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many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. here we introduce network-
based stratification (nBs), a method to integrate somatic 
tumor genomes with gene networks. this approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate nBs in ovarian, uterine and lung cancer cohorts 
from the cancer Genome Atlas. For each tissue, nBs identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
identify network regions characteristic of each subtype and 
show how mutation-derived subtypes can be used to train  
an mrnA expression signature, which provides similar 
information in the absence of dnA sequence.

Cancer is a disease that is not only complex, i.e., driven by a com-
bination of genes, but also wildly heterogeneous, in that gene 
combinations can vary greatly between patients. To gain a bet-
ter understanding of these complexities, researchers involved 
in projects such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) are systemati-
cally profiling thousands of tumors at multiple layers of genome-
scale information, including mRNA and microRNA expression, 
DNA copy number and methylation, and DNA sequence1–3. There 
is now a strong need for informatics methods that can integrate and 
interpret genome-scale molecular information to provide insight 
into the molecular processes driving tumor progression. Such 
methods are also of pressing need in the clinic, where the impact 
of genome-scale tumor profiling has been limited by the inability 
to derive clinically relevant conclusions from the data4,5.

One of the fundamental goals of cancer informatics is tumor 
stratification, whereby a heterogeneous population of tumors is 
divided into clinically and biologically meaningful subtypes as 
determined by similarity of molecular profiles. Most prior attempts 
to stratify tumors with molecular profiles have used mRNA expres-
sion data2,6–9, resulting in the discovery of informative subtypes 
in diseases such as glioblastoma and breast cancer. On the other 
hand, in TCGA cohorts including colorectal adenocarcinoma and 
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small-cell lung cancer, subtypes derived from expression profiles do 
not correlate with any clinical phenotype including patient survival 
and response to chemotherapy2,10. These results might be due to 
limitations of expression-based analysis11 such as issues with RNA 
sample quality, lack of reproducibility between biological replicates 
and ample opportunities for overfitting of data.

A promising new source of data for tumor stratification is the 
somatic mutation profile, in which high-throughput sequencing 
is used to compare the genome or exome of a patient’s tumor 
to that of the germ line to identify mutations that have become 
enriched in the tumor cell population12. As this set of mutations 
is presumed to contain the causal drivers of tumor progression13, 
similarities and differences in mutations across patients could 
provide invaluable information for stratification. Although indi-
vidual mutations in cancer genes have long been used to stratify 
patients14–17, stratification based on the entire mutation profile 
has been more challenging. Somatic mutations are fundamen-
tally unlike other data types such as expression or methylation, in 
which nearly all genes or markers are assigned a quantitative value 
in every patient. Instead, somatic mutation profiles are extremely 
sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.

Here we report that these problems can be largely overcome 
by integrating somatic mutation profiles with knowledge of 
the molecular network architecture of human cells. It is widely 
appreciated that cancer is a disease not of individual mutations, 
nor of genes, but of combinations of genes acting in molecular 
networks corresponding to hallmark processes such as cell pro-
liferation and apoptosis20,21. We postulated that, although two 
tumors may not have any mutations in common, they may share 
the networks affected by these mutations (as per Waddington’s 
original theory of ‘genetic canalization’22). Although current  
cancer pathway maps are incomplete, much relevant information 
is available in public databases of human protein-protein, func-
tional and pathway interactions. An increasing number of studies 
have successfully integrated these network databases with tumor 
molecular profiles to map the molecular pathways of cancer23–27.  
Here we focus on the orthogonal problem of using network 
knowledge to stratify a cohort into meaningful subsets. Using this  
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

results
overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 
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Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
decomposed into the product of two matrices: one of subtype prototypes (W) and the other of assignments of each mutation profile to the prototypes (H). The 
decomposition attempts to minimize the objective function shown, which includes a network influence constraint L on the subtype prototypes. k, predefined 
number of subtypes. (d) The final tumor subtypes are obtained from the consensus (majority) assignments of each tumor after 1,000 applications of the 
procedures in b and c to samples of the original data set. A darker blue color in the matrix coincides with higher co-clustering for pairs of patients.
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NMF clustering approach; substitution of NMF with an alterna-
tive method such as hierarchical clustering resulted in relatively 
poor performance (Fig. 2b).

Next we investigated how NBS performance was affected as 
a function of mutation frequency (Fig. 2c). Standard consen-
sus clustering was sufficient for stratification at high mutation 
frequencies and for small modules, for which there is substan-
tial overlap in mutations among patients of the same subtype  
(Fig. 2d); however, NBS was able to accurately recover the correct 
subtypes for a much larger range of both variables. Applying NBS 
on a permuted network resulted in poor performance (Fig. 2e),  
which is on par with that observed with standard consensus 
clustering. These results were qualitatively similar when we used 
multiple network modules per patient (2–6) and/or a different 
network (Supplementary Fig. 2).

network-based stratification of tumor mutations
We next sought to apply NBS to stratify patients profiled by TCGA 
full-exome sequencing for uterine, ovarian and lung cancers (see 
Online Methods for further details). In each of the three cancers, 
we observed that NBS resulted in robust subtype structure, whereas 
standard consensus clustering was unable to stratify the patient 
cohort (Fig. 3a for uterine cancer; Supplementary Figs. 3a and 4a  
for ovarian and lung cancers, respectively). Similar results were 
obtained when we used any of the three human networks (STRING, 
HumanNet and PathwayCommons).

To determine the biological importance of the identified sub-
types, we investigated whether they were predictive of observed 
clinical data. In uterine cancer, NBS subtypes (Supplementary 
Table 2) were closely associated with the recorded subtype on a 
histological basis (Fig. 3b,c and Supplementary Fig. 5). Survival 
analysis was not possible owing to low mortality rates for this 
cohort. In ovarian cancer, the identified subtypes (Supplementary 
Table 3) were significant predictors of patient survival time  

(log-rank P = 1.59 × 10−5; Fig. 3d,e and Supplementary Fig. 3b,c). 
Patients with the most aggressive ovarian tumor NBS subtype had 
a mean survival of approximately 32 months, compared to more 
than 80 months for those with the least aggressive NBS subtype 
(Supplementary Fig. 3d,e). Moreover, the NBS subtypes were pre-
dictive of survival independently of clinical covariates including 
tumor stage, age, mutation rate and residual tumor presence after 
surgery (Supplementary Fig. 6; likelihood ratio test, P = 3.75 × 
10−5) and were also predictive of time to relapse after treatment with 
platinum chemotherapy (‘platinum-free interval’) (Supplementary 
Fig. 3f), as measured using a Kaplan-Meier analysis of platinum-
free survival34. Finally, in lung cancer the identified NBS sub-
types (Supplementary Table 4) were also significant predictors 
of patient survival (log-rank P = 1.95 × 10−6, Fig. 3f,g; median 
survival of 12 months versus approximately 50 months for the best- 
surviving subtype, Supplementary Fig. 4), with predictive value 
beyond known clinical covariates such as tumor stage, grade, muta-
tion frequency, age at diagnosis and smoking status (likelihood  
ratio test, P = 3.3 × 10−4). Stratification using a network in 
which the mapping between mutated genes and the network was  
permuted, which disrupted the relationship between muta-
tions and network structure, resulted in degraded predictive  
performance (Fig. 3b,d,f).

We compared these results to subtypes derived from other data 
types in the TCGA, including copy-number variation (CNV), 
methylation, mRNA expression, microRNA expression and protein 
profiles. For ovarian cancer, all other data types had inferior ability 
to predict survival beyond what could be predicted from clinical 
covariates (Fig. 4a) and led to different subtype assignments than 
NBS (Fig. 4b). In lung cancer, both NBS subtypes and those based 
on RNA-seq had good predictive power (Fig. 4c) and had some 
overlap in terms of patient assignments (Fig. 4d), whereas other 
data types were not predictive of survival. In uterine cancer, sub-
types derived from all data types were highly predictive of histology 
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(Fig. 4e; CNVs had highest predictive power overall) and also had 
very high overlap with NBS subtype assignments (Fig. 4f).

distinct network modules associate with each tumor subtype
We next sought to identify the regions of the network that are 
most responsible for discriminating the somatic mutation pro-
files of tumors of different subtypes. Focusing on ovarian cancer 
as a proof of principle, for each subtype we identified genes for 
which the network-smoothed mutation state differs significantly 
for patients of that subtype versus the others (false discovery rate 
<0.05; Online Methods). This set of genes was projected onto 
the HumanNet network and visualized using Cytoscape35. The 
network for subtype 1 (Fig. 5), which had the worst overall sur-
vival and shortest platinum-free interval, contained over 20 genes 
in the fibroblast growth factor (FGF) signaling pathway, which 
has previously been implicated as a driver of tumor progression 
and associated with resistance to platinum and anti-VEGF ther-
apy36. The network for subtype 2 was enriched in DNA damage–
response genes including ATM, ATR, BRCA1, BRCA2, RAD51 and 
CHEK2 (Supplementary Fig. 7). Collectively these highlighted 
pathways are characteristic of a functional deficit in response 
to DNA damage, which has been referred to as ‘BRCAness’7,37. 
Consistent with this finding, this subtype also included the vast 
majority of patients with BRCA1 and BRCA2 germ-line mutations 
(15 of 20 and 5 of 6 patients in the cohort, respectively). The net-
work for subtype 3 was enriched for genes in the NF-κB pathway 
(Supplementary Fig. 8), whereas subtype 4 was enriched for genes 
involved in cholesterol transport and fat and glycogen metabolism 
(Supplementary Fig. 9). A similar analysis in uterine and lung 
cancers produced other subnetworks with unique characteris-
tics, including enrichments for DNA-damage response, WNT sig-
naling and histone modification (Supplementary Figs. 10–16).  
Thus, the NBS approach not only can stratify patients into clini-
cally informative subtypes but may help identify the molecular 
network regions commonly mutated in each subtype.

translation to predictive signatures
For NBS to be applicable to new patients not in the TCGA, it 
is necessary to complement it with a procedure for assigning a 
patient to one of the existing NBS subtypes. For this purpose, we 
explored the nearest shrunken centroid approach38, a standard 
method for sample classification that summarizes each subtype 
with a class ‘centroid’ and assigns new samples to the subtype with 
closest centroid. We found that this method was able to classify 
the network-smoothed mutation profile of an individual patient 
with over 95% accuracy (Fig. 6a; tenfold cross-validation).

However, mRNA expression data are presently much more widely 
available than are full genome or exome sequences: there are numerous  
existing cohorts of cancer patients that have been profiled in mRNA 
expression but not in somatic mutations7,39–42. We therefore sought 
to test whether, having used NBS to define subtypes within TCGA 
somatic mutation data, we could assign a new patient to these 
subtypes using an expression signature. To explore this idea, we 
used the mRNA expression profiles available for the TCGA ovar-
ian tumor cohort to learn an expression signature for each subtype 
defined earlier by NBS, again using the nearest shrunken centroid 
approach38. We found that expression performed as an adequate 
surrogate for mutation profile, albeit at a reduced accuracy (Fig. 6a; 
>95% for mutations, ~60% for expression and ~30% at random). 
This expression signature was nonetheless able to recover stratifica-
tion predictive of survival (Fig. 6b).

We examined the predictive value of this gene expression sig-
nature in two independent studies of serous ovarian tumors by 
Tothill et al.40 and Bonome et al.42 as well as in a meta-analysis 
including over 1,000 patients, which subsumes Tothill, Bonome 
and TCGA samples that included expression profiles but lacked 
somatic mutation profiles41 (Fig. 6c and Supplementary Fig. 17) 
and incorporates an unknown number of nonserous ovarian cancer 
samples. Using the expression signature we had learned from NBS 
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analysis of TCGA data, all patients could be assigned to one of the 
four NBS subtypes. In the Tothill data set, the subtype assignments 
were found to be significantly predictive of patient survival and 
platinum drug resistance (log-rank P = 6.1 × 10−3 and 1.65 × 10−6 
respectively; Fig. 6c and Supplementary Fig. 17), following the 
same trends observed in the original TCGA cohort. In the Bonome 

and the meta-analysis data sets, the recovered subtypes were again 
significantly associated with patient survival (log-rank P = 1.40 × 
10−3 and 1.22 × 10−4, respectively; Supplementary Fig. 17). We 
note that the proportions of the recovered subtypes in each of the 
three independent expression cohorts appeared to be different 
(Supplementary Table 2), a phenomenon possibly due to different 
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Figure 4 | Predictive power and overlap of subtypes derived from different  
TCGA datasets. (a) Predictive power in ovarian cancer. For each data type  
(line color), the power for predicting patient survival time beyond clinical  
indicators is shown as a function of number of subtypes. (b) Significance  
of overlap of ovarian cancer subtypes identified by each data type (line  
color) with subtypes identified by NBS. The table shows the number of  
patients shared between each NBS subtype and those defined by the TCGA  
using gene expression. (c) Predictive power in lung cancer, as for a.  
(d) Significance of overlap of lung cancer subtypes with NBS, as for b.  
(e) Association between uterine cancer subtype and tumor histology (y axis) as a function  
of the number of subtypes. P value of significance is indicated by concentric circles as in Figure 3. Colors are as in other panels, symbols have been omitted 
for clarity. (f) Significance of overlap of uterine cancer subtypes with NBS, as for b. Dashed horizontal lines indicate the P = 0.05 threshold of significance.
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criteria for inclusion in each study (for example: the TCGA ovarian 
cohort is primarily composed of high-grade, late-stage patients) 
or possibly differences due to population substructure. As a final 
control, we performed clustering of the Tothill expression profiles  
independent of NBS subtypes; this resulted in a different set of 
subtypes that associated with survival to a more limited extent  
(P = 0.01, Supplementary Fig. 18). These results show that tumor 
subtypes defined by NBS can be identified in independent data sets 
when gene expression is used as a surrogate biomarker.

effects of different classes of mutation on stratification
We studied the impacts of different classes of somatic mutation on 
the NBS approach. We first tested the effect on NBS of disrupting 
synonymous mutations by reassigning them to new randomly 
chosen gene locations. For uterine and lung cancers (Fig. 7a and 
Supplementary Fig. 19, respectively), disruption of synonymous 
mutations had little effect on NBS performance. In sharp con-
trast, disruption of nonsynonymous mutations or of all mutations 
greatly affected stratification performance. Interestingly, in the 
ovarian cancer cohort (Fig. 7b), disruption of either synonymous 
or nonsynonymous mutations was detrimental to performance.

We also studied the effect of removing mutations judged to be 
nonfunctional in cancer by methods such as MutationAssessor43, 
cancer-specific high-throughput annotation of somatic muta-
tions (CHASM)13 and the variant effect scoring tool (VEST)44, 
which use features such as sequence conservation and protein 

structural information to assess the likely impact of mutations. 
Filtering mutations with these tools resulted in decreased asso-
ciation of NBS subtypes with patient survival in all three cancers 
(Fig. 7c–e, with the possible exception of VEST for ovarian tumors:  
Fig. 7d). Finally, we studied the effect of removing genes with 
long sequences or late cell-cycle replication times: both of these 
characteristics have been postulated to accrue high numbers 
of mutations that may be unrelated to tumor progression45.  
We found that removal of long genes substantially degraded the 
ability to identify ovarian and lung subtypes predictive of survival  
(Fig. 7d,e). However, removal of late-replicating genes had little 
effect and, in the case of the lung tumor cohort, actually increased 
predictive power (Fig. 7e).

discussion
Here we have reported the discovery that, through the use of prior 
knowledge captured in molecular networks, a set of tumor muta-
tion profiles can be stratified into subtypes that are both biologi-
cally and clinically informative. These subtypes are distinct from 
those recovered through stratification of other types of data and 
are independent of other clinical markers known to be associated 
with survival. We can identify network modules characteristic of 
each subtype, which may provide new insight into the biological 
mechanisms driving tumor progression. To our knowledge, this 
is the first time that somatic mutation profiles have been used to 
stratify patients in an unsupervised fashion.
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Figure 6 | From mutation-derived subtypes 
to expression signatures. (a) Classification 
accuracy (fraction of correctly classified 
patients) when using a supervised learning 
method trained to learn a signature on  
the basis of either somatic mutation  
profiles or gene expression, showing  
training error and cross-validation error.  
Dashed line shows the accuracy for a  
random predictor. (b) Kaplan-Meier  
survival plots for the TCGA ovarian  
cancer patients using a classifier trained  
on subtypes from NBS of mutation data in TCGA. (c) Results of the same classifier applied to serous ovarian cancer samples from an independent data  
set (Tothill et al.40).
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Figure 7 | Effects of different types of mutations on stratification. (a,b) Effects of permuting a progressively larger fraction of mutations per patient for 
different types of somatic mutation, for the uterine (a) and ovarian (b) tumor cohorts. Lines show the median performance, and colored regions represent 
the median absolute deviation. (c–e) Different types of filters were applied as a preprocessing step before NBS was run on the uterine (c), ovarian (d) 
and lung (e) cohorts. In blue is the full data set; in red we filter all synonymous mutations; in orange and yellow we filter the top 2% late-to-replicate 
and long genes, respectively (long*: top 2% long genes, with any COSMIC cancer gene census genes included in the analysis). In green are three types of 
filters based on predictors of the functional effect of mutation; in light blue is the performance we observed after permuting all mutations within each 
patient separately as a control. (a–e) For uterine cancer, we report the median χ2 statistic; for ovarian and lung cancer, we report the median likelihood 
difference of a full model to a base model including just clinical covariates (age, grade, stage, mutation rate and residual tumor after surgery).
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One might consider at least three potential reasons for the good 
performance of NBS. First, somatic mutations represent a digital 
signal in that a given gene can be considered either mutated or 
not, whereas most other data layers are analog signals represent-
ing measurements of continuous values. In general, digital sys-
tems have improved accuracy and reproducibility and are more 
robust to noise46. Second, somatic mutation profiles are differ-
ential measurements between tumor and normal tissue, whereas 
expression and other ‘omics profiles are absolute measurements in 
each patient. The differential analysis filters out mutations or vari-
ants present in the patient’s germ line, leaving only tumor-specific 
changes. In contrast, it has been difficult to identify a true ‘base-
line’ gene expression state for a tissue, as these measurements are 
dynamic and highly context specific. Finally, the somatic muta-
tion profile captures the causal genetic events underlying tumor 
progression, whereas mRNA or protein expression profiles are a 
functional readout of the current cell state and are influenced by 
external factors that may be unrelated to tumor biology.

The network modules we identified as characteristic for each 
tumor subtype provide new insights into the biology of cancer  
and raise many new questions. One particularly promising find-
ing was the prominence of the FGF pathway in ovarian tumor 
subtype 1 (Fig. 5). This pathway has been implicated in tumor 
proliferation and angiogenesis, and many inhibitors for this path-
way are in clinical development47. Specifically, it has been shown 
that increased expression of FGF1 is associated with poor survival 
in ovarian cancer48, and inhibition of FGFR1 and FGFR2 increases 
sensitivity to cisplatin in ovarian cancer cell lines36. An intrigu-
ing question for future work is whether subtype 1 patients are 
particularly responsive to therapy directed at network-identified 
targets, such as treatment with inhibitors of FGFR1.

Another interesting observation is that several network mod-
ules are enriched for long genes. For example, for ovarian tumor 
subtype 2, a total of 12 of 176 genes in the module are in the 
top 2% by length (P = 2.3 × 10−4). One prominent example is 
TTN, the longest known coding gene. Although prominent ‘gold- 
standard’ catalogs of cancer genes—such as the Catalogue of 
Somatic Mutations in Cancer (COSMIC) cancer gene census49 
and the list of Vogelstein et al.50—are also enriched for long genes 
(for example, 17 of 125 in the Vogelstein list, P = 5.11 × 10−10), 
there remains some controversy about the roles these genes may 
play in cancer. On the one hand, it is possible that long genes are 
highly mutated not because they are drivers of cancer but simply 
owing to chance because they are a bigger ‘target’ to hit. On the 
other hand, there is no definitive evidence that mutations in long 
genes are not functional or do not contribute to tumor progres-
sion. Our analysis provides some evidence that these long genes 
should not be ignored. In the molecular network, long mutated 
genes were highly interconnected to other functionally related 
genes of all lengths, which are also found to be mutated in patients 
of that subtype. For example, the network region for ovarian 
tumor subtype 1 (Fig. 5) showed TTN interconnected to genes 
such as NEB, ANK1 and MYOM2, all of which are also mutated in 
patients of this subtype. These genes encode components of the 
cytoskeleton thought to have both structural and signaling roles51. 
Although TTN is a long gene and thus might accrue mutations by 
chance, it is striking that other members of the same protein inter-
action neighborhood are also found to be mutated in tumors of 
the same subtype. Using permutation analysis, we estimated that 

the chance of TTN having an immediate network neighborhood 
with this same number of mutations is roughly P < 0.0001. Thus, 
one possibility is that the TTN and other cytoskeletal components 
are required for platinum-induced, P53-independent apoptosis, 
and that mutation in either structural or signaling proteins in this 
pathway leads to platinum resistance. In support of this theory 
is prior work demonstrating that cell shape is associated with 
chemotherapy response in ovarian cancer52.

Another interesting observation is that synonymous mutations, 
though dispensable for stratification of uterine and lung tumors, 
appear to have some predictive power in stratification of ovarian 
tumors. In support of this finding, a number of high-profile studies  
have suggested that synonymous mutations may indeed play a 
causal role in cancer progression53–56. Further study is needed 
to understand whether ovarian cancer is indeed the outlier in 
this respect and whether and how synonymous mutations truly 
function in this disease.

Finally, we see many opportunities to improve upon the basic 
concept of NBS in future work. First, integrating multiple layers 
of information beyond somatic mutations (for example: CNVs, 
epigenome, transcriptome, etc.) into a composite stratification 
method might further expand our ability to identify subtypes with 
clinically relevant differences. Second, although we have shown 
the utility of three sources of gene-gene interactions, there are 
other types of networks worth exploring, such as those involved 
in signaling, metabolism or transcription. Although this study 
focused on uterine, ovarian and lung cancers, the NBS method 
is broadly applicable to any cohort of cancer patients for which 
somatic mutations are known. Finally, analyzing NBS subtypes 
across all cancers simultaneously (i.e., a pan-cancer analysis) will 
offer the intriguing opportunity to explore whether the genes and 
networks underlying the progression of a tumor are more inform-
ative of clinical outcome than its tissue of origin.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Expanded overview of network-based stratification. The tech-
nique of network-based stratification (NBS) combines genome-
scale somatic mutation profiles with a gene interaction network to 
produce a robust subdivision of patients into subtypes (Fig. 1a).  
Briefly, somatic mutations for each patient are represented as a 
profile of binary (1, 0) states on genes, in which a ‘1’ indicates a 
gene for which mutation has occurred in the tumor relative to 
germ line (i.e., a single-nucleotide base change or the insertion 
or deletion of bases). For each patient independently we project 
the mutation profiles onto a human gene interaction network 
obtained from public databases28–30. Next, the technique of net-
work propagation31 is applied to spread the influence of each 
mutation profile over its network neighborhood (Fig. 1b). The 
result is a ‘network-smoothed’ profile in which the state of each 
gene is no longer binary but reflects its network proximity to the 
mutated genes in that patient along a continuous range [0, 1]. 
Following this ‘network smoothing’, patient profiles are clustered 
into a predefined number of subtypes (k = 2, 3, … 12) using the 
unsupervised technique of non-negative matrix factorization32 
(NMF; Fig. 1c). For NBS we use a variant of NMF that encour-
ages the selection of gene sets supporting each subtype according 
to high network connectivity (NetNMF)58. Finally, to promote 
robust cluster assignments, we use the technique of consensus 
clustering33, in which the above procedure is repeated for 1,000 
different subsamples in which subsets of 80% of patients and genes 
are drawn randomly without replacement from the entire data 
set. The results of all 1,000 runs are aggregated into a (patient × 
patient) co-occurrence matrix, which summarizes the frequency 
with which each pair of patients has cosegregated into the same 
cluster. This co-occurrence matrix is then clustered a second time 
to recover a final stratification of the patients into clusters/subtypes 
(Fig. 1d). Our implementation of the NBS method is available  
for download as a Matlab package from http://idekerlab.ucsd.edu/
software/NBS/ or as Supplementary Software. The former should 
be used for obtaining the most up-to-date versions.

Processing of patient mutation profiles. High-grade serous  
ovarian cancer, uterine endometrial carcinoma and lung ade-
nocarcinoma somatic mutation data were downloaded from 
the TCGA data portal on 8 August 2012, 1 January 2013 and  
1 January 2013, respectively. Only mutation data generated using 
the Illumina GAIIx platform were retained for subsequent analy-
sis, and patients with fewer than 10 mutations were discarded. 
This left 356 patients with mutations in 9,850 genes for the TCGA 
ovarian cohort, 248 patients with mutations in 17,968 genes for 
the TCGA uterine endometrial cohort and 381 patients with 
mutations in 15,967 genes in the TCGA lung adenocarcinoma 
cohort. Patient mutation profiles were constructed as binary vec-
tors such that a bit is set if the gene corresponding to that posi-
tion in the vector harbors a mutation in that patient. Additional 
details on processing and organization of the data are available 
in a previous TCGA publication2.

Sources of molecular network data. Patient mutation pro-
files were mapped onto gene interaction networks from three 
sources: STRING v.9 (ref. 29), HumanNet v.1 (ref. 28) and 
PathwayCommons30 (Supplementary Table 1). STRING inte-
grates protein-protein interactions from literature curation, 

computationally predicted interactions, and interactions trans-
ferred from model organisms based on orthology. HumanNet 
uses a naïve Bayes approach to weight different types of evidence 
together into a single interaction score focusing on data collected 
in humans, yeast, worms and flies. PathwayCommons aggregates 
interactions from several pathway and interaction databases, 
focused primarily on physical protein-protein interactions (PPIs) 
and functional relationships between genes in canonical regula-
tory, signaling and metabolic pathways (including hallmark path-
ways of cancer). Supplementary Table 1 summarizes the number 
of genes and interactions used in our analysis from each of these 
three networks.

All network sources comprise a combination of interaction 
types, including direct protein-protein interactions between a 
pair of gene products and indirect genetic interactions represent-
ing regulatory relationships between pairs of genes (for example, 
coexpression or TF activation). The PathwayCommons network 
was filtered to remove any nonhuman genes and interactions, and 
all remaining interactions were used for subsequent analysis. Only 
the most confident 10% of interactions for both the STRING and 
HumanNet networks were used for this work, ordered accord-
ing to the quantitative interaction score provided as part of both 
networks. This threshold was chosen using an independent ROC 
analysis with respect to a set of Gene Ontology–derived gold 
standards (data not shown). After filtering of edges, all networks 
were used as unweighted, undirected networks.

Network smoothing. After mapping a patient mutation profile 
onto a molecular network, network propagation31 is applied to 
‘smooth’ the mutation signal across the network. Network propa-
gation uses a process that simulates a random walk on a network 
(with restarts) according to the function

F F A Ft t+ = + −1 01a a( )

F0 is a patient-by-gene matrix, and A is a degree-normalized adja-
cency matrix of the gene interaction network, created by multiply-
ing the adjacency matrix by a diagonal matrix with the inverse of 
its row (or column) sums on the diagonal. α is a tuning param-
eter governing the distance that a mutation signal is allowed to 
diffuse through the network during propagation. The optimal 
value of α is network dependent (0.7, 0.5 and 0.7, for HumanNet, 
PathwayCommons and STRING, respectively), but the specific 
value seems to have only a minor effect on the results of NBS over 
a sizable range (for example, 0.5–0.8). The propagation function 
is run iteratively with t = [0, 1, 2, …] until Ft+1 converges (the 
matrix norm of Ft+1 – Ft < 1 × 10−6). Following propagation, the 
rows of the resultant matrix Ft are quantile normalized to ensure 
that the smoothed mutation profile for each patient follows the 
same distribution.

Network-regularized NMF. Network-regularized NMF is  
an extension that constrains NMF to respect the structure of 
an underlying gene interaction network. This is accomplished 
by minimizing the following objective function using an  
iterative method32,58,59:

min || || ( )
,W H

F WH W KW
>

− +
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W and H form a decomposition of the patient × gene matrix F 
(resulting from network smoothing as described above) such that 
W is a collection of basis vectors, or ‘metagenes’, and H is the basis 
vector loadings. The trace(WtKW) function constrains the basis 
vectors in W to respect local network neighborhoods. The term 
K is and adjacency matrix of a nearest neighbors network derived 
from the graph Laplacian of an influence distance matrix23 that 
is derived from the original network. The degree to which local 
network topology versus global network topology constrains W is 
determined by the number of nearest neighbors. We experimented 
with neighbor counts ranging from 5 to 50 to include in the near-
est network, and we observed only small changes in outcome 
(data not shown). For the work presented in this manuscript, 
the 11 most influential neighbors of each gene in the network as 
determined by network influence distance were used.

Consensus clustering. Clustering was performed with a stand-
ard consensus clustering framework, discussed in detail by Monti  
et al.33 and used in previous TCGA publications2,18,60. Briefly, 
we used network-regularized NMF (see above) to derive a strati-
fication of the input cohort. In order to ensure robust cluster-
ing, network-regularized NMF was performed 1,000 times  
on subsamples of the data set. In each subsample, we sampled 
80% of the patients and 80% of the mutated genes at random 
without replacement. The set of clustering outcomes for the 1,000 
samples was then transformed into a co-clustering matrix. This 
matrix records the frequency with which each patient pair was 
observed to have membership in the same subtype over all clus-
tering iterations in which both patients of the pair were sampled. 
The result is a similarity matrix of patients, which we then used to 
stratify the patients by applying either average linkage hierarchi-
cal clustering or a second symmetric NMF step. Patients showing 
poor cluster association to a single subtype were excluded from 
further analysis.

Simulation of somatic mutation cohorts. We used simulations 
to determine the ability of NBS to recover subtypes from somatic 
mutation profiles. In order to quantify the performance of NBS, 
we needed a cohort with specified subtypes as a ‘ground truth’ 
reference and to be able to control the properties of the simu-
lated signal determining the different subtypes. We simulated 
a somatic mutation cohort as follows. Patient mutation profiles 
were sampled with replacement from the TCGA ovarian data set. 
For each patient, the mutation profile was permuted, whereas the 
per-patient mutation frequency was kept invariant; this resulted 
in a background mutation matrix with no subtype signal. For 
simulation of an underlying network structure for NBS to detect, 
a network-based signal was added to the patient-by-mutation 
matrix as follows. First, we established a set of network com-
munities (i.e., connected components enriched for edges shared 
within community members) in the input network (STRING, 
HumanNet or PathwayCommons) using the network commu-
nity detection algorithm QCut61. Next, we divided the patient 
cohort randomly into four equal-sized subtypes (four was selected 
as reasonable owing to the four expression-based subtypes that 
have been identified for glioblastoma, ovarian and breast can-
cers2,18,60,62). Each subtype was assigned a small number (for 
example, 1–6) of network modules that together had a combined 
size s ranging from 10 to 250 genes. These network modules  

represent ‘driver’ subnetworks characterizing the subtype. For 
each patient, we reassigned a fraction of the patient’s mutations f 
to genes covered by the driver modules for that patient’s subtype. 
This procedure resulted in a patient × gene mutation matrix with 
underlying network structure while maintaining the per-patient 
mutation frequency.

A plausible range for the number of driver mutation in a tumor 
was recently proposed to be between 2 and 8 driver mutations50. 
We note that in our simulation framework, a 4% mutation rate 
corresponds to between 1 and 9 mutations with a median of 3, 
which is on par with the aforementioned estimate. In order to 
estimate the appropriate size of cancer pathways (s), we examined 
the known cancer pathways in the NCI-Nature pathway interac-
tion database63. We observe that pathways in the database are of 
varying sizes, 2–139 genes, with a median size of 34, and over 23% 
of pathways include over 50 genes.

Identifying differentially mutated subnetworks. After applying 
NBS, we identified genes that were enriched for mutation in each 
of the subtypes relative to the whole cohort. To do this we applied 
the significance analysis of microarrays (SAM) method64 on the 
network-smoothed mutation profiles. This is a nonparametric 
method developed for discovering differentially expressed genes 
in microarray experiments. We used a rank-based Wilcoxon-type 
statistic and compared each subtype against the remaining cohort. 
Significance was assessed using the SAM permutation scheme 
with 1,000 permutations. The resulting set of genes for each sub-
type was overlaid on the network used for network smoothing.

Survival analysis. Survival analysis was performed using the  
R “survival” package. We fit a Cox-proportional hazards model65 
to determine the relationship between the NBS-assigned sub-
types and patient survival. A likelihood-ratio test and associated  
P value is calculated by comparing the full model, which includes 
subtypes and clinical covariates, against a baseline model that 
includes covariates only. Clinical covariates available in TCGA 
and included in the model were age, grade, stage, residual surgical 
resection and mutation rate, as well as cigarette smoking status 
for the lung cancer cohort.

Comparing predictive power and overlap with TCGA subtypes. 
Added predictive power is estimated using a likelihood-ratio  
test comparing the Cox proportional hazards model given  
subtypes and clinical covariates (age, stage, grade, mutation  
frequency and residual tumor presence after surgery) compared  
to a covariate-only model. Significance of overlap is assessed 
using a Pearson’s χ2 test of independence between NBS subtypes  
with a specific network and number of subtypes (ovarian, 
HumanNet, four subtypes; lung, HumanNet, six subtypes; uter-
ine, STRING, three subtypes) and the different data types with  
varying number of subtypes reported in the TCGA and sub-
typed using consensus-clustering NMF. TCGA subtypes were  
downloaded from the Firehose run from 25 May 2012 (http://
gdac.broadinstitute.org/runs/analyses__2012_05_25/reports/
cancer/OV/).

Shrunken-centroid prediction on expression profiles. We used 
shrunken centroids to derive an expression signature equivalent 
to the somatic mutation-based NBS subtypes. Expression data 
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were provided by Győrffy et al.41, who aggregated several expres-
sion data sets as part of a meta-analysis of ovarian cancer. In 
this analysis, all data were regularized using quantile and MAS5 
normalization. We performed this analysis on the Tothill et al.40 
(ovarian serous samples only), Bonome et al.42 and TCGA data 
sets, as well as across the full meta-analysis cohort. We used the 
“pamr” R package with default parameters to train a shrunken-
centroid model38 on mRNA expression levels for all genes in 
the TCGA ovarian data set with subtype assignment as the class 
label. The trained model was next used to predict subtype labels 
on the held-out Tothill et al. and Bonome et al. data or the full 
meta-analysis expression cohort (excluding any TCGA samples 
included in the training set).

We include a table of the class centroids for each of the three 
TCGA somatic mutation cohorts and the four expression cohorts of 
ovarian cancer included in this study (Supplementary Table 5).

Missense-mutation scoring. Missense mutations were scored 
using three methods: CHASM13, VEST44 and MutationAssessor43. 
CHASM and VEST use supervised machine learning to score 
mutations. The CHASM training set is composed of a positive 
class of driver mutations from the COSMIC database and a nega-
tive class of synthetic passenger mutations simulated according 
to the mutation spectrum observed in the tumor type under 
study. The VEST training set comprises a positive class of dis-
ease mutations from the Human Gene Mutation Database66 and 
a negative class of variants detected in the ESP6500 (http://evs.
gs.washington.edu/EVS/) cohort with an allele frequency of >1%. 
MutationAssessor uses patterns of conservation from protein 
alignments of large numbers of homologous sequences to assess 
the functional impact of missense mutations. CHASM and VEST 
scores were obtained from the CRAVAT webserver44 (http://www.
cravat.us/). MutationAssessor precomputed mutation scores were 
downloaded from http://mutationassessor.org/. After using each 
method to score all mutations across all patients, we picked a per-
missive threshold for retaining mutations to use for NBS (retain-
ing the top 75% of mutations as scored by CHASM and VEST and 
using MutationAssessor with the “low threshold” setting).

Replication timing. RepliSeq67 data for the GM12878 cell  
line were downloaded from the ENCODE project website  
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeUwRepliSeq/, downloaded March 2013). Summed nor-
malized tag densities were used as a proxy for replication time 
(higher counts indicating that a transcript was replicated earlier 
in the cell cycle). Normalized tag densities for RefSeq protein 
coding regions were retrieved using bigWigAverageOverBed68 
with RefSeq gene sequence features in .gff3 format downloaded 
from http://www.yandell-lab.org/software/VAAST/data/hg19/
Features/refGene_hg19.gff3. Tag densities were averaged for each 
transcript, and the longest transcript was selected to represent  
each gene.
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