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Following the work on ray orbits in spatially hyperbolic systems by Mass
and Lam (1995) and Rieutord and Valdettaro (1997) we seek to examine the
behaviour of the shear layer emitted at the critical latitude in 3D in a spheri-
cal shell filled with rotating fluid. We compare the (previously known) 3D and
the 2D solutions for a sphere in an infinite domain to find the major difference
being a logarithmic singularity on the rotation axis formed by a cone of shear
converging to an apex. We then consider the “split disc” arrangement first con-
sidered by Walton to examine this singularity in more detail. We also consider
the behaviour of the Moore and Saffman shear layers under the influence of a
large-scale forcing; our motivation is primarily the dissipation of tidal energies
in astrophysical binary systems.

1 Motivation

It is well known that tidal forces in binary systems leads to a large scale de-
formation of both fluid masses, and also to unsteady flows dissipative flows.
Since the Ekman number = v/(QR?), the balance between viscous and Coriolis
forces, is so small in most astrophysical domains, this dissipation leads to an
effect on the evolution of binary systems that acts on secular timescales (e.g.
Zahn, 1976 §3, Rieutord, 2003) to affect the angular momentum distribution of
the system and convert gravitational potential energy into thermal energy by
way of dissipation.

This tides will also drive shear layers in the interior of each star (see e.g.
Rieutord and Valdettaro, 2010) which can produce high degrees of transport
in very localised regions. It is a topic which requires further investigation, and
seems likely to influence the strength and location (and therefore, for example,
the distribution of metallicity) in the star proper.

2 Mathematical Framework

We consider incompressible and inviscid fluid with temporal dependence o
exp(iwt), acting under the Coriolis force. The governing equations

iwi+ée, Xxu=—Vp

and
Via=0

*Advised during by Michel Rieutord.



facillitate the introduction of a streamfunction v, with

Uy :8zw7 Uy = =09

which leads quickly in 2D cylindrical co-ordinates to the governing Poincare’s
equation

amw’(/) - i8zzw =0
w2

with a? = 1 — w? > 0; this is spatially hyperbolic; in a 3D fluid domain we

again have a hyperbolic structure and additional curvature terms; the equation
for the pressure field can be shown to be (e.g. Rieutord and Noui, 1998)

AP-Lp.P=0
w

and there exists an extensive literature on the expected wave structures with
such a governing equation. In particular we wish to consider the inertial waves
in a spherical shell with no-penetration boundary conditions on the inner and
outer radius.

3 2D and 3D solution

Since the critical latitude shear layer is emitted by the inner sphere, it is rea-
sonable as to examine its behaviour in an infinite domain; following the work of
Rieutord and Noui (1998) we make use of a singular transformation

az = /A=) (1 - 12)

wz = pn

with

I2nzw,n2pz>w
to convert our governing equation into Laplace’s equation; our no-penetration
boundary condition that ¢ = const on the circular boundary must now be
applied on a hyperbola. After several more co-ordinate transformations we
may write the solutions for 2D (3D) in elliptic (oblate spheroid) co-ordinates as
follows. With reference to a book by Claycomb, we write the 2D solution as
PP(p) + kPE ()
(i\/l —n2+ in)p

and we refer to RN1 for the 3D solution for the pressure field

]3lm — Q;n(n)lglm(ﬂ)eimé

Yp(n, 1) =

with notation to be explained. For the 2D case we may think of p as a separation
constant governing the rate at which our solution decays in the far field, and P?,
P? trigonometric polynomials such that PP(sinf) = sin(pf) and similarly for
PP. For the 3D case we may think of (m,[) as the usual spherical wavenumbers,
and P, Q7" Legendre polynomials of the first and second kind respectively.
Note particularly that although the mapping is singular on the lines of critical



latitude n? = p?, the 2D streamfunction is entire and the 3D pressure field is
singular at a finite number of points; we discuss these below.

A full discussion of elliptic or oblate spheroidal co-ordinates is rather involved
and not relevant here, expect to state that it is 7 which may tend to the point
at oo; p may become arbitrarly large but must remain finite. We shall note any
points of interest and give their physical location in the more usual cylindrical
co-ordinates.

We note that in these co-ordinates the solution (or an obvious conjugate)
given by Maas and Lamb (1995) for the streamfunction inside a semi-elliptic
basin

v=a+z22c -z
becomes in these co-ordinates
1) = cosh 3¢ cos 3y

where we have made the natural identification

3.1 Ciritical Latitude Singularity

Since the transformation between 2D cylindrical coordinates and 2D elliptical
coordinates is extremely closely related to the transformation between 3D spher-
ical coordinates and 3D oblate spheroidal coordinates, we may note that the 2D
velocity field suffers from a similar divergence to that found in 3D; we may write
for the velocity parallel to one of the critical latitude shear layers that

DVj| = D (w0.v + a0,v)

= (w2u(772 —1) — a2n(n* — )24 - 1)1/2> Ot
—H N
and for the velocity perpendicular that

Vi = adp — wiyop

K (nv/T-= n2w+ /1= 4?) (V=D — (V4= Do)

where D = 7?2 — 2 = 0 on the critical latitude shear layers.

4 Comparison of 2D with 3D

It is plain that in 2D there is a symmetry along the line r = z with o <> w, since
we may simply rewrite Poincaré’s equation to have the same functional form. It
is equally plain that in 3D no such simple symmetry exists due to the curvature
terms in the Poincaré operator; we see a global geometrical distinction between
the solutions. If we write again the solutions for 2D

PP(u) + kP (1)

(iﬂ%—in)p

Up(n, ) =



and 3D '
le — le(n)le (M) ezm@

we may note that for all complex values of 1 the denominator in the 2D case
remains finite; the solution is regular everywhere in the domain since p is not
allowed to diverge. However if, in the 3D case, we write out the form of Q}"

Q) = s woe (2 + o)

we see that we must consider the location of the point 1 = 1; it lies on the
rotation axis at the apex of the cone, where a cone of shear emitted from the
critical latitude converge; (r, z,0) = (0, £1/w,0).

We briefly consider now Riemann’s method; if we consider an m = 0 ax-
isymmetric mode and focus on the topologies of the attractors which localise
the dissipation of energy in the domain, we realise that may have not only an
irreducible path which encloses the ”stellar core®, but also irreducible paths
which do or do not enclose this inviscid logarithmic singularity. A conjecture
emerges, therefore, that for fixed forcing frequency w, a star might dissipate
preferentially on one attractor over another based on its path around the do-
main. This remains to be investigated numerically; to make analytic progress
we consider a domain in which a full analytic solution is available.

5 The Split-Disc and the Viscous Crossing Sin-
gularity

We refer to Walton (1974) and Kerswell (1995) to consider a ”split-disc“ arrange-
ment; we consider two semi-infinite plates at a distance 2h apart, separated by
viscous incompressible fluid. The entire system is rotating with angular velocity
Q and there is an inner disc of radius a on the upper plate which, in the rest
frame of the plates, is rotating with constant angular velocity w. This disconti-
nuity in the boundary conditions emits a family of shear layers which converge
to a point on the axis of rotation which, by moving the lower plate, we are free
to place at the origin. We assume that the local regularisation in this split disc
case will hold true for the same singularity in the spherical case.

We transcribe from Walton (1974) the entire analytic form of the azimuthal
velocity in terms of Bessel functions.

r

6 0o
—wt _ _ ) X
—qive X=r Sg_l /0 Ag(k)J(kr)exp(asz)dk

a sum of six terms; two representing the large scale flow, two representing the
Ekman layers near the upper and lower discs, and two representing the internal

shear layers in which we are interested. We may therefore neglect the majority
of these terms, as in Walton (1974) to write

B re /OO kJo(ka)J1(ka) cosh((h + z)a)
X= (4 — w?)1/2 sinh 2ha

dk

¢ being some constant. Here we take «, the vertical attenuation coefficient be-
ing a solution to a known sextic which at small k gives a ~ ikw/(4 — w?)1/? +



16k3F /(4 —w?)5%/2 4 ... with the intention of taking R — oo; then, ic represents
the vertical wavenumber, Re(k) represents the radial wavenumber, and Im(k)
represents the radial attenuation. As may be seen from the form of the inte-
grand, there are poles whenever o« = nwi/2h, representing the vertical Fourier
modes; these poles may be used to obtain an asymptotic expansion for the
integral.

There exists here a somewhat subtle point, since the integral does not con-
verge with this expansion of « unless R = oo; more seriously, the series is not
asymptotic. Walton then noted the poles in the upper half complex plane when-
ever o = nw/2h, and so applied the method of residues in summing the far-field
expansion of Hankel functions. After taking R = oo and an Euler sum, we find
that that, for » = ord(1), we have four terms, each corresponding to a family of
characteristics travelling either inward and upward, outward and downward, or
otherwise in the natural senses; the azimuthal flow reads

1
x R - + .t
X (1—exp(’2’;1r(h+z—|—’;0“) )

which diverges precisely on those shear layers. We must modify this solution
when r = O(E'/?) which is the expected scaling of the inner region; the far-field
expansion of Hankel or Bessel functions is no longer appropriate for those poles
which do not have |k,| > E~'/3. After repeating the above method, including
the adopting of R = oo, we may write that, near the axis of rotation,

, N—1 1/2 3
iogre . 2 knr (knr)
= 2 kn| —— =
A %{ m; ’<7rkna> ( 2 16

x cos(kna — g) exp(%nm’)

i { iexp(Nmi(“** + h+ z)/2h) ey }}
VaZar |1 - exp(mi(“5* + h+ 2)/2h)) R

where our polynomial terms have come from approximating Jy (kr) by its inner

(outer) asymptotic limit for kr < 1 (kr > 1); this introduces some small error on

+

the order of 3% into the solution. N = P}ﬁw-‘ is the index of the first pole for

which |knr| > 1; we see that its existence has introduced an ultraviolet catas-
trophe into the solution: As we allow 7 to approach 0 the radial wavenumber
of the solution diverges and we are dominated by arbitrarily small scales. We
would like to successfully re-introduce viscosity to properly analyse this point.

6 The Re-introduction of Viscosity

As previously noted, those series used to obtain the inviscid flow are not asymp-
totic and do not converge when E # 0. We consider briefly the inverse problem
- given that a = nmi/2h, some fixed vertical harmonic, what associated radial
wavenumber k, may contribute to the series? We find that we must examine
the suitable solution branch for k,,, given that o = nw/2h leads to

((nm/2h)? = k2)E —iw)” ((n7/2h)% — k2) + 4(n7/2h)% = 0
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Figure 1: A plot of Im(k,/v Ew), the rescaled real component of the radial
wavenumber, as a function of the rescaled index o+/wh/En. Plotted from top
to bottom are w € 0,0.5,1,1.5,2

and this may be readily calculated (see figure).

By allowing n to vary continuously between 0 and oo, we see that there is a
well-defined single turning point which corresponds to the lengthscale at which
viscosity becomes dominant; this is to be expected, since we have a well defined
vertical lengthscale. If we rescale the (now continuous) variable n such that
o =V E~1'w3hn, we find the turning point occuring at the maximum of

- VE-1 (1/3)
Im k,(0,w) = 2\/§wIm{37r202w2—8i+(—2i + 3mo (9o + /—12i + 817r202))

(-1/3)) /2
+ (—22' + 370(970 +/—12i + 817r202)) }

and we see that - if our integrand has terms of the form Jy(kr) - we expect a
single exponentially dominant term o exp(k,r). This is somewhat alarming; we
see our solution growing rather than decaying with r! and diverging as r — co.
This is due to the fact that we have not yet had to consider the Sommerfeld
radiation condition; we currently have incoming waves at r = oco. If we then
attempt to chose a radial basis of decaying Hankel functions representing only
outgoing waves ~ e~ *" in the far field, we must contend with the fact that
Hankel functions are singular at the origin.

We conjecture a resolution: The appropriate radial basis is a mix of Jy (kr)
when r < a and Hi(kr) when 7 > a. Physically this is demanded; inside the
upper disc of radius a we will have waves both incoming and outgoing with
respect to the origin; outside we will have only outgoing. We expect, then, the
solution behaviour to be of the amplitude |k, |cosh(Im(k,)(a £ 7)) for r < a
and |k,|exp(Im(k,)(a — 7)) for r > a. Due to the geometrical nature of the
singularity - that of a cone of rays converging - it remains to be investigated as
to how many terms in the k ~ E'/3 region are necessary to resolves the inner
singularity.

IThanks to G.I.Ogilvie for a helpful discussion on the satisfaction of boundary conditions
in wave-propagation problems and this problem in particular.



7 Internal Structure of Forced Shear Layers

We examine now the structure of the internal shear layers which are known
to scale like E'/? (see e.g. Moore and Saffman 1967, hereafter M&S). It is
derived in M&S that in the far-field absence of curvature we may write the
spreading of a shear layer in a self-similar way; here, as usual, the zeroth order
azimuthal component of velocity is given, and the corresponding relations for
other components may be quickly found in the literature.

ayyyuw = —i0, ’LLd)

Y
0 _ m —
Ug =q Hm<77q1/3)

where ¢ is an order unity rescaling of the coordinate along the length of the ray,
and Y = E'/3y is the small scale co-ordinate across the width of the ray. For
H,,, we follow the convention of Ogilvie 2005 to write

and hence

o .
Hm(t) _ Z/ ezfpt p3 731kmdp
0

whose asymptotic behaviour for large ¢ may be found easily by the method of
stationary phase. We consider the axisymmetric set of equations labelled (3.6)
given in RVG 2009 with the addition of a smooth, large scale forcing term f

w2 awk
AU—WU¢——xp+2+E<V2—>U||+ 2UL+fx
Ay, + wup| — aul = EV2uy + fy
ap a2 awF
Ay + oy = — yp—2s—|—E<V2+82> UJ_—ST'LLH"_fy
and mass conservation through
wuH — QU

with the Laplacian modified to read V2 = 0., + 0y, + m.
now curvature and pose the natural expansion as demanded by mass conser-
vation we may follow the Moore and Saffman derivation to find the governing
equation including forcing

If we neglect

ayyyud) = —i0 Uw + F

where the forcing term is given by

1/ 1
F=- (14 2p0),
2<afy+wfw>

Now, since we have stipulated that f be large scale and have no boundary layers,
we may write that dy f = O(FE'/3) and consider the forcing to be constant at
zeroth order across the boundary layer. Therefore we may rewrite our governing
equation as

Oyyy (U, +iF) = —idy(u), + iF) + O(E)



Figure 2: A schematic of the upper-right hand plane showing the inner circle or
sphere. Points of interest include A = (0, 1), P = (w,a) and B = (%,0). Lined
in pink is the position of the critical latitude singularity.

and argue that our solution is essentially unchanged and reads

Y
0 _ m _ -

giving the simple but slightly counterintuitive result that the azimuthal velocity
can ’see’ the forcing both along and perpendicular to the ray.

7.1 Neglect of Curvature

This derivation involved the neglect of curvature terms to reproduce the Carte-
sian argument that appears in Moore & Saffman. It is plain that this approx-
imation is likely to be at best marginally valid when terms such as 2 are the
same order of magnitude as terms such as 0,p, which is here the case since we
are considering an exterior bounding surface of radius 1. It is also plain that
this approximation will become catastrophically poor when we allow s — 0 if
the ray approaches the axis of rotation; we therefore cannot expect these Moore
and Saffman solutions to more than qualitatively describe equatorial attractors
(which always have s > 7, n the inner rbounding radius, and cannot be ex-
pected at all to explain polar attractors, nor the ray cone emitted from the
critical latitude which has s < 7 and directly approaches the axis.
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