
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Grid Logging: Best Practices Guide

Permalink
https://escholarship.org/uc/item/1jz4k8hd

Author
Tierney, Brian L

Publication Date
2008-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jz4k8hd
https://escholarship.org
http://www.cdlib.org/

 1

Revision date: March 1, 2008

Grid Logging: Best Practices Guide
Brian Tierney, Dan Gunter: Lawrence Berkeley National Lab

Laura Pearlman: ISI

current version can be found at:
http://www.cedps.net/index.php/LoggingBestPractices

Introduction
The purpose of this document is to help developers of Grid middleware and application
software generate log files that will be useful to Grid administrators, users, developers
and Grid middleware itself. Currently, most of the currently generated log files are only
useful to the author of the program. Good logging practices are instrumental to
performance analysis, problem diagnosis, and security auditing tasks such as incident
tracing and damage assessment.
This document does not discuss the issue of a logging API. It is assumed that a standard
log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom
logging API or even printf could be used. The key point is that the logs must contain the
required information in the required format.
At a high level of abstraction, the best practices for Grid logging are:

• Consistently structured, typed, log events
• A standard high-resolution timestamp
• Use of logging levels and categories to separate logs by detail and purpose.
• Consistent use of global and local identifiers.
• Use of some regular, newline-delimited ASCII text format

The rest of this document describes each of these recommendations in detail.

Log event model

Discussion

Common practice is to model logged events as (natural language) sentences. We wish to
define an alternate model that can be used for the subset of log messages most useful for
automated analysis – entry and exit from regions, success and failure of important
operations, etc. – and that will be far easier to deal with programmatically.
This section studiously avoids mentioning the actual concrete representation of logged
events following this model. Later sections will define some general log conventions, and
also provide a full implementation of the model.

 2

Base model

Each log event consists of:
• an event name, which defines the event type
• a set of attributes and values

o the set of attributes are determined by the type
o the values are not explicitly typed

Database aficionados might notice that this definition corresponds closely with the
relational model's definition of an n-tuple and its concrete cousin, a row in a database
table: the "type" corresponds to the table name, the attribute names to the column names,
and the values to (of course) the values.

Extension for start and end events

Log events are associated with program activities, such as "reading data from disk" or
"authorizing a user". Our model distinguishes between log events that encompass all of
an activity, and those that are at the start or at the end of the activity. If they are at the
start or end, logged events should explicitly record this in the event name. For example,
"disk.read.start" and "disk.read.end". By not indicating whether a log event is at the start
or the end, the implication is that the activity already occurred, but that the start of the
activity could not be (easily) logged, and that therefore this event is the only one
available. Thus, we extend the base model:

• base: an event name, which defines the event type
• extended: an event name, which defines the event type and whether the event is at

the start or end of the associated activity, or after an activity with an unknown
start

We recommend that if an activity is going to be logged at all, where possible both the
start and the end of the activity should be logged; failures being just another kind of
"end" of an activity. This makes it particularly easy to isolate stalls and failures in a given
workflow.

Log event representation

Discussion

This document does not proscribe a particular log format. However, it does assume that
log messages must meet some basic practical requirements:

• human "readable" in a terminal or text editor
• directly compatible with syslog and grep

These requirements, in our view, are fundamental and rule out "binary" formats. More
precisely, log event representations should:

 3

• use 7-bit ASCII characters only
• use newlines (ASCII 0x0A, "\n") as the log event delimiter
• use English names and decimal numbers

There are some common elements whose representation is also worth standardizing at
this point: event type names, timestamps, and the reserved attribute names.

Event names

The name of the event defines an event type. To avoid name clashes when logs from
independent programs are combined, the event name should be in a namespace that is
unique to the generating program. This namespace should be hierarchical, from general to
specific, and we recommend its prefix be based on DNS. For example, for a read from
disk in the program "foo" belonging to "my.company.org", good start and end event
names might be: org.company.my.foo.disk.read.start and
org.company.my.foo.disk.read.end.
Examples
Some example event names include:

• org.globus.gridFTP.start
• org.globus.gridFTP.authn.x509.start
• org.globus.gridFTP.authn.x509.end
• org.globus.gridFTP.transfer.start
• org.globus.gridFTP.transfer.end
• org.globus.gridFTP.end

Attributes

Only two attributes are required: the name of the event, and a timestamp.

Timestamp representation

We recommend a timestamp representation that is a highly readable variant of the
ISO8601 time standard [1]:
 YYYY-MM-DDTHH:MM:SS.SSSSSSZ
For example: 2000-10-26T08:34:26.30323Z. The “Z” at the end signifies “UTC”, and is
highly recommended, although +/- offset from GMT is also allowed in place of the “Z”.
Microsecond timestamp resolution, where possible, is highly recommended. It's easy to
ignore extra digits but very hard to add them later.
Other Attributes
Attribute names, in general, do not need to be hierarchical like event names; they
implicitly within a namespace defined by that event name. We have found it useful to
define some common attributes that are the same across all log events:

• level – logging level

 4

• status – integer status code, for example 0 for success and -1 for failure
• guid – global unique identifier, see §Log event identifiers, below
• prog – program name
• DN – X.509 distinguished name
• msg – error/status message string

Examples
While we do not proscribe a particular log format, we have found that using a set of self-
describing values formatted as name-value pairs is useful and easy to parse. For this
remainder of this document we use this format for sample logs.
For example:
ts=2006-12-08T18:39:19.372375Z org.my.TBS.job.submit.start jobId=37900
ts=2006-12-08T18:39:23.114369Z org.my.TBS.job.submit.end jobId=37900

 status=0

The addition of log file grammar such as the name-value pair structure encourages more
regular and normalized representations than natural language sentences commonly found
in ad-hoc logs. For example the equivalent of:
error: read from socket on foobar.org:1234, remote host baz.org:4321
returned -1

could instead be:
ts=2006-12-08T18:48:27.598448Z event=org.my.myapp.socket.read.end
level=ERROR status=-1 host=foobar.org:1234 peer=baz.org:4321

For the name part of each name-value pair, we suggest adopting the Java method naming
convention of a lowercase first word, and capitalized letter on each successive word, also
known as lowerCamelCase.

Log event identifiers

Discussion

It is crucial in a Grid logging environment to be able to associate distributed events.
Therefore all logging events related a particular program or thread instantiation must
contain global identifier that relates it to other log events in the enclosing scope (even if
this is the only event in that scope). Unlike event names, these identifiers indicate which
particular instance of the containing task is logging the event, and effort should be made
to guarantee that they are indeed unique to that instance.
We recommend using the standard "globally unique identifier" (guid) for this. Rules for
constructing a guid are given by RFC4122[3], and implemented by several freely
available libraries and the uuidgen program (a standard utility on Windows and Unix).
Guid's should be encoded in the string representation given by RFC4122, e.g.
"5006F942-B782-4D86-9E66-63EB03269FD0". For situations where it is important to

 5

have a smaller identifier, one can optionally use a local identifier such as a request or
transaction number.
Ideally all components from the entire workflow would use the same guid, but since is
may be difficult to pass this ID between the various components, just using a unique ID
with a given component on a give host is allowed.
Due to the verbosity of this approach, it is reasonable to not include such identifiers in
every message at DEBUG and TRACE logging levels. However, thought should be given
as to how these events can be associated with other events that do have unique identifiers,
so they can be added post-hoc if needed.

Logging guidance

Service initiation, configuration and termination

Whenever a service starts up or a service request thread is launched, this should be
logged. If the service can be configured, this message must contain a reference to the
service configuration used. The termination message should include a status or
termination message or code.

Errors

All errors that cause a component to exit must be logged.

Remote Connections

When a log message pertains to an attempted connection to/from a remote service, the
log should contain the IP address and port number. This is particularly important for
tracking down firewall issues.

Authentication and Authorization Logging

One of the most common types of errors related to Grid computing have to do with
authentication and authorization problems. Therefore these are some of the most
important log events, and should contain as much information as possible. As with all
other operations, both authn.start and authn.end should be logged, with errors included in
the authn.end event.
Authorization log entries should include the standard log info plus:

• the authentication method
• the claimed identity (if available)
• a reason code that describes the reason for the authentication error. It may make

sense to define different reason codes for different authentication methods – for
example, standard X.509 authentication may have reasons like “certificate
expired” or “certificate issued by untrusted CA”, while username/password
authentication may have reasons like “unknown user” or “bad password”.

 6

• An optional text string with more information.
For example:

ts=2006-12-08T18:39:23.114369Z event=org.globus.authn.x509.start
DN=”/O=CEDS/CN=Some User” guid=E8500036-4EBE-4D39-95BB-
0AC8DDE66903

Success:
ts=2006-12-08T18:39:23.114369Z event=org.globus.authn.x509.end

DN=”/O=CEDS/CN=Some User” guid=E8500036-4EBE-4D39-95BB-
0AC8DDE66903 status=0

Fail:
ts=2006-12-08T18:39:23.114369Z event=org.globus.authn.x509.end

status=-1 DN=”/O=CEDS/CN=Some User” reason=”untrusted CA”
msg=”Certificate Authority ‘/O=CEDS/CN=Certificate Authority’ is
not a trusted certificate authority” guid=E8500036-4EBE-4D39-
95BB-0AC8DDE66903 level=ERROR

Authentication errors – that is, errors in the authentication system itself-- should always
be logged. These log entries should contain essentially the same attributes as
authentication failures, but they should probably be logged at a higher priority than
authentication failures because they may indicate a problem that needs immediate
attention. For example:

ts=2006-12-08T18:39:23.114369Z event=org.globus.authn.x509.end
level=CRITICAL DN=”/O=CEDS/CN=Some User” msg=”Cannot open CA
certificate file” file=/etc/grid-security/certificates/4a6cd8b1.0
guid=E8500036-4EBE-4D39-95BB-0AC8DDE66903 status=-1

Authorization Events:
Authorization policies sometimes involve a combination of authorization methods; for
example, “allow anyone to do operation X if they are in the gridmap file or if they are in
group G as authorized by a VOMS server, but not if they’re not listed in the local
blacklist”. Each of these authorization steps should be logged, along with the following
information:

• the remote identity
• the authorization mechanism (gridmap, “none”, contacting a remote authorization

server, etc.)
• any mechanism-specific attributes

For example:
ts=2006-12-08T18:39:23.114369Z event=org.globus.authz.gridmap.start

DN=”/O=CEDS/CN=Some User” guid=E8500036-4EBE-4D39-95BB-0AC8DDE66903
ts=2006-12-08T18:39:23.114369Z event=org.globus.authz.gridmap.end

DN=”/O=CEDS/CN=Some User” status=100 guid=E8500036-4EBE-4D39-95BB-
0AC8DDE66903

ts=2006-12-08T18:39:23.114369Z event=org.globus.authz.VOMS.start

DN=”/O=CEDS/CN=Some User” operation=runJob guid=E8500036-4EBE-4D39-
95BB-0AC8DDE66903

 7

ts=2006-12-08T18:39:23.114369Z gatekeeper.authz.VOMS.end
DN=”/O=CEDS/CN=Some User” status=0 guid=E8500036-4EBE-4D39-95BB-
0AC8DDE66903

ts=2006-12-08T18:39:23.114369Z

event=org.globus.authz.localBlackList.start guid=E8500036-4EBE-4D39-
95BB-0AC8DDE66903 DN=”/O=CEDS/CN=Some User”

ts=2006-12-08T18:39:23.114369Z
event=org.globus.authz.localBlackList.end guid=E8500036-4EBE-4D39-
95BB-0AC8DDE66903 DN=”/O=CEDS/CN=Some User” status=0

Authorization Errors
Authorization errors should include the following:

• the remote identity
• the authorization mechanism (gridmap, contacting a remote authorization server,

etc.)
• any mechanism-specific attributes

For example:
ts=2006-12-08T18:39:23.114369Z event=org.globus.authz.VOMS.end status=-

1 level=CRITICAL DN=”/O=CEDS/CN=Some User” msg=”VOMS service
unreachable” guid=F7D64975-069A-4152-A21F-57109AA46DFA

ts=2006-12-08T18:39:23.114369Z event=org.globus.authz.gridmap.error

status=-1 level=CRITICAL DN=”/O=CEDS/CN=Some User” msg=”Cannot open
gridmap file for reading” file=/etc/grid-security/grid-mapfile
guid=F7D64975-069A-4152-A21F-57109AA46DFA

Acknowledgements
This work was supported in part by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under contract number DE-AC02-
05CH11231.

References

1. ISO-8601, “Data Elements and Interchange Formats - Information Exchange -
Representation of Dates and Times”, International Organization for
Standardization, 1888 http://www.iso.ch/markete/8601.pdf

2. Dan Gunter, James Magowan. “An analysis of “Top N” Event Descriptions”,
GGF Informational document: GFD-I.025

3. P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID)
URN Namespace”, RFC-4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

4. C. Lonvick, “The BSD Syslog Protocol”, IETF RFC3164,
http://www.ietf.org/rfc/rfc3164.txt

 8

Appendix A. Log event representation (full)

Discussion

In our own work, and examples throughout this text, we use a name=value pair format for
log events. For example:
 ts=2006-12-08T18:39:19.372375Z event=org.my.sample.event value=0

As of this writing, this format is integrated into the Globus Project codebase and will be
on by default in the GT 4.2 release.

Grammar
log = <nvp>*
line = <ts> & <event> & (<nvp>)*
nvp = <name> “=” <value>
ts = // see Timestamp section
event = “event=” <name>
name = ({alphanums + “-_.” })*
value = (<not-space>)* | <quote> <not-newline>* <quote>
quote = "
space = " "
not-space = {printable 7-bit ASCII characters except <space> and

"\n"}
not-newline = {printable 7-bit ASCII characters except "\n"}

The important point of this section is that all grid logs should have some grammar,
preferably one that is simple and regular, and easily (or even automatically) translated to
parsing code.

Appendix B. Log example for Grid Workflow

This section contains some selected log entries for a grid workflow where a client stages
data, submits a job, then pulls back the results. The sample log entries leave out most of
the details about which URL is being transferred or which job is being run; instead it
focuses on the identifiers that would need to be passed around.
RFT client request:
ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.client.put.start

guid=27DC13A3-202E-426B-BBEE-06DAA482340B
RFT server:
ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.server.put.start

guid=27DC13A3-202E-426B-BBEE-06DAA482340B
Authorize:
ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.server.authn.start

guid=27DC13A3-202E-426B-BBEE-06DAA482340B
ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.server.authn.end

guid=27DC13A3-202E-426B-BBEE-06DAA482340B status=0

 9

Do the transfer (e.g. with GridFTP) :
ts=2006-12-08T18:39:23.114369Z

event=org.globus.rft.server.transfer.start guid=27DC13A3-202E-426B-
BBEE-06DAA482340B

ts=2006-12-08T18:39:23.114369Z
event=org.globus.rft.server.transfer.start guid=27DC13A3-202E-426B-
BBEE-06DAA482340B

ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.server.put.end
guid=27DC13A3-202E-426B-BBEE-06DAA482340B status=0

ts=2006-12-08T18:39:23.114369Z event=org.globus.rft.client.put.end
status=0 guid=27DC13A3-202E-426B-BBEE-06DAA482340B status=0

Submit job through globus-job-run:
ts=2006-12-08T18:39:23.114369Z event=org.globus.globus-job-run.start

guid=27DC13A3-202E-426B-BBEE-06DAA482340B
Gatekeeper authorization:
ts=2006-12-08T18:39:23.114369Z event=org.globus.gatekeeper.authn.start

guid=27DC13A3-202E-426B-BBEE-06DAA482340B
ts=2006-12-08T18:39:23.114369Z event=org.globus.gatekeeper.authn.end

guid=27DC13A3-202E-426B-BBEE-06DAA482340B status=0
Gatekeeper calls JobManager:
ts=2006-12-08T18:39:23.114369Z

event=org.globus.jobmanager.request.start guid=27DC13A3-202E-426B-
BBEE-06DAA482340B

JobManager runs job:
ts=2006-12-08T18:39:23.114369Z

event=org.globus.jobmanager.response.start guid=27DC13A3-202E-426B-
BBEE-06DAA482340B

ts=2006-12-08T18:39:23.114369Z
event=org.globus.jobmanager.program.start guid=27DC13A3-202E-426B-
BBEE-06DAA482340B

ts=2006-12-08T18:39:23.114369Z event=org.globus.jobmanager.program.end
status=0 guid=27DC13A3-202E-426B-BBEE-06DAA482340B

End of Gatekeeper request to JobManager:
ts=2006-12-08T18:39:23.114369Z event=org.globus.jobmanager.request.end

status=0 guid=27DC13A3-202E-426B-BBEE-06DAA482340B

End of job run:
ts=2006-12-08T18:39:23.114369Z event=org.globus.globus-job-run.end

status=0 guid=27DC13A3-202E-426B-BBEE-06DAA482340B

 10

Sample Log Events
Globus Gatekeeper:
ts=2006-12-08T18:39:23.114369Z event=org.globus.gatekeeper.start

guid=55A0DF43-D7AB-40BF-A023-04444B93F76E
remoteHost=gridhost.yoursite.gov:NNNN localHost=myhost.foo.gov:NNNN
requestType=jobSubmit

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.authn.x509.start guid=55A0DF43-D7AB-
40BF-A023-04444B93F76E DN=”/O=CEDS/CN=Some User”

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.authn.x509.end guid=55A0DF43-D7AB-40BF-
A023-04444B93F76E DN=”/O=CEDS/CN=Some User” status=0

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.authz.GUMS.start guid=55A0DF43-D7AB-
40BF-A023-04444B93F76E DN=”/O=CEDS/CN=Some User”
mappingService="https://cmssrv08.fnal.gov:8443/gums/services/
GUMSAuthorizationServicePort”

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.authz.GUMS.end guid=55A0DF43-D7AB-40BF-
A023-04444B93F76E DN=”/O=CEDS/CN=Some User” localUser=gridex
localUID=10657 localGID=10657 gridSecurityHTTPBodyFD=8 status=0

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.jobManager.start guid=55A0DF43-D7AB-
40BF-A023-04444B93F76E path="/opt/globus/libexec/globus-job-manager"
gatekeeperJmId="2006-11-09.00:06:28.0000006577.0000000000"
executionHost=128.105.121.51 securityContextFD=11 childID=6639

ts=2006-12-08T18:39:23.114369Z
event=org.globus.gatekeeper.jobManager.end guid=55A0DF43-D7AB-40BF-
A023-04444B93F76E status=0

ts=2006-12-08T18:39:23.114369Z event=org.globus.gatekeeper.end
guid=55A0DF43-D7AB-40BF-A023-04444B93F76E status=0

Globus GridFTP Server

ts=2006-12-08T18:39:23.114369Z event=org.globus.gridFTP.start

prog=GridFTP-4.0.3 localHost=myhost remoteHost=somehost.gov:56010
serverMode=inetd guid=D4E922E1-6F7D-4752-B126-013BFE71C80B

ts=2006-12-08T18:39:23.114567Z
event=org.globus.gridFTP.authn.x509.start
DN=“/DC=org/DC=doegrids/OU=People/CN=Somebody” guid=D4E922E1-6F7D-
4752-B126-013BFE71C80B

ts=2006-12-08T18:39:23.114567Z event=org.globus.gridFTP.authn.x509.end
DN=“/DC=org/DC=doegrids/OU=People/CN=Somebody” guid=D4E922E1-6F7D-
4752-B126-013BFE71C80B status=0

ts=2006-12-08T18:39:23.114567Z
event=org.globus.gridFTP.authz.gridmap.start
DN=“/DC=org/DC=doegrids/OU=People/CN=Somebody” guid=D4E922E1-6F7D-
4752-B126-013BFE71C80B

ts=2006-12-08T18:39:25.514369Z
event=org.globus.gridFTP.authz.gridmap.end
DN=“/DC=org/DC=doegrids/OU=People/CN=Somebody”
localUser=uscmspool381 guid=D4E922E1-6F7D-4752-B126-013BFE71C80B
status=0

 11

ts=2006-12-08T18:39:25.864369Z event=org.globus.gridFTP.transfer.start
infile=/tmp/myfile tcpBufferSize=128KB dataBlockSize=262144
numStreams=1 numStripes=1 destHost=129.79.4.64 guid=D4E922E1-6F7D-
4752-B126-013BFE71C80B

ts=2006-12-08T18:45:02.214369Z event=org.globus.gridFTP.transfer.end
infile=/tmp/myfile bytesTransferred=678433 guid=D4E922E1-6F7D-4752-
B126-013BFE71C80B status=0

ts=2006-12-08T18:45:02.214386Z event=org.globus.gridFTP.end
guid=D4E922E1-6F7D-4752-B126-013BFE71C80B status=226

