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Comparing The Training Performance

of a Deep Neural Network

for Accelerated MRI Reconstruction

Using Synthesized and Realistic k-space Data

Abstract

Anil Prabhakar Kannappa Kemisetti

Magnetic Resonance Imaging (MRI) is a powerful medical imaging modality used as a

diagnostic tool. There is a steady rise in the use of imaging examinations1. Trends from

2000 - 2016 showed that nearly 16 million to 21 million patients had enrolled annually in

various US health care systems. The number of MRIs increased from 62 per 1000 to 139

per 1000 patients from 2000 to 2016. MR images are usually stored in Picture Archiving

and Communication Systems(PACS) in Digital Imaging and Communication in

Medicine(DICOM) format. The DICOM format includes a header and image data. In

MRI, raw data obtained during the MR signal acquisition is measured in spatial-frequency

space, or k-space. The raw k-space data is generally transformed into the anatomical

images, and raw data is discarded and not transferred to the PACS. The abundant DICOM

data has the potential to be used for training neural networks, as Deep Neural Network

models depend on large and extensive training datasets. However, DICOM stores images

only as magnitude and without the image phase, making it difficult to generate realistic

k-space data. To leverage DICOM data for neural network training using k-space data, for

example in MRI reconstruction networks, it is essential to understand the effect of missing

image phase information.

My thesis attempts to compare a deep neural network’s performance for accelerated MRI

reconstruction comparing realistic k-space data to synthesized k-space data using

iv



magnitude images as stored in DICOM objects. MRI offers a great deal of control to the

user to acquire the data and reconstruct the clinical images, but suffers from relatively long

acquisition times. Typical scan times are between 30 to 40 mins. Scan times go up to 60

mins if a contrast agent needs to be administered. Such long acquisition times are not only

expensive but a cause of inconvenience to the subject as it is impossible to stay motionless

in the bore during the whole duration. To reduce the scan time, accelerated acquisition

and corresponding reconstruction methods are needed.

Methods like compressed sensing and parallel imaging are used to accelerate MRI

acquisition. Compressed sensing achieves scan acceleration by overcoming the requirement

of Nyquist sampling criteria. An undersampling pattern like the Poisson Disk pattern is

typically used to acquire a random subset of data instead of the full k-space. The

”sigpy.mri” python library’s ”Poisson” Application Programming Interfaace (API) was

used to simulate this undersampling2. This Python API generates a Variable-Density

Poisson-Disc (VDPD) sampling pattern. Compressed Sensing theory mentions that image

reconstruction would be possible using signals less than the number indicated by Nyquist

as long as the k-space undersampling results in incoherent aliasing, and does not lead to

structural aliasing3. This API uses a fully sampled calibration region at the center of the

k-space in addition to the acceleration factor. This scheme leads to pseudo-random

sampling and avoids structured aliasing artifacts.

After the image acquisition is complete, the reconstruction of the fully sampled k-space

data or images with good Signal to Noise Ratio (SNR) must be performed. A

deep-learning neural network was trained to perform the reconstruction of the

retrospectively undersampled k-space data. The undersampled realistic k-space data’s

training performance is compared with that of the undersampled synthetic k-space data

obtained from magnitude images, as they are stored in DICOM objects.

Our experiments have shown that the resulting images obtained from realistic k-space data
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has consistently better initial training performance and faster convergence when compared

to the images obtained from synthetic “DICOM” k-space from magnitude images.

However, it is also observed that after training enough epochs, the performance of the

model trained using realistic data is comparable to that of the DICOM k-space data. The

significance of this finding is in the fact that the abundantly available DICOM data can

potentially be used to train a deep neural network for tasks involving k-space data such as

MRI reconstruction.
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1. Introduction

DICOM, which stands for Digital Imaging and Communication in Medicine, is a standard

developed by the National Electrical Manufacturers Association(NEMA) to store the

clinical images. These images are generally stored in a Picture Archiving and

Communication System(PACS). k-space is the complex-valued raw data in the frequency

domain acquired during an MR Scan4. This data is processed to create the anatomical

images needed for clinical use. These anatomical images are typically stored as magnitude

images from the complex-valued images, as they are what are used for clinical

interpretation. The raw k-space is almost always discarded to conserve the storage space.

DICOM standard only supports these anatomical images5. If k-space is needed to be

stored, it can be stored in the proprietary private fields of the DICOM metadata header or

in other proprietary data formats. The phase images are used in applications like

Quantitative Susceptibility Mapping (QSM), Susceptibility Weighted Imaging(SWI),

Velocity Encoding (VENC), etc. Even for these phase images, the DICOM standard does

not provide a standard specification, and private fields in the metadata headers are used.

When it comes to MRI storing of k-space is not supported by the DICOM standard, and

only stored in limited cases. Between 2000 and 2016, nearly 135 million imaging studies are

conducted in the US and Canada alone1. Out of these examinations, MRI examinations

would be around one fifth. k-space data offers greater potential to conduct research,

particularly when investigations include MRI reconstruction, but its availability is limited.

It is imperative to find the utility of using the widely-available DICOM data for such

research.

For acquiring an MRI image, a strong magnetic field is combined with radio frequency(RF)

excitation applied to the subject body. A radio antenna listens for a signal and data is

acquired in the frequency domain, or k-space. The number of samples needed to get a

clinically viable anatomical image depends on the Nyquist frequency. This MR physics
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makes the acquisition relatively slow. A typical MRI exam takes from 30 to 60mins, with

individual sequences requiring up to 10 minutes. On the other hand, MR imaging offers a

tremendous amount of flexibility because the pulse sequence used to can be designed for a

variety of image contrasts and image orientations. There are various techniques to speed up

the acquisition such as, using the pulse sequence to acquire multiple lines simultaneously

and acquiring multiple slices simultaneously. On the other hand, parallel imaging tries to

speed acquisition time up by reducing the number of phase encodes. Another important

technique that takes advantage of undersampling is compressed sensing. All these

techniques fall into a category that speeds up the acquisition by measuring fewer signals.

According to compressive sensing theory6,7, a fully sampled signal can be reconstructed

from incoherently undersampled signals, which must be sparse in a transform domain like

the frequency domain. For example, MR images are typically sparse in the wavelet domain.

There is a motivation6 to acquired an undersampled k-space to speed up MRI acquisition.

These characteristics make Compressed Sensing(CS) an ideal candidate as MRI acquisition

strategy.

CS reconstruction is an inverse problem. To explain, let us start with a fully sampled

signal vector X of length n. The core idea of compressed sensing is that sampling k signals

in the vector X are enough to reconstruct a fully sampled vector X . The k sample vector,

let us call it Y , is the undersampled signal which is measured in k-sparse. A matrix, A

called compress sensing matrix transforms vector X to vector Y . Conversely, to reconstruct

vector X from Y , a matrix inverse of A is need to transform Y .

Y = A · X (1.1)

X = A−1 · Y (1.2)

The linear equation system shown in equation 1.1, which this matrix is trying to solve is

underdetermined. An underdetermined system would result in the possibility of having
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more than one solution for the reconstruction of the fully sampled vector X . To establish

uniqueness in the reconstruction of X , along with the requirement of incoherent sampling

and sparsity in the transform domain for vector Y , another requirement for CS is the Null

Space Property(NSP) of compress sensing matrix A. A linearly underdetermined system

would result in a matrix A, which has linearly dependent columns. The measure for this

linear dependency is called the spark of a matrix. It is the smallest number of linearly

dependent columns of a matrix. Null Space Property states that, for a measured Y ∈ Rm,

there is not more than one signal vector X ∈ k such that Y = A · X , if and only if A has

the null space property of order 2k. Finding the compressed sensing matrix A is an np-hard

problem. The solution is an approximation, and the requirement of spark greater than 2k

bounds the reconstruction error and constraints the maximum compressibility in

compressed sensing.

NSP can only help solve the compress sensing matrix when there is no noise in measuring

the sparse signal vector Y . The compress sensing matrix A should satisfy Restricted

Isometry Property (RIP) to make the reconstruction robust in the presence of noise.

Isometry preserves the distance between the points after applying a transformation. RIP

restricts the amount of change matrix A is allowed on the original vector to get the sparse

vector after transformation. This is achieved by ensuring that the norm-2 size of the

resultant vectors A · X from transformation using matrix A would not go very far from the

norm-2 size of signal vectors X due to noise.

The acquisition domain for MRI is k-space. In the k-space, the low spatial frequencies are

close to the center and high spatial features towards the edges. Furthermore, data in the

center of the kspace has typically larger amplitude when compared to data in the periphery

of the kspace. Because of this nature of the kspace, a variable density undersampling

random is preferred8. There are a variety of ways to perform non-uniform undersampling.

It can be done just by random sampling or by jittered stratification. Both these techniques
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suffer from sampling more in one region and not sampling in the other areas. This creates

clusters and gaps even though it offers better coherence, but it does not provide uniformity.

On the other hand, Poisson disk sampling provides incoherence and assurance of minimum

distance between the samples. Imagine a disk of a minimum assured radius around each

sample where other samples cannot exist. This is how it got the disk in its name.

Low-frequency signals are typically higher in amplitude and thus have more information

content. So, the lower frequency signals are to be sampled more than the higher

frequencies. The radius of the disk is changed from the center of the kspace to the edge of

the kspace. This is called variable density Poisson disk sampling9. The center of the kspace

is sampled very densely. Often a square portion of the region is fully sampled near the

kspace for Cartesian sampling.

When Poisson disk sampling is applied to kspace, the signal values at unsampled locations

can be initially filled with zero values, or ”Zero filling”10. Reconstructing an image with

zero filling results in aliasing artifacts specific to the undersampling pattern. For

compressed sensing, incoherent undersampling aliasing artifcats appear noise-like in the

image. This is not additive noise and should be treated as leakage of energy from the

neighboring non-zero signal values.

The UNet Deep Learning Network was developed for biomedical image segmentation

tasks10,11. This architecture can be applied to any image to image task. The network

architecture is based on series of blocks in three sections forming a U shape. These three

sections are a contracting section, a bottleneck section, and a expansion section. The

contracting section is achieved by a series of blocks each having a max pooling layer which

is followed by convolution layer and a rectified linear unit (ReLU). Max pooling layers

provides the downsampling, which doubles the number of feature channels. The

contraction section leads to a bottleneck section followed by an expansion section. The

expansion section consists of an up-convolution layer followed by convolution layer and a
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ReLU unit. This network also includes skip connection from the upsampling block to the

down sampling block with similar resolution. Pixel-wise soft-max is computed in the final

layer and combined with cross-entropy loss function to model the segmentation task. This

architecture allows to weight the pixels at the border higher to achieve the separation of

each pixel in a class need to identify the border for segmentation. So, UNet converts the

image segmentation into a multi-class classification problem.

UNet architecture can also be used for MRI reconstruction which is a regression task. MR

image reconstruction is an inverse problem12. For this problem the input is a

low-dimensional image and the output is a high-dimensional image. The network is similar

to the segmentation but in the final layer it would be pixel-wise regression. The network is

trained to model the output pixel value as a regression value of the input pixel value. The

loss function is typically the Mean Absolute Error (MAE) of the predicted pixel value and

the target value. U-Net uses convolution neural nets (CNNs), which are composed of layers

of trainable parameters. CNN based architectures avoid handcrafting features needed for

dictionary-based methods.

The downside of deep learning methods is they require large amounts of data to train the

network with millions of parameters. With the limited quantity and large size of k-space

data, its use in training deep neural network models is challenging to scale. On the other

hand, DICOM data is abundantly available. So, this work aims to compare the

performance of training of a undersampled reconstruction Unet neural net model when

starting from k-space data versus using DICOM images to simulated k-space data.
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2. Methods

Dataset

The training for all the experiments was performed using an open dataset called fastMRI12.

This dataset is one of the few publicly available datasets which provides k-space data. The

FastMRI dataset offers data from different types of MRI acquisitions of knee and brain. It

has raw multi-coil k-space data, which is unprocessed complex-valued multi-coil MR values.

It also offers emulated single-coil k-space data, which is derived from the multi-coil

acquisition. All the experiments for this work used this single-coil data. FastMRI has 973

volumes of the emulated single-coil knee data with 34742 slices of training data. Such a

large number of slices helped train a deep neural network, which demands a large amount

of training data. For all the experiments in this work, only the training dataset of the

fastMRI dataset was taken and was split up into train, validation, and test for this project.

The split was 80%, 10%, and 10% for training, validation, and testing respectively.

Experimental Setup

There are two sets of experiments for this work. Both these experiments start with the

k-space data from the fastMRI single-coil training dataset. For the experiment mimicing

the use of DICOM image data, new k-space data is simulated from the magnitude image

generated from the original k-space data. This simulation is explained in algorithm 2. For

this simulation, an inverse Fourier transform is applied to the k-space data to obtain the

magnitude image. The simulated k-space is obtained by taking Fourier transform from the

above image. From now on, we call this simulated k-space, or DICOM k-space. For the

other set of experiments, the original k-space is used. As far as the training is concerned,

the neural net input is the image generated after undersampling the original k-space or the

DICOM k-space. The label is the image generated from the original k-space or the DICOM

6



k-space, respectively.

In each of the experiment, k-space is undersampled by applying a mask. This mask is

generated using the ”sigpy.mri.possion” python api2. The algorithm used is explained in

algorithm 1. The factor for the central area is chosen as 0.2 in both directions. An

acceleration factor of 4 is chosen. These parameters are kept constant for all the

experiments. This mask generation is shown in figures 2.4 and 2.3. These pipelines are

used for all the experiments. The mask generated is a binary image that is made of ones

and zeros. When this mask is applied to the k-space, it removes some of the k-space values

and fills them with zeros. This retrospective undersampling represents an accelerated

acquisition as the zero fillings represent the measurements that are not obtained while

scanning. The magnitude image generated from undersampled k-space is the input to the

network explained in section 2.4. The magnitude image generated from the full k-space

(before applying the mask) is the ground truth or the label. Seven experiments were

performed with 10%, 20%, 30%, 40%, 50%, 60% and 100% of the input images. All these

14 experiments were designed to compare the DICOM k-space training performance with

original k-space data. Various sample sizes are chosen to understand convergence behavior

and the metrics obtained with various amounts of input data. Only the input size was

varied in all these experiments. The same test was used across all the experiments to make

the comparison.

Preprocessing and Augmentation

There were 973 volumes of emulated single-coil knee data. The slice size varied from

volume to volume. As explained in algorithm 3, a list of all the different slice sizes is

obtained. For each size 1000, Poisson disk sampling masks were generated. Before applying

the mask, slices from all the volumes are collected, and they are shuffled. k-space for the

slices from the shuffled collection is picked, and randomly a mask is obtained from the 1000
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mask for the selected slice size, and it is applied. The shuffling and picking of a mask

randomly helped the training to see a different batch of undersampled images in every

epoch. Thus this scheme contributed to data augmentation and allowed more samples

beyond the actual input image size. This is explained in the algorithm 4. After

undersampling, the center of magnitude image is cropped to a size of 320x320. This

cropped image was the input for training.

Network Architecture

To compare the training performance using DICOM vs. original k-space data, a single

domain network10 is chosen. Both the ground truth as well as the prediction are in the

image domain. This reconstruction is modeled as an image to image task to perform

pixel-wise regression to achieve reconstruction. In effect, the U-net model achieves the

pseudo-inverse operation on the magnitude image of the undersampled k-space as described

in equation 1.2. The U-net model has a series of blocks composed of convolution layers

along with average-pooling, up-convolution, and ReLU layers. These blocks are composed

of millions of trainable parameters. These blocks are organized into three sections11 as

shown in figure 2.1. The first among them is the contraction section. This layer uses the

max-pooling to achieve the contraction. This contraction path acts as an encoder

capturing the context of the image. This contraction section leads to the bottleneck

section. This bottleneck section helps the network to achieve compression and learn the

critical features in the image. An expansion section follows the bottleneck section. This

section aids the network to localize the features learned in the contracting section. Another

important component of the U-net architecture is the skip connection. These connections

feed the output from the contracting section as an input to the expanding section. Skip

connection assists in the localization of the critical features identified in the contraction

path. All three sections together for a U-net, which is a fully convolutional neural network.

For this work, a single U-net architecture explained above is chosen. In the contracting and
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expansion path of this architecture, there are blocks with a filter size of 16,32,64,128, and

256. In the blocks, the convolution layer is followed by the instance normalization. In this

case, instance normalization is chosen because it helps in noise-sensitive applications13.

Another important consideration for neural network architecture is weight initialization. It

aids in achieving faster convergence. A larger initialization leads to exploding gradients,

and smaller initialization results in vanishing gradients. For the network shown in 2.1

he_normal initialization is chosen. “he_normalization” has shown to be giving better

results for ReLU activation functions14. U-net achieves the contraction using pooling. An

important consideration for pooling is to achieve translational invariance. Max pooling is

preferred when choosing the brightest pixel is the goal. For example, in the case of

detecting edges. Min pooling helps to choose the darkest pixel. On the other hand, the aim

of our work is not to do object segmentation. Average pooling works better in the task like

reconstruction as it aids in creating a smoother image.

Figure 2.1: Unet Network Architecture

Training

The pipelines shown in figures 2.3 and 2.4 were developed using the Nvidia Clara Train

framework (from here referred to simply as Clara). Clara is a python framework that

provides an end-to-end workflow for all Deep Learning training needs involving Medical

9



Figure 2.2: Nvidia Clara Train Components

Imaging. This framework is a component-based architecture. These components are

described in the figure 2.2. All the image-related attributes are wrapped in a Python object

called “medicalImageObject”. This object and the “TransformContext” object are passed

10



through the transformers. The function of the transformers is to prepare the image data.

The input image is prepared and fed to the “model component” for training. The model

generates a prediction image. The “loss component” takes the prediction from the model

component and the “label input” and feeds it to the optimizer. The “optimizer component.”

tries to optimize the model. Deep learning tries to use an iterative method of optimizing

the objective function. As shown in the figure 2.2 there is a loop among the model

component, loss component, and optimizer component. The SegmentationImagePipeline

manages this loop. Other components which help in the training are context objects like

“TransformContext”, “BuildContext,” “TrainContext,” and handlers. All these

components are configured using a configuration file called “train_config.json”.

Clara also provides an option of using custom python objects called Bring Your Own

Component (BYOC). For this work, all custom components were used. The configuration

for this training includes an image that is center-cropped to a size of 320x320. The training

for this model was supervised. A single pass through a full training dataset is called an

epoch. There are thousands of slices, and they cannot be processed in a single iteration, so

they are divided into batches. The batch size for all the experiments was 64. Bigger batch

size has shown to have a better performance12.

This training was performed on Nvidia DGX II15. This machine used Nvidia Telsa V100

Graphics Processing Unit (GPU) with 16 GPUs, with each GPU having a graphics

memory of 32GB. Data parallelism was achieved using Horovod16 and Open MPI. Because

only data parallelism was implemented, the batch size is limited to the size of each GPU. A

batch size of 64 was the maximum supported by the GPU memory. All the experiments

were conducted to have at least have a training of 200 epochs to arrive at a useful

comparison of the training performance. A learning rate of 10−4 was chosen. Mean

Absolute Error (MAE) Loss with l1 regularization with a scale of 5e-7 was used. The adam

optimizer provided by Clara was used for this training.
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Metrics

Two metrics were used to tune the training and also for the comparison of the training

performance during validation. Those are Structural Similarity(SSIM) and Peak Signal To

Noise Ratio (PSNR)17. The goal of the optimizer is to adjust the model to minimize the

loss function. Validation is performed after a set number of epochs. The trained model is

run through the entire validation dataset, and the above mention metrics are collected.

These metrics provide a measure of the current model’s quality. Clara keeps track of these

validation metrics and stores the current best key metric and the model if it is better than

the previous run. Training is continued till all the specified epochs are completed or a

stopping value is reached for the key metric. For this project, SSIM was chosen as a key

metric.

For a given test image g and a reference image f of MxN dimensions, the PSNR value is

given by equation 2.1.

PSNR(f, g) = 10 log10
(

2552

MSE(f, g)

)
(2.1)

Where
MSE(f, g) =

1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2 (2.2)

PSNR depends on means squared error. Both MSE and PSNR are not effective in

discriminating the structural content in the image17. On the other hand, SSIM has three

parts that measure the loss of correlation shown in equation 2.6, luminance distortion 2.4,

and contrast distortion 2.5.

SSIM(f, g) = l(f, g) · c(f, g) · s(f, g) (2.3)
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Where
l(f, g) =

2µfµg + C1

µ2
f + µ2

g + C1

(2.4)

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

(2.5)

s(f, g) =
σfg + C3

σfσg + C3

(2.6)

µf ,µg are the local mean and σf ,σg are the local standard deviation of the images. l(f, g)

measures the luminance closeness of the two images. The contrast distortion term, c(f, g)

gives an idea about the closeness of the contrast of the two images. The third term

includes the cross covariance, σfg, and gives a measure of correlation coefficient. These

three terms together closely correlates with the quality of perception of human visual

system18. Hence SSIM was chosen as the key metric.
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Algorithm 1: Variable Density Poisson Disk Sampling
Function poisson(imageShape, acceleration, calibrationRegion, maxAttempts):

Initialization:
x, y ←− grid using the imageShape
r ←− for each cell in the grid using x, y
s←− Initialize the scaling factor based on the distance from the calibration
region to the maximum of image dimensions

while Either binary search of the scaling factor is exausted or desired
acceleration is achieved do

scaledRadius←− (1 + s|r|)
mask ←− generateMask(imageShape, scaledRadius, calibrationRegion,
maxAttempts)

actualAcceleration←−
∏

imageShape dimensions∑
mask

if Required Acceleration is achieved then
break from the loop to return the mask ;

else
rescale the scale factor ;

return mask

Function generateMask(imageShape, scaledRadius, calibrationRegion,
maxAttempts):

while points need to be checked do
i←− select a random index from the grid; px, py ←− retrieve the x and y
co-ordinate for i

while selected index is checked against all the other indexes or the
maxAttempts are exhausted do

v ←− generate point randomly from scaledRadius and 2× scaledRadius
t←− generate a random angle
qx, qy ←− calculate the position based the scaledRadius and the t angle
if point defined by qx and qy is outside the grid or close to other points
then

discard the point ;
else

Add to the mask ;

return mask
)

Variable Density Poisson Disk Sampling Algorithm2
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Algorithm 2: Simulating “DICOM” k-space using DICOM images
Function simulatingKSpace(data):

Initialization:
data←− inversefftshift(data)
data←− inversefft(data)
data←− fftshift(data)
magnitudeImage←− absolute_value(data)
data←− fftshift(magnitudeImage)
data←− fft(data)
simulatedKSpace←− inversefftshift(data)
return simulatedKSpace

algorithm is for simulating k-space using magnitude images.

Algorithm 3: Generating Masks
Function genMask(data):

masksizes←− IdentifyMaskSize
maskdictionary ←− GenerateMaskDictionary(masksizes)
return maskdictionary

Generating VDPDS masks

Algorithm 4: Applying Retrospective Undersampling VDPDS Mask
Function applyMask(data):

Initialization:
undersampledKSpace←− mask × full_Kspace
return undersampledKSpace

Applying Retrospective Undersampling VDPDS Mask.
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3. Results

Figure 3.1 and 3.2 show an example reconstruction of the undersampled knee images using

DICOM k-space and original k-space data, respectively. The images portions labeled (a) to

(f) shown in the figure 3.1 uses, 10% to 60% of training data, respectively. Predicted image

intensities oscillate between too dark and too bright for the DICOM k-space data. In figure

3.2, the reconstruction from the original k-space data shows a steady improvement as the

percentage of the training data increased from 10% to 60%. The highest quality

reconstruction quality is observed in the portion of the figure 3.2 labeled (g). This

experiment used 100% of the training data. From the portion labeled (e), it can be

observed that 50% of the data also achieves good performance.

Table 3.1 summarizes the results from experiments using original k-space data. Table 3.2

summarizes the results from experiments using DICOM k-space data. These two tables

provide a comparison of metrics described in the “Metrics section of Methods” to

understand the neural network’s training performance for accelerated MRI reconstruction

using the k-space to using DICOM only data. The data used for these experiments is

described in the “Datasets section of Methods”. For each category, seven experiments are

performed keeping all the parameters constant as described in the “Experimental Setup

section of Methods”, only by changing the training data percentage.

The number of epochs are kept constant at 200 during the training described in the

“Training Section of Methods”.

The efficiency of the k-space data in training can be further explained from the

observations made in the histograms shown in figures from 3.3 - 3.9. Even with as little as

10% of training data the predicted image distributions as shown in portions of the figure

3.3 labeled (a) and (b) indicate that the predicted image distribution using the original

k-space data is close to the label image’s distribution when compared to the predicted
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Table 3.1: Results of experiments with original k-space data for
various amounts of training images

Experiment Name MAE PSNR SSIM
Original k-space Using 100% data 0.284* 28.96 * 0.628*
Original k-space Using 10% data 0.284 28.41 0.607
Original k-space Using 20% data 0.279 28.68 0.617
Original k-space Using 30% data 0.277 28.78 0.621
Original k-space Using 40% data 0.267 28.79 0.622
Original k-space Using 50% data 0.275 28.89 0.626
Original k-space Using 60% data 0.274* 28.97 * 0.628*
This table summarizes the metrics for the experiments conducted
with original K-Space data. ’*’ values indicate the best perfor-
mance. The network based on U-Net performed well after 60% of
the training data was used.

Table 3.2: Results of experiments with DICOM k-space data for
various amounts of training images

Experiment Name MAE PSNR SSIM
DICOM k-space Using 100% data 0.293* 28.12 * 0.621*
DICOM k-space Using 10% data 0.381 25.19 0.538
DICOM k-space Using 20% data 0.313 27.42 0.6
DICOM k-space Using 30% data 0.297 28.46 0.615
DICOM k-space Using 40% data 0.327 24.79 0.582
DICOM k-space Using 50% data 0.31 25.78 0.596
DICOM k-space Using 60% data 0.297* 26.68 * 0.608*
This table summarizes the metrics for the experiments conducted
with synthesized DICOM k-space data. ’*’ values indicate the best
performance. The network based on U-Net started to perform well
after 60% of the training data. But there was still scope of improve-
ment. A comparable performance to using the original k-space data
(Table 3.1) was seen only when using the complete training dataset.

distribution from synthesized DICOM k-space data. This is also seen in figures 3.4 with

20% data, figure 3.6 with 40% data, figure 3.7 with 50% data, and figure 3.8 with 60%

training data. It is also seen in figure 3.9 with 100% training data.

Another important observation from the portions labeled (a), (b) and (c),(d) of histograms

of image intensities shown in figures 3.3 to 3.9 is the spread of the distribution of the

difference between the ground truth image intensities and the predicted image intensities.
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This spread gradually reduces, indicating the improvement in the training’s prediction

performance when using more training data. An important difference is observed in the

image portion labeled (b) in the histogram images related to the synthesized DICOM

k-space data. The learned intensities were often spread out. Even though there was an

overall improvement in the prediction, this suggests the DICOM k-space data-based

training is trying to learn the background. A strategy of segmenting19 the image from the

background and only computing the loss function over the image for training might result

in better performance.

Figure 3.9 shows the learning curves for all 14 experiments. Portion (a) and (b) of the

figure 3.9 shows the MAE loss for both the training using raw data and using the DICOM

data. Losses using the original k-space data range from 0.274 to 0.284, as shown in table

3.1, and from 0.293 to 0.381 using the DICOM k-space data, as shown in table 3.2. It

indicates that the original k-space data is more efficient in training the network even at a

smaller percentage of data than the DICOM k-space data. It can also be observed that loss

values for 100% for both the experiments with values of 0.284 and 0.293 are close. It is an

indication that even though using original k-space data has better training behavior, a

comparable performance could be achieved even with synthesized k-space data from

DICOM images given enough data and training. Both plots (a) and (b) show an

asymptotic nature, indicating that both k-space data sources could achieve convergence.

The two observations about performance and convergence are further confirmed in the

subplot of (c), (d) for the metric PSNR, and the subplot of (e), (f) for the metric SSIM.

The number of epochs are limited to 200, resulting in a different number of a total number

of iterations. PSNR values when using the original k-space data ranges from 28.41 to 28.97

as shown in table 3.1 and it ranges from 25.19 to 28.12 using the DICOM k-space data as

shown in table 3.2. Similarly, SSIM, using the original k-space data, range from 0.607 to

0.628, as shown in table 3.1 and it varies from 0.538 to 0.621 using the DICOM k-space

data, as shown in table 3.2.
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Finally, the training and metrics for all the experiments are summarized in the three plots

shown in figures 3.10, 3.12, 3.11 showing the MAE loss, PSNR and SSIM. The observations

made above are reinforced in the aggregate representation of the data in these figures. The

training using original k-space data has a gradual improvement as the percentage of

training data increases. This is represented using the solid line in all three plots. The

training using DICOM k-space data is shown using a dotted line in all these plots. This

training is not as efficient as the original k-space data but as the amount of training data

increases and the training performance increases and the performance using DICOM

synthesized k-space data is comparable to that of the original kspace data.
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Figure 3.1: Sample Images from DICOM k-space reconstruction for All Runs
This figure shows example of the knee reconstruction following training
using synthesized DICOM k-space data. Rows (a)-(f) show results from
using increasing amounts of training data, from 10 to 60%, while row
(g) used all of the training data.
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Figure 3.2: Images from original k-space reconstruction for All Runs
This figure shows example of the knee reconstruction captured during
training using raw k-space data. Rows (a)-(f) show results from using
increasing amounts of training data, from 10 to 60%, while row (g)
used all of the training data.
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a b

Figure 3.3: Histogram for using 10% of data in training
A comparison of histograms of the training images using 10% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.4: Histogram for using 20% of data in training
A comparison of histograms of the training images using 20% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.5: Histogram for using 30% of data in training
A comparison of histograms of the training images using 30% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.6: Histogram for using 40% of data in training
A comparison of histograms of the training images using 40% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.7: Histogram for using 50% of data in training
A comparison of histograms of the training images using 50% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.8: Histogram for using 60% of data in training
A comparison of histograms of the training images using 60% of train-
ing data for both original k-space and DICOM k-space data.
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Figure 3.9: Histogram for using 100% of data in training
A comparison of histograms of the training images using 100% of train-
ing data for both original k-space and DICOM k-space data.

30



(a) MAE using the Original k-space Data

(b) MAE using the DICOM k-space Data

(c) PSNR using the Original k-space Data
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(d) PSNR using the DICOM k-space Data

(e) SSIM using the Original k-space Data

(f) SSIM using the DICOM k-space Data

Figure 3.9: Learning Curves during training
This figure shows the learning curves during training. (a) and (b)
shows the loss MAE during the training. (c) and (d) shows the metric
PSNR (e) and (f) shows the metric SSIM. (a), (c) and (e) are related to
the original k-space data. (b), (d) and (f) are related DICOM k-space
data.
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Figure 3.10: Plot of MAE comparing Runs
The plot above compares the training loss during inference using
the models trained using Original k-space Data(solid line) and
DICOM k-space data(dashed line). The loss is plotted against
various percentages of training data used. The values for this
plot is obtained from the tables 3.1 and 3.2

Figure 3.11: Plot of SSIM comparing Runs
The plot above compares the training loss during inference using
the models trained using Original k-space Data(solid line) and
DICOM k-space data(dashed line). The metric SSIM is plotted
against various percentages of training data used. The values for
this plot is obtained from the tables 3.1 and 3.2
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Figure 3.12: Plot of PSNR comparing Runs
The plot above compares the training loss during inference using
the models trained using Original k-space Data(solid line) and
DICOM k-space data(dashed line). The metric PSNR is plotted
against various percentages of training data used. The values for
this plot is obtained from the tables 3.1 and 3.2
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4. Discussion

The work aims to compare a deep learning training network’s performance to perform

image reconstruction of an undersampled MRI k-space data. For this task, a relatively

simple network based on UNet architecture was chosen. It has comparable performance to

the fastMRI challenge leaderboard for a similar network20. The SSIM metric for

Single-Coil knee for an acceleration of 4x on the leaderboard ranges from 0.78 to 0.60.

SSIM for the presented network using original K-Space data is 0.63, and it is 0.62 using the

DICOM k-space data. MRI DICOM data is abundant. But its utility is limited for projects

involving MRI reconstruction because it has only the magnitude-valued image, unlike the

complex-valued images available with the actual k-space data. Realistic k-space data

(emulated single-coil data in fastMRI challenge) required less data and achieved faster

convergence than synthesized (DICOM) k-space obtained from a magnitude image. The

realistic k-space input achieved better SNR after reconstruction as well. However,

synthesized k-space data from DICOM images did provide similar performance with more

extended training duration and more training data.

MRI signal data is composed of real and imaginary parts. This noise associated with the

real and imaginary part is assumed to Gaussian with zero mean. This noise is generally

considered to be white noise. In the original k-space data, the Gaussian nature of the noise

is preserved. The magnitude images are calculated using the square root of the sum of the

square of the real and imaginary parts. This operation is non-linear and resulting noise in

the no longer Gaussian in the resulting magnitude image. This change in the noise

distribution is carried forward when the magnitude images (DICOM) are converted back to

the frequency domain (k-space). Hence, there is a fundamental difference in the

distribution of noise in original k-space data and synthesized or pseudo k-space data

obtained using the magnitude image. The magnitude images have a Rician distribution,

which is approximately a Gaussian distribution when the SNR is greater than 221. The
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background noise is a special case of Rician distribution called Rayleigh distribution. It can

be seen in the histograms in figures [3.3 - 3.9]. It was easy and efficient to reconstruct the

undersampled magnitude image from original k-space even with as little as 10 percent of

the data and 5000 iterations. In the case of the synthesized DICOM k-space data, the

variation of the distribution between the undersampled magnitude image and the ground

truth magnitude image was large, and training takes more data. From figure 3.8, we can

observe that the distribution with even 60% of training data DICOM k-space does not

achieve a good performance. The images shown in figure 3.1 indicate that the network does

not learn the absolute intensities correctly and there are residual differences near the edges

of the anatomy, even for using 60% of the training data. It can also be observed as the

training data increased, and the number of iterations is more than 45,000, the performance

is similar to the one obtained using the original k-space data as show in figures 3.9, 3.2.

This establishes the potential utility of using DICOM images for creating synthetic k-space

for retrospective undersampling and training networks for MRI reconstruction.
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5. Conclusion

From figures 3.10, 3.11, 3.12, we can conclude that realistic k-space data offers a better

training performance for undersampled MRI reconstruction compared to using synthesized

k-space data from magnitude (DICOM) images3,22,23. But DICOM data is available in

abundance. It is important to explore its utility. In the current work, only one acceleration

factor and one central sampling region is considered. Further experiments are needed with

various permutations of acceleration factors and the amount of central region to get a full

comparison of training MRI reconstruction networks using DICOM images. We have also

used a simple U-Net architecture. This comparision has to be explored with other

advanced network architectures like KIKI-net, Cascade-net, PD-net, and variational

networks10. Nvidia Clara’s AutoML feature can to be used to find the optimal network

architecture for a chosen network. A certain selection of hyperparameters might help the

training, particulary for the more challenging cases when using less synthesized k-space

data. Furthermore, recent studies in image denoising and super resolution have pointed out

the fact that Unet suffers from the degradation problem and many not be an ideal

architecture to achieve the optimal performance w.r.t reconstruction. Variants like Unet

with group normalization, Residual U-net and Dense U-net could be explored24. U-net

family of networks are primiarly used for segmentation25, some of these networks could be

fashioned to work for reconstruction and explored for their performance with k-space

synthesized from DICOM images.
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