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Abstract

Two simple reaction–diffusion systems of partial differential equations and auxiliary conditions governing the
activities of diffusible ligands such as Dpp in anterior–posterior axis of Drosophila wing imaginal discs were pre-
viously formulated and investigated by numerical simulations in [Developmental Cell 2 (2002) 785–796]. System
B focuses on diffusion, reversible binding with receptors and ligand-mediated degradation for a fixed receptor con-
centration uniform in time and space. System C extended this basic but meaningful model to allow for endocytosis,
exocytosis and receptor synthesis and degradation. The present paper provides a mathematical underpinning for the
computational studies of these two systems and some insight gained from our analysis. We will see for instance that
the two boundary value problems governing the steady state for the two systems are identical in form. This result
will enable us to avoid dealing with internalization explicitly when we investigate other complex morphogen activ-
ities such as the effects of (1) feedback and (2) diffusible and non-diffusible molecules competing for ligands and
receptors to inhibit cell signaling and pattern formation. The principal contribution of the present work pertains to
the extension of System C to allow for a ligand flux at the source end. The more general model has many significant
consequences including the removal of a limitation of previous models on ligand synthesis rate for the existence
of steady state behavior. Linear stability of the corresponding steady state behavior is established. While the actual
decay rate of transients is less accessible in this new model, it is possible to obtain tight upper and lower bounds for
the decay rate in terms of the (effective) degradation rate of the receptors and that of the ligand-receptor complexes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Morphogens (ligands) are molecular substances that bind to cell surface receptors and other molecules.
The gradients of different morphogen-receptor concentrations are known to be responsible for cell sig-
naling and patterning of biological tissues during the developmental phase of the biological host. For
a number of morphogen families (including Dpp in the wing imaginal disc of Drosophila fruit flies),
it is well established that the concentration gradients are formed by morphogens that are transported
from a localized production site and bind to cell surface receptors downstream (see references cited in
[7]). Recently, the mechanism of morphogen transport has been re-examined by both theoreticians and
experimentalists, resulting in considerable uncertainty regarding the role of diffusion in transporting mor-
phogens, and other mechanisms being suggested as replacements (e.g., [3,4,6,19] and references in [7]).
The observations against diffusive transport were summarized and addressed in [7] by results from nu-
merical simulations of two mathematical models, designated as Systems B and C, in the form of a system
of partial differential equations and auxiliary conditions (defining an initial-boundary value problem, or
IBVP for short) on ligand and receptor concentrations. The results in [7] show that diffusive models of
morphogen transport can account for much of the data obtained on biological systems including those that
have been used to argue against diffusive transport. When observations and data are correctly interpreted,
they not only fail to rule out diffusive transport, they favor it.

The present paper provides the mathematical underpinning for the case of diffusive transport of mor-
phogens made in [7] including establishing the existence of a unique set of asymptotically stable mor-
phogen concentration gradients if the ligand synthesis rate is less than the receptor-mediated degradation
rate of the ligand-receptor complexes. A remarkable outcome of our analysis of System C shows that the
governing boundary value problem (BVP) for the steady state behavior of this more complete model (that
allows for receptor internalization and renewal) may be reduced to the corresponding BVP for System B
(without receptor internalization and renewal) with the amplitude parameter � and the shape parameter
� in the latter replaced by the corresponding amplitude and shape parameters �� and �� (to be defined
in Sections 3 and 4 of this paper), respectively. As such, the steady state morphogen activities in both
intra- and extracellular space of Drosophila wing discs are adequately represented by System B if we
suitably interpret the degradation and binding rates. It follows that all mathematical developments for
the steady state problem of System B apply effectively verbatim to that of System C, and we will take
advantage of the implication of this mathematical equivalence in a substantive way in Section 3 of this
paper. In addition, the mathematical equivalence of the two systems will enable us to avoid dealing with
internalization explicitly when we investigate other complex morphogen activities such as the effects of
feedback and of competing (non-signaling) molecules such as diffusible Sog and Tsg (which bind with
available receptors and thereby reduce ligand-receptor concentration) and non-diffusible proteoglycans
(which bind with ligand to form non-signaling ligand-nonreceptor complexes and thereby, again, reduce
ligand-receptor concentration).

The principal contribution of the present paper however is to investigate a fundamental significant
extension of System C to allow for a ligand flux at the source end. This simple extension leads to
some very significant results including the removal of the unrealistic limitation on ligand synthesis rate
for the existence of steady state behavior. Linear stability of the corresponding steady state behavior is
established. While the actual decay rate of transients is less accessible in this extended model, it is possible
to obtain useful upper and lower bounds for the decay rate in terms of the (effective) degradation rate of
the receptors and that of the ligand-receptor complexes.
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In reporting the results mentioned above, we will focus on one-dimensional models. As shown in [10],
similar results for higher dimensional models have been obtained by similar developments with some
straightforward technical modifications.

2. A one-dimensional formulation with endocytosis and receptor synthesis

In the one-dimensional model of the morphogen activities along the anterior–posterior axis of a
Drosophila wing imaginal disc with receptor internalization and renewal first formulated in [7], lig-
and molecules (Dpp in our case) are introduced into the extracellular space at a rate VL at the end,
X = 0, the border between the anterior and posterior compartment of the disc. The morphogens diffuse
in extracellular space downstream toward the disc edge X = Xmax according to Fick’s second law. Along
the way, some ligand molecules associate themselves with cell surface bound receptors at the binding
rate KonL(X, T )Rout(X, T ), where L(X, T ) and Rout(X, T ) are, respectively, ligand and (extracellular
space) receptor concentration at time T and location X. The resulting ligand-receptor complexes of con-
centration [LR(X, T )]out are bound to a cell surface membrane just as the receptors. These complexes
in turn dissociate at the rate Koff [LR(X, T )]out. Altogether, we have the partial differential equation (1)
below governing the rate of change of L(X, T ), with Kon and Koff known as the binding rate constant
and dissociation rate constant, respectively. The ligand-receptor complexes are subject to endocytosis,
exocytosis, and degradation modeled by Eqs. (2) and (3) below with

• in and out rate constant Kin and Kout for entering and exiting cell interior resulting in a concentration
of ligand-receptor complexes [LR(X, T )]in in the cell interior, and

• degradation rate constant Kdeg for the intracellular ligand-receptor complexes.

There is also the time evolution of the receptor concentrations in both the intracellular and extra-cellular
space due to the formation, dissociation and degradation of morphogen-receptor complexes, degradation
of receptors not bound to a morphogen, synthesis of new receptors and the movement of receptors in and
out of the cell surface. These activities are captured by Eqs. (4) and (5) where K ′

in and K ′
out are the in

and out rate constants for the receptors and VR and K ′
deg are the synthesis rate and the degradation rate

constant for receptors. Altogether, we have the following five equation model designated as System C
in [7]:

�L

�T
= DL

�2L

�X2 − KonLRout + Koff [LR]out, (1)

�[LR]out

�T
= KonLRout − (Koff + Kin)[LR]out + Kout[LR]in, (2)

�[LR]in

�T
= Kin[LR]out − (Kdeg + Kout)[LR]in, (3)

�Rout

�T
= −KonLRout + Koff [LR]out − K ′

inRout + K ′
outRin, (4)
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and

�Rin

�T
= VR(X, T , [LR]in, Rin) − K ′

degRin + K ′
inRout − K ′

outRin (5)

with (0�X�Xmax, T > 0) as the domain of all the equations except the first equation which holds only
away from the end points (so that 0 < X < Xmax, T > 0). In (1), DL is the diffusion coefficient for the
morphogen in the extracellular space while K ′

in, K
′
out, and K ′

deg for the receptor rate constants in (4) and
(5) correspond to kp, kq and kg , respectively, in [7]. For the possibility of steady state gradients, we will
limit ourselves here to the case of a prescribed VR = VR(X). To simplify analysis, we will focus in some
parts of this paper on a spatially uniform receptor synthesis rate VR(X) = V̄R .

The system of differential equations above is augmented by suitable boundary and initial conditions.
Here, we extend System C of [7] by allowing for a ligand flux at the source end so that we have:

X = 0 : �L

�T
= VL − KonLRout + Koff [LR]out + �DL

�L

�X
, (6)

where VL is synthesis rate of morphogen of the end source at X = 0 and � is a flux coefficient to be
specified. In this study, the ligand synthesis rate is taken to be uniform rate V̄L. The other end point is
assumed to be a morphogen sink so that we have

X = Xmax : L = 0. (7)

Both (6) and (7) hold for all T > 0. Until the onset of morphogens synthesis at T = 0, there were only
unoccupied receptors in both the intracellular and extra-cellular space so that

T = 0 : L = [LR]out = [LR]in = 0, Rout = R̄out(X), Rin = R̄in(X) (8)

for 0�X�Xmax where R̄out(X) and R̄in(X) are the steady state intra- and extra-cellular receptor concen-
tration, respectively. Systems (1)–(8) constitutes an initial-boundary value problem (IBVP) for the five
unknown concentrations L, [LR]out, [LR]in, Rout, and Rin.

To reduce the number of parameters of the problem, let

t = DL

X2
max

T , x = X

Xmax
, VR = V̄Rw(x), (9)

R̄0 = K ′
outV̄R

K ′
degK

′
in

, {v0, �0} = X2
max

DLR̄0
{V̄L, V̄R}, �0 = �Xmax, (10)

{L, [LR]out, [LR]in, Rout, Rin} = R̄0{a, b, c, d, e}, (11)

{f0, g0, j0, k0} = X2
max

DL

{Koff , Kdeg, Kin, Kout}, (12)

{g1, j1, k1, h0} = X2
max

DL

{K ′
deg, K

′
in, K

′
out, KonR̄0}, (13)

with V̄R = VR(X = 0) so that w(0) = 1. For the reference receptor concentration R̄0, we take it to be the
steady state concentration R̄out in the absence of morphogens. For our uniform receptor synthesis rate
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VR(X, T ) = V̄R , we have Rin(X, 0) = V̄R/K ′
deg and R̄out(X) = Rout(X, 0) = (K ′

outV̄R)/(K ′
degK

′
in) = R̄0.

The initial-boundary value problem (IBVP) for the various concentrations can now be re-written in the
following normalized form:

�a

�t
= �2a

�x2 − h0ad + f0b, (14)

�b

�t
= h0ad − (f0 + j0)b + k0c,

�c

�t
= j0b − (k0 + g0)c, (15)

�d

�t
= −h0ad + f0b − j1d + k1e,

�e

�t
= j1g1

k1
w − (k1 + g1)e + j1d (16)

all for t > 0, 0�x�1, except for the first which holds for the open interval 0 < x < 1. Correspondingly,
the boundary conditions become

x = 0 : �a

�t
= �0 − h0ad + f0b + �0

�a

�x
(t > 0), (17)

x = 1 : a = 0 (t > 0) (18)

and the initial conditions

t = 0 : a = b = c = 0, d = 1, e = j1/k1 (0�x�1). (19)

For a prescribed set of rate constants and synthesis rates, numerical solutions for the IBVP above can
be obtained by a number of conventional numerical methods. In this paper, we will be concerned mainly
with the mathematical underpinning for such numerical solutions and qualitative insight gained from our
analysis of the problem.

3. Time-independent solution (�0 = 0)

The first task for the five-component system is to establish the existence, uniqueness and monotonicity
of a steady state morphogen-receptor concentration. More specifically, we consider the case of a non-
negative, time-independent receptor synthesis rate, VR = V̄Rw(x)�0, and a time independent positive
morphogen production rate V̄L > 0 and investigate the condition(s) under which steady state concentration
gradients can be sustained and how the shape of these gradients depends on the biological parameters.
We first summarize briefly in this section the known results for �0 = 0 (System C) reported in [12]. The
remaining sections of this paper will be concerned with the new and more interesting case of �0 > 0.

3.1. Reduction to a boundary value problem for one unknown

We denote by ā(x), b̄(x), etc. the time-independent steady state solution for a(x, t), b(x, t), etc.,
of (14)–(19), respectively. For a time independent solution, we have �( )/�t = 0 so that the governing
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equations reduce to one second order ordinary differential equation (ODE) and four algebraic equations.
We can solve the latter for b̄(x), c̄(x), d̄(x), and ē(x) in terms of ā(x) to get

b̄(x) = �b(x)ā(x)

ā(x) + ��
, c̄(x) = j0b̄(x)

k0 + g0
= �c(x)ā(x)

ā(x) + ��
, (20)

d̄(x) = (j0g0 + f0g0 + f0k0)b̄(x)

(k0 + g0)h0ā(x)
= �d(x)

ā(x) + ��
, (21)

ē(x) = 1

k1 + g1

{
j1g1

k1
w(x) + j1(j0g0 + f0g0 + f0k0)

(k0 + g0)h0ā(x)
b̄(x)

}

= j1g1w(x)

k1(k1 + g1)

{
1 + �e

ā(x) + ��

}
, (22)

with

�� = j1g1(k0f0 + f0g0 + j0g0)

j0g0h0(k1 + g1)
, �b(x) = j1g1(k0 + g0)w(x)

j0g0(k1 + g1)
, (23)

�c(x) = j1g1w(x)

g0(k1 + g1)
, �d(x) = ��w(x), �e = k1

g1
��. (24)

Expressions (20)–(22) can be used to express the ODE from (14) in terms of ā(x) alone:

d2ā

dx2 = g�w(x)ā

ā + ��
= ��w(x)ā

1 + ā/��
, (25)

where

g� ≡ g0�c(0) = j1g1

k1 + g1
, �� = g�

��
= j0g0h0

j0g0 + f0g0 + k0f0
, (26)

since w(0) = 1. Similarly, the boundary conditions can also be expressed in terms of ā(x). For �0 = 0,

we may write them in the form

ā(0) ≡ ā0 = ���0

g� − �0
= �̄���, ā(1) = 0, (27)

where

�̄� = ��

1 − ��
, �� = �0

g�
= V̄L

R̄0K
′
deg,obs

, K ′
deg,obs = K ′

in

K ′
deg + K ′

out
K ′

deg. (28)

Note that K ′
deg,obs is the receptor counterpart of observed degradation rate constant Kdeg,obs = KinKdeg/

(Kdeg + Kout) for ligand-receptor complexes first introduced in [7].
The BVP for ā(x) above is identical in form to the corresponding result for the much simpler System B

(without endocytosis, exocytosis or receptor renewal) obtained in [7,12]. This observation is sufficiently
useful to be summarized as a theorem below:

Theorem 1. For a uniform receptor synthesis rate so that w(x) = 1, the boundary value problem (25)
and (27) for ā is identical in form to the corresponding BVP for System B; only the parameters of the BVP
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are modified (with �� and �� taking the place of the amplitude parameter � and the shape parameter
� = �2).

3.2. Existence, uniqueness and monotonicity

If g� < �0, the expression for ā(0) in (27) implies ā(0) < 0 which is not acceptable. If g� = �0, then
the end condition (g� − �0)ā(0) = ���0 would require ���0 to vanish which is also unacceptable for a
positive morphogen production rate. Hence, we must have g� > �0, i.e., �� < 1, to have a steady state
solution. The requirement is analogous to a corresponding requirement (�= �0/g0 < 1) for System B
observed in [7,12]. The following existence theorem is proved by the monotonicity method of Amman
[1] and Sattinger [17,18] with au(x) = ā0 and a�(x) = 0 as the upper and lower solution, respectively
[10]:

Theorem 2. For g� > �0 so that �� < 1, there exist a unique non-negative (time-independent) steady
state solution for the boundary value problem defined by (25) and (27), given w(x)�0.

The proof of uniqueness is similar to that for the more general case of �0 > 0 in Theorem 6. On the
monotonicity of ā(x) however, we need w(x) > 0 in order for the corresponding proof in Theorem 7
below to apply to the following theorem:

Theorem 3. For g� > �0 and a (normalized) receptor synthesis rate w(x) > 0, the unique non-negative
(time-independent) steady state solution for the boundary value problem (25) and (27) is strictly decreas-
ing in [0, 1].

4. Time independent steady state solution (�0 > 0)

The limitation imposed by the necessary condition of Theorem 2 on the ligand synthesis rate for the
existence of a steady state behavior is not biologically realistic. The restriction may well be caused by
setting �0 = 0 which was in part necessitated by the lack of experimental data on the parameter �0.
The resulting unexpected restriction suggests that we should investigate also the case �0 > 0 to see if
the limitation persists. The results obtained for �0 > 0 constitute the principal contribution of the present
paper.

Since the differential equations are unchanged for �0 > 0, the same reduction in Section 3.1 for the
steady state solution in that case gives again the same second order ODE for ā(x). To simplify our
presentation, we consider only the case of a spatially uniform receptor synthesis rate so that w(x) = 1
and

ā′′ = g�ā

ā + ��
= ����ā

�� + ā
, (29)

where ()′ = d()/dx. Though the absorbing end condition at x = 1 remains unchanged, the previous
Dirichlet condition at x = 0 is now changed to a inhomogeneous “mixed (or leaky)” condition so that we
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have

�0ā
′(0) − g�ā(0)

ā(0) + ��
+ �0 = 0, ā(1) = 0, (30)

where g�, �� and �� have been defined in terms of the various rate constants in (26) and (28).

4.1. Existence theory

Because of the form of the first boundary condition in (30), the monotone method of Amann and
Sattinger is not directly applicable for proving existence of a steady state solution. In this section, we
develop an existence proof using the monotone method as a starting point to obtain the following result:

Theorem 4. For positive values of the parameters �0, g�, ��, and �0, there exists a regular solution
ā(x) > 0 of the BVP (29) and (30) for all x in [0, 1).

Proof. For any a0 > 0, Theorem 2 assures us that the BVP defined by (29) and the Dirichlet conditions
ā(0) = a0 and ā(1) = 0 has a unique, monotone decreasing positive (analytic) solution in 0 < x < 1. Let
s(a0) be the resulting ā′(0); then s(a0) is negative for positive a0 and s(0) = 0 since the corresponding
ā(x) necessarily vanishes throughout [0, 1]. Let B[a0] ≡ �0s(a0) + v0 − g�a0/(�� + a0). Evidently,
we haveB[0] > 0. In the range �̄� = ��/(1 − ��) > 0, then we can complete the proof simply by noting
B[���̄�] = �0s(a0) < 0. Since ā(x) and ā′(x) depend continuously on a0, we have by the intermediate
value theorem that there is a value ā0 for which B[ā0]=0. The solution of the Dirichlet BVP with a0 = ā0
is then a solution of the BVP (29)–(30).

The proof for the complementary range �̄� �0 is slightly more complicated. Let y(x; a0) ≡ �ā/�a0; it
follows from the BVP for ā(x; a0) that y(x; a0) is the solution of the BVP:

y′ = g���y

(�� + ā)2 , y(0) = 1, y(1) = 0.

Evidently, yu(x) = 1 and y�(x) = 0 are, respectively, an upper and lower solution of the problem
above. Hence by the monotonicity method of Amann and Sattinger, there is a unique, nonnegative,
and monotone decreasing solution y(x; a0) for this problem with y′(x; a0) < 0. In particular, we have
y′(0; a0)=�[a′(0; a0)]/�a0 < 0. Hence, B[a0] is a decreasing function of a0. Given B[0] > 0, there exists
some ā0 > 0 for which B[ā0] = 0. Again, the solution of the Dirichlet BVP with a0 = ā0 is a solution of
the BVP (29)–(30). �

Remark 5. Note that the existence proof stipulates no limitation on the ligand synthesis rate relative to
the receptor-mediated degradation rate (or any other limitation for that matter)! It seems reasonable to
ask whether the model with �0 = 0 can adequately characterize the actual morphogen gradients even if
�� < 1 . We will return to this question in the next subsection.

Theorem 6. The non-negative solution of Theorem 4 is unique.

Proof. Suppose there are two solutions ā1(x) and ā2(x). Then a(x) = ā1 − ā2 satisfies the ODE

a′′ = g�ā

(ā1 + ��)(ā2 + ��)
(31)
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(since w(x) = 1) and the end condition a(1) = 0. Because �0 > 0, the other boundary condition at x = 0
is now replaced by

�0a
′(0) = g���a(0)

(ā1 + ��)(ā2 + ��)
.

Upon multiplying the ODE by a(x) and integrate by parts we get after applying the end conditions

g���a2(0)

�0(ā1 + ��)(ā2 + ��)
+

∫ 1

0
(a

′
)2 dx +

∫ 1

0

g���a2

(ā1 + ��)(ā2 + ��)
dx = 0. (32)

Condition (32) requires a(x) ≡ 0 and hence uniqueness. �

Theorem 7. The non-negative solution of Theorem 4 is a monotone decreasing function.

Proof. Suppose there is a local maximum of ā at an interior point x0 with ā′′(x0)�0. At the same time,
we have from (25)

ā′′(x0) = j1g1w(x0)ā(x0)

(k1 + g1)[ā(x0) + ��] �0 (33)

because morphogen concentration has already been shown to be nonnegative and we have w(x0) > 0.
Together they require ā′′(x0) = 0 and therewith ā(x0) = 0 by (33) given w(x) = 1 (though the proof
goes through as long as w(x) > 0). Since ā(x) is non-negative and ā(x0) is a maximum, we must have
ā(x) ≡ 0 which violates the requirement that ā(0) = ā0 > 0 (for �0 > 0).

The ODE (25) requires ā(x) to be continuous and smooth. It follows that the steady state concentration
ā(x) also cannot have a local minimum ā(x0) = 0 at an interior point x0. Otherwise, we would have
ā(x) = 0 for x�x0 and, by the continuity of ā(x) and ā′(x), ā(x) ≡ 0 for 0�x�x0 as well. Hence,
ā(x) must be monotone, and, given the boundary conditions at the two ends, it must be monotone
decreasing. �

4.2. Approximate solution for a low ligand synthesis rate

For a sufficiently small v0, we expect that ā(x0)>�� and a good first approximation a0(x) of the exact
solution is determined by the linear BVP

a′′
0 − �2

�a0 = 0, �2
� = g�

��
= ��

subject to the boundary conditions

�0a
′
0(0) − �2

�a0(0) + v0 = 0, a0(1) = 0.

It is straightforward to obtain the exact solution of this linear BVP:

Theorem 8. For sufficiently small v0, a first approximation solution for ā(x) is given by

a0(x) = v0

�2
�

sinh(��(1 − x))

sinh(��)[1 + �0
��

coth(��)] = ���� sinh(��(1 − x))

sinh(��)[1 + �0
��

coth(�)] , (34)

where �� = v0/g�.
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Remark 9. For relatively high binding rate, the parameter �2
� = g�/�� is generally large compared to

1. Hence, if �0 is O(1) or smaller, the contribution from the flux term is negligible. This observation
provided the basis for the omission of the flux term in Systems B, C and R in [7,12]. The omission is
attractive as it leads to simpler theoretical and computational treatments of the problem. However, it is
possible to deduce from a model that allow for a finite region of morphogen production that the flux
coefficient �0 is approximately Xmax/Xmin = 1/xm for a sufficiently small Xmin (which is typically for a
Drosophila wing disc) [8]. Unless �� is sufficiently large so that �0/�� = (��xm)−1 is negligibly small,
the contribution of the flux term generally may not be negligible. We summarize the observation in the
following corollary:

Corollary 10. If �� = v0/g�>1 so that the approximate solution (34) is applicable, the limiting case
of System C is an adequate characterization of the distributed source model (as well as the aggregated
source model) of [8] provided �0>��.

As a measure of steepness and convexity of the gradient, we let xh be the mid level location of the
ligand-reception concentrations. With b̄(x) and b̄(x) + c̄(x) both proportional to ā(x), xh is specified by
ā(xh) = 1

2 ā(0) and we have from the expressions (34)

sinh(��(1 − xh)) = 1

2
sinh(��), xh = 1 − 1

��
sinh−1

(
1

2
sinh ��

)
. (35)

Corollary 11. At low morphogen synthesis rate, the location of mid level ligand-receptor concentrations,
xh, is given by (35) to a first approximation. It does not depend on the morphogen or receptor synthesis
rate and moves toward the origin as �� → ∞.

For Xmax large (say, relative to the production zone width), it is not difficult to show that the unnor-
malized mid level location Xh is simplified considerably to ln(2)/� where � = ��Xmax is independent of
Xmax.

Another application of the approximate solution (34) to determine indirectly the effects of a diffusive
non-receptor such as Sog on the gradient shape can be found in [14]. A direct determination of the same
effects has been found in [5,13,15] to be much more difficult (by an order of magnitude at least).

4.3. Approximate solution for high Dpp synthesis rates

With all biological parameters other than v0 fixed, it is expected that the maximum steady state free
ligand concentration would increase with v0 (as was the case in the approximate solution found in the
last subsection). We let ā(x) = v0A(x) and write the BVP for ā(x) in terms of A(x):

A′′ − 1

��

A

ε + A
= 0, ε = ��

v0
= 1

���2
�

, A(1) = 0, �0A
′(0) − 1

��

A(0)

ε + A(0)
+ 1 = 0.

For a sufficiently high Dpp synthesis rate V̄L so that 0 < ε>1/��(=g�/v0)>1, we may seek a perturbation
solution of A(x) in 1/�� with its leading term determined by

A′′
0 = 0, �0A

′
0(0) + 1 = 0, (36)
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or

A0(x) = c0 − x

�0
(0�x < 1). (37)

Correspondingly, we have for w(x) = 1

{b̄(x), b̄(x) + c̄(x)} = (	, 	′}ā(x)

�� + ā(x)
∼ (	, 	′}v0A0(x)

�� + v0A0(x)
, (38)

where

	 = K ′
deg,obs

Kdeg,obs
, 	′ = K ′

deg,obs

Kdeg,eff
. (39)

For v0/�0?��, the shape of b̄(x) and b̄(x)+ c̄(x) is sigmoidal, decreasing sharply from O(	, 	′) to nearly
0 over a narrow interval centered at some location xh.

One of the important result of interest is the location of xh in terms of the biological rate parameters
of the problem. For that and other results pertaining the case of high ligand synthesis rate, we need to
find the constant of integration c0 to complete the solution of the BVP. Evidently, it is not appropriate to
apply the second end condition A0(1) = 0 to determine c0 since A0(x) is not large compared to ε near
x = 0. (In fact, it is smaller than ε for x sufficiently close to the end x = 1 to warrant a layer analysis.)
However, for the purpose of locating the sharp front of the b̄(x) gradient, it can be verified that allowing
the use of (37) for the entire domain and applying the end condition on this solution gives the same first
approximation for c0. This approach would give c0 = 1/�0 and therewith

A0(x) = 1

�0
(1 − x), (0�x�1). (40)

Theorem 12. For ��?�0/�2
�, a first approximation solution for the concentration gradients ā(x), b̄(x)

and c̄(x) is given by (40) and (38).

As a condition for determining the location of the sharp gradient front of the receptor bound morphogen
concentrations, we let xh=Xh/Xmax where the ligand-receptor concentrations are exactly half of its level
at the origin. Given (38), this implies

(1 − xh)

�0�� + v0(1 − xh)
= 1

2

1

�0�� + v0
. (41)

Corollary 13. For ��?�0/�2
�, the location of the sharp gradient front of the receptor bound ligand

complexes characterized by the location of mid level (or half peak) concentration is given to a first
approximation by

xh = 1 − �0��

v0 + 2�0��
� 1 − �0��

v0
= 1 − �0

���2
�

= 1 − K ′
deg,obs

KonV̄L

.

Remark 14. Unlike the low ligand synthesis rate case, the mid level location now depends on the
magnitude of the synthesis rate with xh → 1, i.e., Xh → Xmax, as V̄L → ∞, as it should be for this case.
The biological implications of these results are discussed in [14].



A.D. Lander et al. / Journal of Computational and Applied Mathematics 190 (2006) 232–251 243

5. Linear stability for the time-independent steady states

5.1. Perturbation from steady state

Now that the existence of time-independent steady state concentration gradients have been established,
we want to know if they are stable. For a linear stability analysis, we consider

a(x, t) = ā(x) + e−
t â(x), b(x, t) = b̄(x) + e−
t b̂(x), etc. (42)

where ā, b̄, etc., are the steady state concentrations and where the time independent portion of the
perturbations, â, b̂, etc., are negligibly small compared to the corresponding steady state concentration.
After linearization, we have the following eigenvalue problem for the perturbations, â, b̂, etc.:

−
ê=̄ − (k1 + g1)ê + j1d̂, (43)

−
d̂=̄ − h0(d̄â + ād̂) + f0b̂ − j1d̂ + k1ê, (44)

−
ĉ=̄j0b̂ − (k0 + g0)ĉ, (45)

−
b̂ = h0(ād̂ + d̄ â) − (f0 + j0)b̂ + k0ĉ (46)

and

−
â = â′′ − h0(d̄â + ād̂) + f0b̂ (47)

with

−
â(0) = −h0[d̄(0)â(0) + ā(0)d̂(0)] + f0b̂(0) + �0â
′(0), â(1) = 0, (48)

where a prime indicates differentiation with respect to x.
The above system can be reduced to an eigenvalue problem for â alone. We begin by solving the four

relations (43)–(46) to get b̂, ĉ, d̂, and ê in terms of â to obtain

�ê = −j1h0d̄(x) [
2 − 
(g0 + j0 + k0) + j0g0]â, (49)

�d̂ = h0d̄(x)(
 − g1 − k1)[
2 − 
(g0 + j0 + k0) + j0g0]â, (50)

�ĉ = j0h0d̄(x)[
2 − 
(g1 + j1 + k1) + j1g1]â, (51)

�b̂ = −h0d̄(x) (
 − g0 − k0)[
2 − 
(g1 + j1 + k1) + j1g1]â, (52)

where

�(x; 
) = �21(
)�20(
) − f0�21(
)�10(
) − h0ā(x)�20(
)�11(
) (53)

with

�2m(
) = 
2 − (gm + jm + km)
 + jmgm, (m = 0, 1), (54)

�1m(
) = 
 − (gm + km), (m = 0, 1). (55)
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The three relations (45)–(47) can be combined to give −
â = â′′ + 
b̂ + (
 − g0)ĉ. The relations (52)
and (51) are now used to express b̂ and ĉ in the ODE above in terms of â to get

â′′ + {
 − q(x; 
)} â = 0, q(x; 
) = h0d̄(x)

0(
)

�(x; 
)
, (56)


0(
) = �20(
)�21(
). (57)

Similarly, we can also combine the three relations (45), (46) and (48) to write the boundary condition
at the source end as −
â(0) = 
b̂(0) + (
 − g0)ĉ(0) + �0â

′(0). We then use (52) and (51) to eliminate b̂

and ĉ so that the two boundary conditions in (48) are now in terms of â alone:

�0â
′(0) + �(
)â(0) = 0, â(1) = 0 (58)

with

�(
) = 
 − q(0; 
) = 
 − h0��

�� + ā(0)


0(
)

�(0; 
)
. (59)

The special case of the nonlinear eigenvalue problem above with �0 = 0 has already been analyzed in
[12]. We will limit our attention here to the more general and mathematically different case of �0 > 0.

5.2. Positive eigenvalues

In this subsection, we show that the eigenvalues of the ODE (56) and the homogeneous boundary
conditions (58) must be positive. First, we prove that the eigenvalues must be real:

Lemma 15. All the eigenvalues of (56) and (58) are real.

Proof. Suppose 
 is a complex eigenvalue and a
(x) an associated nontrivial eigenfunction, then 
∗ is
also an eigenvalue with eigenfunction a∗


 (x) where ( )* is the complex conjugate of ( ). Integration by
parts and applications of the boundary conditions in (58) give the bilinear relation

∫ 1

0
[(a∗


 )a′′

 − (a∗


 )′′a
] dx = |a
(0)|2
�0

[(
 − 
∗) − {q(0; 
) − q(0; 
∗)}], (60)

which requires

0 =
∫ 1

0
{(
 − 
∗) − [q(x; 
) − q(x; 
∗)]}(a∗


a
) dx

+ |a
(0)|2
�0

{(
 − 
∗) − [q(0; 
) − q(0; 
∗)]}. (61)

It is straightforward to verify

q(x; 
) − q(x; 
∗) = −(
 − 
∗) h0��

�� + ā(x)

G(x; Re(
), |
|2)
|�(x, 
)|2 ≡ −(
 − 
∗)�(x; 
)
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with

G(x; Re(
), |
|2) = f0|�21|2{[Im(
)]2 + [Re(
) − (g0 + k0)]2 + j0k0}
+ h0ā(x)|�20|2{[Im(
)]2 + [Re(
) − (g1 + k1)]2 + j1k1} (62)

being a real quantitative for any 
. In that case, condition (61) becomes

−(
 − 
∗)
{∫ 1

0
a
a

∗

 [1 + �(x; 
)] dx + 1

�0
[1 + �(0; 
)]|a
(0)|2

}
= 0,

where �(x; 
) is positive. Since the integral is positive for any nontrivial function a
(x; 
), we must have

 − 
∗ = 0. Hence, 
 does not have an imaginary part. �

Theorem 16. All eigenvalues of the nonlinear eigenvalue problem (56)–(58) are positive and the
steady state concentration ā(x) is asymptotically stable by a linear stability analysis (and so are the
b̄(x), c̄(x), d̄(x), and ē(x)).

Proof. Suppose 
�0. Let â
(x) be a nontrivial eigenfunction of the homogeneous BVP (56)–(58) for
this non-positive eigenvalue. Multiply (56) by â
 and integrate over the solution domain to get

∫ 1

0
{â
â

′′

 − q(x; 
)(â
)

2} dx = −


∫ 1

0
(â
)

2 dx.

After integration by parts and applications of the homogeneous boundary conditions (58), we obtain




∫ 1

0
(â
)

2 dx =
∫ 1

0
(â′


)
2 dx +

∫ 1

0
q(x; 
)(â
)

2 dx − 1

�0
(â
(0))2[
 − q(0; 
)]. (63)

Suppose 
 is not positive so that 
 = −|
|�0, we have for m = 0, 1

�2m(−|
|) = |
|2 + (gm + jm + km)|
| + jmgm > 0, (64)

�1m(−|
|) = −[|
| + (gm + km)] < 0, (65)

�(x; −|
|) = �21(−|
|)�20(−|
|) − f0�10(−|
|)�21(−|
|)
− h0ā(x)�11(−|
|)�20(−|
|) > 0, (66)

q(x; −|
|) = h0��

�� + ā(x)

�21(−|
|)�20(−|
|)
�(x; −|
|) > 0, (67)

−|
| − q(0; −|
|) = −
{
|
| + h0��

�� + ā(0)

�21(−|
|)�20(−|
|)
�(x; −|
|)

}
< 0. (68)

For any nontrivial solution of the eigenvalue problem under the assumption 
�0, the right-hand side of
(63) is positive while the left-hand side is non-positive. The contradiction means that the eigenvalues of
(56)–(58) must be positive. �



246 A.D. Lander et al. / Journal of Computational and Applied Mathematics 190 (2006) 232–251

6. The decay rate of the transients

While knowing the eigenvalues being positive is sufficient to ensure linear stability of the steady state
morphogen concentration gradients, it is also important to know the dependence of the eigenvalues on
the biological parameters to gain more insight to the time needed to get to steady state. In particular, the
magnitude of the smallest eigenvalue would give us the approximate decay rate of the transient behavior
of the system (such as how quickly the system returns to the steady state after a small perturbation). As we
compute the time evolution of free and bound morphogen concentrations from their initial conditions, the
same decay rate also gives us an estimate of the time it takes for the system to reach steady state starting
from its initial configuration. This estimate will offer a reality check for the mathematical model. The
system would not be an appropriate representation of the Drosophila wing disc development if it should
take too long (or too short) a time to reach steady state. In this section, we will obtain some upper and
lower bounds for the smallest eigenvalue of (56)–(58) to give some quantitative estimate and qualitative
insight to the decay rate in terms of the biological parameters of the problem.

6.1. Approximate decay rate

For sufficiently low ligand synthesis rate, we expect free ligand concentration to be low so that â(x)>��.
In that case, we have as a good first approximation solution {a0(x), 
(0)} of the eigen-pair determined by
the ODE and boundary conditions (56)–(59) with ā(x) terms omitted compared to ��. This results in the
following simpler eigenvalue problem:

a′′
0 + [
(0) − q0(


(0))]a0 = 0 (0 < x < 1), (69)

�0a
′
0(0) + [
(0) − q0(


(0))]a0(0) = 0, a0(1) = 0, (70)

with

q0(

(0)) = �20(


(0))�21(

(0))

�21(
(0))[�20(
(0)) − f0�10(
(0))] . (71)

The exact solution for the eigenvalue problem (69)–(70) is

a0(x) = c0 sin(�(1 − x)), �2 = 
(0) − q0(

(0)) = �(
(0)) (72)

and 
(0) is a root of

�0 = � tan(�) (73)

(given that � = 0 is not an admissible solution since it leads to a trivial solution for a0(x)). We will be
interested in the smallest positive solution �1 of (73). Observe that �1 (as well as any other solution of
(73)) depends on �0 only and no other parameters of the problem with �1 → �/2 from below as �0 → ∞.

By Lemma 17 in the next section, we know that 
(0) is an increasing function of �2 (and conversely �2

is an increasing function of 
(0)). Hence, the slowest decay rate of the transients is given (approximately)
by the smallest positive 
(0), denoted by 
(0)

s , that satisfies (73) with �(
(0)) = �1 (see (72)). In other
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words, 
(0)
s is the smallest root of


(0) − �20(

(0))�21(


(0))

�21(
(0))[�20(
(0)) − f0�10(
(0))] = �2
1, (74)

where �1 is the smallest root of (73) with �1 ��/2. For a prescribed value of �0, we find �2
1 from (73)

and then solve (74) for the smallest root. The latter amounts to finding the smallest root of a fifth degree
polynomial. Both have been done numerically and found to be in excellent agreement with the time
needed for the solution of the original IBVP to evolve to steady state obtained by integrating the IBVP
numerically as described in [7].

6.2. Bounds for the smallest eigenvalue 
s

Suppose 
s is the smallest eigenvalue of the eigenvalue problem (56) and (58). When ligand synthesis
rate is not low, it is still possible (but tedious) to obtain an accurate approximate solution for 
s by
numerical methods. In this subsection, we will obtain upper and lower bounds for 
s to gain some insight
on how the decay rate of transients depends on morphogen activity parameters. Let

�s = 
s − h0��

�� + ā(0)

�21(
s)�20(
s)

�(0; 
s)
≡ �(
s), (75)

where �(
) is given by (59). (Unlike the solution process for 
(0)
s where we determine �2

1 separately from
(73), we do not know �s here and therefore cannot solve (75) for 
s .) The function �(
) has four (generally
simple) poles which are the four positive roots of

�(0; 
) = �21(
)�20(
) − f0�21(
)�11(
) − h0ā(0)�20(
)�10(
) = 0.

Let 
c be the smaller of the four poles. It is straightforward to prove the following two key lemmas:

Lemma 17. �(
) as given by (59) is a monotone increasing function of 
 in 0�
 < 
c where 
c is the
smallest root of �(0; 
), i.e., the smallest pole of �(
).

Proof. We compute d�/d
 to obtain

d�

d

= 1 + h0��

�� + ā(0)

Z(
)

[�(0; 
)]2 (76)

with

Z(
) = f0[�21(
)]2[(
 − g0 − k0)
2 + j0k0]

+ h0ā(0)[�20(
)]2[(
 − g1 − k1)
2 + j1k1] > 0 (77)

showing that d�/d
 is positive. �
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Lemma 18. �(
) > 0.

Proof. By the first mean value theorem for integrals of [16], there exists some �= �(
) in (0,1) for which
(63) can be written as

��(
) ≡ 
 − q(�; 
) =
∫ 1

0
(â′


)
2 dx − 1

�0
(â
(0))2�(
), (78)

where we have normalized the eigenfunction so that the integral of (â′

)

2 over [0,1] is unity. Upon writing
(78) as

��(
) + 1

�0
(â
(0))2�(
) =

∫ 1

0
(â′


)
2 dx, (79)

and observing q(�; 
)�q(0; 
) so that

��(
)��(
) = �0(
), (80)

�(
) must be positive for the left-hand side of (79) to be positive. �

The following lemma helps to narrow down the range of 
s :

Lemma 19. 0 < 
s < 
c.

Proof. Since �(0) < 0 and �(
) ↑ ∞ as 
 ↑ 
c, there is a unique value of 
 in (0, 
c) for which �(
) = �s

for any �s > 0. Hence, we have 0 < 
s < 
c for the smallest eigenvalue 
s since we know that �(
s) must
be positive. �

Lemma 19 above settles the existence and uniqueness of a positive 
s . With the help of Lemma 17, we
can obtain a better lower bound for 
s . Let 
20 and 
21 be the smaller of the two roots of �20(
) = 0 and
�21(
) = 0, respectively, with{

�2m


2m

}
= 1

2

{
�m ±

√
�2
m − 4jmgm

}
, �m = jm + gm + km (81)

for m = 0 and 1. For the wing disc problem, we have {jm, gm, km} < 1 so that{

20

21

}
≈

{
j0g0/�0
j0g0/�0

}
=

{
Kdeg,eff
K ′

deg,eff

}
≡

{
g0,eff
g1,eff

}
(82)

with

Kdeg,eff = Kdeg

1 + (Kout + Kdeg)/Kin
= Kin

Kin + Kout + Kdeg
Kdeg (83)

and K ′
deg,eff similarly defined. We have the following lower bound on the decay rate for the case

min{
20, 
21} < �s most relevant to the Dpp gradients in the Drosophila wing disc:

Theorem 20. If min{
20, 
21} < �s , we have 
s > min{
20, 
21} and hence min{
20, 
21} < 
s < 
c.
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Proof. The lower bound on 
s is a direct consequence of Lemma 17 given �(0) < 0 and 0 < �(
2k) =

2k < �s , k = 0 or 1. �

Remark 21. It should be noted that 
20 and 
21 depend only on the normalized in, out and degradation
rate constants of receptors and ligand receptor complexes (and thus on the diffusion coefficient DL and
Xmax as well). It follows that the lower bound for the slowest possible decay rate does not depend on the
synthesis rate of either ligands or receptors. Furthermore, 
20 and 
21 are identical to the approximate 
s

obtained for System C (�0 = 0) in [12] for the same parameter range. It appears then that the decay rate
of transients is not significantly affected by the dimensionless flux rate coefficient �0.

In the complementary range (�(0) < 0 <) �s < min{
20, 
21}, we have �(�s) < �s and �(
2m)=
2m > �s

which gives the following consequence of Lemmas 17 and 19:

Theorem 22. For the range �s < min{
20, 
21}, we have 
� ≡ �s < 
s < min{
c, 
20, 
21}.

7. Conclusion

In this paper, we formulated a new model for the essential morphogen activities along the
anterior–posterior axis of the wing imaginal disc of Drosophilas. The model allows for diffusion, re-
versible binding with receptors, internalization, receptor mediated degradation, and receptor renewal. As
such it contains System C of [7] as a special case when we do not permit ligand flux at the source end.
Section 3 provided the mathematical underpinning for the computational studies of System C in [7]. One
remarkable outcome for the steady state problem is that the relevant BVP has the same mathematical
form as that for the simpler System B (without internalization or receptor renewal) with the degradation
rate constant, Kdeg, and effective binding rate constant, K∗

on =�DL/X2
max, of the latter being replaced by

the corresponding observed rate constants, Kdeg,obs (see note following (28)) and K∗
on,obs =��DL/X2

max.
In Section 3.1, we substantiated this result first reported in [7]. It follows that the proof for the existence
of a unique steady state of the free ligand concentration for System B in [10,12] may be used verbatim
to prove a similar result for System C (sketched in Subsection 3.2). The same observation also allows us
to avoid dealing with endo- and exocytosis explicitly as separate biological processes when we extend
the model to investigate additional morphogen activities such as the effects of inhibitors and feedback
mechanisms.

The principal contribution of the present paper is on the extended model allowing for ligand flux at the
source end. The simple change from �0 = 0 to �0 > 0 in the end condition at x = 0 not only necessitated a
different proof of existence (as the theorem of Sattinger in [17] does not apply directly) but also led to some
fundamentally different characterization of the morphogen activities. For instance, there is no longer any
limitation on the ligand synthesis rate for the existence of steady state behavior. A perturbation analysis
for low morphogen synthesis rates enabled us to delineate the limitation of System C for modeling the
morphogen activities of interest. Approximate analytic solutions for both low and high ligand synthesis
rates have been applied to offer insight to issues of interest to the community of developmental biologists
[9,14].

Linear stability of the steady state behavior was established for the extended system. While the decay
rate of the transients (given by the smallest eigenvalue 
s from the stability analysis) for System C was
reduced to finding the smallest root of a fifth degree polynomial [12], the problem is much less tractable for
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�0 > 0. However, useful upper and lower bounds were obtained for 
s of the extended (aggregated source)
model and the values for the lower bound for different parameter ranges were found to be the same as the
approximate decay rate of System C obtained in [12]. The simple expression for the lower bound shows
that the (slowest) decay rate does not depend on the synthesis rate of ligands or receptors. Furthermore,
by comparing the lower bound to that for System C, it appears that the decay rate of transients is not
significantly affected by the dimensionless flux rate coefficient �0.

Two- and three-dimensional versions of Systems B and C that allow for diffusion in the ventral-dorsal
direction and the apical-basal direction of the Dpp activities in wing discs have been formulated and
investigated by both analytical and computational methods [10]. Similar higher dimensional studies can
be carried out for the aggregated source model treated herein. However, the important issues pertaining to
steady state behavior and decay rate of transients (and the related time to steady state) have already been
successfully addressed by results of our one-dimensional model. In addition, the analytical results on the
gradient shapes have already found applications in actual biological issues and phenomena including (1)
an explanation (see [9]) of the opposite effects resulting from over-expression of different receptors in
Drosophila wing imaginal discs observed experimentally in [11,2], (2) an indirect determination of the
effects of a diffusive non-receptor such as Sog on the gradient shape (see [13,14]).
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