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Abstract

A multimorbidity-focused approach may reflect common etiologic mechanisms and lead to better 

targeting of etiologic agents for broadly impactful public health interventions. Our aim was 
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to identify clusters of chronic obesity-related, neurodevelopmental, and respiratory outcomes in 

children, and to examine associations between cluster membership and widely prevalent chemical 

exposures to demonstrate our epidemiologic approach. Early to middle childhood outcome 

data collected 2011–2022 for 1092 children were harmonized across the ECHO-PATHWAYS 

consortium of 3 prospective pregnancy cohorts in six U.S. cities. 15 outcomes included age 4–

9 BMI, cognitive and behavioral assessment scores, speech problems, and learning disabilities, 

asthma, wheeze, and rhinitis. To form generalizable clusters across study sites, we performed 

k-means clustering on scaled residuals of each variable regressed on study site. Outcomes and 

demographic variables were summarized between resulting clusters. Logistic weighted quantile 

sum regressions with permutation test p-values associated odds of cluster membership with a 

mixture of 15 prenatal urinary phthalate metabolites in full-sample and sex-stratified models. 

Three clusters emerged, including a healthier Cluster 1 (n = 734) with low morbidity across 

outcomes; Cluster 2 (n = 192) with low IQ and higher levels of all outcomes, especially 0.4–

1.8-standard deviation higher mean neurobehavioral outcomes; and Cluster 3 (n = 179) with 

the highest asthma (92 %), wheeze (53 %), and rhinitis (57 %) frequencies. We observed a 

significant positive, male-specific stratified association (odds ratio = 1.6; p = 0.01) between 

a phthalate mixture with high weights for MEP and MHPP and odds of membership in 

Cluster 3 versus Cluster 1. These results identified subpopulations of children with co-occurring 

elevated levels of BMI, neurodevelopmental, and respiratory outcomes that may reflect shared 

etiologic pathways. The observed association between phthalates and respiratory outcome cluster 

membership could inform policy efforts towards children with respiratory disease. Similar cluster-

based epidemiology may identify environmental factors that impact multi-outcome prevalence and 

efficiently direct public policy efforts.

Keywords

Clustering; Multi-outcome; Multi-morbidity; Phthalates; Asthma; Behavior

1. Introduction

Approximately one in four children have a chronic medical condition in the United States, 

and up to one in five children have a psychiatric diagnosis at some point during childhood 

(Perou et al., 2013; Van Cleave et al., 2010). Mental health disorders, asthma and other 

allergic respiratory conditions, and obesity are among the most prevalent of these chronic 

conditions (Perrin et al., 2007). Comorbidity may across disease domains, such as 8–16 

% of pediatric asthma cases being comorbid with obesity or psychiatric disorders (Kaplan 

et al., 2020). Complex multimorbidity patterns have been revealed by latent class analysis 

(Carrilero et al., 2020). Multi-cohort prospective studies can be a valuable resource in 

understanding factors underlying chronic comorbidity, as they combine rich exposure 

assessment with large quantities of outcome data.

Examining exposure associations with multi-outcome phenotypes may help to identify 

common etiologic mechanisms underlying multiple disease domains, such as asthma 

and depression sharing common deficits in adrenergic and glucocorticoid receptor 

expression (Miller and Chen, 2006). This approach may also lead to more effective 
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public health strategies by enabling identification of exposures that impact multiple 

diseases with high public health importance (VanderWeele, 2017). This is of particular 

relevance to environmental epidemiology since many environmental stressors share common 

pathophysiologic mechanisms with broad biologic implications such as endocrine disruption 

and oxidative stress-induced inflammation (Neier et al., 2015). Phthalates, which are 

ubiquitous synthetic endocrine-disrupting chemicals that can cross the placenta (Hauser 

and Calafat, 2005; Silva et al., 2004), represent an excellent case study in the potential 

utility of this outcome-wide approach since they have previously been associated, often 

in a sex-specific manner (Eales et al., 2022), with obesity (Kim and Park, 2014), 

asthma-related respiratory outcomes (Li et al., 2017), and both cognitive and behavioral 

neurodevelopmental outcomes (Radke et al., 2020).

Our goal was to identify and characterize clusters of children with correlated 

neurodevelopmental, respiratory, and obesity-related outcomes collected across multiple 

observational cohort studies. For this analysis, we utilized the ECHO-PATHWAYS 

consortium, which compiles a rich set of neurobehavioral, respiratory, and anthropometric 

outcomes from three separate cohorts and a total of 6 study sites across the U.S. (LeWinn et 

al., 2022). We applied a clustering method capable of disentangling the clustering structure 

induced by spatial, temporal, and technical differences between study cohorts and sites 

in mixed-type continuous and categorical data. To demonstrate how these multi-outcome 

phenotypes may be applied to environmental epidemiology, we additionally examined 

associations between prenatal phthalate exposures and the probability of membership in 

clusters of multimorbid outcomes. Our hypothesis is that we will discover stable clusters 

of multiple health outcomes, and that there will be potentially sex-specific associations 

between the probability of belonging to these clusters and prenatal exposure to mixtures of 

phthalates.

2. Materials and methods

2.1. Study population

This study utilized data on participants within the ECHO-PATHWAYS Consortium, which 

is a consortium within the larger Environmental Influences on Child Health Outcomes 

(ECHO) Program (Knapp et al., 2023) that includes three cohorts: The Conditions Affecting 

Neurocognitive Development and Learning in Early childhood (CANDLE) study, the Global 

Alliance to Prevent Prematurity and Stillbirth (GAPPS) study, and The Infant Development 

and the Environment Study (TIDES) (LeWinn et al., 2022). The CANDLE study is a 

prospective pregnancy cohort in Shelby County, Tennessee that recruited pregnant women 

between 16 and 40 years old from 2006 to 2011, and the study design and inclusion criteria 

have been described elsewhere (Sontag-Padilla et al., 2015). Women attended two prenatal 

study visits and one at delivery that included maternal surveys and biospecimen collection. 

Mother-child dyads were followed up at regular intervals, including clinic visits at age 4–6 

years and 8–9 years. The GAPPS study prospectively enrolled pregnant women over 18 

years old over 8 years from hospitals in Seattle and Yakima, WA (LeWinn et al., 2022). 

Biospecimen collection occurred over three visits during pregnancy. Women previously 

enrolled in GAPPS with children born between 2011 and 2016 were re-contacted and 
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invited to participate in the ECHO-PATHWAYS Consortium. Visits including clinic and 

remote visits were performed for mother–child dyads at age 4–6 years upon enrollment into 

ECHO-PATHWAYS and later at age 8–9 years. TIDES is a multi-site prospective cohort that 

recruited pregnant women over 18 years old with low-risk pregnancies from 2010 to 2012 

at four obstetrical clinics affiliated with participating academic medical institutions across 

the US: San Francisco, CA; Minneapolis, MN; Rochester, NY; and Seattle, WA (Barrett 

et al., 2014). Three prenatal study visits including biospecimen and survey collection were 

performed, and postnatal follow-up visits included a birth exam and clinic and remote visits 

at ages 4–5, 6–8, and 8–9 years.

2.2. Outcomes

We included 15 outcomes assessed during early to middle childhood representing the broad 

categories of obesity-related, respiratory, and neurodevelopmental outcomes. To represent 

obesity-related outcomes, we included body mass index (BMI) z-scores adjusted for age and 

sex assigned at birth using CDC reference values (Kuczmarski et al., 2002; van Buuren, 

2018). Height and weight measurements used in this calculation were measured primarily 

during age 8–9-year visits. When these measurements were unavailable, we instead used 

age- and sex-adjusted BMI z-scores derived from age 4–6 visits (CANDLE: 2.6 % and 

GAPPS: 21 %) or an age 6–8 visit (TIDES: 26 %). Pearson correlation coefficients between 

repeated BMI z-scores from these visits were 0.66 for CANDLE, 0.82 for GAPPS, and 0.76 

for TIDES.

Neurodevelopmental outcomes included cognitive performance indicated by full-scale 

intelligence quotient (FSIQ), harmonized as previously described (Ni et al., 2022) across age 

4–6 Stanford Binet 5 (Roid and Barram, 2004); age 4–6 Wechsler Preschool and Primary 

Scale of Intelligence, Fourth Edition (Wechsler, 2012); and age 6–8 Wechsler Intelligence 

Scale for Children, Fifth Edition (Wechsler, 2014) assessments from CANDLE, GAPPS, 

and TIDES, respectively. Behavioral outcomes included age 8–9 anxiety, depression, and 

irritability as assessed using the total scores for the child self-reported Screen for Child 

Anxiety Related Emotional Disorders (SCARED) assessment (Birmaher et al., 1997), 

Children’s Depression Inventory 2 (CDI) (Kovacs, 1992), and the Affective Reactivity Index 

(ARI) (Stringaris et al., 2012), respectively. We also included five Child Behavior Checklist 

(CBCL) (Achenbach, 2001) subscale scores of social, thought, and attention problems as 

well as externalizing and internalizing behaviors reported by parents at age 8–9. Health 

history questionnaire-reported diagnosis of child learning disability or speech problems as 

reported by parents at age 4–6 for GAPPS and TIDES and 8–9 for CANDLE were also 

included among the neurodevelopmental outcomes.

Finally, age 8–9 parent-reported International Study of Asthma and Allergies in Childhood 

(ISAAC) (Asher et al., 1995) questionnaire-derived ever asthma, wheeze in the past 12 

months, and ever allergic rhinitis or hay fever were included as respiratory outcomes. Ever 

wheeze was not used since this is less specific to chronic symptoms and may be related to 

bronchiolitis resulting from common early life infections (Smyth and Openshaw, 2006). The 

questions used for each dichotomous outcome are listed in the Supplementary Methods.

Day et al. Page 5

Environ Int. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3. Maternal urine collection and phthalate metabolite measurement

Single maternal spot urine samples were collected during a late pregnancy visit with a 

median gestational age at collection of 32 weeks. Detailed urine collection methods for 

CANDLE (Sontag-Padilla et al., 2015), GAPPS (Wallace et al., 2023), and TIDES (Swan 

et al., 2015) have been described previously. 22 monoester phthalate metabolites (Table 

S5) were measured using previously described methods (Guo et al., 2014; Rocha et al., 

2017) at the Wadsworth Laboratory at the New York State Department of Health, a member 

of the Children’s Health Exposure Analysis Resource laboratory network (Kannan et al., 

2021). Specific gravity was measured upon urine collection using a handheld refractometer. 

Phthalates with > 60 % detection were included, and undetected values were imputed with 

the limit of detection/ 2 (Hornung and Reed, 1990). The molar sum of five di(2-ethylhexyl) 

phthalate (DEHP) metabolites was calculated for analysis in the individual linear regressions 

(Swan et al., 2015).

2.4. Covariates

For the regression analyses associating prenatal urinary phthalate concentrations with 

multi-outcome clusters, we adjusted for a rich set of covariates based on previous studies 

associating prenatal phthalates with subsets of the outcomes included in our analysis. These 

included study site, child sex assigned at birth, maternal age at delivery, log2-transformed 

time- and site-adjusted household income, categorical household count, maternal pre-

pregnancy BMI, dichotomous primiparity, dichotomous maternal ever asthma diagnosis, 

dichotomous maternal prenatal smoking, maternal race, dichotomous Hispanic ethnicity, 

maternal educational attainment, maternal stress score as derived from the Perceived Stress 

Scale (PSS-4) (Cohen et al., 1983) collected as previously described (Wallace et al., 2023), 

and year of birth. Year of birth was included to control for temporal trends in outcomes 

and phthalate exposures (Zota et al., 2014). Race and ethnicity were included in models as 

proxies for systemic social and health inequities that may impact both phthalate exposure 

(Attina et al., 2019) as well as obesity-related (Isong et al., 2018), respiratory (Davis et al., 

2021), and neurodevelopmental (Alegria et al., 2022) health outcomes. Additional urinary 

analysis-related covariates controlled in the models to limit exposure misclassification bias 

were urinary specific gravity, laboratory analysis batch, and gestational age at sample 

collection. Maternal prenatal smoking was defined as either self-reported smoking during 

pregnancy or urinary cotinine levels > 200 ng/mL (Schick et al., 2017). A directed acyclic 

graph showing proposed relationships between all variables is shown in Figure S6.

2.5. Statistical methods

In order to determine the optimal method for identifying latent multi-outcome disease 

profiles independent of between-site differences, we tested several methods for identifying 

the latent disease profile cluster memberships (Supplementary Methods). Briefly, we tested 

the identification of simulated latent disease clusters by evaluating the adjusted Rand 

index (ARI) (Hubert and Arabie, 1985) values across 500 iterations for several forms of 

agglomerative clustering and latent class model algorithms, altering the degree of separation 

(Qiu and Joe, 2006) between clusters, numbers of observations and clusters, noise variables, 

and other parameters. The method that performed best under almost every condition was one 
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we called residual k-means (Supplementary Methods), which involves separately regressing 

each variable on study site in a univariate linear regression and then performing k-means 

clustering on the centered and scaled residuals (Hartigan and Wong, 1979). Specifically, 

these were standard linear regression residuals for the continuous outcomes and response 

residuals (i.e., each 0 or 1 outcome value subtracted by the fitted values) from logistic 

regressions for categorical outcomes. We applied residual k-means to cluster complete 

outcome data. The optimal number of partitions were chosen as the value from 2 to 10 most 

commonly chosen among 24 different default algorithms implemented in the NbClust R 

package (Charrad et al., 2014) using the “complete” method. Cluster stability was evaluated 

with the average Jaccard index of 1000 bootstrap k-means iterations (Hennig, 2007).

Individual associations between log10-transformed prenatal urinary phthalates and cluster 

membership were assessed in logistic regressions omitting non-comparison clusters for 

the equivalent of multinomial regression (Hennig, 2007). Models were controlled for all 

aforementioned covariates first without and then with examination of effect modification 

by sex, which was implemented by including multiplicative interaction terms between sex 

and all independent variables in each model (Buckley et al., 2017). Associations between 

mixtures of 15 specific gravity-adjusted (Levine, 1945) phthalate metabolites and cluster 

membership were evaluated using logistic WQS regressions (Carrico et al., 2015) featuring 

a permutation test (Day et al., 2021; Day et al., 2022; Loftus et al., 2021; Loftus et al., 

2022). For the WQS regressions, data were not split into training and validation sets for 

these models in order to maximize power, though this can bias standard error estimates in 

an anti-conservative direction (Borovicka et al., 2012). Therefore, we used a 200-iteration 

permutation test as implemented in the wqspt R package (Day et al., 2023) to obtain 

accurate p-values. When the WQS regression 95 % confidence intervals (CIs) did not 

include the null, we applied this permutation test to estimate a p-value (P*), which is a more 

accurate measure of precision than the 95 % CIs (Day et al., 2022), though we provide 

the latter for reference. All phthalate measurements were decile-transformed for the WQS 

regression.

As an additional mixture analysis, we also ran quantile g-computation models for the 

same associations evaluated by the WQS regressions (Keil et al., 2020). Whereas the 

WQS regression evaluates direction-specific (i.e., positive or negative) mixture associations, 

quantile g-computation instead calculates an overall (i.e., positive plus negative) mixture 

coefficient and tests the null hypothesis that the overall coefficient is zero. As with the WQS 

regression, phthalate measurements were decile-transformed for the quantile g-computation 

models.

All analyses were performed in R (R Development Core Team, 2022) version 4.1.3 with the 

packages clusterGeneration (Qiu and Joe, 2020), missMDA (Josse and Husson, 2016), fpc 
(Hennig, 2020), NbClust (Charrad et al., 2014), qgcomp (Keil, 2022), and wqspt (Day et al., 

2023).
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3. Results

3.1. Participant characteristics

A total of 1700 ECHO-PATHWAYS mother–child dyads participated in age 8–9 visits. 

Of these, 1092 participants (735 CANDLE, 91 GAPPS, and 266 TIDES) had complete 

outcome data and were included in the clustering analysis. Comparisons of demographic 

and other covariate data for included and excluded participants are shown in Table S2. 

Demographic and other covariate data for participants in the complete data clustering 

analysis are described in Table 1. Of those 1092 participants, 856 participants also had 

complete phthalate and covariate data and were included in the phthalate regressions.

The Clustering Dataset refers to the 1092 ECHO PATHWAYS participants with complete 

outcome data who were then clustered based on that outcome data. The Regression 

Dataset is a subset of 856 of those participants in the Clustering Dataset who also 

have complete phthalate exposure and covariate data, and therefore were included in the 

regressions associating phthalates with outcome cluster membership. The third column 

shows missingness counts and percentages for each covariate within the Regression Dataset.

3.2. Outcome Summary Statistics

Outcome variables used for complete data clustering are described in Table 2. Complete data 

outcome descriptions by study site are provided in Table S1. 11.4 %, 5.0 %, 17.1 %, 9.9 

%, and 35.2 % children had parent-reported speech problems, learning disabilities, asthma, 

wheeze, and rhinitis, respectively. Mean SCARED scores were just above the cutoff of 25 

for clinically relevant anxiety (Behrens et al., 2019). Pearson correlation coefficients for 

the residuals of outcome variables regressed on study site are shown in Figure S4. These 

correlations were generally low, with the highest values being between CBCL subscale 

scores such as between externalizing and either social problems (Pearson coefficient = 0.68) 

or internalizing problems (0.66) scores.

3.3. Clustering results

The most common optimal number of clusters chosen was three (Table S3). Fig. 1A shows 

the outcome residual z-score values for the coordinates of the three residual k-means cluster 

centers, and Fig. 1B summarizes the z-scores and percentages for continuous and categorical 

outcomes, respectively, for each of the three clusters.

Fig. 1A is a bar plot showing the z-score coordinates of each variable for each cluster 

center. These z-scores are the centered and scaled residuals from regressing each variable 

on study site. These z-scores are colored on a scale of purple for low z-scores to yellow 

for high z-scores. Fig. 1B is a heatmap describing the distributions of the outcome data on 

their original scale by cluster. In the top plot, continuous means and standard deviations are 

presented for each variable on its original scale. The heatmap is filled in based on the z-score 

of those values as a way of demonstrating relative differences for each variable, which is 

shown in the legend labeled “Z” on the right. The bottom plot uses a different heatmap color 

scale to show the percentages of each binary outcome variable with lower percentages being 

purple and higher ones being yellow.
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Cluster 1 had the highest mean FSIQ, lowest mean BMI, lowest behavioral assessment 

scores, and lowest prevalence of all adverse conditions than the other two clusters except 

speech problems, which had a lower frequency in Cluster 3 (6 % vs. 3.6 %, respectively). 

Cluster 2 (n = 192) had the lowest mean FSIQ and highest prevalence of every adverse 

outcome except asthma, wheeze, and rhinitis, though those frequencies were still higher than 

in Cluster 1. Cluster 3 had the highest frequencies of asthma (92 %), wheeze (54 %), and 

rhinitis (57 %), as well as slightly elevated mean BMI, SCARED score (Anxiety), and CDI 

score (Depression) z-scores compared to Cluster 1. Both Clusters 2 (28.6 %) and 3 (29.5 %) 

had higher obesity rates than Cluster 1 (17.0 %). The mean bootstrap Jaccard indices were 

0.88, 0.83, 0.71 for Clusters 1, 2, and 3, respectively, indicating that Clusters 1 and 2 are 

stable or highly stable, while Cluster 3 is moderately stable (Hennig, 2008).

Differences in demographic variables by complete data cluster are summarized in Table S4. 

Compared to Cluster 1, children in Clusters 2 and 3 were more likely to be male (Clusters 

2/3: 59 % vs. Cluster 1:45 % male) and have mothers with higher pre-pregnancy BMI 

(mean: 28.8 vs. 27.1) and lower educational attainment (bachelor’s degree: 40 % vs. 55 %). 

Maternal stress was highest in Cluster 2 (Cluster 1 mean PSS-4 score: 5.0, Cluster 2: 6.6, 

Cluster 3: 5.2). Cluster 3 had the lowest percentage of non-Hispanic White mothers (Cluster 

1: 44 %, Cluster 2: 41 %, Cluster 3: 22 %), lowest income (Cluster 1 mean: $66 k, Cluster 

2: $53 k, Cluster 3: $47 k), highest percentage of mothers who smoked (Cluster 1: 7.1 %, 

Cluster 2: 12 %, Cluster 3: 14 %) or had asthma (Cluster 1: 11 %, Cluster 2: 21 %, Cluster 3: 

32 %), and more CANDLE participants (Cluster 1: 65 %, Cluster 2: 67 %, Cluster 3: 80 %).

3.4. WQS regressions

Summary statistics and correlations for the phthalate concentrations are shown in Table 

S6 and Figure S5. Fig. 2 shows odds ratios, full sample 95 % CIs, and permutation-test 

p-values (P*) from the WQS regressions, and Table S7 shows mixture weights. In the 

sex-stratified analysis in males, odds of Cluster 3 membership were significantly positively 

associated with a mixture of 15 prenatal phthalate metabolites (OR: 1.59 (95 % CI: 1.26, 

2.03), P*=0.01). This mixture had high weights for monoethyl phthalate (MEP) (weight = 

0.38), monoheptyl phthalate (MHPP) (0.18), and the DEHP metabolites (summed weights = 

0.14). Female-specific associations were null.

Fig. 2 shows the odds ratio coefficients and 95 % confidence intervals (CIs) for associations 

between either Cluster 2 or 3 and Cluster 1 as determined by logistic WQS regression. The 

95 % CIs output by WQS regression when not splitting data into training and validation sets 

(i.e., using the full sample) are prone to anticonservative bias, and so a permutation test was 

done to get valid p-values (P*). As these p-values are more conservative than the default 

CIs would indicate, we only obtained these p-values when the full sample 95 % CIs did not 

overlap the null. P* values are shown for those coefficients with full sample 95 % CIs not 

overlapping the null.

The additional mixture analysis results using quantile g-computation are shown in Figure S7 

and Tables S10 and Sll. These results were similar to the WQS regression analysis, with the 

only significant overall (i.e., positive direction plus negative direction) mixture coefficient 

Day et al. Page 9

Environ Int. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



being for the association between Cluster 3 membership and the phthalate mixture in males 

(OR = 1.21 (1.01, 1.44), p = 0.04).

3.5. Individual phthalate regressions

Fig. 3 shows the regression results when individually associating 15 phthalate metabolites 

and the molar sum of DEHP metabolites with the odds of membership in Clusters 2 or 3 

either without (A) or with (B) sex interaction terms. Without sex interaction terms, there was 

a significant association between Cluster 3 membership and mono(2-ethyl-5-hydroxyhexyl) 

phthalate (MEHHP) (OR: 1.80 (95 % CI: 1.12, 2.91)), as well as a suggestive association 

with MHPP (OR: 1.47 (0.95, 2.27)). In the sex interaction models, there was a significant 

interaction and male-specific coefficient for the association between Cluster 3 membership 

and MEP (Male OR: 2.51 (1.79, 4.41), interaction p = 0.002). Male-specific coefficients in 

association with Cluster 3 membership were also significant for MHPP (OR: 1.93 (1.04, 

3.62)) and MEHPP (OR: 2.35 (1.53, 4.90), though without significant sex interaction terms 

(interaction p = 0.32 and 0.50, respectively). Coefficients are shown in Tables S7-8.

These means and 95 % confidence intervals (CIs) represent odds ratios in associations 

between individual phthalates and either Cluster 2 versus Cluster 1 membership or Cluster 

3 versus Cluster 1 membership. In both of these cases, observations assigned to the other 

cluster are omitted. Sample sizes for the Cluster 2 and Cluster 3 regressions were 729 and 

714, respectively. Fig. 3A shows results from models without interaction terms by sex, while 

Fig. 3B shows results marginal sex-specific odds ratios for the models with a phthalate by 

sex multiplicative interaction term.

4. Discussion

In this multi-cohort, multi-site prospective study, we identified three subpopulations 

of children, including two with multimorbid obesity-related, neurodevelopmental, and 

respiratory outcomes. We observed that children sorted into Clusters 2 and 3 had lower 

socioeconomic status on average. In a demonstration of the application of these clusters to 

epidemiologic studies, we observed predominantly male-specific individual and mixture 

associations between MEP, MHPP, and MEHHP and membership in Cluster 3. Our 

study is among the first to associate childhood multi-outcome clusters with environmental 

exposures. Two prior latent class analyses associated socioeconomic factors with clusters 

of multimorbid pediatric diagnoses, with both observing broad associations between either 

lower socioeconomic position levels or parental education and each derived multimorbid 

cluster (Carrilero et al., 2020; Schramm et al., 2022). Our analysis differs in its focus on 

subclinical outcome assessments and its novel identification of an environmental exposure 

that is associated with multi-morbidity in Cluster 3. An additional recent study took an 

alternative multi-outcome analytic approach of deriving the first principal component from 

separate factor analyses of neurodevelopmental and respiratory outcome domains along with 

separately averaging cardio-metabolic outcomes, averaging each domain score together to 

get a health score, and finally associating that score with social and environmental exposures 

(Amine et al., 2023). Our clustering approach differs in that it captured patterns of health 

outcomes within and across domains instead of evaluating separate representations of each 

Day et al. Page 10

Environ Int. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domain. Our approach also clusters based on the full variability of the variables in each 

domain, whereas the Amine et al. analysis focuses on the variability in the first principal 

component for each domain.

Cluster 2 was characterized by higher levels of adverse neurobehavioral outcomes along 

with a 60 % higher obesity rate and substantially higher percentages of adverse respiratory 

outcomes than the healthier Cluster 1. While the asthma rate in Cluster 2 is similar 

to the overall rate in this population, our analysis demonstrates that the overall rate is 

the average of low, medium, and high respiratory outcome rates over the subpopulations 

in the observed clusters. Prior research found that obese children are more likely to 

have behavioral problems and allergic respiratory conditions (Halfon et al., 2013), and 

that children with asthma and rhinitis are more likely to exhibit a variety of adverse 

behavioral pathologies (Garg and Silverberg, 2014), in particular anxiety and depression 

(Vargas, 2020), as well as cognitive issues like speech disorders (Strom and Silverberg, 

2016). One key pathway underlying the observed cross-domain multimorbidity may be the 

activation of indoleamine-2,3-dioxygenase induced by allergic responses (van der Leek et 

al., 2017) or obesity-related inflammation (Wolowczuk et al., 2012). This enzyme promotes 

compensatory immunoregulation but also leads to cerebral serotonin depletion characteristic 

of depression (Haroon et al., 2012).

Cluster 3 also had a similarly elevated obesity rate to Cluster 2 with a high multi-

respiratory outcome phenotype when compared to the healthier Cluster 1, as well as slightly 

elevated levels of anxiety and depression. A previous multi-omic clustering analysis of 

pediatric asthma and allergies revealed a high-immunoglobulin E (IgE), poly-sensitized 

sub-phenotype with high respiratory multimorbidity (Anto et al., 2017). Though our analysis 

did not evaluate IgE, it is possible that the high respiratory outcome pattern we observed 

in Cluster 3 reflects a related phenotype. Prior analyses evaluating comorbidities with 

pediatric asthma found high (59–78 %) comorbidity with rhinitis and more limited (8–16 

%) comorbidity with anxiety, depression, and obesity (Kaplan et al., 2020). Mechanisms 

linking asthma with anxiety and depression may include downregulation of β2-adrenergic 

and glucocorticoid receptors (Miller and Chen, 2006), differential epidermal growth factor 

receptor-related signaling (Park et al., 2018), and perturbations to the gut microbiome 

and lining (Bhatt et al., 2022), though it is uncertain whether these outcomes arise 

simultaneously or in some temporal order (Carroll, 2014). Socioeconomic disadvantage has 

been associated with comorbidity of clinical diagnoses in early childhood (Carrilero et al., 

2020; Russell et al., 2020), reflecting the demographic differences we observed between 

clusters.

The observed male-specific association of a mixture of prenatal phthalates with Cluster 

3, which was defined by markedly higher rates of age 8–9 respiratory outcomes, is 

supported by a prior analysis of ECHO PATHWAYS Consortium data that also observed 

a male-specific association between a WQS regression-derived prenatal phthalate mixture 

highly weighted for MEP and higher odds of ever asthma at an earlier age 4–6 time point, 

though with a slightly lower odds ratio (Adgent et al., 2020). Other papers evaluating 

sex differences in early life phthalate associations with asthma or wheeze risk found male-

specific prenatal and postnatal monobenzyl phthalate and mono(2-ethylhexyl) phthalate 
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metabolite associations with asthma, wheeze, and IgE (Ku et al., 2015); male-specific 

cross-sectional associations between MEP and asthma in male children (Odebeatu et al., 

2019); and male-specific associations between asthma and both prenatal monoisobutyl 

phthalate and monoisodecyl phthalate as well as postnatal MEP and allergy (Foong et al., 

2022; Navaranjan et al., 2021). However, other studies suggested only null associations 

or did not evaluate association modifications by sex (Johnk et al., 2020; Wu et al., 

2020). Future analyses validating our results using a similar approach in an independent 

sample would be useful for better understanding the sex-specific nature of phthalate 

associations with respiratory outcomes. There are several possible mechanisms that could 

underly these observations. Phthalates may induce an allergic Type 2 inflammatory 

response through epigenetic changes to hypersensitivity-related immune factor expression, 

including hypomethylation of TNFα (Wang et al., 2015) and increasing CD4+ T cell 

IL-13 expression (Kuo et al., 2013). Furthermore, estrogen enhances and testosterone 

blocks Type 2 inflammation (Yung et al., 2018), so the pro-estrogenic and anti-androgenic 

activity of various phthalates may elicit an atopic phenotype (Sathyanarayana et al., 2014). 

Maternal testosterone during pregnancy was associated with lower IgE in boys but not 

girls in prior work (Shaheen et al., 2007), consistent with our sex-specific findings. This 

mixture analysis also showcases some of the differences between the WQS regression and 

quantile g-computation approaches to estimating exposure mixture associations, with the 

quantile g-computation overall coefficient being a slightly attenuated estimate compared 

to the direction-specific coefficient from WQS regression in our results. This is a result 

of negative associations with some mixture components partially attenuating the overall 

positive association of interest in the quantile g-computation analysis.

4.1. Strengths and limitations

Strengths of this study include the large racially and ethnically diverse consortium of 

prospective cohorts from six U.S. cities with a varied set of assessment-based health 

outcomes, including robust, validated assessments of neurodevelopmental outcomes. This 

study also used extensive simulations to validate the clustering algorithm applied in this 

analysis. Additionally, it utilized advanced multiple mixture exposure regression methods 

with a robust set of confounders to demonstrate how the determined clusters can advance 

pediatric health instead of traditional single outcome epidemiologic analysis.

Limitations of this study included that the cohorts of ECHO-PATHWAYS were not designed 

to recruit representative study populations (LeWinn et al., 2022), which may impact the 

generalizability of these results. Harmonization of variables across cohorts resulted in 

loss of information. Notably, BMI, FSIQ, speech problems, and learning disabilities were 

harmonized across different ages and for FSIQ even different assessments, and so age at 

assessment may have impacted results. However, BMI z-scores moderately correlated across 

visits, and studies have demonstrated the stability of IQ (Deary, 2014), speech problems 

(Beitchman et al., 1994), and learning disabilities (Tomblin et al., 2003) throughout 

childhood. The assessment of phthalate exposure relied on a spot urine sample, which may 

lead to exposure misclassification bias. This is because repeated phthalate measurements 

during pregnancy have been shown to largely have poor consistency due to their short 

biological half-lives (Gaylord et al., 2022). Prior evidence suggests that late pregnancy is 

Day et al. Page 12

Environ Int. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a key exposure window for phthalate associations with several of the outcomes included 

in this analysis, but it is possible that there are other relevant exposure windows or that 

differences in critical windows of exposure between the different outcomes could impair our 

ability to detect an association using our multi-outcome clustering approach. In addition to 

focusing on multi-outcome methods, we demonstrated an application of mixture exposure 

epidemiology, which can result in model estimates impacted by complex causal structures 

that are not addressed by WQS regression or similar methods (Weisskopf et al., 2018). Our 

selection of outcome variables included more variables for neurodevelopment than the other 

disease domains, which could potentially lead to clusters that are unequally determined by 

each of our domains of interest. Finally, our approach assumes a common directionality 

of exposure associations with outcomes overrepresented in a given cluster, and opposing 

or primarily null associations with those individual outcomes could mask associations with 

cluster membership.

5. Conclusions

We used a multi-outcome epidemiologic approach that leverages wide-ranging outcome 

data collection to identify subpopulations of children, finding distinct patterns of multi-

domain multimorbidity that included clustered respiratory outcomes associated with prenatal 

phthalate exposures in boys. Policy efforts should reduce phthalate exposures in mothers to 

limit respiratory disease and more broadly focus on subpopulations of children experiencing 

clusters of co-occurring pathological symptoms. Future research can further refine these 

multi-morbid phenotypes by examining patterns among similar outcomes in other multi-

cohort populations and using biomarkers to determine shared mechanisms. By using these 

multi-outcome phenotypes in future environmental epidemiologic studies, researchers can 

identify public interventions with maximal impact.
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ARI adjusted Rand index

BMI body mass index
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CBCL Child Behavior Checklist

CDI Children’s Depression Inventory 2 (CDI)

DEHP di(2-ethylhexyl) phthalate

FSIQ full-scale intelligence quotient
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SCARED Screen for Child Anxiety Related Emotional Disorders

TIDES The Infant Development and the Environment Study

WQS weighted quantile sum.
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Fig. 1. 
Outcome Variable Cluster Center Coordinates (A) and Summaries by Cluster (B).
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Fig. 2. 
Odds Ratios, Full Sample 95% Confidence Intervals, and Permutation Test-Based P-Values 

(P*) from Logistic Weighted Quantile Sum Regressions Associating Prenatal Phthalates and 

Outcome Cluster Membership.
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Fig. 3. 
Forest Plots of Mean and 95% CIs for Odds Ratios from Logistic Regressions Associating 

Individual Phthalates and either Cluster 2 or Cluster 3 Membership as Compared to Cluster 

1 in either without (A) or with (B) Effect Modification by Sex.
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Table 1

Demographic Variable and Other Covariate Summary Statistics for Clustering Dataset or the Regression 

Dataset.

Variable Clustering Dataset (N = 1092) Regression Dataset
(N = 856)
Mean (SD) or
Count (%)

Mean (SD) or
Count (%)

Count (%)
Missing

Maternal Age 28.51 (6.04) 0 (0 %) 29.01 (5.77)

Adjusted Household Income ($) 61,050 (51256) 36 (3.3 %) 63,881 (50924)

Pre-pregnancy BMI 27.66 (7.66) 10 (0.9 %) 27.63 (7.50)

PSS-4 Total Score 5.31 (2.86) 10 (0.9 %) 5.25 (2.84)

Specific Gravity 1.02 (0.01) 84 (7.7 %) 1.02 (0.01)

Gestational Age at Urine Collection (w) 32.02 (2.15) 88 (8.1 %) 32.07 (2.14)

Study Site: CANDLE Memphis 735 (67.31 %) 0 (0 %) 573 (66.94 %)

TIDES San Francisco 63 (5.77 %) 56 (6.54 %)

TIDES Minneapolis 98 (8.97 %) 86 (10.05 %)

TIDES Rochester 70 (6.41 %) 51 (5.96 %)

TIDES Seattle 35 (3.21 %) 26 (3.04 %)

GAPPS Seattle 59 (5.40 %) 39 (4.56 %)

GAPPS Yakima 32 (2.93 %) 25 (2.92 %)

Child Sex: Girls 550 (50.37 %) 0 (0 %) 434 (50.70 %)

Parity: Primiparous 457 (41.85 %) 7 (0.6 %) 363 (42.41 %)

Maternal Ever Asthma Diagnosis 151 (13.83 %) 115 (10.5 %) 136 (15.89 %)

Prenatal Smoking 99 (9.07 %) 0 (0 %) 73 (8.53 %)

Ethnicity: Hispanic 53 (4.85 %) 3 (0.3 %) 41 (4.79 %)

Race: White 458 (41.94 %) 4 (0.4 %) 393 (45.91 %)

Black 521 (47.71 %) 374 (43.69 %)

Asian 18 (1.65 %) 16 (1.87 %)

Pacific Islander 0 (0 %) 0 (0 %)

American Indian < 5 (<0.46 %) < 5 (<0.58 %)

Multiple 72 (6.59 %) 58 (6.78 %)

Other 15 (1.37 %) 11 (1.29 %)

Education: <High School 39 (3.57 %) 4 (0.4 %) 23 (2.69 %)

Grad High School 148 (13.55 %) 100 (11.68 %)

Tech School 62 (5.68 %) 42 (4.91 %)

Some College 290 (26.56 %) 216 (25.23 %)

Grad College 271 (24.82 %) 233 (27.22 %)

Masters 207 (18.96 %) 179 (20.91 %)

Doctorate 71 (6.50 %) 63 (7.36 %)

Household Count: 2–3 229 (20.97 %) 9 (0.8 %) 191 (22.31 %)

4 423 (38.74 %) 344 (40.19 %)

5 251 (22.99 %) 200 (23.36 %)

≥ 6 180 (16.48 %) 121 (14.14 %)
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Variable Clustering Dataset (N = 1092) Regression Dataset
(N = 856)
Mean (SD) or
Count (%)

Mean (SD) or
Count (%)

Count (%)
Missing

Urine Analysis Batch: 1 794 (72.71 %) 83 (7.6 %) 666 (77.80 %)

2 59 (5.40 %) 54 (6.31 %)

3 156 (14.29 %) 136 (15.89 %)

Birth Year: 2007 43 (3.94 %) 0 (0 %) 10 (1.17 %)

2008 139 (12.73 %) 92 (10.75 %)

2009 186 (17.03 %) 153 (17.87 %)

2010 195 (17.86 %) 169 (19.74 %)

2011 277 (25.37 %) 230 (26.87 %)

2012 185 (16.94 %) 147 (17.17 %)

2013 65 (5.95 %) 53 (6.19 %)

2014 < 5 (<0.46 %) <5 (<0.46 %)
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Table 2

Summary Statistics for the 15 Outcome Variables included in the Clustering Analysis among 1092 Participants 

with Complete Outcome Data.

Variable (Abbreviation) Mean (SD) or Count
(%)

Median
(Range)

BMI z-score (BMIz) 0.62 (1.11) 0.58 (−3.62–3.29)

Full scale IQ (FSIQ) 103.75 (19.91) 106 (18–157)

SCARED Total Score (Anxiety) 26.33 (14.29) 25 (0–80)

CDI Total Score (Depression) 8.84 (6.49) 7 (0–41)

ARI Total Score (Reactivity) 4.15 (2.77) 4 (0–12)

CBCL Social Problems Score (Social) 1.86 (2.32) 1 (0–16)

CBCL Thought Problems Score (Thought) 1.62 (2.26) 1 (0–20)

CBCL Attention Problems Score (Attention) 3.76 (3.74) 3 (0–19)

CBCL Externalizing Score (Externalizing) 5.33 (6.13) 3 (0–47)

CBCL Internalizing Score (Internalizing) 5.06 (5.47) 3.5 (0–42)

Ever Speech Problems (Speech) 124 (11.36 %)

Ever Learning Disability (LearningDis) 54 (4.95 %)

Ever Asthma (Asthma) 187 (17.12 %)

Past-Year Wheeze (Wheeze) 108 (9.89 %)

Ever Allergic Rhinitis (Rhinitis) 384 (35.16 %)

This table summarizes the 15 outcome variables included in the complete outcome clustering analysis. Either means and standard deviations for 
continuous variables or counts and percentages for categorical variables are shown in the second column. The third column shows medians and 
ranges for only the continuous variables.
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