imaging is derived from the paramagnetic properties of deoxy-

genated hemoglobin, which increases the transverse relaxation

rate of the MR signal [2]. In general, functional hyperemia leads

to a local decrease in the fraction of oxygen extracted from

capillaries, increasing the oxygenation of hemoglobin in down-

stream venules [3] and producing a robust increase in the BOLD

signal. BOLD imaging is highly sensitive to fluctuations in blood

oxygenation and is thus often used to localize regions of the brain

where blood oxygen saturation changes in response to neural

activity. However, BOLD imaging is limited in two ways. First, it

cannot be interpreted in a quantitative physiological sense, as both

the rate of delivery and rate of consumption of oxygen affect the

magnitude of the BOLD signal and cannot be disentangled by

BOLD imaging alone [4]. Second, the BOLD signal is a change

between two acutely defined states, and so is not directly sensitive

to chronic physiological changes that would affect the baseline

state.

Arterial spin labeling (ASL), an MR imaging technique that

creates contrast by magnetically labeling arterial blood as it enters
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the cerebrovasculature, is a more direct method of imaging

functional hyperemia and in principle overcomes the two

limitations of BOLD imaging noted above [5,6]. Like BOLD

imaging, ASL is non-invasive and sensitive to the fluctuations in

local blood flow that accompany neural activity. However, unlike

BOLD imaging, ASL can provide quantitative information about

the local perfusion in absolute physiological units, including both

the baseline and activated states, making it a potentially highly

useful tool for understanding brain function and cerebrovascular

physiology in health and disease [6,7]. In addition, as a component

of a multi-modal imaging approach including simultaneous BOLD

imaging, ASL may be used to disentangle competing neuronal and

vascular contributions to the BOLD signal, allowing quantitative

measurement of CMRO2 fluctuations [8,9]. However, ASL suffers

from several limitations of its own. Amongst the greatest

limitations of this technique is the intrinsically low signal-to-noise

ratio of the ASL signal, which is largely due to the small amount of

labeled arterial blood that can be delivered during the longitudinal

relaxation time of the blood. To compensate, quantitative

measurements of CBF using ASL are often made with lower

spatial and temporal resolution than standard BOLD-fMRI

studies, and are primarily used to measure baseline blood flow.

Dynamic measurements of blood flow typically require significant

trial averaging over repeated stimuli and spatial averaging over a

selected region of interest [4,10–12].

While such studies provide useful insights into differences in

cerebral perfusion and metabolic requirements between nominal

states of ‘‘control’’ and ‘‘activity’’, the methods they employ can

say little about the role of functional hyperemia in everyday neural

processing. Current methods of quantitatively estimating CBF and

CMRO2 fluctuations associated with more natural neural tasks,

which could include watching a film, listening to music, or simply

lying quietly in the scanner, are inadequate in large part because

the underlying stimulus driving hemodynamic and metabolic

changes cannot be defined, making it difficult to identify and

average measurements corresponding to the same physiological

state. Here we examined the feasibility of estimating fluctuations in

CBF and CMRO2 without a priori knowledge of the temporal

pattern of neural activity by combining the CBF information

contained in simultaneously acquired BOLD and ASL measure-

ments. We hypothesized that because the BOLD signal is strongly

driven by CBF, simultaneous measurement of ASL and BOLD

fluctuations via a combined BOLD-ASL imaging experiment

could be used to model an improved estimate of the ‘‘true’’ CBF

signal even in the presence of significant noise in both the BOLD

and ASL measurements. Further, we hypothesized that under the

conditions of a calibrated BOLD experiment, information about

fluctuations in CMRO2 could also be extracted from the

information contained in the combined BOLD-ASL data.

Importantly, we hypothesized that correction of the CBF signal

could be accomplished without explicit, a priori knowledge of the

stimulus presented, opening up a path towards the quantitative

study of how cerebral blood flow is modulated to meet the

metabolic demands of the neural processing that occurs in

response to natural stimuli or at rest. We call this combination

of BOLD and ASL image data BOLD-Constrained Perfusion

(BCP) estimation to emphasize that our criteria for distinguishing

CBF signal fluctuations from noise is that they be simultaneously

reflected in the BOLD signal.

The outline of this paper is as follows. We begin with a short

theoretical discussion of our motivation for pursuing the BCP

estimation approach, which we illustrate schematically in Figure 1.

We then present empirical results that demonstrate that the BCP

approach can both increase the precision of dynamic CBF

estimates and, under the conditions of a calibrated experiment,

provide information about the coupling of CBF and CMRO2

without a priori knowledge of the stimulus driving neural activity.

In order to be able to validate the results of the BCP analysis, we

analyzed data that were previously acquired and reported as a

calibrated BOLD study [8], using a stimulus with well-understood

temporal characteristics: a simple block-design visual task. Our

rationale for choosing such a simple stimulus was two-fold. First, to

determine whether the influence of noise on the estimated

dynamic CBF time series was decreased by BCP analysis, we

needed to be able to predict with some confidence what the CBF

time series should be in the absence of noise. Second, in order to

be able to verify that we could accurately estimate the coupling of

CBF and CMRO2 we needed to choose an experimental design

for which traditional calibrated BOLD analysis could also be

performed.

Theory

Signal and Noise in Simultaneous BOLD-ASL Imaging
In a dual-echo, simultaneous BOLD-ASL acquisition scheme,

‘‘tag’’ images, in which the magnetization of inflowing arterial

blood is inverted, and ‘‘control’’ images, in which the magneti-

zation of arterial blood is not inverted, are acquired in an

interleaved fashion, typically with an echo-planar or spiral

gradient recalled echo (GRE) readout. The echo time (TE) of

the first echo is chosen to be as short as possible in order to

minimize sensitivity to fluctuations in R�2 decay, while the second

echo is chosen to have a longer TE, so as to maximize BOLD

sensitivity. From the measured time series two new time series are

constructed by surround subtraction and surround addition, in

which the voxel signal at one time point is appropriately combined

(subtracted or added) with the average value of the preceding and

following time points. Surround subtraction of sequential images

acquired at the first echo time produces the ASL time series of

images, in which the intensity of each voxel is weighted by the

local rate of cerebral blood flow. Surround addition of sequential

second echo images produces the BOLD time series of images,

with little CBF weighting but considerable BOLD sensitivity [13].

However, in addition to CBF and blood oxygenation, the

instantaneous magnitudes of the surround subtraction and

surround addition signals, respectively, are sensitive to several

sources of noise. This noise may be attributable to the scanner

itself, to subject motion and cardiac pulsatility, or to instabilities in

the magnetic field due to changes in the size of the thoracic cavity

associated with the breathing cycle. Several methods have been

developed for identifying and removing the signal contributions

from some of these noise sources, in particular, subject motion,

cardiac and respiratory activity, and scanner drifts [14–19]. Often,

one or more of these methods is used to reduce the noise in the

BOLD and ASL signals before quantitative analysis is performed.

However, in general, none of these techniques can perfectly

remove all sources of nuisance signal and no technique can

remove the random thermal noise inherent in every signal. Thus

we must think of our measured BOLD and ASL signals, even after

correction for known sources of noise, as discrete time signals that

are combinations of both ‘‘real’’ signal fluctuations (that are of

interest to us) and noise [13]. We can express this very generically

as

A½t�~f ½t�zeA½t� ð1Þ

BOLD Constrained Perfusion Estimation
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B½t�~b½t�zeB½t� ð2Þ

where A½t� and B½t� are the measured ASL and BOLD signals,

respectively, f ½t� represents a low-pass filtered representation of the

CBF at sample t scaled by a constant related to imaging

parameters and experimental conditions, b½t� represents a low-

pass filtered representation of the instantaneous BOLD signal, and

eA½t� and eB½t� capture the contributions of random thermal noise

and any physiological sources of noise in the ASL and BOLD

signals, that are not completely removed by the methods cited

above. The precision of the CBF and BOLD estimates at each

time point is then determined by the variances of eA½t� and eB½t�,
which may still be significant, especially for the ASL signal.

Relating BOLD Fluctuations to Changes in Cerebral Blood
Flow

Both A½t� and B½t� are driven by the underlying CBF

fluctuations. The former is a direct but noisy reflection of CBF,

and the latter is a more sensitive measurement but related to CBF

in a nonlinear way. The central idea of BOLD-constrained

perfusion (BCP) is to use both signals to make a better estimate of

the underlying CBF fluctuations. To utilize the BOLD signal in

this way requires a mathematical model that links changes in

cerebral blood flow to changes in the BOLD signal. Recently our

group developed a detailed numerical model of the BOLD

response as a function of changes in CMRO2, CBF, and cerebral

blood volume (CBV). The model also includes a number of

baseline physiological parameters (microvascular hematocrit,

venous and capillary blood volume, baseline oxygen extraction

fraction (OEF), etc.) that modulate the magnitude of the BOLD

response [20]. Although the detailed model is not in a tractable

form for the current application, it nevertheless provides a useful

framework for testing the accuracy of much simpler, closed-form

models. Recently we used this approach to develop a relatively

simple model and test its accuracy through many simulations with

the detailed model for different values of the unknown physiolog-

ical parameters [14]. The form of the model is:

b½t�{b0

b0
~M(1{av{l) 1{

f0

f ½t�

� �
~k 1{

f0

f ½t�

� �
ð3Þ

In this equation, the parameter M is a scaling factor that absorbs

many of the physiological factors that simply scale the BOLD

response and depends on the amount of deoxyhemoglobin in the

baseline state as well as parameters of the image acquisition (echo

time and field strength). We have used the symbol M for this

scaling factor in analogy with the Davis model [21], but it should

be noted that analyzing data to determine a value of M will yield a

different numerical value using Equation 3 than using the original

Davis model because of the different mathematical form. The

factor av is the exponent of a power law relationship between the

venous CBV change and the CBF change. The parameter l is the

ratio of the fractional change in CMRO2 to the fractional change

in CBF (e.g., a 20% change in CMRO2 with a 40% change in

CBF would correspond to l= 0.5). Finally, f0 and b0 represent the

magnitude of the CBF and BOLD signal in the baseline state.

We refer to this model as a heuristic model because it clearly

shows the basic anatomy of the BOLD response: it is driven by the

CBF change, but strongly modulated by the baseline state (M), the

venous CBV change (av), and the CMRO2/CBF coupling ratio

(l). In addition, though, our comparison tests with the detailed

model have shown that the heuristic model is reasonably accurate

as well. Previously, the most commonly used closed form model for

the BOLD response was the Davis model, and our comparison

tests have shown that the accuracy of these two simpler models is

similar. However, the particular advantage of the heuristic model

is that all of the unknown parameters that modulate the BOLD

response can be combined into a single factor, k, scaling a simple

nonlinear function of the CBF change. This means that our model

connecting b½t� to the underlying CBF fluctuation requires only a

single parameter to be determined. (In principle, the BCP

approach can be applied using any model that connects the

BOLD response to the CBF change, and the Supporting Section

and shows a similar analysis based on the Davis model. See the

Document S1, Figure S1, and Figure S2 for this analysis).

Figure 1. Schematic of the BOLD-constrained Perfusion (BCP) estimation process. When a cognitive task is presented to a subject, induced
neural activity evokes both a hemodynamic and a metabolic response. ASL imaging captures principally the evoked changes in CBF while BOLD
imaging is sensitive to changes in CBF, CMRO2, and CBV. In addition, both imaging modalities are sensitive to noise of both physiological and
mechanical origin (eA and eB, respectively). The BCP analysis approach is to combine information about CBF fluctuations present in both the BOLD
and ASL signals to improve the estimate of dynamic CBF fluctuations. This is accomplished by fitting the measured data to a cost function (Equation 4
in text) that treats the measured time series as noisy representations of two signals that are linked by a simple mathematical model. The output of
this process is an improved dynamic estimate of CBF fluctuations. Under the conditions of a calibrated BOLD experiment, an additional estimated
parameter of the mathematical model (k) may also provide information about the coupling of CMRO2 and CBF fluctuations (l). ASL: Arterial Spin
Labeling. CBF: Cerebral Blood Flow. CMRO2: Cerebral Metabolic Rate of Oxygen Metabolism. CBV: Cerebral Blood Volume.
doi:10.1371/journal.pone.0054816.g001
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BOLD Constrained Perfusion Estimation
We now propose that the precision of an estimate of the

instantaneous CBF, f̂f ½t� may be improved by assuming that the

expected values of the measured ASL and BOLD signals, E A½t�½ �
and E B½t�½ � are the true underlying CBF and BOLD signals, f ½t�
and b½t�, and that the unknown parameter k of our BOLD model

has a constant value over a window of interest T samples in

length. The values of f̂f ½0�,:::,f̂f ½T{1� and k̂k can then be estimated

by minimizing the cost function

min
f̂f ½t�,k̂k

g f̂f ½t�,k̂k
� �

~

XT{1

t~0

1

s2
eB

B½t�{b̂b½t�
� �2

z
1

s2
eA

A½t�{f̂f ½t�
� �2

 ! ð4Þ

under the constraint that b̂b½t�~k̂k 1{
f0
f̂f ½t�

� �
(Equation 3) at every

time point in the window. In essence, what we are doing here is

finding the values of f̂f ½0�,:::,f̂f ½T{1� and k̂k that best fit the

measured ASL and BOLD signals to Equation 3 given the

assumption that there is noise in both (Figure 1). Note that this is

quite different from performing a simple non-linear regression of

the two signals based on Equation 3, which would implicitly

assume that only one of the signals contained noise and that the

other was noise-free. In the cost function represented by Equation

4, the parameters seA
2 and seB

2 are weighting parameters that

reflect the fact that both measured signals contain noise and

account for the possibility that the noise variance in A½t� may be

different from that of B½t�. In this work we have estimated these

parameters by measuring the variances of the BOLD and ASL

signals in voxels containing cerebral spinal fluid (CSF), which

should have no CBF-related ASL or BOLD signal fluctuations

[17].

Estimating CMRO2-CBF Coupling for Calibrated
Experiments

As stated above, the output of the minimization of Equation 4 is

a time series of CBF estimates, f̂f ½t�, which we hypothesize will

more precisely approximate the time course of true underlying

CBF fluctuations than the time series of ASL measurements A½t�.
In addition, the minimization of Equation 4 yields an estimate of

the parameter k, which links BOLD fluctuations to underlying

changes in CBF. Alone, the value of k̂k yields very little information

of physiological interest. This is because the value of k depends on

three parameters, av, l, and M. However, if the values of M and av

are obtained by other means, then an estimate of k becomes

equivalent to an estimate of l. This is of great physiological

interest as it represents the ratio of CMRO2 changes to CBF

changes throughout the analysis window. For a typical calibrated-

BOLD experiment, the value of av is assumed based on literature

values. Though there is still some disagreement about the

appropriate value to assume for av, the most recent estimates

suggest that it is approximately 0.2 [22]. Because of the

dependence of M on the baseline state, in most cases it must be

measured rather than assumed. The most common method of

estimating M is through a separate calibration experiment during

which simultaneous BOLD and ASL images are acquired while

the subject breaths CO2 enriched air [23]. The underlying

assumption of this experiment is that breathing CO2 increases

blood flow without affecting oxygen metabolism (l= 0), allowing

one to calculate M based on an assumed value of av. Of course, the

accuracy of the value of l estimated by this approach will depend

on the accuracy of the values obtained for av and M. However,

under conditions where these values may be obtained, BCP

analysis may yield an estimate of CMRO2-CBF coupling in

addition to CBF fluctuations.

Potential Sources of Bias in BCP estimates
The BCP approach outlined here relies implicitly on several

assumptions about the nature of both the underlying physiology of

functional hyperemia and the characteristics of the BOLD and

ASL signals that could potentially bias BCP estimates of f ½t� and l.

First, the BCP approach assumes that the CMRO2-CBF coupling

ratio (l) varies slowly enough in time that it can be considered

constant over a window of several or even many time points. If in

reality l varies significantly over a period of time shorter than the

window, the BCP estimates of both l and f ½t� may become less

accurate. Related to this is the assumption that the dynamics of the

CBF, CBV and CMRO2 responses to neural stimuli are tightly

coupled, at least as resolvable at the sampling rate of an ASL

experiment. In reality the coupling of these processes may not be

strictly tight, as analysis of transient features of the BOLD response

have led several investigators to conclude [24–27]. Dynamic

mismatch of these processes would effectively produce transient

fluctuations in the values of l or av in Equation 3, which again is

not currently accounted for in the BCP approach. Finally, the

BCP approach is based on the idea that CBF fluctuations may be

distinguished from noise by the correlated fluctuations they

produce in the ASL and BOLD signals. This implicitly assumes

that noise in the ASL and BOLD signals is not correlated in a

significant way. If correlated noise in the ASL and BOLD signals is

consistent with a similar estimate of k as the physiological

fluctuations in CBF and CMRO2, the correlated fluctuations will

add noise to the BCP estimation, reducing the ability of BCP

estimation to improve the precision of f̂f ½t�. If the correlated noise

leads to a shift in the line defining the BOLD-ASL relationship it

will likely reduce the accuracy of both l̂l and f̂f ½t� as well as their

precisions.

Methods

Ethics Statement
This study was approved by the institutional review board at the

University of California San Diego, and written informed consent

was obtained from all participants.

Imaging
For the empirical component of this work, we reanalyzed the

raw data from a previously published calibrated-BOLD study [8].

Briefly, the study was conducted on 10 healthy adults (mean age

33+/27 years). Simultaneous BOLD and CBF images were

acquired on a GE Excite 3T scanner with a dual-echo arterial spin

labeling (ASL) PICORE QUIPSS II sequence [28] with a spiral

readout. ASL sequence parameters were six 5-mm slices aligned

with the calcarine sulcus, TR 2.5 s, TI1/TI2 600/1500 ms, TE1

2.9 ms, TE2 24 ms, 90u flip angle, FOV 240 mm, matrix 64664.

Functional imaging consisted of two scans during which subjects

performed a visual task and two calibration scans during which

subjects breathed a gas mixture containing 5% CO2. Each visual

task began with 60 seconds of rest followed by four cycles of 20

seconds of stimulus, 60 seconds of rest, and ended with a final 30

seconds of rest. The stimulus consisted of a black and white

checkerboard flickering at 8 Hz while numbers appeared in the

center of the checkerboard. Throughout scanning, cardiac pulse

and respiratory effort data were monitored using a pulse oximeter

BOLD Constrained Perfusion Estimation
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(InVivo) and a respiratory effort transducer (BIOPAC), respec-

tively. A high-resolution anatomical image was also acquired at the

start of each session, using a magnetization prepared 3D fast

spoiled gradient acquisition in the steady-state (FSPGR) sequence

(172 sagittal slices, 1-mm slice thickness, TI 450 ms, TR 7.9 ms,

TE 3.1 ms, 12u flip angle, FOV 25 cm, matrix 2566256).

Preprocessing
The first four images of each ASL scan were excluded from data

analysis to allow the MRI signal to reach steady state. All

functional runs were motion corrected and registered to the first

functional run using AFNI software [29]. The first echo data was

used for the analysis of CBF activity, and the second echo data for

the analysis of BOLD activity. To generate a perfusion-weighted

signal from the raw ASL images at each time point during the

functional scans, the image intensity corresponding to a ‘‘tag’’

image was subtracted voxel-wise from the average intensity of the

surrounding two ‘‘control’’ images. Similarly, at each ‘‘control’’

time point, the image intensity was added voxel-wise to the

negative average of the surrounding two ‘‘tag’’ images. BOLD-

weighted images were obtained by adding the image intensity at

each time point (tag or control) to the average of the intensities in

the two surrounding time points [13].

ROI Selection
ROI selection was performed on the data from the first visual

task using a general linear model (GLM) approach for the analysis

of ASL data [8,16]. A stimulus-related regressor in the GLM was

obtained by convolving the block design stimulus pattern with a

gamma density function [30]. The measured cardiac and

respiratory data were included in the GLM as regressors to

account for the modulation of the ASL signal caused by

physiological fluctuations [15,16] as were regressors related to

variations in heart rate and respiratory volume [19]. A constant

and a linear term were also included as nuisance regressors to

account for scanner drift. Voxels exhibiting CBF or BOLD

activation were detected after correcting for multiple comparisons

using AFNI AlphaSim [29,31] and setting an overall significance

threshold of p = 0.05 for CBF and p = 0.01 for BOLD given a

minimum cluster size of four voxels. For each subject, an active

region of interest (ROI) was defined as those voxels exhibiting both

BOLD and ASL activation. Subjects were excluded from further

analysis if fewer than 50 voxels met these criteria, resulting in the

exclusion of three subjects from further study. Following ROI

selection, data from the first visual task was excluded from further

analysis.

Voxel Scale BCP Analysis
To determine whether BCP estimation could be used to

improve the precision of a dynamic CBF time series, BCP analysis

was conducted on the measured ASL and BOLD time series

obtained from the second visual task on each voxel within the

previously defined ROI. Before performing the BCP analysis,

known sources of physiological noise and linear scanner drifts were

regressed out of the measured CBF- and BOLD-weighted time

series [15,16]. For each voxel, estimates of f0 and b0 were obtained

by averaging the first 20 time points of the measured ASL and

BOLD signals. The relative noise weighting terms s2
A and s2

B were

estimated for each subject by calculating the mean variance of the

measured ASL and BOLD signals (after physiological noise

regression) in voxels with a CSF partial volume greater than

95% as estimated by auto-segmentation of the high resolution

anatomical image with FSL’s FAST image segmentation tool [32].

The value of k that minimized Equation 4 was determined using a

Golden-Section search algorithm [33]. This algorithm is initialized

by bracketing the expected function minimum between two

assumed values (e.g. a and b). Here we assumed that (correspond-

ing to approximately for and ) in order to minimize any a priori

assumptions about its value. A third point (point c) is then chosen

that is intermediate to the bracketing values, forming a triplet of

test solutions (two brackets and an intermediate value). The

minimum of a function is then found by evaluating it at a fourth

point (point d) located 38.197% of the distance between the

intermediate point and the more distant bracket (a fractional

distance called the golden section). If the value of the function at d

is lower than at c, then c becomes a new bracket point and d

becomes the new intermediate value. If the value of the function is

greater at d than at c, then d becomes the new bracket and c

remains intermediate. In this way the distance between the

brackets is reduced until a specified tolerance is reached. Here the

tolerance was set to 0.001. At each test point, Equation 4 was

evaluated by mapping each pair of measurements A½t�,B½t�ð Þ to

the closest point f̂f ½t�,b̂b½t�
� �

on a line defined by Equation 3 and the

current value of k̂k.

To test the effect of voxel-wise BCP estimation, we examined

signal-to-noise improvements by measuring the correlation (r2) of

the BCP-estimated CBF signal f̂f ½t� for each voxel in the active

ROI with the stimulus-related regressor used in the GLM analysis

and comparing it to the correlations of A½t� and B½t� with the same

regressor. In addition, we evaluated the precisions of A½t� and f̂f ½t�
by calculating the standard deviation of each signal during the last

10 seconds of each stimulus, a time period usually assumed to

represent a steady state of elevated CBF, and in the period 12.5–

22.5 seconds after the cessation of each stimulus, a period of time

during the BOLD post-stimulus undershoot. We also assessed

whether BCP estimation introduced any bias in the estimate f̂f ½t�
by comparing the ROI-averaged values of f̂f ½t� and A½t� during the

steady state period of activity and during the BOLD post-stimulus

undershoot period. Because the hypercapnia calibration experi-

ment used lacks sufficient precision to estimate M at the single

voxel scale, we did not attempt to estimate l for individual voxels.

ROI-scale Analysis
BCP analysis was also conducted at the spatial scale of a region

of interest in order to determine the feasibility of estimating the

CMRO2-CBF coupling parameter l with this technique. As

described above, estimation of l is feasible only if M and av are

known. For this study we used the literature value of av = 0.2 for

the CBF-venous CBV coupling constant [22] and an additional

calibration experiment to make an ROI-scale estimate of M for

each subject. To determine M, data from the two hypercapnia

runs was first corrected for fluctuations due to physiological noise

and linear drifts on a voxel-wise basis using a general linear model.

Time series were then averaged across each subject’s ROI and

across the two experiments to produce a single pair of CBF and

BOLD time courses for each subject. Estimates of the baseline

CBF and BOLD signals were obtained from these time courses by

averaging the first 40 data points in the image series. Estimates of

the steady-state response to hypercapnia were obtained by

averaging the last 40 time points recorded while CO2 was being

administered. The scaling parameter M was then calculated for

each subject using the equation

BOLD Constrained Perfusion Estimation
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M~

bCO2
{b0

b0

1{avð Þ 1{
f0

fCO2

� �� � ð5Þ

where bCO2
and fCO2

represent the steady state BOLD and CBF

responses to hypercapnia, av is assumed to be 0.2, and l is

assumed to be zero.

Once values of M were obtained for each subject, the measured

ASL and BOLD signals from the second visual task were corrected

for fluctuations due to physiological noise and scanner drifts and

then averaged-spatially across each subject’s ROI. The value of k

for the average time courses was then estimated for a window the

length of the entire functional run and l was estimated using the

formula l~1{av{
k

M
. For comparison, l was also estimated by a

method more commonly used in calibrated BOLD studies. To

obtain this reference estimate of l, the measured CBF and BOLD

responses of each subject were averaged over the last 10 seconds of

each visual task to produce the average steady-state CBF and

BOLD estimates fvt and bvt. These estimates were then plugged into

the equation

l~1{av{
bvt{b0

M 1{
f0
fvt

� � ð6Þ

To investigate the possibility that l or av fluctuate through the

stimulus cycle, we next divided each subject’s ROI-averaged time

series into four epochs: a transient active period (first 10 sec. of

each stimulus), a steady state active period (last 10 sec. of each

stimulus), a transient inactive period (first 10 sec after each

stimulus) and a BOLD post-stimulus undershoot period (12.5–

22.5 sec after the cessation of each stimulus). We then concate-

nated the data points corresponding to each of these four epochs,

forming four BOLD/CBF time series pairs (per subject), each

containing 16 data points from within a single epoch. We then

used BCP analysis to estimate âavzl̂l~1{ k̂k
M

separately for each

time series pair, under the assumption that systematic changes in l
and/or av would produce systematic differences in their sum from

epoch to epoch.

Results

Voxel Scale BCP Analysis
Application of BCP estimation at the single voxel scale

increased the correlation the CBF signal with the stimulus model

and increased the precision of our estimates of CBF changes

during steady-state active and BOLD-undershoot periods without

introducing any apparent bias. Figure 2a displays a representative

CBF time course from a single voxel after correction for known

sources of physiological noise (blue) and after constraint by BCP

analysis (red). For comparison, a scaled and shifted representation

of the measured BOLD signal is also shown (gray). Black lines

indicate when the visual stimulus was on. Note that the shape of

the constrained CBF signal is similar, though not identical, to the

BOLD signal, but that proper CBF scaling is maintained at the

stimulus peaks. It is also interesting to note that many of the very

large fluctuations in the measured CBF signal that occur between

peaks are also represented (albeit in a less dramatic way) in the

BOLD signal, and are thus attenuated but not eliminated from the

constrained CBF signal. Figure 2b displays the mean correlation

(r2) of single voxel time series from within an ROI with a stimulus-

related regressor. The height of the blue bars represents the mean

r2 of the measured CBF signal after correction for known

physiological noise for each subject. The height of the red bars

represents the mean r2 of the BCP estimated CBF signal. For

comparison, the grey bar represents the mean r2 of the measured

BOLD signal after correction for known physiological noise.

Across subjects, the mean correlation of the BCP estimated CBF

signal with the stimulus related regressor at the single voxel scale

was 0.45+/20.13 (mean +/2 std.). This was significantly higher

than the mean correlation of the measured CBF signal (0.19+/

20.07, p,0.01, pairwise t-test) and the measured BOLD signal

(0.42+/20.12, p = 0.026, pairwise t-test).

In addition to increasing the correlation of the CBF signal with

the stimulus model, BCP estimation increased the precision of

estimated changes in CBF during both the steady-state active and

BOLD post-stimulus undershoot periods. Across subjects, during

the active period, the mean standard deviation of the single voxel

CBF signal as a fraction of the baseline was 0.38+/20.14 for the

measured signal and 0.22+/20.08 for the BCP-estimated signal

(p,0.01 pairwise t-test). Similarly, during the undershoot period,

the mean standard deviation of the single voxel CBF signal was

0.38+/20.12 for the measured CBF signal and 0.14+/20.04 for

the BCP-estimated signal (p,0.01 pairwise t-test). For comparison,

the mean value of seA
was 36+/215% of the baseline ASL signal

or 28+/25 signal units. The mean value of seB
was 0.5% +/

20.2% of the baseline BOLD signal or 56+/218 signal units

across subjects. No bias was observed in the BCP estimated CBF

signals during either the steady-state active period or the post-

stimulus undershoot period. Figure 2c displays the mean change in

CBF as a fraction of baseline CBF signal for each subject during

the active (red) and undershoot (blue) periods for the measured

(horizontal axis) and BCP estimated (vertical axis) CBF signals.

Across subjects the mean change in CBF during the steady-state

active period was 0.46+/20.14 (mean +/2 std.) for the measured

CBF signal and 0.44+/20.15 for the BCP estimated CBF signal

(p = 0.3, pairwise t-test). The mean change in CBF during the

undershoot period was 20.02+/20.11 for the measured CBF

signal and 20.04+/20.08 for the BCP estimated CBF signal

(p = 0.31, pairwise t-test). For the measured BOLD signal, the

mean change across subjects was 0.014+/20.004 (mean +/2 std.)

during the steady-state active period and 20.002+/20.004 (mean

+/2 std.) during the undershoot period.

ROI-scale Analysis
BCP estimation at the ROI level yielded estimates of l in good

agreement with those produced by traditional calibrated BOLD

techniques despite the blind application of the BCP estimation

method to the entire time series. Figure 3 displays the estimates of

l found for each subject by traditional analysis and by BCP

analysis using the heuristic model. Figure 3a displays results from a

single subject (subject 2), demonstrating the difference between

estimating l by traditional calibrated BOLD methods and by BCP

estimation. In traditional calibrated BOLD analysis, BOLD and

CBF measurements collected during a period of steady-state

activity (red circled dots) are averaged together to produce a single

estimate of the change in BOLD and CBF signal associated with

the stimulus (red ‘X’). The location of this point in the CBF-BOLD

plane determines the value of l̂l. In contrast, with BCP analysis, all

(CBF, BOLD) data points from within a chosen time-window, in

this case the length of the entire functional run, are fit to a BOLD-

CBF relationship defined by a BOLD signal model. The value of l̂l
that minimizes Equation 4 determines the CMRO2-CBF coupling

ratio. Figure 3b displays the value of l̂l estimated for each subject

BOLD Constrained Perfusion Estimation
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using the BCP or traditional approach. Across subjects the mean

value of l̂l estimated by BCP analysis of the whole time series was

0.35+/20.14 (mean +/2 std.) and by traditional calibrated

BOLD, 0.36+/20.13 (p = 0.26, paired t-test). Across subjects the

mean scaling parameter M was found to be 0.11+/20.04.

As is shown in Figure 3c, there were not any clear systematic

differences across subjects in the values of l+ av estimated at

different stages of the stimulus cycle. Across subjects, l̂lzâav was

estimated to be 0.57+/20.12 during the transient active period,

0.55+/20.14 during the steady-state period, 0.53+/20.15 during

the transient off period, and 0.59+/20.12 during the post stimulus

undershoot. Not one epoch was found to produce an estimate of

av+l that was significantly different from another across subjects

(p.0.2 for all pairwise t-tests, even without correction for multiple

comparisons).

Discussion

In this study we report a new method of measuring dynamic

CBF fluctuations by combining information obtained through

simultaneous acquisition of ASL and BOLD image time series.

This approach takes advantage of the favorable features of both

time series. The ASL measurement is directly proportional to

CBF, but the low signal to noise ratio makes it difficult to assess

dynamics. The BOLD signal has much better sensitivity, but is

related to the underlying CBF fluctuations in a complicated and

nonlinear way. To simplify this relationship, we incorporated a

recent model of the BOLD effect. The BOLD and ASL signals are

then essentially treated as two independent but noisy windows into

the same underlying physiological process, so that by constraining

the CBF fluctuations to be consistent with the BOLD signal model,

we may substantially decrease the influence of noise on the CBF

time series and increase the precision of CBF estimates.

Importantly, the BOLD constrained perfusion (BCP) estimation

procedure does not require any prior knowledge of the stimulus,

suggesting that the method may be applicable to complex tasks in

addition to conventional block and event-related stimulus designs.

Reducing the Influence of Noise on CBF Estimates and
Time Series Measurements

To test the method we used data from a simple, block-design

visual task for which we believed we could generate a fairly

accurate, a priori model of dynamic CBF fluctuations. We then

compared the correlation of measured and BCP-estimated CBF

time series with the predicted model as a metric for the

improvement in SNR. We found that the value of the BCP

estimated CBF signal was on average more than 200% that of the

measured CBF signal based on ASL alone at the single voxel scale

and that it was comparable to, and even slightly greater than, the

r2 value of the measured BOLD signal, suggesting a substantial

decrease in the influence of noise on the CBF time series. We

noted that the shape of the constrained CBF time series was

similar, though not identical, to that of the measured BOLD time

series. They are not identical because both the BOLD and CBF

signals are assumed to contain some noise, which differentiates

BCP estimation from a simple, non-linear regression analysis.

However, it is not surprising that the estimated CBF is similar to

the measured BOLD, given the higher SNR of the BOLD signal.

In addition, we noted that, interestingly, many of the very large,

inter-stimulus fluctuations in the measured CBF signal were also

present, though to a lesser extent, in the BOLD signal, and were

thus reduced in magnitude but not absent in the constrained CBF

signal. We cannot conclude definitively whether these correlated

fluctuations partly represent real fluctuations in CBF (perhaps

related to opening and closing of eyes between stimuli or ‘‘resting

state’’ activity) or whether they represent correlated noise in the

BOLD and CBF signals. Several features of our image acquisition

and processing protocol, however, reduce the likelihood that these

fluctuations are pure artifacts. First, the CBF and BOLD signals

are acquired from separate spiral readouts, making it unlikely that

Figure 2. BCP estimation improves precision of CBF estimates without inducing estimation bias. A) Representative CBF time series from
a single voxel within the visual cortex before (blue) and after (red) BCP estimation. For comparison, a scaled and shifted version of the measured
BOLD signal is displayed in gray. Black lines indicate when the stimulus (8 Hz flashing checkerboard) was on. B) BCP significantly reduces the
influence of noise on the CBF signal as measured by correlation with a predicted hemodynamic response. Height of the blue bars indicates mean
correlation (r2) for each subject between measured CBF time series (after removal of known sources of physiologic noise) and a predicted CBF time
course based on the convolution of the stimulus paradigm with a hemodynamic response function. Height of the red bars indicates mean correlation
between BCP estimated CBF time series and the same predicted time course. For comparison, grey bars indicate the correlation between the
measured BOLD response (after removal of known sources of physiologic noise) and the predicted time series. Error bars indicate the standard
deviations of the calculated r2 values across the ROI. C) BCP estimation produces no detectable bias in CBF estimates of steady-state activation
response or post-stimulus undershoot response. Scatterplot shows mean CBF responses for each subject during steady-state activation (red) and
undershoot (blue) before (horizontal axis) and after (vertical axis) BCP analysis. No significant difference was observed between pre- and post-BCP
estimates. BCP: BOLD Constrained Perfusion. CBF: Cerebral Blood Flow. ROI: Region of Interest.
doi:10.1371/journal.pone.0054816.g002
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random readout noise or k-space spikes would be correlated across

the two signals. Second, the surround subtraction procedure used

to produce the CBF signal should further reduce the correlation of

its noise with that of the BOLD signal. For example, while rapid

fluctuations in the static tissue signal that are precisely timed with

control images will produce correlated fluctuations in the BOLD

and CBF signals, those that are precisely timed with tag images

will produce anti-correlated fluctuations, and those that last longer

than a tag-control triplet will be preserved in the BOLD but

eliminated from the CBF signal. Still, further work must be done

to investigate the source of these correlated inter-stimulus

fluctuations, and if they prove to be artifacts, to account for them.

We further investigated the effect of BCP analysis on the

precision of the CBF signal by measuring the standard deviation of

CBF measurements taken during a period of presumably steady-

state activity and during the post-stimulus BOLD undershoot.

Again, we found that BCP analysis significantly reduced the

influence of noise on the measurements, reducing the standard

deviation of the measurements by approximately 40% during the

active period and by approximately 60% during the undershoot

period.

We were concerned that despite the improvement in the

precision of our measurement, there might be some bias in the

magnitude of the BCP estimated CBF fluctuations as compared to

the measured ASL signal, which we assume, on average, reflects

the true magnitude of CBF fluctuations. We were particularly

concerned about this possibility because we assume in applying the

BCP estimation approach that the parameters of our BOLD signal

model are fixed throughout the duration of a chosen time window,

which in our analysis encompassed the entire experiment. As

discussed above, despite the simplicity of our experimental design,

the stimulus we chose consisted of several epochs (e.g. rest,

activation, post-stimulus BOLD undershoot, and transitions

between activity and rest) during which several of our BOLD

model parameters (in particular l and possibly av as well) might be

expected to change significantly, and we anticipated that the non-

stationarity of these parameters might bias the BCP estimate of the

CBF signal.

To determine whether bias was significant in the BCP estimated

signal, we averaged CBF measurements taken during the steady-

state period of activity and during the post-stimulus undershoot

period and compared them to average BCP estimates of the same

periods. We found that during the steady-state activity period, the

average BCP estimate was only 1.6% of the baseline signal lower

than the average measurement and that during the undershoot

period the average BCP estimate was only 2.1% lower. Neither of

these differences was statistically significant. While we cannot

conclude definitively from this finding that the BCP estimate is

unbiased or that this finding is applicable to all stimulus

paradigms, we take it as an encouraging sign that the BCP CBF

estimate is reasonably robust despite the potential weakness of the

parameter stationarity assumption. Further experiments will be

important to test this potential limitation of the method.

Estimating CMRO2-CBF Coupling
BCP estimation with the heuristic model yields a set of CBF

estimates as well as an additional parameter estimate, k̂k. We noted

that the value of this parameter alone could not be interpreted in a

physiological sense. However, we hypothesized that if values for

the CBF-CBV coupling parameter, av, and the BOLD model

scaling factor, M, could be obtained, then the value of k̂k could be

used to calculate an estimate of the ratio of fluctuations in

CMRO2 to CBF, l̂l, throughout the analysis window. Because of

Figure 3. Calibrated BCP allows estimation of CMRO2-CBF coupling without prior knowledge of the stimulus paradigm. A)
Representative, ROI-averaged single subject (subject 2) data comparing traditional and BCP approach to estimating l, the ratio of changes in CMRO2

to changes in CBF evoked by a stimulus. In traditional calibrated BOLD analysis, BOLD and CBF measurements collected at time points (TPs) during
which the stimulus response is assumed to be in a steady state (SS). These measurements (red circled dots) are averaged into a single measurement
(red ‘X’). The location of the ‘X’ in the BOLD-CBF plane determines the coupling ratio l. Conversely, calibrated BCP estimation requires no knowledge
of the stimulus pattern. All data points within a time window (here, the length of the experiment) are fit to a cost function (Equation 4 in text) using a
mathematical model (here Equation 3 in text) to link BOLD and CBF fluctuations. The value of l that minimizes the difference between the measured
and estimated BOLD and CBF values given the relative noise (dashed black line) determines the coupling ratio. B) Estimates of l produced by blind
Calibrated BCP analysis agree with those produced by traditional calibrated BOLD analysis. Height of blue bars indicates traditional calibrated BOLD
estimate for each subject. Height of red bars indicates the calibrated BCP estimate for a window the length of the full time series. No significant
difference between the two was detected. C) Epoch-based BCP analysis does not reveal evidence of systematic variation of model parameters with
stimulus cycle. Height of bars indicates the estimated sum of the model parameters av and l during the transient active (gray), steady state active
(blue), transient inactive (white), and BOLD undershoot periods (red). Considerable differences between steady state and undershoot estimates may
be seen in several subjects; however, no systematic differences were detectable across the group. BCP: BOLD Constrained Perfusion. ROI: Region of
Interest. CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral Blood Flow.
doi:10.1371/journal.pone.0054816.g003
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the imprecision of the calibration experiment required to estimate

M, the test of this hypothesis was conducted at the scale of a region

of interest in the visual cortex. To determine whether the blind

application of BCP analysis to the complete time series could

produce an accurate estimate of l, we compared estimates of l
produced by a traditional calibrated BOLD technique to estimates

produced by BCP analysis of the complete time series. We found

that l estimates were highly consistent between the traditional and

BCP estimation techniques, with no significant differences

between the two. We then divided the time series into distinct

epochs in order to look for systematic differences in the sum of l
and av during the steady state active period, the post-stimulus

BOLD undershoot period, and the transition periods as the

stimulus was turned on and off. We looked at the sum of l and av,

rather than l alone, because in transition periods we cannot be

certain that av maintains its steady state value. Across subjects, no

systematic differences in the sum l̂lzâav were found between any

epoch pairs. Again, these findings are encouraging, as they suggest

that potentially divergent CBF and BOLD dynamic transients are

not having a strong biasing effect on our estimates of k; however,

more work will be required to determine conclusively whether the

apparent lack of systematic difference is attributable to an

underlying physiological process or simply to signal noise.

The BOLD Post-stimulus Undershoot
The lack of evidence of systematic bias in the BCP estimates of

CBF and k during the BOLD undershoot period is somewhat

surprising given our current understanding of its etiology. The

origin of the BOLD post-stimulus undershoot has been a topic of

considerable debate for nearly two decades. Several studies have

found the undershoot to be consistent with a slow return to

baseline of CMRO2 compared with CBF [34,35], while others

have found it to be consistent with a slow return of venous blood

volume [36,37] or a post-stimulus CBF undershoot [37]. Transient

uncoupling of CBF and CMRO2 dynamics would result in

changes in l (increased for a slow CMRO2 recovery and

decreased for a CBF undershoot at baseline CMRO2). The model

for the BOLD signal used in the BCP analysis does not include the

possibility of a slow return of blood volume explicitly, so we would

expect this effect to appear as a slow recovery of CMRO2 and a

correspondingly higher value of l (i.e., the basic problem is that

these two potential effects can produce similar BOLD responses).

Each of these potential undershoot mechanisms suggest that k (or

l+av) should be significantly different in the active and undershoot

states, and that as a result, our estimate of CBF in the undershoot

period should be systematically biased if we blindly apply BCP to a

long time series. The reason we do not see this bias may be

because the BOLD and CBF fluctuations in the undershoot period

are relatively small. As Figure 3a demonstrates, CBF-BOLD

contours representing distinct values of l converge at the origin.

As a result, near the origin small deviations in the CBF-BOLD

plane produce large changes in l. Thus in this regime, systematic

errors in the estimated CBF signal due to a biased estimate of k are

likely to be small, especially compared to the random error due to

noise. This has both positive and negative implications for BCP

analysis. On the positive side, it suggests that even large changes in

l during an undershoot should not cause dramatic bias in the CBF

estimates made in that period, as we have seen here. On the

negative side, it suggests that as the magnitude of CBF and BOLD

fluctuations within a window of interest decrease, the precision of

BCP estimates of l should decrease as well.

Potential Applications for BCP Analysis
The two principal findings of this work were (1) that the blind

application of BCP-analysis to voxel scale CBF time series

increased their correlation with the hemodynamic model and

increased the precision of CBF estimates both in periods of steady-

state activity and post-stimulus undershoot without producing

significant estimation bias, and (2) that the blind application of

BCP-analysis to ROI-scale BOLD and CBF data produced an

estimate of the CMRO2-CBF coupling parameter l that was

highly consistent with one produced by traditional, steady-state

calibrated BOLD analysis. These findings are encouraging, as they

suggest that transient fluctuations in our BOLD model parameters

(l and av) may not dramatically bias our estimates of instanta-

neous CBF or CMRO2-CBF coupling over a window of time if the

underlying hemodynamic and metabolic activity is coupled in a

relatively stationary way, as was the case in these experiments. The

findings presented here suggest that BCP analysis may be

immediately useful in the study of the hemodynamic responses

of small regions of interest or even single voxels to simple block-

design stimuli, as a way of improving the precision of CBF

estimates. Similarly, BCP has the potential to be useful in the study

of stimuli that cannot be presented repeatedly or for prolonged

periods, either because they are noxious or produce habituation or

sensitization. BCP analysis could also be potentially applied to the

calibration of the BOLD response by fitting for the parameter k

during a CO2 challenge and calculating M based on the

assumption that l= 0; however, given the CO2 challenge often

lasts several minutes, BCP may not produce a more precise

estimate of M than is achievable with simple temporal averaging.

Looking forward, we hope that BCP analysis will prove to be a

useful tool in the quantitative study of hemodynamic and

metabolic activity associated with more natural neural tasks, such

as watching movies, listening to music, or even rest, tasks that are

difficult to study with traditional calibrated BOLD techniques

because the temporal pattern of CBF and BOLD fluctuations may

not be predicable or replicable with repeated stimuli. To date,

neural tasks of this type have typically been studied in a qualitative

or semi-quantitative manner. Several groups [38,39] have used

BOLD imaging alone to investigate the patterns of neural activity

associated with watching popular films and found significantly

correlated signal fluctuations not just across regions within a single

brain, but across the brains of multiple subjects, suggesting that

such natural stimuli might be used to drive blood flow and oxygen

metabolism fluctuations throughout the brain, allowing many

regions to be studied at once. Similarly, resting state BOLD fMRI

has been used extensively to map the spatial and temporal patterns

of hemodynamic activity that occur when a subject lies quietly in

the MR scanner [40–42]. ASL has also been used for this purpose

[43,44] and the two modalities have even been combined in a

semi-quantitative fashion to demonstrate that the ratio of BOLD

fluctuations to ASL fluctuations at rest is closer to the ratio

associated with a visual task than an iso-metabolic breathing task,

suggesting a metabolic basis for resting state BOLD fluctuations

[45]. The consensus produced by this body of work is that

hemodynamic and metabolic activity in the brain is highly

coordinated even in nominal states of rest. However the

magnitude of this activity, and thus its importance in maintaining

homeostasis, remains poorly understood. If BCP estimation may

be applied to quantitatively measure the CBF and CMRO2

fluctuations associated with natural neural activity, it could

provide important insights into the physiology of complex neural

processing and how it is altered by disease.
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Potential Limitations and Future Work
Despite the promising results of this proof-of-principle exper-

iment, we acknowledge that the results presented here do not

demonstrate conclusively that BCP analysis will prove to be robust

under more general experimental conditions, and more study will

be necessary before BCP analysis is ready to be used to study the

physiology of complex neural processing. A key issue that requires

further study is the sensitivity of the BCP estimation approach to

the dynamics of the BOLD signal. As discussed above, the BOLD

response to neural activity is notable for several transient features

that have been observed in various studies including initial dips

[26], early overshoots [25], and post-stimulus undershoots [24].

While no definitive dynamic BOLD model has yet been described,

both experimental [35,46] and theoretical [27,36,47] analyses

agree that these transient features occur due to differences in the

dynamic responses of CMRO2, CBF, CBV to neural stimuli. This

poses a potential challenge for BCP estimation, as the simplifica-

tions made to the BOLD signal model in order to reduce it to a

function of CBF and a few unknown parameters implicitly requires

the assumption that these physiological variables are dynamically

synchronized, at least over the finite length of a window of time

and within the temporal resolution of our measurements. In this

study we looked for evidence of bias due to this assumption by

comparing the mean responses of measured and BCP estimated

CBF time series both in the active state and during the post-

stimulus undershoot, by comparing estimates of l produced by

blind BCP estimation with those made by traditional calibrated

BOLD analysis, and by comparing BCP estimates of the sum l+av

at different stages of the stimulus cycle. None of these tests revealed

evidence of bias, even during the period of the BOLD post-

stimulus undershoot. This is quite encouraging, however, the lack

of evidence of bias in this study cannot be taken as definitive proof

that BCP analysis is robust to these transients, nor does it

guarantee that BCP analysis will be robust to transient dynamics

under more general experimental conditions. To test this

assumption more rigorously, we are currently working to develop

visual stimuli that continuously drive CBF and CMRO2 in ways

that will allow us to carefully examine how both how the dynamics

and amplitudes of CBF and BOLD fluctuations influence the

accuracy and precision of BCP estimation. A useful tool in

assessing the robustness of BCP analysis under these more general

conditions may be ASL with background suppression. Several

methods of acquiring background suppressed ASL images have

recently been developed [48–50], though they share the common

strategy of reducing noise from the static tissue compartment

through the application of multiple inversion pulses timed to null

the static tissue signal at the time of image acquisition [51]. An

advantage of ASL with background suppression is that it achieves

SNR gains independently of the BOLD effect, which makes it less

vulnerable to the sources of potential bias in BCP analysis. CBF

time series produced by background suppressed ASL may thus

prove to be useful reference functions for determining BCP

estimation bias in future studies.

Conclusions
We have presented here a proof-of-principle demonstration of

the feasibility of improving the precision of dynamic estimates of

CBF by combining information from simultaneously acquired

ASL and BOLD images through a technique we term BOLD

Constrained Perfusion (BCP) estimation. Further, we have shown

that, under the condition that a calibration experiment is

conducted, the BCP approach may be utilized to obtain

quantitative information about the coupling of CMRO2 and

CBF fluctuations. Importantly, we have demonstrated that this

technique may be used without taking into consideration the

temporal dynamics of the stimulus presented, suggesting that it

may be useful in the quantitative study of hemodynamic and

metabolic responses to neural tasks that cannot be easily modeled

temporally. Further studies are required to investigate and if

necessary correct for the sensitivity of the BCP approach to the

dynamics of CMRO2, CBF, and CBV; however, the results

presented in this initial test are quite promising and suggest that,

despite its simplicity, BCP analysis may improve our ability to

estimate CBF and CMRO2 fluctuations under conditions that are

currently challenging to study with traditional calibrated BOLD

techniques.

Supporting Information

Figure S1 Calibrated BCP Estimation with the Davis
model. In this bar chart, the height of blue bars indicates

traditional calibrated BOLD estimate of l, the ratio of evoked

changes in CMRO2 to CBF, for each subject. The height of red

bars indicates the BCP estimate. Dark colored bars represent

estimates based on the Davis model. Light Colored bars represent

estimates based on the heuristic model. No significant differences

between BCP and traditional estimates produced by the same

model were observed. However, a small but significant difference

in the estimates produced by the two models was observed,

regardless of whether BCP or traditional calibrated BOLD

estimation was used. BCP: BOLD Constrained Perfusion. ROI: Region

of Interest. CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral

Blood Flow.

(TIFF)

Figure S2 Danger of attributing physiological signifi-
cance to simultaneously estimated values of l and M. In

the heuristic model (Equation 3 in Text), The CMRO2-CBF

coupling parameter, l, and the scaling parameter, M, may be

lumped into a single parameter, k, when both of their values are

unknown. BCP analysis may then still be used to improve CBF

estimates, although k has no real physiological meaning. In the

Davis model (Equation S1 in Document S1), l and M cannot be

lumped together and must be estimated simultaneously from the

data if both are unknown. However, if estimated in this manner,

their values will still not be interpretable physiologically because

the BOLD-CBF relationship is not uniquely defined. The plot

above illustrates this point, displaying two nearly identical BOLD-

CBF relationships defined by the Davis model for two very

different pairs of l and M. BCP: BOLD Constrained Perfusion.

CMRO2: Cerebral Metabolic Rate of Oxygen. CBF: Cerebral Blood Flow.

(TIFF)

Document S1 Discussion of BCP Analysis with Davis
model. In theory BCP estimation should be applicable to a

variety of mathematical models of the BOLD signal. Here we

repeated our analysis using the Davis model (Equation S1 in

Document S1) instead of the Heuristic model (Equation 3 in the

Text) to constrain the relationship between BOLD and CBF

measurements.

(DOC)
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