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1. Introduction

Since the release of radionuclides in March 2011, air dose rates (i.e., the ambient dose equivalent

rate (μSv/h) at 1 m above the ground) near the Fukushima Daiichi Nuclear Power Plant (NPP) 

have been steadily decreasing (Saito, 2016, 2019). The designated evacuation area has shrunk to 

370 km2, which is less than 3% of the Fukushima Prefecture (Fukushima Prefectural 

Government, 2017). Currently, radiocesium (134Cs and 137Cs) is the main contaminant of concern 

in the environment, since it is a major contributor to air-dose rates (Saito, 2016). Many studies 

have documented reduction of the air dose rates faster than expected from physical decay as a 

result of both physical and ecological decay (Kinase et al., 2014, 2015, 2017; Saito, 2016, 2019; 

Wainwright et al., 2018). In addition, other studies have found that the extensive 

decontamination effort in the region has played a critical role in this recovery process (Yasutaka 

et al., 2013; Wainwright et al., 2018). 

Since the release event, radiation measurements and monitoring have been conducted 

continuously in this region. Monitoring has played a critical role in protecting the public, guiding

decontamination efforts, and planning the return of evacuated residents. Radiation measurements

have been carried out using various techniques and platforms. In addition to the conventional 

monitoring posts, new monitoring posts have been installed at more than 3,500 locations in the 

region, providing continuous, real-time air dose rates. To quantify the temporal changes in air 

dose rates, fixed-point measurements and soil sampling of undisturbed land have been done once

or twice per year to provide the most accurate measurements of radiation dose rates (Mikami et 
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al., 2015, 2019). In parallel, walk surveys (Andoh et al., 2018a), car surveys (Andoh et al., 2015, 

2018b), and airborne surveys (Sanada et al., 2014, 2018) have been performed over the region 

once or twice a year to characterize the spatial distribution of radiation dose rates (Saito and 

Onda, 2015). The air dose rates are found to be significantly correlated with Cs-137 

concentrations in soil (NRA, 2011a; Onda et al., 2015; Masoudi et al., 2019), so that they are 

considered as proxies of soil contamination in the region.

After eight years, the monitoring program is expected to transition to long-term monitoring 

beyond 10 years. The objectives of long-term monitoring are often different from monitoring 

during remedial activities, since such monitoring starts after extensive data accumulation has led 

to an understanding of contaminant distributions and mobility (Eddy-Dilek et al., 2014). The 

main long-term monitoring objectives are to (1) confirm the continuing reduction of contaminant

and hazard levels, (2) provide assurance for the public, and (3) accumulate basic datasets for 

scientific knowledge and future preparation. At the same time, long-term monitoring is critical 

for detecting changes or anomalies in contaminant mobility (if they occur), or for detecting any 

unexpected processes or events. At the former nuclear weapon sites in the U.S.A. for example, 

monitoring activities have been continuing for more than 30 years, providing critical data and 

assurance for the local communities near the sites (Schmidt et al., 2018). This is particularly 

important for radiologically contaminated sites where the environmental and health impacts are 

often exaggerated and false information can have a significant socioeconomic impact (Sawano et

al., 2019). 

The challenge of long-term monitoring is to build a cost effective and sustainable strategy by 

minimizing the cost associated with the number of monitoring locations or sampling, while 
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maximizing the ability to meet the objectives listed above. In contrast to the monitoring activities

during remediation, long-term monitoring has to be carefully planned, considering cost, spatial 

coverage, and the priorities of local communities and governments. Although there are a variety 

of factors to prioritize monitoring locations such as population density and socioeconomic and 

psychological factors, science-based methods could support or augment such prioritization. In 

particular, we may develop an optimization strategy for the radiation monitoring network—

specifically by providing a logical way to determine the number and locations of different 

monitoring platforms. 

Monitoring network optimization has been widely studied and applied in many fields, such as 

air-pollution monitoring, water-quality monitoring, snow-thickness measurements, and soil-

pollution measurements. As a result of reviewing literature from 1978 to 2019, there have been 

many approaches that are developed for monitoring network optimization, such as spatial 

simulated annealing (SSA), genetic algorithms (GA), ant colony optimization (ACO), particle 

swarm optimization (PSO), the entropy-based Bayesian method, information theory, and 

surrogate-based optimization combined with random forests or kriging method. (More details 

regarding these algorithms and related literatures can be found in the supplementary martial text 

S1). In most of these approaches, optimization is done in two steps. The first step involves 

making predictions to create a map of contamination, using contaminant transport models, 

historical data, or the Kriging method. The second step involves searching the optima to place 

sensors based on objective functions; there are multiple algorithms available such as GA, ACO, 

PSO, and GA. 
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There have been several approaches proposed to optimize radiation monitoring networks (Melles

et al., 2008; Heuvelink et al., 2010). Melles et al. (2008) developed an algorithm to optimize the 

air dose rate monitoring network of point measurement, by minimizing the average kriging 

standard deviation to find the optimal monitoring station locations. The approach by Heuvelink 

et al. (2010) is based on spatial simulated annealing to optimize the measurement of radionuclide

concentrations spatially based on mobile measuring devices or sensors, by minimizing the 

expected weighted sum of false-positive and false-negative detection areas. 

Recently, environmental monitoring has been evolving to deploy airborne platforms and 

technologies, including drone and airborne measurements, that allow spatially extensive 

characterization and mapping (e.g., Wainwright et al., 2017). In particular, airborne radiation 

monitoring technologies have been advanced significantly in the past decade (Sanada et al., 

2014; Sanada and Torii, 2015; Vetter et al., 2019). Working with multiple radiation survey 

datasets, Wainwright et al. (2017; 2018) has developed a multiscale data-integration 

methodology – based on Bayesian hierarchical models and geostatistics – which has enabled the 

integration of datasets from these three kinds of surveys with different spatial coverage and 

footprints, as well as the creation of integrated maps of air dose rates over the region. Taking 

advantage of such airborne measurements, Oroza et al. (2016) proposed a novel machine-

learning-based approach that optimizes the sensor-network configuration to capture the 

heterogeneous distribution of snow depths. There are now opportunities to improve the radiation 

monitoring based on spatially extensive datasets and spatial information.

The objective of this study is to develop a general methodology for optimizing regional-scale 

radiation monitoring, by extending the methodology developed by Oroza et al. (2016) for 
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radiation monitoring. Specifically, for Fukushima, the focus is on either reducing the number of 

existing monitoring posts while keeping the high-priority locations (such as at schools and public

facilities) and capturing spatial heterogeneity, or placing walk/car survey locations at minimum-

but-sufficient locations. For simplicity, we assume in this study that the monitoring cost is 

proportional to the number of monitoring locations. In parallel, we aim to generalize this concept

for any network applied to existing or potential contamination events. In principle, we assume 

that radiation monitoring networks are required to capture (1) the spatial heterogeneity of 

radiation dose rates; (2) key locations such as hospitals, schools, and public facilities; and (3) key

features such as different land uses, terrains, and other factors that are known to control 

radionuclide mobility. 

Our methodology is versatile: we can use the same approach to reduce the number of 

measurements from the existing points, as well as to establish new measurement locations, with 

some constraints such as accessibility (e.g., roads and public lands). Compared to the previous 

studies on radiation monitoring optimization, our unique contribution is that we use the spatially 

distributed radiation air dose rate  map during the optimization rather than simple interpolation of

point measurements. We demonstrate this methodology with a limited number of datasets at 

limited spatial scale, using an integrated radiation-dose-rate map created by Wainwright et al. 

(2017) as the true distribution of the air-dose rates.

2. Methodology

Since our methodology is applied here for long-term monitoring, we assume that there has been 

an accumulation of datasets to aid in identifying the spatial distribution of air dose rates and in 
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understanding their changes. Specifically, in the Fukushima region, the air dose rates have been 

mapped extensively. Soon after the accident, the air dose rates indicated different decreasing 

tendency depending on the locations, since the mobile portion of radioceasium migrated at 

different speeds depending on, for example, surface land-cover types and human activities 

(Kinase et al., 2014; Saito et al., 2019). In this analysis, we considered the geographical range, 

and also included currently known factors (i.e., land-cover type) that influence the radiocesium 

movement. In recent years after the migratory radiocesium has migrated, many studies have 

reported the spatially uniform reduction of dose rates over the region, except for a steeper 

decrease in the decontaminated region (Wainwright et al., 2018). This is because cesium is 

strongly bound to soil particles, and its mobility is quite limited in the environment. Therefore, 

we may assume that the current dose-rate map can be used to plan future monitoring activities. 

We use the current integrated map of air dose rates as a reference map to select monitoring 

locations (Wainwright et al., 2018).  The steps of our methodology are shown as Fig. 1. Details 

of each step is discussed later.

In the following sections, we use the term “monitoring locations” or “monitoring points” to 

represent the locations for monitoring posts, survey data points, or dose-rate measurements. This 

is equivalent to “sensor locations” in Oroza et al. (2016) and other literature.
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Fig. 1. Flowchart of the optimization Method

Step 1.  Key locations

In the first step, we place monitoring points at key locations or pre-determined locations such as 

compliance points, schools, or hospitals. Although their number and locations can be negotiable, 

it is often the case that there are a set of locations required for monitoring, based on regulations 

or public need. 

Step 2. Capture the diversity of key controls 

There are key environmental controls that are known to affect the reduction of air-dose rates or 

the heterogeneity of the air-dose rates, such as land-cover types (Saito et al., 2019). To capture 

such effects more effectively, we may want to distribute monitoring points at the most 

representative locations of different parameters or features, such as elevation, distance/direction 

from the source, or spatial extent (latitude/longitude). This allows us to diversify the monitoring 
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locations across different environmental variables, which is particularly important for scientific 

research and understanding, as well as for finding any additional or unexpected effects in the 

future. Thus, after establishing key locations in Step 1, in Step 2 we add more monitoring 

locations to capture key features. 

Following Oroza et al. (2016), we use a Gaussian mixture model (GMM) to determine the 

monitoring locations so as to identify the most representative locations. A GMM assumes that a 

feature space (e.g., the combined x = [xlat; xlon; xelevation; xdirection; xdistance; xlanduse]) is a product of a 

finite number of latent (unobserved) components (i.e., measurements) that follow Gaussian 

distributions, where xlat, xlon, xelevation, xdirection, xdistance and xlanduse are the raster datasets for latitude, 

longitude, elevation, direction from the plant, distance from the plant and land use type, 

respectively. The purpose of using a GMM here is to find the representative values in feature 

space, (i.e. the center points of clusters) rather than to quantify the parameter uncertainty. The 

monitoring network’s ability to observe each point in the feature space is represented using a 

multivariate normal distribution: N(x | μ, Σ) where μ and Σ are the mean and covariance, 

respectively. This is the parametric expression for each component of the mixture. The mean of 

the normal distribution is selected to be the measurement location in the feature space as a 

representative location. Multiple Gaussian distributions (multiple measurement locations) are 

combined and weighted with mixing parameters πm from an ensemble of M mixture elements:

p ( x )=∑
m=1

M

π m N ( μm , Σm )

(1)
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where 

∑
m=1

M

π m=1

(2)

We use the expectation maximization (EM) algorithm to place the Step 2 sets of monitoring 

locations (McLachlan and Peel, 2004; Pedregosa et al., 2011). The EM algorithm is an iterative 

process in which the algorithm identifies the most likely parameter estimates for the mixture of 

multivariate normal distributions to represent the data. Within this algorithm, we use a spherical 

covariance function to update the model weights, covariance, and means with each iteration. 

Once the maximization step no longer increases the log-likelihood, the process terminates, and 

the optimized monitoring locations have been found. We then perform a nearest neighbor search 

through the full feature space (i.e., not subsampled) to find the physical location that most closely

matches the features of each mean estimate.

The previous studies in this region (e.g., Saito et al., 2019 and Kinase et al. 2014) have shown 

that the land-cover type is known to influence the environmental decay of the air dose rates. 

Since GMM does not include categorical variables, we assign a fixed number of monitoring 

locations in each land-cover type and distribute them according to the other numerical features 

within each land-cover type. The feature matrices for each subregion are extracted and scaled 

before the GMM is fit in each region. 

Step 3. Capture the spatial variability of air-dose rates
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In this step, a Gaussian process model (GPM) is used to add monitoring locations to capture the 

spatial variability across the region, following Oroza et al. (2016). A Gaussian process model is 

based on spatial auto-correlation and covariance models, which are equivalent to the 

geostatistical model used in Wainwright et al. (2017). Although Oroza et al. (2016) included the 

dependency of the target variables on environmental variables such as elevation, we use only the 

spatial correlations, since the spatial distribution of the radiation dose rates are largely governed 

by the plume path and initial deposition—although there are also some minor effects caused by 

environmental controls such as elevation, land use, and other parameters which can be expended 

to depend on needs. We assume an exponential covariance model, the parameters of which are 

simultaneously estimated. We assumed the same parameters for the domain without considering 

the land cover types, which is different from Wainwright et al. (2017). 

We add one monitoring location at a time, sequentially based on the estimation result. With each 

iteration, the air dose-rate map is estimated using GPM, conditioned on the current locations. 

The values at the monitoring locations are taken from the reference map, which in this case is the

integrated dose-rate map developed by Wainwright et al. (2017; 2018). The difference between 

the estimated and reference map is quantified by the absolute error at each pixel. A new 

monitoring location is placed at a randomly selected pixel within the top three percent of the 

absolute error. We note that such randomness is necessary to avoid the effect of outliers, since 

the maximum error is often affected by such outliers. At each iteration, we compute the Root 

Mean Square Error (RMSE) over all the pixels that do not have monitoring locations. RMSE is 

used as a summary statistic to quantify the overall estimation error of this map. This step is 

repeated until the RMSE converges, the desired number of monitoring locations are placed, or 
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the RMSE falls lower than the required threshold. We consider that the convergence-based 

criteria could be most appropriate, since it is often difficult to define the number of monitoring 

locations based on the absolute RMSE values. We may define the minimum-but-sufficient 

number of monitoring locations based on the convergence of RMSE, such that RMSE with the 

reduced number of monitoring locations is within a certain range (i.e., a few percent) from the 

one of the existing locations.

The use of the estimation error is different from Oroza et al. (2016) or other studies (Araki et al., 

2015; Masoudi et al., 2019; Zhuang et al., 2011), who placed monitoring locations based on the 

estimation variance. The estimation variance (or often called kriging variance) is calculated 

based on the interpolation of point measurements without using the actual values in the reference

map. In our case, the reference map – i.e., the integrated map of air dose rates – is available over 

the region (Wainwright et al., 2016), and it is known that the relative spatial distribution of the 

air dose rates does not change over time significantly. We hypothesize that, using the estimation 

error (as the difference between the reference map and the interpolated map), we can maximize 

the use of information currently available and we can further improve the monitoring network 

compared to using the estimation variance.  We evaluate the impact of the difference between 

using the estimation error and variance in a synthetic scenario. 

We have implemented our algorithms using the Scikit-learn package in PYTHON (Pedregosa et 

al., 2011). We have made multiple improvements in the algorithms compared to Oroza et al. 

(2016), such as restricting monitoring locations (for example, representing the availability of 

power, and the accessibility of locations and existing monitoring locations). 
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3. Results and discussion

We demonstrated our methodology using the datasets in the designated evacuation area (as of 

March 2017). We used the 2016 integrated map created in Wainwright et al. (2018), along with 

other spatially extensive data, including elevation, land-cover type, and distance and direction 

from the NPP (Fig. 2). The pixel size was 50 m by 50 m. We used the high-resolution land-use 

and land-cover map of Japan (version 14.02) created by the Japan Aerospace Exploration 

Agency (Takahashi et al., 2013). In this demonstration, we focused on the methodology 

development, aiming to test our algorithm performance. We created a hypothetical set of priority 

locations to be used in Step 1. 

 

Fig. 2. Input data maps: (a) 2016 integrated air-dose-rate map in log10 microSv/hr, (b) land-cover 
map. In (b), the green region is forest, the yellow region is cropland, and red region is urban area. 
The unit of coordinates is meter(m), the black dots in each subplot are the location of Fukushima 
Daiichi Nuclear Power Plant(FDNPP). 

To represent different uses, we considered two cases: (1) across the domain without any location 

restrictions, (2) at the limited locations selected in advance. In Case 1, we considered all the 

pixels that are candidate locations for monitoring. Case 1 was used mainly to demonstrate the 
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algorithms and to explore the effect of parameters within the optimization algorithms.  Case 2 

mimicked the situation in which the goal would be to reduce the number of existing monitoring 

locations, or the restricted locations along the roads or accessible locations. 

Case 1: Placement without location constraints

Fig. 3 shows the monitoring locations at each step for Case 1. As mentioned above, the Step 1 

locations are hypothetical for the demonstration purpose. We assume that the four Step-1 

locations are the prioritized locations that are fixed a priori (Fig. 3a). The monitoring points are 

added to diversify various environmental properties in Step 2, so that the monitoring locations 

are distributed widely throughout the area (Fig. 3b). We assume ten locations in each land-cover 

type, so that 30 points are placed in total. The points are distributed over the domain to cover the 

range of dose rates and space. In Step 3, the algorithm adds 250 points to capture the 

heterogeneity in the dose rates, so that it places monitoring locations in-between the Step 1 and 

Step 2 points (Fig. 3c), as well as in the region where the spatial heterogeneity is high and the 

dose rate changes more rapidly in a short distance (e.g., the region near the power plant). There 

are four points in Fig. 3a, 34 points in Fig. 3b, and 284 points in Fig. 3c.  
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Fig. 3. Proposed monitoring locations over the 2016 integrated map (in log10 microSv/hr) in Case 1 

after: (a) Step 1, (b) Step 2 and (c) Step 3. In the figures, the red circles are the monitoring 

locations.

The overall estimation error (RMSE) is plotted against the number of monitoring locations in 

Step 3 (Fig. 4). Fig. 4a examines the effect of the randomness, since the point at each iteration is 

selected randomly within the pixels that have the top 3% estimation errors. RMSE decreases 

rapidly at the beginning and converges to a certain value. This is because once there are enough 
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monitoring locations to capture the heterogeneity, additional locations have a diminishing effect. 

In addition, such RMSE convergence is attributed possibly to random errors in the dose-rate 

measurements or spatially uncorrelated variability in the dose-rate distribution. All the curves are

fairly similar, suggesting that the randomness effect is quite minimal within the optimization 

algorithm. 

In addition, we compare several numbers for the Step-2 monitoring locations; five, 10, and 20 in 

each land-cover type (i.e., the initial number in Step 3 is 19, 34, and 64, respectively), as shown 

in Fig. 4b. Fig. 4b illustrates that when the number of monitoring locations is high in Step 2, the 

initial RMSE is low, but it converges to the same value. The number of initial monitoring 

locations does not have a significant impact on the final distribution and RMSE, or on the ability 

of the monitoring network to capture the heterogeneity of the dose rates.

 

Fig. 4. RMSE vs number of monitoring locations in Step 3 in Case 1: (a) initial monitoring locations
number is 34, random sampled top 3% highest estimation error, MC simulated 10 times; (b) 
random sampled top 3% highest estimation error, with initial monitoring locations number 19, 34, 
64.

In addition, we investigated the effect of the selection criteria to select the next monitoring 

location in Step 3. The original algorithm in Oroza et al. (2016) selected the next location based 
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on the estimation variance from GPM—i.e., choosing one location among the top 3% variance 

pixels or the largest variance pixel. We proposed an alternative for choosing the next location 

based on the estimation error computed as the difference between the reference and interpolated 

maps in Step 3.

 

 Fig. 5. Monitoring locations configurations by choosing (a) the top 3% of the estimation errors and

(b) the top 3% estimation variance and (c) RMSE curves using error criterion vs variance criterion.

The two criteria make a large difference in terms of the RMSE and spatial configuration of 

monitoring locations. When estimation error is used as the criterion (Fig. 5a), there are many 

clusters in the map. The clusters tend to be located where the radiation dose rate is more 
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heterogeneous over a short distance. In the region where the spatial heterogeneity is high, the 

interpolation becomes high, and more monitoring locations are needed to capture the spatial 

heterogeneity. On the other hand, when estimation variance criterion is used (Fig. 5b), the 

monitoring locations are more uniformly distributed over the domain. As a property of GPM, the

highest predicted variance is the middle points among neighboring sensors. Therefore, this 

variance-based criterion tends to choose locations in the middle of an existing network, which 

ultimately results in a uniform sensor network (Fig. 5b). In Fig. 5c, the estimation error-based 

criterion yields a more rapid decrease in RMSE than the variance-based criterion, as well as a 

smaller RMSE when the RMSE is converged. This result suggests that the estimation error-based

criterion can add points more effectively where the heterogeneity is large, and can capture the 

heterogeneity with fewer numbers of monitoring locations.

In our algorithm, we randomly selected one location among the top 3% largest error instead of 

choosing the largest one to reduce the influence of outliers. However, the choice of 3% seems 

rather arbitrary, and therefore this parameter has to be evaluated. We consider that such random 

selection can effectively attenuate the effect of outliers, although such a selection scheme could 

also reduce the prediction power, since the algorithm could choose the pixels with lower 

estimation error—there is an apparent trade-off. To evaluate what is the best sampling scope for 

our algorithm, we tested different percentages: 0.2%, 1%, 3%, 5%, 7.5%, 10%, and compared the

reduction of RMSE as a function of the number of monitoring locations. Fig. 6 shows that the 

reduction is the most effective between 3% and 7.5%. The RMSE is higher for the smallest 

percentage (0.2%) due to the outlier effects, and also for the largest percentage (10%) due to the 
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fact that the large estimation-error pixels are missed. This confirms the presence of the trade-offs,

and the parameters have to be optimized for each case.

  

Fig. 6. RMSE as a function of the number of monitoring locations for different parameters within 
the error-based criterion. In the legend, top 10% means randomly sampling one pixel out of the 
pixels with top 10% highest error for next sensor, etc.

Case 2: Placement with the location restriction 

In Case 2, we demonstrated the monitoring network optimization with location restriction. We 

used actual monitoring post locations except for Step 1. In Step 2, we added 10 locations for 

each land-use type. In Step 3, we selected 100 out of the 255 existing monitoring locations. Fig. 

7 shows the sampling locations at each step for Case 2. Similar to the monitoring configuration 

without location restriction (Fig. 3c), the monitoring locations are concentrated in the region 

where the spatial heterogeneity is high. The difference is that there is a missing region around 

Easting = 4.9 x 105 m, where there are no existing monitoring locations. This difference may 

suggest that locations that are currently missing but are needed to capture the regional-scale 

heterogeneity of radiation dose rates.
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Fig. 7. Proposed sampling locations over the 2016 integrated map (in log10 microSv/hr) in Case 2 
after: (a) Step 1, (b) Step 2 and (c) Step 3. In the Fig.s, the red dot are the sampling locations.

Fig. 8 shows the effect of the randomness within the algorithm and the number of Step 2 

locations, when the locations are restricted to the existing monitoring locations. In Fig. 8a, after 

repeating the simulations ten times, the RMSE curves are plotted against the number of 

monitoring locations. The RMSE decreases with fluctuation at the beginning and converges to a 

certain value. The converged value is higher than the no-restriction case in Fig. 4a, and the 
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RMSE converges slowly compared to the no-restriction case, since the number of pixels that can 

be chosen is much smaller. The existing monitoring locations are not necessarily capturing the 

spatial heterogeneity of contamination. In Fig. 8b, we compare several numbers of Step-2 

sampling locations: five, ten, and twenty in each land-cover type (i.e., the initial number in Step 

3 is 19, 34, and 64, respectively), as shown in Fig. 8b. As consistent with the no-restriction case 

(Fig. 4b), the number of Step 2 locations do not affect the convergence of RMSE. 

 

Fig. 8. RMSE vs number of monitoring locations in Step 3 in Case 2: (a) initial locations number is 
34, random sampled top 3% highest error, MC simulated 10 times; (b) random sampled top 3% 
highest error.

Since our algorithm has a random selection (e.g., within top 3% of largest errors) within each 

iteration, there could be randomness in the final monitoring locations. There is a concern that 

random simulations may yield totally different design networks. We need to evaluate how this 

randomness affects the monitoring locations. We created a probabilistic map—the probability of 

each location to be chosen as a monitoring location — to represent the randomness within the 

algorithm. Using the Monte Carlo simulation, we created the 100 sets of monitoring locations 
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that are equally likely (Fig. 9). The probabilities are computed by the frequency of being selected

in the Monte Carlo simulations. Within each set, 100 locations were selected out of 255 pre-

selected locations, since the RMSE appears to converge around 100 locations. 

Fig. 9a shows that RMSE generally decreases as a function of the number of monitoring 

locations and converges to a similar value. In the probability-based monitoring network (Fig. 

9b), there are some locations that are always chosen (red dots in Fig. 9b), while some are less 

likely to be selected (purple dots in Fig. 9b). These more-selected locations tend to be located 

within the high heterogeneity region. In addition, the spatial pattern is consistent with Fig. 7c, 

which is just one instance of the simulation. Fig. 9c shows the probability of being selected for 

each location sorted from high (1.0) to low (0.0). For example, there are 28 locations (from 0 to 

27, around 11 percent out of total) that are 100% (always) selected, while 78 locations (from 177

to 254, around 30 percent out of total) are never selected during the 100 simulations. The slope 

of the distribution in Fig. 9c reflects the ambiguity of our algorithm, i.e., steeper means less 

randomness. The steep curve results suggest that the randomness might not affect the monitoring 

location significantly, and the algorithm can identify both the locations that are highly important, 

as well as the locations that have a negligible impact on the ability to capture spatial 

heterogeneity. 

21

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

41

42



  

Fig. 9. Results from generating 100 sets of monitoring locations based on the MC simulation: (a) the
RMSE curves of the 100 simulations, as a function of monitoring locations, (b) probabilistic map of 
the monitoring locations among monitoring posts based on 100 simulations, and (c) probability of 
each location sorted from high (1.0) to low (0.0). In (b), the color of each dot is an indicator of 
probability.  

4. Conclusion

In this work, we have developed a methodology for optimizing monitoring locations of air dose 

rates at the regional scale. This methodology can be used as a general methodology either for 

reducing the number of existing monitoring locations (such as monitoring posts), or for optimally

placing mobile measurements, such as car or walk surveys. Three steps are taken in order to 

determine monitoring locations in a systematic manner: (1) prioritizing the critical locations, 

such as schools or regulatory requirement locations, (2) diversifying locations across the key 

environmental controls that are known to influence contaminant mobility and distributions based 

on a Gaussian mixture model, and (3) capturing the heterogeneity of air dose rates across the 

domain based on a Gaussian process model. We use the integrated dose-rate map from 

Wainwright et al. (2017; 2018) as the reference map and distribute the sampling in such a way as

to capture the heterogeneity of the reference map. 
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Our results have shown that this approach enables us to add or subtract monitoring locations in a 

systematic manner such that the heterogeneity of air dose rates is captured by the minimal 

number of monitoring locations. We acknowledge that our algorithm does not include 

socioeconomic factors that influence overall exposure dose to the public. The population density 

or traffic volume (along each road) can be additional spatial layers that are readily available and 

can be included (such as Sun et al., 2019). The algorithm can accommodate other factors such as 

agricultural information or key facilities. At the same time, capturing the overall spatial 

distribution of air dose rates is important for risk assessments or decontamination planning. In 

fact, many people in this region enter the non-populated forested area for edible wild plants or 

for forestry (Miura, 2016). We consider that our algorithm in this paper is the first step of 

monitoring optimization by capturing the spatial heterogeneity; we can add other information 

and their priority weights according to the user's needs. 

In addition, we acknowledge that this algorithm would not provide additional protection or 

remediation methods. However, having an accurate map of contamination allows people to avoid

highly contaminated areas or to concentrate decontamination resources to appropriate areas. In 

addition, long-term monitoring is important to provide the correct information about the stability 

of the contaminant distribution, and the reduction of radiation level to the people in the other 

regions. Improving air dose rate mapping with the limited number of monitoring locations, 

hence, contributes significantly to protecting public health as well as to supporting the local 

economy.
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Fig. 1. Flowchart of the optimization Method

Fig. 2. Input data maps: (a) 2016 integrated air-dose-rate map in log10 microSv/hr, (b) land-

cover map. In (b), the green region is forest, the yellow region is cropland, and red region is 

urban area. The unit of coordinates is meter(m), the black dots in each subplot are the location of 

Fukushima Daiichi Nuclear Power Plant(FDNPP).

Fig. 3. Proposed monitoring locations over the 2016 integrated map (in log10 microSv/hr) in 

Case 1 after: (a) Step 1, (b) Step 2 and (c) Step 3. In the figures, the red circles are the monitoring

locations.

Fig. 4. RMSE vs number of monitoring locations in Step 3 in Case 1: (a) initial monitoring 

locations number is 34, random sampled top 3% highest estimation error, MC simulated 10 

times; (b) random sampled top 3% highest estimation error, with initial monitoring locations 

number 19, 34, 64.

Fig. 5. Monitoring locations configurations by choosing (a) the top 3% of the estimation errors 

and (b) the top 3% estimation variance and (c) RMSE curves using error criterion vs variance 

criterion

Fig. 6. RMSE as a function of the number of monitoring locations for different parameters within

the error-based criterion. In the legend, top 10% means randomly sampling one pixel out of the 

pixels with top 10% highest error for next sensor, etc.
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Fig. 7. Proposed sampling locations over the 2016 integrated map (in log10 microSv/hr) in Case 

2 after: (a) Step 1, (b) Step 2 and (c) Step 3. In the Fig.s, the red dot are the sampling locations.

Fig. 8. RMSE vs number of monitoring locations in Step 3 in Case 2: (a) initial locations number

is 34, random sampled top 3% highest error, MC simulated 10 times; (b) random sampled top 

3% highest error.

Fig. 9. Results from generating 100 sets of monitoring locations based on the MC simulation: (a) 

the RMSE curves of the 100 simulations, as a function of monitoring locations, (b) probabilistic 

map of the monitoring locations among monitoring posts based on 100 simulations, and (c) 

probability of each location sorted from high (1.0) to low (0.0). In (b), the color of each dot is an 

indicator of probability.  
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