
UCLA
UCLA Previously Published Works

Title
TinyOdom: Hardware-Aware Efficient Neural Inertial Navigation.

Permalink
https://escholarship.org/uc/item/1jv483cv

Journal
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
6(2)

Authors
Saha, Swapnil Sayan
Sandha, Sandeep
Garcia, Luis
et al.

Publication Date
2022-07-01

DOI
10.1145/3534594

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jv483cv
https://escholarship.org/uc/item/1jv483cv#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

TINYODOM: Hardware-Aware Efficient Neural Inertial Navigation

SWAPNIL SAYAN SAHA,
University of California - Los Angeles, USA

SANDEEP SINGH SANDHA,
University of California - Los Angeles, USA

LUIS ANTONIO GARCIA,
University of Southern California, USA

MANI SRIVASTAVA
University of California - Los Angeles, USA

Abstract

Deep inertial sequence learning has shown promising odometric resolution over model-based

approaches for trajectory estimation in GPS-denied environments. However, existing neural

inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-

constrained (URC) devices due to substantial memory, power, and compute bounds. Current

deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial

disturbances, varying sensor orientation, heading rate singularity, and failure in altitude

estimation. In this paper, we introduce TINYODOM, a framework for training and deploying

neural inertial models on URC hardware. TINYODOM exploits hardware and quantization-aware

Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN)

backbone to train lightweight models targetted towards URC devices. In addition, we propose

a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding

inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric

g-h filter robust to inertial and environmental variations. We evaluate TINYODOM for a wide

spectrum of inertial odometry applications and target hardware against competing methods.

Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle

dead-reckoning. Across different applications, TINYODOM reduces the size of neural inertial models

by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of

models on URC devices while still maintaining or exceeding the localization resolution over

the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1m and is robust to

inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced

magnetometer, physics, and velocity-centric sequence learning formulation significantly improve

localization performance even with notably lightweight models.

This work is licensed under a Creative Commons Attribution International 4.0 License.

Swapnil Sayan Saha, swapnilsayan@g.ucla.edu, University of California - Los Angeles, Los Angeles, CA, USA.
Authors’ addresses: Sandeep Singh Sandha, University of California - Los Angeles, Los Angeles, CA, USA; Luis Antonio Garcia,
University of Southern California, Los Angeles, CA, USA; Mani Srivastava, University of California - Los Angeles, Los Angeles, CA,
USA.

HHS Public Access
Author manuscript
Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in
PMC 2024 March 21.

Published in final edited form as:
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 July ; 6(2): . doi:10.1145/3534594.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Additional Key Words and Phrases:

inertial odometry; dead-reckoning; sequence-learning; resource-constrained devices; neural
architecture search; hardware-in-the-loop; machine-learning; deep-learning; tracking

1 INTRODUCTION

Odometry is the fusion of onboard sensors for indirect estimation of an object’s position and

attitude under absence or in conjunction with infrastructure-dependent localization services

[5]. Given the widespread ubiquity of inertial measurement units (IMU), inertial odometry

[18, 44, 46, 53, 77] is a viable alternative available to localization applications demanding

small footprint, low-access delay, low-power pathway, and operating in GPS or network-

denied environments. Examples of such applications include terrestrial and marine “search

and rescue” missions [82], underwater sensor networks [15], oceanic biodiversity and

marine health tracking [88], wildlife monitoring [89], deep-space small satellite localization

[73], and localizing micro unmanned vehicles and robots [10, 29, 96]. For example, marine

search and rescue missions [82] limit the compute device payload and resource availability

(e.g., rescuers can only carry limited weight), and cannot assume continuous access to GPS

or network infrastructure (e.g., the rescue operation can happen underground). The use-case

of marine health tracking [88] and wildlife monitoring [89] necessitate odometry solutions

that can operate in the absence of infrastructure and have a light payload of deployment

hardware not impacting the normal animal behavior. Further, localizing micro unmanned

vehicles and robots [10, 29, 96] demand a small footprint solution due to compute and

energy constraints. These environments represent scenarios where compute devices are

ultra-resource constrained, thus necessitating the need to develop lightweight approaches

where the smartphone or cloud-based solutions are unusable. However, adopting internal

odometry for resource-constrained hardware and across different use-cases is challenging, as

discussed next.

1.1 Challenges

To handle the error explosion inherent in inertial navigation, inertial odometry on URC

microcontroller-class hardware is heavily hard-coded through application-specific heuristics,

Bayesian statistics, and human-engineered system models. These techniques, although

lightweight, are not robust to domain shifts or inertial perturbations [10, 16, 46]. Recently,

several data-driven techniques based on sequence learning have been used in the attempt to

alleviate the constraints in model-based approaches for various applications [10, 29, 35, 74,

96]. However, enabling accurate yet lightweight and real-time neural-inertial methods for

resource-constrained environments faces the following challenges

• The Real-time Deployment on URC devices: While neural-inertial methods

have been shown to provide superior long-term resolution over classical

techniques [16, 46, 74], they are unsuitable for real-time deployment [18, 35] on

URC hardware due to memory, power, and compute constraints. Consequently,

no prior work has shown neural-inertial architectures running in real-time under

extremely resource-constrained settings (e.g., 128 kB RAM, 1 MB flash).

SAHA et al. Page 2

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• The Run-Time Robustness of Existing Approaches: Existing neural-inertial

methods suffer from gravity pollution, high-frequency inertial artifacts, varying

device attitude, heading-rate singularity, and 3D estimation failure. The current

solutions come at the cost of larger neural network models, auxiliary ML

operations, or the addition of model-based filters [29, 46, 59, 74, 96].

• The Realization of 3-D Odometry: While classical methods can perform

3D odometry via sensor fusion without significant compute overhead, the data-

driven neural-inertial methods thus far have been mostly limited to 2D tracking

only [59]. Data-driven methods which attempt to perform 3D tracking with

inertial sensors suffer from the curse of inertial drift and gravity pollution.

1.2 Contributions

We introduce TINYODOM, a systematic and practical framework for deploying lightweight

yet robust 3D inertial odometry models on URC hardware. TINYODOM leverages advances in

NAS to optimize inertial sequence learning models based on hardware constraints, accuracy,

and latency goals via direct communication with target hardware. In addition, TINYODOM

uses a magnetometer, physics, and velocity-centric sequence learning formulation with a

TCN backbone, allowing tiny models to perform accurate inference even under inertial

disturbances while maintaining the simplicity of models. To expand 2D tracking to 3D,

we perform sensor fusion using barometric g-h filters robust to inertial and environmental

variations. To showcase the generalizability of TINYODOM, we evaluate pedestrian, animal,

aerial, and underwater vehicle dead-reckoning on four different URC hardware platforms.

TINYODOM reduces the neural network model size between 31× to 134× with 2.5m to

12m error in 60 seconds over the state-of-the-art (SOTA), thereby enabling the direct

deployment of neural-inertial odometry using the onboard compute resources of URC

hardware platforms. Even though our neural network models are notably lightweight, the

introduced magnetometer, physics, and velocity-centric sequence learning formulation still

maintain or exceed the tracking performance compared to the existing state-of-the-art. We

evaluate the proposed barometric g-h filter showing it outperforms the baselines and is

robust to pressure sensor noises in real data. The superior and lightweight real-time inertial

tracking enabled by TINYODOM holds the key to improving the tracking performance of

applications deployed in challenging GPS/network denied environments. Our work not only

enables always-on and lightweight neural-inertial navigation, but also improves the cost and

the energy footprint of embedded odometry while being expandable to any reduced footprint

hardware.

Our contributions are summarized as follows:

• We propose a magnetometer, physics, and velocity-centric inertial sequence

formulation to generate models robust to gravity pollution, high-frequency

inertial perturbations, varying sensor attitude, and heading rate singularity,

without adding significant compute overhead.

• We develop a hardware-in-the-loop (HIL) AutoML framework based on

Bayesian Optimization (BO) to generate lightweight inertial odometry models

SAHA et al. Page 3

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

without sacrificing resolution significantly. We use a TCN backbone as the basis

for NAS and TensorFlow Lite Micro (TFLM) as model runtime interpreter.

• We exploit the omnipresence of barometers to expand 2D dead-reckoning to

3D using lightweight barometric α – β filters that are robust to inertial and

environmental variations. The filter can perform altitude tracking within ±0.1m.

• We extensively benchmark TINYODOM for pedestrian, animal, aerial, and

underwater vehicle dead-reckoning on four different URC hardware platforms

against competing inertial odometry baselines, based on accuracy and resource

usage.

• To the best of our knowledge, we are the first to showcase a real-world

evaluation of neural-inertial navigation and discuss challenges and solutions of

transferring pre-trained odometry models in the real world.

TINYODOM is available open-source1 to promote development and benchmarking of

lightweight yet robust neural inertial odometry that is generalizable across different

applications.

1.3 Organization

The rest of the paper is organized as follows: Section 2 mathematically motivates the

challenges of localization using an inertial sensor. Section 3 presents the related work

that attempts to mitigate the challenges in inertial tracking, as well as recent advances

in lightweight deep-learning. Section 4 details the robust 3D inertial sequence learning

formulation. Section 5 delineates the model architecture and the hardware-aware NAS

formulation. Section 6 presents the experimental setup, baseline algorithms, and datasets

used for evaluation. Section 7 presents extensive experimental evaluation of the models

generated by the TINYODOM framework. Finally, Section 8 provides concluding remarks and

future directions.

2 BACKGROUND

MEMS inertial sensors are usually equipped with a 3DoF accelerometer, a 3DoF gyroscope,

and a 3DoF magnetometer [50]. Firstly, when the gyroscope is mounted on an immobile

platform w.r.t Earth frame close to the Earth’s surface, the gyroscope within a MEMS

inertial sensor is modeled as follows [50]:

ωib = ωnb + bg + ng

(1)

where, ḃg ∼ N 0, Qg = bias gradient , ng ∼ N 0, Σω = additive white Gaussian noise (AWGN) ,
and ωnb = latent and uncorrupted angular velocity. Secondly, assuming negligible effects

centrifugal or Coriolis components of Earth’s rotation, the accelerometer model is defined as

[50]:

1 https://github.com/nesl/tinyodom

SAHA et al. Page 4

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nesl/tinyodom

fb = Rbn ann
n − g + ba + na

(2)

where, ann = latent linear acceleration of body, g = gravity vector ,
ḃa ∼ N 0, Qa = bias gradient , and na ∼ N 0, Σa = AWGN. Lastly, the compass can be

modeled as [50]:

bn = Rbnmn + nb, mn = cosδ 0 sinδ

(3)

where, nb ∼ N 0, Σm = AWGN, and δ = magnetic inclination due to Earth’s magnetic dip.

Under ideal geomagnetic conditions void of magnetic disturbances, non-uniform magnetic

field, or sensor noise, and for slow movements, the heading H can be estimated directly from

the magnetometer [88] in the body frame I :

H = arctan my, t
I

−mx, t
I ⋅ 180

π

(4)

The latitude (ϕ) and longitude (λ) can be hypothetically obtained via double integration of

accelerometer readings (ax
I, ay

I, az
I) under empirical accelerometer vector sum threshold α [88]

to reject noise:

st =
β I ax, t

2 +I ay, t
2 +I az, t

2 + γ, I ax, t
2 +I ay, t

2 +I az, t
2 > α

0 otherwise

(5)

ϕt = arcsin sinϕt − 1 ⋅ cos st
RE

+ cosϕt − 1 ⋅ sin st
RE

⋅ cosH , RE = 6.371 × 106m

(6)

λt = λt − 1 + arctan2 sinH ⋅ sin st
RE

⋅ cosϕt − 1, cos st
RE

− sinϕt − 1 ⋅ sinϕt

(7)

While magnetometers are unpolluted by device motion [70], magnetic disturbances coupled

with sensor placement offset can affect the seemingly simple estimation of H and lead to

errors as much as 100° [94]. Furthermore, naive double integration (NDI) of accelerometer

readings cumulatively accumulates the effects of time-varying bias (ba), gravity pollution

(g), and AWGN (na), causing errors in ϕ and λ to explode in a cubic manner [46, 62, 70,

SAHA et al. Page 5

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

93], illustrated in Fig. 1. The gyroscope suffers from time-varying drift (bg) in the long term

because of bias instability (BI) and angular random walk (ARW) resulting from AWGN (ng),

pink noise and thermal effects [62]. The cubic explosion of error in position estimate, σx (t),
due to gyroscope drift can be modelled as:

σx(t) = v 2 ⋅ ARW ⋅ t3/3
2

+ BI ⋅ t2/2

(8)

The goal of inertial odometry is to address the cumulative error in naive double integration

of accelerometer readings. Conventional approaches use model-based methods that are

dependent on application-specific heuristics and demand expert domain knowledge. More

recently, learning-enabled approaches are proposed that either work in combination with

model-based methods or work in an end-to-end manner, completely replacing model-based

methods. In the next section, we present the existing state-of-the-art in both model-based

methods and learning-enabled approaches. We also briefly discuss recent advances in

lightweight deep learning.

3 RELATED WORK

In this section, we provide a comprehensive review of the recent advances in inertial

odometry and efficient DL for URC devices, outlining their strengths and weaknesses.

Inertial localization can be categorized into model-based systems using Bayesian filters and

heuristics, or learning-enabled systems exploiting recent advances in DL [46]. Software

advances in TinyML include the use of pruning, quantization and model compression,

lightweight neural blocks, hardware-aware NAS and the rise of commercial off-the-shelf

(COTS) tools [64, 67]

3.1 Model-Based Inertial Odometry

Model-based inertial dead-reckoning frameworks typically employ multimodal fusion via

physics-based and heuristic priors with occasional support from infrastructure-dependent

position fixes, along with the application of Bayesian filters for error handling [46]. These

approaches are commonly hard-coded for specific applications.

3.1.1 Vehicular, Robotic and Animal Localization.—Depending on the target

application and topography, heuristic drift reduction, magnetic anomaly detection,

opportunistic calibration, quasi-static moment detection, particle filters, magnetic map

matching, and inertial signature verification are used to counteract heading estimation

error [47, 70, 91, 94, 99], typically fused through an error-tracking indirect Kalman filter

(KF). For displacement estimation, unmanned aerial, ground, and underwater vehicles

(UAV, UGV, and UUV) typically fuse inertial sensors with GPS, LIDAR, camera, and

RADAR via KF variants for localization, complemented via map information from known

localization space [3, 53]. Typical aid includes magnetic map matching, flow-sensors, and

wheel odometers, with nonholonomic constraints on the motion. Satellites and spacecraft

perform non-linear Bayesian fusion of physics-based kinematics models with inertial

SAHA et al. Page 6

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sensor measurements for attitude estimation [22], coupled with position information from

GPS, kinematics models (e.g. ephemeris and almanac), relative angle measurements (e.g.

parallax) or ground control [38, 61]. For slow and predictable motion profiles such as in

wildlife tracking, ecologists formulate animal-specific belief-based constraints on velocity,

transportation modes, and Boolean decision-trees to mitigate drifts and sensor errors,

occasionally fusing GPS through KF variants when available [87–89].

3.1.2 Pedestrian Dead Reckoning (PDR).—PDR systems typically decompose

position estimation problems into direction estimation and stride length estimation [94],

the latter of which is further partitioned into transportation mode classification, gait cycle

segmentation, and step length estimation (SLE) subject to environmental constraints and

iterative updates [44, 47, 91]. For dead-reckoning via foot-mounted IMU, information

about the linear and angular velocities of the foot during the swing and stance phases

for various motion primitives can be exploited to constrain the explosion of errors in

step counting [33, 47, 91]. This is referred to as zero velocity update (ZUPT) or zero

angular rate update (ZARU) pseudo-measurements [49], segregating the gait cycle into

identifiable chunks either coarsely or granularly [47]. Temporal and frequency-domain

analysis (e.g., wavelet and Fourier transforms, level crossing detection, extrema detection,

autocorrelation, Hidden Markov Models (HMM), and local variance detection) are used

to extract recurrent and temporal contextual dynamics in the gait cycle to improve the

robustness of gait phase identification against AWGN for various activity modes [2, 47, 91,

94]. Typical SLE approaches include physiological knowledge injection (e.g., Weinberg

SLE), linear regression upon step frequency with aiding covariance heuristics, global

acceleration extrema difference, knowledge of virtual landmarks, and floor plans or use

of KF variants [44, 47, 56, 83, 91, 94].

While model-based inertial localization systems are computationally efficient, designing

generalizable heuristics poses a significant hurdle in the deployment of real-time inertial

dead-reckoning systems, with no “one size fits all” analytical solution to the problem.

The system models used by model-based approaches are linear approximations of the state

evolution in the real world, which do not translate accurately in the long run for eclectic

scenarios due to non-optimal parametrization. In contrast, in TINYODOM, we propose an

end-to-end learning-based framework that is generalizable across different applications. We

show that TINYODOM develops machine learning models that are superior to model-based

methods and are deployable on resource constraint devices. We outline existing data-driven

techniques in the next subsection.

3.2 Data-Driven Inertial Odometry

To handle the shortcoming of model-based methods, researchers have recently proposed

several ML approaches capable of capturing high-dimensional contextual dynamics in the

non-linear domain void of human knowledge. Next, we categorize existing approaches

based on the role of data-driven components. They are either used in combination with

model-based methods or are completely replacing them in an end-to-end manner.

SAHA et al. Page 7

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2.1 Aiding Model-Based Systems.—Deep neural networks (DNN) are adept at

filtering out noise and irrelevant information while extracting useful features from sensors in

the wild [66]. Intuitively, a hands-off generalizable solution for the curse of drift in inertial

odometry involves eliminating the root of sensing uncertainty on the fly before the model-

based position estimation step using DL models. Affixing a neural network block dedicated

to denoising in the Bayesian state estimation framework yields real-time and on-the-fly

noise reduction while being invariant to random gyrations and actuator micro-vibrations,

exhibiting generalizability under unseen trajectory projections and robustness to training

data anomalies and domain shift [1, 11, 12, 98]. An alternative approach involves using

DNN or reinforcement-learning (RL) agents to dynamically and tightly update KF noise

covariance parameters instead of sensor errors [10, 36, 90]. In this case, the filter is non-

agnostic to the corrections being made by the DNN, leading to estimates that are statistically

Pareto-optimal under non-ideal gradient descent convergence. A parallel technique uses

DNN as tightly coupled state advisors, providing indirect momentary pseudo-measurements

about position and orientation (such as velocity and heading) from a finite window of raw

inertial readings to physics-based filters to aid decision making under a broad spectrum of

motion primitives, topography, environment, sensor-placement and test subjects [20, 59, 72].

3.2.2 Velocity-Profile Heuristics.—For non-Bayesian filters such as in PDR, DL-

based velocity profile detectors (ZUPT and ZARU) and SLE can extract coveted velocity

intervals for step detection and adapt stride length based upon discerned motion patterns

[80, 81] for varying gait patterns and sensor placements. In the case of wheeled robots,

DL-based ZUPT and ZARU allow attitude and bias corrections, with priors on lateral

and vertical velocity to improve long-term position estimation accuracy [9]. RIDI [93]

used classical ML to detect sensor placement and regress velocity and direction to correct

accelerometer readings for usable double integration within a stabilized-inertial frame for

various transportation modes.

3.2.3 End-to-End Frameworks.—Model-based filters require an accurate

representation of the evolution of sensor errors and state estimates in terms of the incoming

measurements. Such system models are only linear approximations and are unable to

optimally control error explosion from naive double integration due to deviations from

mathematical abstractions for non-linear complex motions or deployment in different

domains [16, 46]. IONet [16] introduced the concept of sequence learning for dead-

reckoning, resulting in the first end-to-end neural-inertial model capable of trajectory

estimation in presence of non-linearities associated with inertial localization which are

otherwise hard to model mathematically, including effects of unrestricted sensor orientation

and position, different test subjects, diverse motion primitives and abnormalities, decoupling

individual sensor errors and biases, sampling rate jitter and physical characteristics of the

sensors. Notable successors of IONet include RoNIN [46], IDOL [74] and L-IONet [18]

for PDR, AbolDeepIO for aerial vehicle localization [29], VeTorch for UGV localization

[35] and NavNet [96] for UUV positioning. MotionTransformer uses a transformer network

to generate domain invariant inertial sequences from raw sensor data from various sensor

placements, rotations, or motion types in a completely unsupervised fashion, without

requiring the exhaustive collection of labeled domain-specific datasets [17].

SAHA et al. Page 8

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Out of the proposed data-driven methods, data-driven end-to-end frameworks are preferred,

as they are not dependent on any domain heuristics and have shown superior performance

[16, 18, 46] over model-based techniques. However, currently, none of the data-driven

methods are suitable for real-time deployment on URC devices. Among all of the data-

driven techniques, only L-IONet [18], VeTorch [35] and the two frameworks by Brossard

et al. [10, 12] were designed with efficiency in mind to run in real-time on smartphones.

The constraints of URC devices (e.g., a typical microcontroller has 128 KB RAM and

1 MB of flash) demand extremely lightweight machine learning models in comparison

to a smartphone, which can have 4 GB of RAM and 64 GB of storage [57]. TINYODOM

is designed to address the gap of enabling neural inertial odometry on ultra-resource-

constrained devices. TINYODOM reduces the model size between 31× to 134× in comparison

to the existing data-driven methods. Even though our models are lightweight, TINYODOM

either maintains or exceeds the tracking performance in comparison to the existing SOTA

due to a novel magnetometer, physics, and velocity-centric inertial sequence formulation.

3.3 Deep-Learning for URC devices

Several libraries exist that enable the transfer of trained machine learning models generated

by well-known libraries (such as Tensorflow) to microcontrollers. These libraries include

TensorFlow Lite Micro [23, 84], CMSIS-NN [54], uTensor [75], and Microsoft EdgeML

[24, 25, 39, 40, 42, 51, 52, 65]. Such libraries provide comprehensive sets of optimized ML

operators, algorithms, and tools, perform pruning, quantization (fixed and mixed precision),

and model compression [43] and convert models to deployable C code. However, these

libraries assume that the trained model can fit within the device resource constraints. To

satisfy the tighter hardware constraints of URC devices, neural architecture search (NAS)

needs to be optimized by target hardware specifications to strike a balance between accuracy

and efficiency [30, 57] tradeoff.

Several NAS frameworks have been proposed for microcontroller-class devices. SpArSe

[30] treats NAS as a gradient-driven multi-objective BO problem, treating hardware

attributes via proxies and coupling pruning with NAS. MicroNets [6] uses a quantization-

aware gradient-driven approach to optimize task-aware DNN backbones. MCUNet [57]

tailors Once-for-All (OFA) NAS [14] for microcontrollers, using a two-stage evolutionary

NAS to train a single OFA network in an optimized search space for a broad spectrum

of target hardware. Adopting MCUNet is a challenge as it uses a custom inference engine

and its latency/resource measurements rely on a closed-source software stack. In TINYODOM,

we perform hardware-aware NAS using multi-objective BO, where the acquisition function

is optimized using Monte Carlo sampling. We adopt BO due to the following reasons: (i)

BO provides a state-of-the-art approach to optimize expensive objective functions in a few

evaluations [69], (ii) BO allows explicit inclusion of non-gradient-friendly constraints of the

model size and accuracy tradeoffs during the training process [30]. The choice of Monte

Carlo sampling instead of the gradient-driven approach of SpArSe [30] is based on the fact

that neural architecture search space consists of categorical variables where the sampling

approach evaluates the acquisition function only at valid configurations only [37, 68].

TINYODOM includes the hardware-aware training where the resource utilization of a model

is computed at runtime by its real deployment on the target hardware, instead of just using

SAHA et al. Page 9

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

proxies as done by SpArSe [30]. Our evaluation shows that proxies are only approximations

of the real hardware constraints, which are noisy for extremely resource-constrained devices.

4 ROBUST 3D INERTIAL SEQUENCE LEARNING

To break the cycle of continuous integration and error propagation, IONet [16] proposed

inertial sequence learning based on Newtonian physics. The goal is to estimate the change in

navigation state over pseudo-independent inertial windows rather than absolute coordinates,

constraining the ball of outputs for a neural network f to model. Under loose nonholonomic

constraints and in polar coordinates, f is given as:

Δlt, Δψt = fθ vI(0), g0
I, aΔt

I , wΔt
I

(9)

where, Δt = t : t – n, referring to a window of accelerometer aI and gyroscope wI

samples of length n. The task involves estimating the initial velocity vI 0 and gravity

g0
I in each window, which are treated as latent states. Instead, f outputs heading rate

Δψt and displacement Δlt in the azimuthal plane. However, as we will showcase, the

vanilla inertial sequence learning formulation suffers from gravity pollution, high-frequency

inertial perturbations, varying sensor attitude, and heading rate singularity. We introduce

a magnetometer, physics, and velocity-centric inertial sequence formulation robust to

aforementioned problems, summarized in Fig. 2.

4.0.1 Latent Heading Information.

Gravity-aligned coordinate frames [46] are polluted by continuous translational motion due

to the mixture of linear and gravitational acceleration. Gravity pollution can induce short-

term offsets in the estimated orientation, leading to large velocity projection errors [70]. In

addition, gyroscope BI and ARW generate long-term drift in the latent attitude estimate,

further degenerating coordinate frame normalization in sensor fusion. As a result, we feed

f with local magnetometer measurements I m to provide additional latent information

about device attitude and body heading, globally anchored by the 3D magnetic North

NG. Magnetometers are motion-agnostic and do not suffer from long-term drift [70]. I m
provides an additional anchor N0

I to correct and constrain implicit estimation of g0
I and vI

(0) for each window, robust to varying sensor orientation, gravity pollution and continuous

movements (e.g., circular trajectories). Furthermore, to emulate unrestricted sensor attitude

and noise characteristics, we perform data augmentation during training via controlled

random rotation R of inertial channels and addition of multivariate Gaussian noise N [81]:

sΔt
x, y, z RsΔt

x, y, z + N(0, Σ)

(10)

SAHA et al. Page 10

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.0.2 Physics Metadata Channel.

Changes in sensor orientation and placement, hardware noise, ferromagnetic disturbances

and body heading without linear movements can induce high-frequency inertial signatures,

which can falsely trigger f to output invalid displacements. We supply f with latent valid

motion metadata ct (·) based on Newtonian kinematics to suppress the effects of high-

frequency inertial artifacts. Specifically, we want f to be activated only when significant

positional transitions have occurred. For humans, legged robots and terrestrial animals, ct (·)

corresponds to a local-variance step detector binary mask [71]:

ct I a =
1, aL, Δt

I > ζ ⋅
∑k ∈ Δt aL, k

I − aL, Δt
I 2

n

0, otherwise

(11)

where, aL, Δt
I = G5, fc aΔt

I − G5, fc ∣ aΔt
I ∣ , ζ is a tunable parameter and G5, fc(⋅) represents a 5th

order low-pass filter with cutoff fc. For vehicles, ct (·) signifies one of four transportation

modes (stationary, accelerating, decelerating and constant speed) inferred through the

discrete Fourier transform of I aΔt [63]:

ct I a = min
ct(⋅)

FFT aΔt
I − γk , k = 1, 2, 3, 4

(12)

where γk represents predefined threshold for kth transportation mode. The transportation

mode metadata is important particularly to aid f better differentiate between constant

velocity and stationary period inertial signatures.

4.0.3 Heading Rate Singularity.

The ground truth heading rate Δψt, g is given as:

Δψt, g = ψt, g − ψt − n, g

(13)

where,

ψt, g = mod arctan2 ΔLy, g, ΔLx, g , 2π
ΔLi, g = Li, g, t − Li, g, t − n

(14)

Li,g represents ground truth location. As ΔLy, g ∧ ΔLx, g 0, Δψt, g , leading to large spikes

in heading rate. These outliers can severely degrade the performance of deep neural

architectures [45] using mean squared error (MSE) loss. As a result, we modify the inertial

SAHA et al. Page 11

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sequence learning problem to regress x and y velocities rather than displacements and

heading rates. Combined with latent heading and physics metadata channel, f is given as:

vx, t, vy, t = fθ vI(0), g0
I, N0

I, aΔt
I , wΔt

I , mΔt
I , ct I a

(15)

We use strided velocity loss [46] for optimizing the parameters θ of f :

Lf = E vx, g, t − vx, t
2 + κE vy, g, t − vy, t

2

(16)

The location at time t for sliding window with stride s and length n is given by:

Lx, t = Lx, t − 1 + s ⋅ vx, t
n − s

Ly, t = Ly, t − 1 + s ⋅ vy, t
n − s

(17)

4.0.4 Z-axis Dead-Reckoning.

Barometric sensors share many common coveted characteristics with inertial sensors [76],

resulting in their widespread availability in current electronic systems [58]. We complement

2D sequence learning with altitude estimate by exploiting existing barometric chips to

provide 3D dead-reckoning. We designed a model-free barometric α – β filter [8][86] with

thermocline, salinity, noise and timestamp jitter mitigation [32]. The altitude measurements

Lz,m at timestep t are given by:

Lz, t, m =
− R T c, t + 273.15

Mg ln P t, m
P0 air

P t, m
ρ0g

1 − P t, m
K fluid

(18)

where, Pt,m = pressure measurement, M = air molar mass, 1D454 = gravitational

acceleration, R = gas constant, Tc,t = temperature in Celsius (from barometer) and P0=

average sea level pressure (kPa). Furthermore:

ρ0 = D T c, t + sA T c, t + s1.5B T c, t + cs2

(19)

K = E T c, t, s + F T c, t, s P t, m + G T c, t, s P t, m
2

(20)

SAHA et al. Page 12

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where, N T c, t γ10jT c, t
k , M T c, t, s μ10lT c, t

n sq + N T c, t , s = salinity of fluid and μ, γ, j, k, l,

n and q are constants. The filter prediction steps are given by:

Lz, t, p = Lz, t − 1, p + ΔTL̇z, t − 1, p, L̇z, t, p = L̇z, t − 1, p

(21)

The update steps are given by:

L̇z, t, p = L̇z, t, p + β
ΔT Lz, t, m − Lz, t, p

(22)

Lz, t, p

altitude
= Lz, t, p + α Lz, t, m − Lz, t, p

(23)

L̇z, t, p refers to the vertical velocity of the object, ∆T is the difference between current and

previous timestamps and (α, β) are filter coefficients. Large values of α favor measurements

over prediction, while large values of β increase the transient sensitivity of the filter. The

barometric approach does not suffer from the effects of varying inertial sensor orientation

and placement, gravity pollution, and unusual movements common in approaches using

inertial sensors to regress height [59].

5 HARDWARE-AWARE INERTIAL NAVIGATION

In this section, we present the details of the neural network architecture adopted by

TINYODOM (Section 5.0.1) and our NAS approach to enable deployments on URC devices

(Section 5.0.2)

5.0.1 Backbone Neural Architecture.

We use a TCN [55, 78] to model f [10, 18, 35], which can jointly handle spatial and

temporal features hierarchically. The receptive field Fi of each unit in the ith layer in a TCN

dilated causal kernel of size k × k with dilation factor l is given by:

F i, TCN = F i − 1 + kl − 1 × l, F0 = 1

(24)

Fi,TCN is larger than Fi,TCN, which is i × (k – 1) + k. Without explosion of parameter,

memory footprint, layer count or overfitting, TCN kernels allow the network discover

global context in long inertial sequences while maintaining input resolution and coverage.

Causal convolutions maintain temporal ordering without requiring computationally intensive

recurrent units, supporting out-of-order parallelization during training. In addition, two

stacks of dilated causal convolution layers are fused through gated residual blocks z

SAHA et al. Page 13

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for expressive yet bounded non-linearity, complex interactions and temporal correlation

modeling in the input sequence:

z = tanh Wf, k ∗ x ⊙ σ Wg, k ∗ x

(25)

5.0.2 Neural Architecture Search.

To find the ideal neural inertial candidate from the backbone TCN for limited flash,

RAM, and latency requirements, we model the search as a parallelizable black-box BO

problem. The search space Ω consists of neural network weights w, hyperparameters θ,

network structure denoted as a directed acyclic graph (DAG) g with edges E and vertices

V representing activation maps and common ML operations ν (e.g., convolution, batch

normalization, pooling, etc.) respectively, which act on V. The goal is to find a neural

network that maximizes the hardware SRAM and flash usage within the device capabilities

while minimizing latency and validation RMSE.

fopt = λ1ferror (Ω) + λ2fflash (Ω) + λ3fSRAM (Ω) + λ4flatency (Ω)

(26)

where

ferror (Ω) = Lvalidation (Ω), Ω = V , E , w, θ, v

(27)

fflash (Ω) =
− ℎFB(w, V , E) 0

 flash max
∨ − HIL information

 flash max

∞, fflash (Ω) > flash max

(28)

flatency (Ω) = FLOPS
 FLOPS target FLOPS

∨ HIL information
 Latency target latency

(29)

fSRAM(Ω) =
−

maxl ∈ [1, L] xl 0 + al 0
SRAMmax

∨ − HIL information
SRAMmax

∞, fSRAM (Ω) > SRAMmax

(30)

SAHA et al. Page 14

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a = w ∨ y, y = ∑
k = 1

K
vkgk x, wk

The objective function fopt can be thought of as seeking a Pareto-optimal configuration of

parameters Ω∗ under competing objectives [30] such that:

fk Ω∗ < = fk(Ω) ∀k, Ω ∧ ∃j:fj Ω∗ < fj(Ω) ∀Ω ≠ Ω∗

(31)

We use Gaussian process as the surrogate model to approximate fopt, which allows priors

on the distribution of moments to propagate forward as the search progresses. In addition,

the domain of random scalarizations λ can be specified by the user to guide the parallel

search acquisition functions (hallucination or K-means clustering) into the promising Pareto-

optimal regions of the gradient plane. The acquisition function decides the next set of

Ωn to sample from the design space using Monte Carlo sampling with Bayesian Upper-

Confidence Bounds (UCB), also known Thompson sampling, which balances exploration

and exploitation [68]. Apart from speeding up the NAS, parallel search ensures that NAS

is not being performed on network morphs early on (exploitation) and information gain is

maximized in the search process (exploration), yielding a stage-wise “coarse-to-fine” search

space:

f(Ω) ∼ GP μ(Ω), k Ω, Ω′

(32)

Ωt = argmax
Ω

μt − 1(Ω) + β0.5σt − 1(Ω)

(33)

Firstly, validation RMSE serves as a proxy for the error characteristics ferror (Ω) of the model

candidate. Secondly, when real hardware is absent, we use the size of the flatbuffer model

schema hFB (·) [23] as a proxy for flash usage. Thirdly, we use the standard RAM usage

model as a proxy for SRAM usage fSRAM (Ω), with intermediate layer-wise activation maps

and tensors being stored in SRAM [30]. Lastly, since model latency is linearly proportional

to the FLOPS count for a variety of convolutional models for microcontrollers, we use

FLOPS as a proxy for runtime latency flatency (Ω) [6]. When HIL is available, we obtain

the SRAM, flash, and latency parameters directly from the target compiler and real-time

operating system (RTOS). All hardware parameters are normalized by device capacity or

target metrics. The entire NAS pipeline is summarized in Fig. 3.

SAHA et al. Page 15

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6 EXPERIMENTAL SETUP

In this section, we provide details on the implementation of our hardware-aware robust 3D

sequence learning framework. We list the domain space of the TCN backbone (Section

6.1) to be optimized by NAS. Next, we provide details on how we setup BO in Python

(Section 6.2). Then, we outline the datasets (Section 6.3) used to train and benchmark the

performance TINYODOM models and competing baselines (Section 6.4). Afterward, we list

the performance metrics used for benchmarking (Section 6.5). Next, we provide details on

the target hardware, host machine, and software specifications (Section 6.6). Finally, we

provide details on our real-world experimental setup (Section 6.7).

6.1 NAS Search Space

Our TCN model consists of an input layer, followed by the TCN backbone. The

hyperparameters to be optimized by the NAS framework for the TCN backbone are as

follows:

• Number of filters: 2–64

• Kernel size: 2–16

• Use of residual (skip connections): True, False

• Number of layers: 3–8

• Dilation factor to assign to each layer: [1, 2, 4, 8, 16, 32, 64, 128, 256]

• Dropout: 0.0–1.0

• Normalization: Weight, Layer, Batch

The fixed parameters for the TCN backbone are as follows:

• Number of stacks: 1

• Activation: ReLU

• Learning Rate: 0.001 (Adam)

The outputs of the TCN backbone are reshaped, pooled, and flattened. The flattened vectors

are fed to a 32 unit fully-connected layer. The final output of the TCN model is x and y

velocities.

6.2 NAS Implementation

Our NAS implementation is based on the state-of-the-art open-source BO library called

Mango [68][69]. Our NAS implementation consists of three steps: (i) NAS search space

definition, (ii) multi-objective function specifications, and (iii) hardware-in-the-loop or

proxy constraints computation. Our NAS search space is a combination of categorical,

integer, and continuous variables as shown in Section 6.1. This search space is realized

using python constructs (lists, dictionaries) and SciPy [79] distributions which are directly

supported in Mango [69]. We create fopt (Equation 26) in Python, where the hardware

metrics are computed either using proxies or hardware-in-the-loop. For training TCN models

for each application, we run the BO search strategy for 50 iterations. The internal surrogate

SAHA et al. Page 16

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model used by our implementation is based on the Gaussian process [69] which uses the

upper confidence bound as the acquisition function. The surrogate model approximates the

hyperparameter decision boundary learning the best regions that minimize the fopt. The

next sampled hyperparameter is selected based on the predicted mean (exploitation) and the

corresponding variance (exploration) which are included as part of the acquisition function.

In our implementation, we use the adaptive exploitation versus exploitation trade-off and

automatic domain size explorations from Mango [68][69].

6.3 Benchmark Datasets

To train the TCN models and evaluate the performance of TINYODOM against competing

proposals, we selected five inertial odometry datasets that have been widely used to

benchmark existing inertial dead-reckoning techniques for various applications [16, 18, 29,

31, 46, 88]. Table 1 summarizes the representative characteristics of the five datasets. For

PDR, we selected the OxIOD [18] and the RoNIN [46] dataset, the two largest publicly

available inertial odometry datasets for human localization. Both OxIOD and RoNIN

use smartphone inertial sensors to collect 9DoF IMU data. However, the RoNIN dataset

assumes unrestricted phone orientation and phone placement to support natural day-to-day

smartphone usage and provides a more challenging task of developing inertial models

invariant to device placement or orientation. Furthermore, the trajectories in the RoNIN

dataset have a larger spatial span compared to the trajectories in the OxIOD dataset. The

OxIOD dataset, on the other hand, has a higher ground truth resolution (sub-mm) thanks to

the use of a Vicon motion capture setup.

For UUV, UAV, and animal localization, we chose the AQUALOC [31], the EuRoC MAV

[13], and the GunDog [41] dataset, the only publicly available datasets for benchmarking

dead-reckoning algorithms for UAV, UUV, and animals. The EuRoC MAV, AQUALOC, and

the GunDog datasets collect IMU data from sensor tags fixed to quadrotors, underwater

probes, and penguins, respectively. The size of these datasets is much smaller than the

OxIOD and RoNIN datasets. We used the AQUALOC dataset to evaluate the performance

of the barometric altitude estimator besides 2D inertial tracking, as it includes underwater

pressure sensor data. The only caveats in these three datasets are the lack of magnetometer

and gyroscope readings in the EuRoC MAV and the GunDog dataset, respectively. We

adapted our TCN input layers to work with the available sensors in these two datasets.

Table 2 lists the window size, stride, data splits, and epochs that we used in the training

pipeline for our TCN model for each dataset. We split the datasets by sequences (separate

files). We did not use any validation during the training phase of each candidate model

but rather used the validation split to compute the error metric ferror (Ω) in the outer loop

of the NAS. The test split was used in the final evaluation of the best-performing model

found via NAS against baseline techniques. For the OxIOD and RoNIN dataset, we used

the same window size and stride used by IONet [16], L-IONet [18], and RoNIN [46] on the

two datasets. For the EuRoC MAV and GunDog dataset, we chose a window size of 0.25

seconds to account for the faster maneuverability of drones and penguins over humans. On

the contrary, since underwater vehicles move slowly, we used a window size of 2 seconds for

the AQUALOC dataset. Note that the dataset splits are different from each other because the

SAHA et al. Page 17

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

datasets were split by sequences/files and not samples to preserve continuous trajectories.

For the RoNIN dataset, we used splits provided by the dataset makers [46]. For the OxIOD,

the AQUALOC, and the EuRoC MAV datasets, we split the files such that the training set,

the validation set, and the test set roughly have 80%, 5%, and 15% of the total dataset

samples respectively. Since there are only two complete trajectories in the GunDog dataset,

we split the training trajectory into a training and validation split, while using the other

trajectory as a test split.

6.4 Baseline Algorithms

To evaluate the utility of TINYODOM, we use several SOTA inertial odometry techniques as

baselines for the four applications. For tracking humans via the OxIOD and the RoNIN

datasets, we use the following baselines:

Step Detector with Weinberg SLE (PDR): We used one of the PDR algorithms

proposed by Jimenez et al. [48]. The algorithm uses a threshold-based step detector based on

accelerometer peaks and updates the displacement via Weinberg Stride Length Estimation

(SLE) [85], which models step length in terms of vertical movement of the pelvis during

each step. The heading is computed from the gyroscope. PDR is one of the most widely used

classical inertial localization method [44, 91]. We used a publicly available implementation

the PDR 2

Naive Double Integration (NDI): We use the ideal formula for dead-reckoning

(Equations (5–7)), where we simply integrate the linear accelerometer readings to get the

position after coordinate transformation [88]. We used a publicly available implementation

of the NDI2.

IONet: IONet [16] is the first deep inertial sequence learning model. The LSTM model

uses the original heading-displacement formulation of neural inertial localization and takes

in gyroscope and accelerometer readings as input. IONet was shown to outperform PDR and

strap-down inertial navigation system (SINS) on the OxIOD dataset. We implemented our

own version of IONet using the same architectural encodings mentioned in [16], as the code

is not publicly available.

L-IONet: L-IONet [18] improves the computational efficiency over IONet by using a

TCN in place of LSTM, without significantly sacrificing localization performance. We

implemented our own version of L-IONet, as the code is not publicly available.

RoNIN TCN: RoNIN TCN [46] uses robust velocity loss and a heading-agnostic

coordinate frame to account for unrestricted sensor orientation and placement. RoNIN TCN

outperformed NDI, PDR, and IONet on the RoNIN and OxIOD datasets. We used the

publicly available implementation of RoNIN TCN 3 for retraining and benchmarking.

For UUV localization using the AQUALOC dataset, we use the following baseline:

2 https://lopsi.weebly.com/teaching.html
3 https://github.com/Sachini/ronin

SAHA et al. Page 18

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://lopsi.weebly.com/teaching.html
https://github.com/Sachini/ronin

NavNet: NavNet [96] asynchronously combines inertial sensor and doppler velocity log

(DVL) through separate LSTM networks, followed by attention layers to capture relevant

long-term contextual information across timesteps and regress x and y velocities. NavNet

was shown to outperform EKF and UKF for underwater localization. We implemented our

own version of NavNet, as the code is not publicly available.

For UAV localization using the EuRoC MAV dataset, we use two baselines:

AbolDeepIO: AbolDeepIO [29] uses two separate LSTM channels to map accelerometer

and gyroscope readings to different latent representations while feeding the sampling rate

of the inertial sensor through a third LSTM channel to make the displacement and heading

regressor robust to sampling rate jitter. The high-level correlated features are then fused

using slow fusion. AbolDeepIO was shown to outperform VINet [19], SINS, and IONet. We

implemented our own version of AbolDeepIO, as the code is not publicly available.

VeTorch: VeTorch [35] uses two TCN to compute the heading and displacement of

autonomous vehicles from smartphone accelerometer and gyroscope readings. It also

transforms inertial dynamics from the phone to the car. VeTorch was shown to outperform

EKF and IONet. We implemented our own version of VeTorch, as the code is not publicly

available.

Finally, for animal tracking, we use the following baseline:

GunDog: GunDog [41] complements the ideal formula for dead-reckoning (Equations (5–

7)) with a step detector and compass calibration to constrain error explosion during animal

tracking. We used the publicly available implementation of GunDog 4.

6.5 Performance Metrics

We adopt two widely used [46, 59, 97] metrics to quantify the localization performance:

• Absolute Trajectory Error (ATE): ATE is defined as the average root-mean-

squared-error (RMSE) between the actual and the predicted locations for the

entire trajectory [46]:

ATE = 1
T ∑

t ∈ T
Lx, t − Lx, g, t

2 + Ly, t − Ly, g, t
2

(34)

The lower the ATE, the better.

• Relative Trajectory Error (RTE): RTE is defined as the average root-mean-

squared-error (RMSE) between the actual and the predicted locations for a

specific time interval. Inspired from [46], we use a time interval of 1 minute

to calculate RTE. The lower the RTE, the better.

4 https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R

SAHA et al. Page 19

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R

To quantify the resource usage of the proposed dead-reckoning techniques, we use either the

size (flash usage) of the TFLM flatbuffer serialized model schema for neural-inertial models

or use the flash usage of the compiled embedded C code for classical techniques.

6.6 Hardware and Software Specifications

For benchmarking HIL NAS, we use three real ARM Cortex-M target boards and one

virtual hardware model (proxy) with varying resource constraints. The target hardware

specifications are summarized in Table 3. The processor runs Mbed RTOS and TFLM

interpreter on-board. To communicate with the target hardware via system commands from

the host machine, we used the Mbed command-line interface (CLI).

The TINYODOM models were implemented in Jupyter Notebook (Python), using Keras via

a Tensorflow and TFLM [23] backend. All the publicly-unavailable baselines were also

implemented similarly. To benchmark PDR, NDI, and GunDog’s resource usage, we rewrote

their MATLAB and R code in C++. Table 4 lists the specifications of the host machines

on which we ran the NAS and model training. Our NAS framework supports training on

machines with a wide range of processor, GPU, and RAM configurations.

6.7 Real-World Setup

To showcase how TINYODOM can support real-world applications, we retrofitted an

agricultural robot intended for precision farming [27][28] with neural-inertial tracking

hardware and software. The setup is shown in Fig. 4. The robot is intended for autonomous

inter-row weed control in flaxseed and canola fields, where the spacing between adjacent

crop lines can be as small as 30 cm. Thereby, the robot requires a high-sampling rate cm

level precision localization [27][28], which is not possible to achieve with commodity GPS

alone. We attached a 9DoF Razor IMU board to the robot to perform inertial data logging

as well as on-board neural-inertial tracking. The board features a MEMS accelerometer

(ADXL345), a gyroscope (ITG-3200), and a magnetometer (HMC5883L). The data is

logged onto an SD card. The board features 32kB of SRAM and 256 KB flash. To log

sub-mm ground truth position, we used several OptiTrack Prime 17W5 MoCap infrared

markers [34] mounted in a rigid body configuration. The motion data of the rigid body were

tracked using Motive:Tracker6 [4]. To synchronize the ground truth data and the IMU data,

we harmonized the local system clocks to the Network Time Protocol and also performed

graphically identifiable special movements with the robot before collecting position data. We

had two experimental phases with the robot:

• Data Collection Phase: In this phase, we drove the robot within a 2×2 m arena

using a remote controller to collect inertial sensor data and ground truth position

data. We collected 3 hours of IMU and ground truth position data at a 100 Hz

sampling rate.

• Evaluation Phase: In this phase, we ported a neural-inertial model on the Razor

IMU platform. Instead of logging IMU data this time, the board logged the

5 https://optitrack.com/cameras/prime-17w/
6 https://optitrack.com/software/motive/

SAHA et al. Page 20

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://optitrack.com/cameras/prime-17w/
https://optitrack.com/software/motive/

estimated position of the robot. The driving patterns and ground truth collection

setup remained the same.

7 EVALUATION, COMPARISON AND DISCUSSION

In this section, first, we showcase the localization performance and resource usage of

TINYODOM models against competing baselines (Section 7.1). Next, we illustrate how our

HIL NAS adapts models based on hardware capability (Section 7.2). Third, we show

the performance of our depth filter for altitude estimation (Section 7.3). Fourth, we

perform an ablation study to show how the individual components in our physics, velocity,

and magnetometer-centric sequence learning formulation affect localization performance

(Section 7.4). Finally, we show transferability and real-world evaluation of TINYODOM

(Section 7.5).

7.1 Localization Performance and Resource Usage

Table 5 and Fig. 5 showcase the performance of TINYODOM TCN models against competing

methods for all four applications in terms of ATE, RTE, and resource usage. From Table

5 and Fig. 5, we can see that TINYODOM models, despite being a fraction of the size of

competing baselines, are always among the top two best performing models in terms of

ATE and RTE. Specifically, TINYODOM outperforms the SOTA for UUV, UAV, and animal

tracking by reducing the ATE by 1.14× to 5×, while being 52× to 134× lighter. Classical

approaches such as PDR, NDI, and Gundog are outperformed not only by TINYODOM

but other deep-learning neural inertial models. Notice how our best performing models

are within 27–72 kB, while the best performing baselines are 33–2200 kB. For human

localization, TINYODOM competes with RoNIN TCN while outperforming NDI, PDR, IONet,

and L-IONet. Compared to the RoNIN TCN, the top-performing TINYODOM models are 31×

to 34× smaller, while overall, the framework provides 31× to 134× reduction in model size

over the SOTA. We can make several important inferences from Table 5 and Fig. 5:

• Baselines which regress heading and displacement (e.g., IONet, L-IONet,

AbolDeepIO, and VeTorch) have high ATE and RTE. We observed that the errors

build up when sharp turns occur in the trajectory. Given that objects in these

datasets mostly travel in straight lines, the singularities in the heading rates are

ignored by the neural network during training, leading to large errors in the final

position estimate.

• Note that the ATE and RTE for all techniques are much higher than RoNIN

TCN for the RoNIN dataset. We hypothesize that this happened because the

pre-trained RoNIN TCN was trained on the entire RoNIN dataset, while we only

had access to 50% of the data (which is challenging due to unrestricted sensor

configuration). In fact, the performance of RoNIN TCN is similar to TINYODOM

on the OxIOD dataset, with TINYODOM lagging RoNIN TCN by 0.85 m. The

performance gain comes from the 34× more weights available to the RoNIN

TCN. RoNIN TCN also relies on device orientation, which itself is polluted.

• The robust sequence learning and hardware-aware formulation of TINYODOM

generalize across heterogeneous applications, continuously maintaining superior

SAHA et al. Page 21

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

localization resolution while keeping a low resource overhead. TINYODOM

attempts to lower the ATE and RTE based on available resources. Observe from

Fig. 5 that with more available memory, the ATE and RTE generally go down.

• Excluding PDR, NDI and GunDog and L-IONet, none of the baselines are

suitable for deployment on URC devices due to memory constraints. All 4 of

these baselines are outperformed in localization resolution.

Fig. 6 shows selected trajectory reconstructions of varying lengths by TINYODOM models

against competing methods for PDR, UUV, and animal tracking. From Fig. 6, we can see

that TINYODOM can perform dead-reckoning for varying trajectory lengths without explosion

of position estimation error. Due to heading rate singularity, IONet and L-IONet struggle

to constrain the errors generated by sharp turns, evident in Fig. 6(b), where IONet and

L-IONet tend to over-smooth the turns in the trajectory. PDR has a large error radius

and completely fails on the RoNIN dataset, where the heading cannot be inferred via

model-based techniques because of unrestricted phone placements. TINYODOM models are

more closely able to replicate the trajectories generated by RoNIN TCN with 31×–34× lower

model size. For UUV and animal tracking, TINYODOM generates trajectories that closely

mimic the ground truth, while baselines either fail or are further apart from the ground truth.

For small trajectories, the average ATE and RTE metric does not completely state how the

error evolves with time [97]. For example, if a trajectory is circular with a radius of a few

meters (common in the OxIOD dataset [18]), the average ATE and RTE would be unable

to showcase how the location estimation varied with time. As a result, we evaluated how

the position estimation error evolves with time for PDR, UUV, and animal tracking for all

methods, shown in Fig. 7. From Fig. 7, we can observe that the position estimation error of

TINYODOM grows much more slowly with time compared to baseline techniques. TINYODOM

provides position estimate within 2.5m to 12m for trajectories of length 12m to 1160m

spanning 60 seconds. Notice how the error of the PDR, IONet, and L-IONet is sinusoidal

with time in the OxIOD dataset while growing linearly in the case of the RoNIN dataset.

Since movement is constricted in a limited space for circular trajectories, ATE of these three

baselines fluctuates for the OxIOD dataset even as they provide poor position estimation. On

the other hand, the error of RoNIN-TCN, NavNet, GunDog, and TINYODOM grow linearly

with time.

7.2 Evaluation of Hardware-in-the-Loop Bayesian Neural Architecture Search

Fig. 8 showcases how our hardware-aware NAS adapts architectural encodings of the

TCN backbone for hardware with different compute constraints for the RoNIN dataset.

Instead of simply providing small models every time, our NAS framework optimizes the

TCN model to maximize resource usage, thereby lowering ATE and RTE, when more

resources are available. For example, in Fig. 8, as the SRAM capacity increases, the NAS

framework also increases the number of layers, filters, and the kernel size of the TCN

models. The framework even adds skip connections to prevent exploding and vanishing

gradient problems for deeper networks. In addition, to capture both local and long-term

inter-dependencies in the temporal sequence within a limited computing budget, our NAS

framework assigns small dilation factors to lower layers and large dilation factors to higher

SAHA et al. Page 22

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

layers. This is counter-intuitive, as human designers would normally assign dilation factors

that grow by a constant factor with each successive layer instead of intelligent assignment

performed by NAS.

We also performed an ablation study to see how proxyless (with real-hardware) and

proxied versions (with proxy to simulate hardware metric) of our NAS framework differ

in performance with three real hardware devices for PDR and UAV localization. The

results are showcased in Fig. 9 (a)(b)(c). From Fig. 9 (a)(b)(c), we can see that the proxy

generally tends to provide models which need a higher SRAM compared to HIL NAS.

This is because the HIL NAS can take into account the model runtime interpreter and

RTOS overhead, which the proxy for SRAM and flash fails to account for. Thus, some

well-performing models (models with low ATE) found by proxied NAS may not fit on the

real hardware. Thus, HIL is especially important for URC devices, where all overheads

need to be accounted for. Besides quantifying the difference between proxyless and proxied

NAS for memory and RTE modeling, we also studied the relationship between FLOPS and

model latency (from real hardware) for all five datasets, with the results summarized in Fig.

9(d). From Fig. 9(d), we can observe that even though the models were trained on widely

different datasets, there is still a strong positive correlation (Pearson Coefficient, ρ = 0.933)

between FLOPS and model latency in the log-log scale, indicating that it is possible to

develop an analytical model correlating FLOPS and model latency without requiring HIL for

explicit latency modeling. This would save time as the models do not need to be run on real

hardware to benchmark latency but would only require compilation to get the SRAM and

flash, which can be achieved on the host machine.

7.3 Performance of Robust Depth Filter

Fig. 10 shows sample trajectory reconstruction in the z-axis provided by the barometric α
– β filter on the AQUALOC dataset. As a baseline, we convert the raw pressure sensor

readings to depth using the formula Pt = ρgLz,t, where Pt is the raw pressure reading at

time t, ρ is the density of seawater and g = 9.81. From Fig. 10, we can see that our filter

is robust to sensor noise caused by environmental variations, with the sum of gradients

of the reconstructed trajectory much closer to the ground truth trajectories. Compared to

3D-RoNIN and TLIO, which estimate height from IMU and have errors of up to ±1.0m, the

barometric filter provides altitude estimates within ±0.1m. Moreover, 3D-RoNIN and TLIO

use neural networks in the pipeline much larger than TINYODOM models to regress height.

Our filter, on the other hand, is lightweight, requiring only 10 KB SRAM and 51.4 kB flash

on the target hardware. In addition, our approach for regressing altitude is immune to the

curse of drift associated with inertial sensors.

7.4 Ablation Study for Sequence Learning Formulation

We performed an ablation study to highlight the importance of the individual components

(i.e., velocity, magnetometer, and physics module) in our robust sequence learning

formulation. We took a model, kept the same architectural encodings, and retrained

the model without one or two of the three components. Fig. 11 summarizes the study

performed on the OxIOD and AQUALOC dataset for the best performing models on

STM32F446RE and STM32F746ZG hardware, respectively. From the ablation study, it is

SAHA et al. Page 23

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

clear that the velocity formulation, magnetometer readings, and physics channels all work

together to reduce the ATE and RTE of the same model. ATE and RTE are lowest when

all three components are present in both datasets. In particular, the velocity-formulation

and the inclusion of magnetometer seem to have the greatest effect in reducing the

position estimation error. The velocity formulation solves the heading rate singularity

issue associated with heading-displacement formulation, while the magnetometer provides

an additional anchor for inferring body heading minus the effects of gravity pollution,

varying sensor attitude, translational movements, and drift associated with accelerometers

and gyroscopes. The physics channel, on the other hand, helps the neural network decide

whether valid translational movements have occurred or not, thereby constraining the output

of the network when the object to be localized is static.

7.5 Transferability and Real-World Evaluation

In this section, we first showcase how pre-trained models perform when they are tested

on an entirely different dataset, which may or may not come from the same underlying

application (Section 7.5.1). We then show how very small amounts of data in the new

domain can fine-tune the weights of a pre-trained model trained on an entirely different

underlying application and dataset to operate reasonably well in the real-world (Section

7.5.2).

7.5.1 Transferability Across Applications and Datasets (No Fine-Tuning).—
Table 6 provides an example of the performance of neural inertial models on new

datasets and applications without fine-tuning. For testing the transferability across the

same application but different datasets, we tested PDR models across the OxIOD and

RoNIN datasets. For testing the transferability across different applications, we tested PDR

(trained on the OxIOD dataset) models and UUV localization models (trained on the

AQUALOC dataset). From Table 6, it is evident that while neural-inertial models (both

TINYODOM and large models) perform well within the trained data distribution, they are not

directly transferable to another dataset or application without fine-tuning. Apart from having

different data distribution, these odometry datasets have different sampling rates as well as

different motion primitives (e.g., a UUV’s motion patterns would be different from that of

a person walking). Thereby, the ideal window sizes and learned physical embeddings would

be significantly different across datasets and applications. In addition, the TINYODOM models

perform slightly worse than the large models on different datasets and applications. This

is because the lightweight models do not have enough redundant weights or parameters to

model globally significant attributes that may be common across datasets or applications,

but instead overfit the dataset-specific characteristics in the temporal sequences, sacrificing

generalizability over accuracy. Thus, it is necessary to perform domain adaption when

transferring pre-trained models to different applications.

7.5.2 Fine-Tuning and Real-World Usage.—Before fine-tuning pre-trained models,

we ran NAS using the entire 3-hour dataset to find TINYODOM models that can run in

real-time on the target hardware listed in Table 3, as well as on the Razor IMU retrofitted to

the robot. Table 7 lists the hardware and performance metrics of the best performing model

for each hardware. Note that the ATE and RTE metrics shown for the Razor IMU are from

SAHA et al. Page 24

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the evaluation phase performed in real-time with the robot. From Table 7, we can observe

that the RTE over 60 seconds is around 1 meter. This is acceptable for precision agriculture,

as the robot can intermittently correct its location by fusing GPS with TINYODOM, while

TINYODOM takes care of a high sampling rate and high-resolution cm-level localization.

Having empirical gurantees of TINYODOM capable of operating on real-world data in real-

time on real hardware, next, we explored whether pretrained models trained on an entirely

different application (hence dataset) can be fine tuned to operate in the real-world with

limited labelled data from the new domain using transfer learning. Fig. 12(a) showcases

how the localization error of a pretrained model (pretrained on the OxIOD dataset) evolve

with the amount of labelled data in the new domain (agricultural robot positioning) available

to the model. We compared the error evolution against a model trained from scratch using

the same amount of limited data. We observed that the RTE of a pre-trained model with

no fine-tuning reduces by 8× with only 1 minute of labeled data in the new domain.

Moreover, from the graph, we can observe that a model being trained from scratch needs

around 100 minutes of data in the new domain to match the RTE of the pre-trained model.

Intuitively, pre-trained models bring in stability in error evolution which models trained

from scratch cannot bring with limited data, even if the pre-trained model was trained on

a different application. Fig. 12(b)(c)(d) shows trajectory reconstructions on unseen data

for a 20m trajectory on 1 minute, 5 minutes, and 20 minutes of data in the new domain.

The pre-trained model converges much faster to mimic the ground truth trajectory with an

increase in available data, while the classifier trained from scratch struggles to converge with

limited data.

8 CONCLUSION AND FUTURE WORK

Inertial odometry extends the applicability of odometry to GPS and network-denied

environments. Although the conventional model-based inertial odometry approaches are

computationally feasible, they demand expert heuristics impacting their generalizability.

Further, the current data-driven approaches for inertial odometry models, at best, work

on smartphone class devices and are not transferable to the URC devices. We show that

the proposed TINYODOM framework introduces a robust 3D inertial sequence learning

formulation and a hardwareaware NAS framework to train inertial odometry models.

TINYODOM extends the neural-inertial odometry across heterogeneous applications while

achieving up to 134× smaller size than the current SOTA while maintaining or exceeding

localization resolution. Our evaluation shows that the performance of existing data-

driven inertial odometry is susceptible to the vanilla sequence learning formulation. The

widely adopted heading displacement-based formulation is adversely impacted by heading-

rate singularity (e.g., during share turns in the trajectory). In contrast, the introduced

magnetometer, physics, and velocity-centric inertial sequence formulation of TINYODOM

maintain or exceed the tracking performance over the SOTA, even though the model sizes

are significantly smaller. Finally, we showcased the challenges that arise when trying to

transfer pre-trained neural-inertial models in the real world and showcased transfer learning

as a potential solution. There are several avenues of future work. Firstly, we observed that

in the absence of GPS or infrastructure-provided location fixes, the errors in TINYODOM

and other SOTA inertial odometry approaches are cumulative with time. This suggests

SAHA et al. Page 25

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for long-term usage, inertial odometry necessitates intermittent error correction from the

infrastructure within the available resource budget. Secondly, we saw that complementing

neural-inertial models with heuristics and physics improves the robustness dramatically. Our

physics metadata module is not trainable so far and uses domain knowledge. Possible use

of neurosymbolic reasoning [92], physics-aware embeddings [21][95], or signal temporal

logic [60] may help improve neural network robustness without domain expertise. Thirdly,

neural-inertial models trained on one dataset do not directly transfer to another dataset even

when the application is the same, let alone different applications. While our transfer learning

approach with a few minutes of labeled data fine-tunes pre-trained models for real-world

usage, more work needs to be done for on-device fine-tuning [26] and possible use of

unsupervised pre-trained embeddings [7]. Finally, the resolution achieved by neural-inertial

odometry models depends on the best possible resolution of the ground truth hardware.

However, developers may not have access to high-resolution sub-mm accuracy motion

capture systems, particularly when operating over a large geographical region. Therefore,

efficient ways to log high-resolution ground-truth data need to be explored.

ACKNOWLEDGMENTS

We thank the Structures-Computer Interaction Laboratory at the University of California - Los Angeles for
providing us with their agricultural robot to perform real-world evaluation of our framework. We also thank Jason
Wu from the Networked and Embedded Systems Laboratory at the University of California - Los Angeles for
aiding us in the data collection phase during the real-world setup.

The research reported in this paper was sponsored in part by: the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA; by the IoBT REIGN
Collaborative Research Alliance funded by the Army Research Laboratory (ARL) under Cooperative Agreement
W911NF-17-2-0196; by the NIH mHealth Center for Discovery, Optimization and Translation of Temporally-
Precise Interventions (mDOT) under award 1P41EB028242; by the National Science Foundation (NSF) under
awards # OAC-1640813 and CNS-1822935; and, by and the King Abdullah University of Science and Technology
(KAUST) through its Sensor Innovation research program. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the ARL, DARPA, KAUST, NIH, NSF, SRC, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
here on.

REFERENCES

[1]. Al-Sharman Mohammad K, Zweiri Yahya, Abdel Kareem Jaradat Mohammad, Al-Husari Raghad,
Gan Dongming, and Seneviratne Lakmal D. 2019. Deep-Learning-based Neural Network training
for State Estimation Enhancement: Application to Attitude Estimation. IEEE Transactions on
Instrumentation and Measurement 69, 1 (2019), 24–34.

[2]. Alzantot Moustafa and Youssef Moustafa. 2012. UPTIME: Ubiquitous Pedestrian Tracking using
Mobile Phones In 2012 IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 3204–3209.

[3]. Aqel Mohammad OA, Marhaban Mohammad H, Saripan M Iqbal, and Ismail Napsiah Bt. 2016.
Review of Visual Odometry: Types, Approaches, Challenges, and Applications. SpringerPlus 5, 1
(2016), 1–26. [PubMed: 26759740]

[4]. Aurand Alexander M, Dufour Jonathan S, and Marras William S. 2017. Accuracy map of an
optical motion capture system with 42 or 21 cameras in a large measurement volume. Journal of
biomechanics 58 (2017), 237–240. [PubMed: 28549599]

[5]. Badino Hernán, Yamamoto Akihiro, and Kanade Takeo. 2013. Visual Odometry by Multi-frame
Feature Integration In Proceedings of the IEEE International Conference on Computer Vision
Workshops. 222–229.

SAHA et al. Page 26

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[6]. Banbury Colby, Zhou Chuteng, Fedorov Igor, Matas Ramon, Thakker Urmish, Gope Dibakar,
Reddi Vijay Janapa, Mattina Matthew, and Whatmough Paul. 2021. MicroNets: Neural Network
Architectures for Deploying TinyML Applications on Commodity Microcontrollers. Proceedings
of Machine Learning and Systems 3 (2021).

[7]. Bengio Yoshua, Courville Aaron, and Vincent Pascal. 2013. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern analysis and machine intelligence 35, 8 (2013),
1798–1828. [PubMed: 23787338]

[8]. Brookner Eli. 1998. Tracking and Kalman Filtering Made Easy Wiley Online Library.

[9]. Brossard Martin, Barrau Axel, and Bonnabel Silvère. 2019. RINS-W: Robust Inertial Navigation
System on Wheels In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2068–2075.

[10]. Brossard Martin, Barrau Axel, and Bonnabel Silvère. 2020. AI-IMU Dead-Reckoning. IEEE
Transactions on Intelligent Vehicles 5, 4 (2020), 585–595.

[11]. Brossard Martin and Bonnabel Silvere. 2019. Learning Wheel Odometry and IMU errors for
Localization In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 291–
297.

[12]. Brossard Martin, Bonnabel Silvere, and Barrau Axel. 2020. Denoising IMU Gyroscopes with
Deep Learning for Open-Loop Attitude Estimation. IEEE Robotics and Automation Letters 5, 3
(2020), 4796–4803.

[13]. Burri Michael, Nikolic Janosch, Gohl Pascal, Schneider Thomas, Rehder Joern, Omari Sammy,
Achtelik Markus W, and Siegwart Roland. 2016. The EuRoC micro aerial vehicle datasets. The
International Journal of Robotics Research 35, 10 (2016), 1157–1163.

[14]. Cai Han, Gan Chuang, Wang Tianzhe, Zhang Zhekai, and Han Song. 2019. Once-for-All: Train
One Network and Specialize it for Efficient Deployment In International Conference on Learning
Representations.

[15]. Chandrasekhar Vijay, Seah Winston KG, Choo Yoo Sang, and Voon Ee How. 2006. Localization
in Underwater Sensor Networks: Survey and Challenges In Proceedings of the 1st ACM
international workshop on Underwater networks. 33–40.

[16]. Chen Changhao, Lu Xiaoxuan, Markham Andrew, and Trigoni Niki. 2018. IONet: Learning
to Cure the Curse of Drift in Inertial Odometry In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

[17]. Chen Changhao, Miao Yishu, Lu Chris Xiaoxuan, Xie Linhai, Blunsom Phil, Markham Andrew,
and Trigoni Niki. 2019. MotionTransformer: Transferring Neural Inertial Tracking Between
Domains In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 8009–8016.

[18]. Chen Changhao, Zhao Peijun, Lu Chris Xiaoxuan, Wang Wei, Markham Andrew, and Trigoni
Niki. 2020. Deep-Learning-Based Pedestrian Inertial Navigation: Methods, Data Set, and On-
Device Inference. IEEE Internet of Things Journal 7, 5 (2020), 4431–4441.

[19]. Clark Ronald, Wang Sen, Wen Hongkai, Markham Andrew, and Trigoni Niki. 2017. Vinet:
Visual-inertial odometry as a sequence-to-sequence learning problem In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 31.

[20]. Cortés Santiago, Solin Arno, and Kannala Juho. 2018. Deep Learning based Speed Estimation
for Constraining Strapdown Inertial Navigation on Smartphones In 2018 IEEE 28th International
Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 1–6.

[21]. Cranmer Miles, Greydanus Sam, Hoyer Stephan, Battaglia Peter, Spergel David, and Ho Shirley.
2020. Lagrangian Neural Networks In ICLR 2020 WKSH on Integration of Deep Neural Models
and Differential Equations.

[22]. Crassidis John L, Markley F Landis, and Cheng Yang. 2007. Survey of Nonlinear Attitude
Estimation Methods. Journal of guidance, control, and dynamics 30, 1 (2007), 12–28.

[23]. David Robert, Duke Jared, Jain Advait, Reddi Vijay Janapa, Jeffries Nat, Li Jian, Kreeger Nick,
Nappier Ian, Natraj Meghna, Wang Tiezhen, et al. 2021. TensorFlow Lite Micro: Embedded
Machine Learning for TinyML Systems. Proceedings of Machine Learning and Systems 3
(2021).

[24]. Dennis Don, Acar Durmus Alp Emre, Mandikal Vikram, Sadasivan Vinu Sankar, Saligrama
Venkatesh, Simhadri Harsha Vardhan, and Jain Prateek. 2019. Shallow RNN: Accurate Time-

SAHA et al. Page 27

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

series Classification on Resource Constrained Devices. In Advances in Neural Information
Processing Systems, Vol. 32.

[25]. Dennis Don Kurian,Pabbaraju Chirag, Simhadri Harsha Vardhan, and Jain Prateek. 2018.
Multiple Instance Learning for Efficient Sequential Data Classification on Resource-Constrained
Devices In Proceedings of the 32nd International Conference on Neural Information Processing
Systems. 10976–10987.

[26]. Dhar Sauptik, Guo Junyao, Liu Jiayi, Tripathi Samarth, Kurup Unmesh, and Shah Mohak. 2021.
A survey of on-device machine learning: An algorithms and learning theory perspective. ACM
Transactions on Internet of Things 2, 3 (2021), 1–49.

[27]. Du Yayun, Mallajosyula Bhrugu, Sun Deming, Chen Jingyi, Zhao Zihang, Rahman Mukhlesur,
Quadir Mohiuddin, and Jawed Mohammad Khalid. 2021. A Low-cost Robot with Autonomous
Recharge and Navigation for Weed Control in Fields with Narrow Row Spacing In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 3263–
3270.

[28]. Du Yayun, Zhang Guofeng, Tsang Darren, and Jawed M Khalid. 2021. Deep-CNN based Robotic
Multi-Class Under-Canopy Weed Control in Precision Farming In International Conference on
Robotics and Automation.

[29]. Esfahani Mahdi Abolfazli, Wang Han, Wu Keyu, and Yuan Shenghai. 2019. AbolDeepIO:
A Novel Deep Inertial Odometry network for Autonomous Vehicles. IEEE Transactions on
Intelligent Transportation Systems 21, 5 (2019), 1941–1950.

[30]. Fedorov Igor, Adams Ryan P, Mattina Matthew, and Whatmough Paul N. 2019. SpArSe: Sparse
Architecture Search for CNNs on Resource-Constrained Microcontrollers. Advances in Neural
Information Processing Systems 32 (2019).

[31]. Ferrera Maxime, Creuze Vincent, Moras Julien, and Trouvé-Peloux Pauline. 2019. AQUALOC:
An underwater dataset for visual–inertial–pressure localization. The International Journal of
Robotics Research 38, 14 (2019), 1549–1559.

[32]. Fofonoff Nicholas Paul and Millard RC Jr. 1983. Algorithms for Computation of Fundamental
Properties of Sea Water. Unesco Tech. Pap. Mar. Sci 44 (1983).

[33]. Foxlin Eric. 2005. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Computer
Graphics and Applications 25, 6 (2005), 38–46. [PubMed: 16315476]

[34]. Furtado Joshua S, Liu Hugh HT, Lai Gilbert, Lacheray Herve, and Desouza-Coelho Jason. 2019.
Comparative analysis of optitrack motion capture systems. In Advances in Motion Sensing and
Control for Robotic Applications Springer, 15–31.

[35]. Gao Ruipeng, Xiao Xuan, Zhu Shuli, Xing Weiwei, Li Chi, Liu Lei, Ma Li, and Chai Hua.
2021. Glow in the Dark: Smartphone Inertial Odometry for Vehicle Tracking in GPS Blocked
Environments. IEEE Internet of Things Journal (2021).

[36]. Gao Xile, Luo Haiyong, Ning Bokun, Zhao Fang, Bao Linfeng, Gong Yilin, Xiao Yimin, and
Jiang Jinguang. 2020. RL-AKF: An Adaptive Kalman Filter Navigation Algorithm Based on
Reinforcement Learning for Ground Vehicles. Remote Sensing 12, 11 (2020), 1704.

[37]. Garrido-Merchán Eduardo C and Hernández-Lobato Daniel. 2020. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes. Neurocomputing 380
(2020), 20–35.

[38]. Giannitrapani Antonio, Ceccarelli Nicola, Scortecci Fabrizio, and Garulli Andrea. 2011.
Comparison of EKF and UKF for Spacecraft Localization via Angle Measurements. IEEE
Transactions on aerospace and electronic systems 47, 1 (2011), 75–84.

[39]. Gopinath Sridhar, Ghanathe Nikhil, Seshadri Vivek, and Sharma Rahul. 2019. Compiling KB-
Sized Machine Learning Models to Tiny IoT Devices In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 79–95.

[40]. Goyal Sachin, Raghunathan Aditi, Jain Moksh, Simhadri Harsha Vardhan, and Jain Prateek.
2020. DROCC: Deep Robust One-Class Classification In International Conference on Machine
Learning. PMLR, 3711–3721.

[41]. Gunner Richard M., Holton Mark D., Scantlebury Mike D., Van Schalkwyk O. Louis,
English Holly M., Williams Hannah J., Hopkins Phil, Quintana Flavio, Gómez-Laich Agustina,

SAHA et al. Page 28

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Börger Luca, and et al. 2021. Dead-reckoning animal movements in R: a reappraisal using
Gundog.Tracks. Animal Biotelemetry 9, 1 (2021).

[42]. Gupta Chirag, Suggala Arun Sai, Goyal Ankit, Simhadri Harsha Vardhan, Paranjape Bhargavi,
Kumar Ashish, Goyal Saurabh, Udupa Raghavendra, Varma Manik, and Jain Prateek. 2017.
Protonn: Compressed and Accurate KNN for Resource-Scarce Devices In International
Conference on Machine Learning. PMLR, 1331–1340.

[43]. Han Song, Mao Huizi, and Dally William J. 2016. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained quantization and Huffman Coding In International Conference
on Learning Representations (ICLR).

[44]. Harle Robert. 2013. A Survey of Indoor Inertial Positioning Systems for Pedestrians. IEEE
Communications Surveys & Tutorials 15, 3 (2013), 1281–1293.

[45]. Hendrycks Dan, Mazeika Mantas, and Dietterich Thomas. 2019. Deep Anomaly Detection with
Outlier Exposure. Proceedings of the International Conference on Learning Representations
(2019).

[46]. Herath Sachini, Yan Hang, and Furukawa Yasutaka. 2020. RoNIN: Robust Neural Inertial
Navigation in the Wild: Benchmark, Evaluations, & New Methods In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 3146–3152.

[47]. Hou Xinyu and Bergmann Jeroen. 2020. Pedestrian Dead Reckoning with Wearable Sensors: A
Systematic Review. IEEE Sensors Journal 21, 1 (2020), 143–152.

[48]. Jimenez Antonio R, Seco Fernando, Prieto Carlos, and Guevara Jorge. 2009. A comparison of
pedestrian dead-reckoning algorithms using a low-cost MEMS IMU In 2009 IEEE International
Symposium on Intelligent Signal Processing. IEEE, 37–42.

[49]. Jiménez Antonio Ramón, Seco Fernando, Prieto José Carlos, and Guevara Jorge. 2010. Indoor
Pedestrian Navigation using an INS/EKF Framework for Yaw Drift Reduction and a Foot-
Mounted IMU In 2010 7th Workshop on Positioning, Navigation and Communication. IEEE,
135–143.

[50]. Kok M, Hol JD, and Schön TB. 2017. Using Inertial Sensors for Position and Orientation
Estimation. Foundations and Trends in Signal Processing 11 (2017), 1–153.

[51]. Kumar Ashish, Goyal Saurabh, and Varma Manik. 2017. Resource-efficient Machine Learning in
2 KB RAM for the Internet of Things In International Conference on Machine Learning. PMLR,
1935–1944.

[52]. Kusupati Aditya, Singh Manish, Bhatia Kush, Kumar Ashish, Jain Prateek, and Varma Manik.
2018. FastGRNN: a Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural
Network In Proceedings of the 32nd International Conference on Neural Information Processing
Systems. 9031–9042.

[53]. Kuutti Sampo, Fallah Saber, Katsaros Konstantinos, Dianati Mehrdad, Mccullough Francis, and
Mouzakitis Alexandros. 2018. A Survey of the State-of-the-Art Localization Techniques and
their Potentials for Autonomous Vehicle Applications. IEEE Internet of Things Journal 5, 2
(2018), 829–846.

[54]. Lai Liangzhen, Suda Naveen, and Chandra Vikas. 2018. CMSIS-NN: Efficient Neural Network
Kernels for ARM Cortex-M CPUs. arXiv preprint arXiv:1801.06601 (2018).

[55]. Lea Colin, Vidal Rene, Reiter Austin, and Hager Gregory D. 2016. Temporal Convolutional
Networks: A Unified Approach to Action Segmentation In European Conference on Computer
Vision. Springer, 47–54.

[56]. Levi Robert W and Judd Thomas. 1996. Dead Reckoning Navigational System using
Accelerometer to Measure Foot Impacts. US Patent 5,583,776

[57]. Lin Ji, Chen Wei-Ming, Lin Yujun, Cohn John, Gan Chuang, and Han Song. 2020. MCUNet:
Tiny Deep Learning on IoT Devices. In Advances in Neural Information Processing Systems,
Vol. 33. 11711–11722.

[58]. Liu Guangwen, Iwai Masayuki, Tobe Yoshito, Matekenya Dunstan, Hossain Khan Muhammad
Asif, Ito Masaki, and Sezaki Kaoru. 2014. Beyond Horizontal Location Context: Measuring
Elevation using Smartphone’s Barometer In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. 459–468.

SAHA et al. Page 29

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[59]. Liu Wenxin, Caruso David, Ilg Eddy, Dong Jing, Mourikis Anastasios I, Daniilidis Kostas,
Kumar Vijay, and Engel Jakob. 2020. TLIO: Tight Learned Inertial Odometry. IEEE Robotics
and Automation Letters 5, 4 (2020), 5653–5660.

[60]. Ma Meiyi, Gao Ji, Feng Lu, and Stankovic John. 2020. STLnet: Signal Temporal Logic Enforced
Multivariate Recurrent Neural Networks. In Advances in Neural Information Processing
Systems, Larochelle H, Ranzato M, Hadsell R, Balcan MF, and Lin H (Eds.), Vol. 33. 14604–
14614.

[61]. Narayana Sujay, Venkatesha Prasad R, Rao Vijay, Mottola Luca, and Venkata Prabhakar T. 2020.
Hummingbird: Energy Efficient GPS Receiver for Small Satellites In Proceedings of the 26th
Annual International Conference on Mobile Computing and Networking. 1–13.

[62]. Prikhodko Igor P, Bearss Brock, Merritt Carey, Bergeron Joe, and Blackmer Charles. 2018.
Towards Self-Navigating Cars using MEMS IMU: Challenges and Opportunities In 2018 IEEE
International Symposium on Inertial Sensors and Systems. IEEE, 1–4.

[63]. Ramanandan Arvind, Chen Anning, and Farrell Jay A. 2011. Inertial Navigation Aiding by
Stationary Updates. IEEE Transactions on Intelligent Transportation Systems 13, 1 (2011), 235–
248.

[64]. Ren Pengzhen, Xiao Yun, Chang Xiaojun, Huang Po-yao, Li Zhihui, Chen Xiaojiang, and Wang
Xin. 2021. A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions.
ACM Computing Surveys (CSUR) 54, 4, Article 76 (2021), 34 pages.

[65]. Saha Oindrila, Kusupati Aditya, Simhadri Harsha Vardhan, Varma Manik, and Jain Prateek.
2020. RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference. Advances in
Neural Information Processing Systems 33 (2020).

[66]. Saha Swapnil Sayan, Sandha Sandeep Singh, and Srivastava Mani. 2021. Deep Convolutional
Bidirectional LSTM for Complex Activity Recognition with Missing Data. In Human Activity
Recognition Challenge Springer, 39–53.

[67]. Sanchez-Iborra Ramon and Skarmeta Antonio F. 2020. TinyML-Enabled Frugal Smart Objects:
Challenges and Opportunities. IEEE Circuits and Systems Magazine 20, 3 (2020), 4–18.

[68]. Sandha Sandeep Singh, Aggarwal Mohit, Fedorov Igor, and Srivastava Mani. 2020. Mango: A
Python Library for Parallel Hyperparameter Tuning In ICASSP 2020–2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3987–3991.

[69]. Sandha Sandeep Singh, Aggarwal Mohit, Saha Swapnil Sayan, and Srivastava Mani. 2021.
Enabling Hyperparameter Tuning of Machine Learning Classifiers in Production In 2021 IEEE
Third Intl’ Conf. on Cognitive Machine Intelligence (CogMI). IEEE, 1–10.

[70]. Shen Sheng, Gowda Mahanth, and Choudhury Romit Roy. 2018. Closing the gaps in inertial
motion tracking In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking. 429–444.

[71]. Skog Isaac, Handel Peter, Nilsson John-Olof, and Rantakokko Jouni. 2010. Zero-Velocity
Detection — An Algorithm Evaluation. IEEE transactions on Biomedical Engineering 57, 11
(2010), 2657–2666.

[72]. Song Shanshan, Liu Jun, Guo Jiani, Wang Jun, Xie Yanxin, and Cui Jun-Hong. 2020. Neural-
Network-Based AUV Navigation for Fast-Changing Environments. IEEE Internet of Things
Journal 7, 10 (2020), 9773–9783.

[73]. Starek Joseph A, Açıkmeşe Behçet, Nesnas Issa A, and Pavone Marco. 2016. Spacecraft
Autonomy Challenges for Next-Generation Space Missions. In Advances in Control System
Technology for Aerospace Applications Springer, 1–48.

[74]. Sun Scott, Melamed Dennis, and Kitani Kris. 2021. IDOL: Inertial Deep Orientation-Estimation
and Localization In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
6128–6137.

[75]. Tan Neil. Accessed: April 15, 2021. uTensor: TinyML AI Inference Library https://github.com/
uTensor/uTensor

[76]. Tenzer Yaroslav, Jentoft Leif P, and Howe Robert D. 2014. The feel of MEMS barometers:
Inexpensive and Easily Customized Tactile Array Sensors. IEEE Robotics & Automation
Magazine 21, 3 (2014), 89–95.

SAHA et al. Page 30

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/uTensor/uTensor
https://github.com/uTensor/uTensor

[77]. Titterton David and Weston John L. 2004. Strapdown Inertial Navigation Technology Vol. 17.
IET.

[78]. van den Oord Aäron, Dieleman Sander, Zen Heiga, Simonyan Karen, Vinyals Oriol, Graves
Alex, Kalchbrenner Nal, Senior Andrew, and Kavukcuoglu Koray. 2016. WaveNet: A Generative
Model for Raw Audio In 9th ISCA Speech Synthesis Workshop.

[79]. Virtanen Pauli, Gommers Ralf, Oliphant Travis E, Haberland Matt, Reddy Tyler, Cournapeau
David, Burovski Evgeni, Peterson Pearu, Weckesser Warren, Bright Jonathan, et al. 2020. SciPy
1.0: fundamental algorithms for scientific computing in Python. Nature methods 17, 3 (2020),
261–272. [PubMed: 32015543]

[80]. Wagstaff Brandon and Kelly Jonathan. 2018. LSTM-based Zero-Velocity Detection for
Robust Inertial Navigation In 2018 International Conference on Indoor Positioning and Indoor
Navigation (IPIN). IEEE, 1–8.

[81]. Wagstaff Brandon, Peretroukhin Valentin, and Kelly Jonathan. 2019. Robust Data-Driven Zero-
Velocity Detection for Foot-Mounted Inertial Navigation. IEEE Sensors Journal 20, 2 (2019),
957–967.

[82]. Waharte Sonia and Trigoni Niki. 2010. Supporting Search and Rescue Operations with UAVs In
2010 International Conference on Emerging Security Technologies. IEEE, 142–147.

[83]. Wang He, Sen Souvik, Elgohary Ahmed, Farid Moustafa, Youssef Moustafa, and Choudhury
Romit Roy. 2012. No Need to War-drive: Unsupervised Indoor Localization In Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services. 197–210.

[84]. Warden Pete and Situnayake Daniel. 2019. TinyML: Machine learning with Tensorflow Lite on
Arduino and Ultra-Low-Power Microcontrollers“ O’Reilly Media, Inc.”.

[85]. Weinberg Harvey. 2002. Using the ADXL202 in pedometer and personal navigation applications.
Analog Devices AN-602 application note 2, 2 (2002), 1–6.

[86]. Whang Ick-Ho and Ra Won-Sang. 2008. Simple altitude estimator using air-data and GPS
measurements. IFAC Proceedings Volumes 41, 2 (2008), 4060–4065.

[87]. Wilson Rory P, Holton Mark D, di Virgilio Agustina, Williams Hannah, Shepard Emily LC,
Lambertucci Sergio, Quintana Flavio, Sala Juan E, Balaji Bharathan, Lee Eun Sun, et al. 2018.
Give the Machine a Hand: A Boolean Time-based Decision-Tree Template for Rapidly Finding
Animal Behaviours in Multisensor Data. Methods in Ecology and Evolution 9, 11 (2018), 2206–
2215.

[88]. Wilson Rory P, Liebsch Nikolai, Davies Ian M, Quintana Flavio, Weimerskirch Henri, Storch
Sandra, Lucke Klaus, Siebert Ursula, Zankl Solvin, Müller Gabriele, et al. 2007. All at Sea with
Animal Tracks; Methodological and Analytical Solutions for the Resolution of Movement. Deep
Sea Research Part II: Topical Studies in Oceanography 54, 3–4 (2007), 193–210.

[89]. Wilson Rory P, Shepard ELC, and Liebsch N. 2008. Prying into the Intimate Details of Animal
Lives: Use of a Daily Diary on Animals. Endangered Species Research 4, 1–2 (2008), 123–137.

[90]. Wu Fan, Luo Haiyong, Jia Hongwei, Zhao Fang, Xiao Yimin, and Gao Xile. 2020. Predicting
the Noise Covariance With a Multitask Learning Model for Kalman Filter-Based GNSS/INS
Integrated Navigation. IEEE Transactions on Instrumentation and Measurement 70 (2020), 1–13.
[PubMed: 33776080]

[91]. Wu Yuan, Zhu Hai-Bing, Du Qing-Xiu, and Tang Shu-Ming. 2019. A Survey of the Research
Status of Pedestrian Dead Reckoning Systems based on Inertial Sensors. International Journal of
Automation and Computing 16, 1 (2019), 65–83.

[92]. Xing Tianwei, Garcia Luis, Marc Roig Vilamala Federico Cerutti, Kaplan Lance, Preece Alun,
and Srivastava Mani. 2020. Neuroplex: learning to detect complex events in sensor networks
through knowledge injection In Proceedings of the 18th Conference on Embedded Networked
Sensor Systems. 489–502.

[93]. Yan Hang, Shan Qi, and Furukawa Yasutaka. 2018. RIDI: Robust IMU Double Integration In
Proceedings of the European Conference on Computer Vision (ECCV). 621–636.

[94]. Yang Zheng, Wu Chenshu, Zhou Zimu, Zhang Xinglin, Wang Xu, and Liu Yunhao. 2015.
Mobility Increases Localizability: A Survey on Wireless Indoor Localization using Inertial
Sensors. ACM Computing Surveys (CSUR) 47, 3 (2015), 1–34.

SAHA et al. Page 31

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[95]. Yao Shuochao, Piao Ailing, Jiang Wenjun, Zhao Yiran, Shao Huajie, Liu Shengzhong, Liu
Dongxin, Li Jinyang, Wang Tianshi, Hu Shaohan, et al. 2019. Stfnets: Learning sensing signals
from the time-frequency perspective with short-time fourier neural networks. In The World Wide
Web Conference 2192–2202.

[96]. Zhang Xin, He Bo, Li Guangliang, Mu Xiaokai, Zhou Ying, and Mang Tanji. 2020. NavNet:
AUV Navigation through Deep Sequential Learning. IEEE Access 8 (2020), 59845–59861.

[97]. Zhang Zichao and Scaramuzza Davide. 2018. A tutorial on quantitative trajectory evaluation for
visual (-inertial) odometry In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 7244–7251.

[98]. Zhao Xiangrui, Deng Chunfang, Kong Xin, Xu Jinhong, and Liu Yong. 2020. Learning to
Compensate for the Drift and Error of Gyroscope in Vehicle Localization In 2020 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 852–857.

[99]. Zhou Pengfei, Li Mo, and Shen Guobin. 2014. Use it Free: Instantly knowing your Phone
Attitude In Proceedings of the 20th Annual International Conference on Mobile Computing and
Networking. 605–616.

SAHA et al. Page 32

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CCS Concepts:

• Computing methodologies → Machine learning; • Computer systems organization
→ Robotics; Embedded systems.

SAHA et al. Page 33

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Example of localization of a quadrotor using GPS+IMU and autonomous IMU via Extended

Kalman Filter (EKF). (Left) GPS corrects drift induced by naive double integration of

accelerometer readings, while using autonomous IMU without error correction heuristics

leads to cumulative drift that explodes with time. (Right) Error in trajectory estimation

grows cubically with time when autonomous IMU is used without error correction, while

GPS constrains the error within a few meters. ATE refers to absolute trajectory error.

SAHA et al. Page 34

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Components of robust 3D inertial sequence learning. (1) Velocity and magneto-centric

DNN regresses velocities and uses magnetic North as an additional anchor point. (2) A

physics metadata module that supplies latent information about whether valid translational

movements have occurred or not from accelerometer readings. (3) A barometric g-h filter

immune to inertial perturbations to regress altitude from pressure sensors.

SAHA et al. Page 35

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Implementation of hardware-aware neural-inertial navigation. The framework supports both

the use of proxy and real-hardware to get hardware constraint estimates.

SAHA et al. Page 36

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Setup for testing the utility of TINYODOM in the real-world. A 9DoF Razor IMU board

logs inertial sensor data from an agricultural robot onto an SD card, with developed

neural-inertial model running in real-time on the board after training. Motion capture

(MoCap) markers are attached to the robot to log ground truth position on the track using

high-resolution infrared cameras with respect to the ground plane.

SAHA et al. Page 37

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
ATE, RTE, and flash usage (lower is better) of competing dead-reckoning techniques against

TINYODOM (TO) models. TINYODOM can provide 31–134 reduction in model size without

significant markup (often improvement) in ATE/RTE over the SOTA methods in each

application, thanks to robust sequence learning and hardware-aware formulation.

SAHA et al. Page 38

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Selected trajectory reconstructions on unseen test data from (a) OxIOD dataset, (b) RoNIN

dataset, (c) AQUALOC dataset, and (d) GunDog dataset, in the NE coordinate frame, for

TINYODOM and competing proposals.

SAHA et al. Page 39

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Evolution of position estimation error with time on selected unseen trajectories from (a)

OxIOD dataset, (b) RoNIN dataset, (c) AQUALOC dataset, and (d) GunDog dataset, for

TINYODOM and competing proposals.

SAHA et al. Page 40

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Architectural adaption and device capability exploitation by Bayesian NAS based on

resource usage for TINYODOM models. The RAM and flash constraints of the device are

written inside paranthesis. Li refers to ith layer of TCN.

SAHA et al. Page 41

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
(a)-(c) RTE and SRAM usage estimation comparison between proxyless Bayesian NAS and

proxied Bayesian NAS for different devices. The SRAM usage is normalized by maximum

RAM capacity of each device. (d) Relationship between FLOPS and model latency for

models trained on all five datasets with HIL.

SAHA et al. Page 42

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Sample z-axis trajectories of barometric g-h filter on three sequences in the AQUALOC

dataset against baseline depth estimator. The sum of gradients for each plot is shown as well.

SAHA et al. Page 43

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Ablation study showcasing the importance of velocity, magnetometer and physics-centric

sequence learning formulation for models with same architectural encodings on the OxIOD

and the AQUALOC dataset.

SAHA et al. Page 44

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
(a) Evolution of RTE with increase in availability of labelled data from new domain on

pretrained TINYODOM model (pretrained on OxIOD) versus TINYODOM model trained from

scratch. (b)(c) and (d) Trajectory reconstructions for Agrobot localization with a pretrained

TINYODOM models (fine-tuned and not fine-tuned) and TINYODOM models trained from

scratch. The minutes of data used by the pretrained TINYODOM model for fine-tuning and

the model trained from scratch are shown.

SAHA et al. Page 45

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 46

Table 1.

List of datasets used for evaluation. We use five datasets spanning four different applications.

Application Dataset Environment Device Configuration Device
Placement

Ground
Truth

Data Specifications

Pedestrian Dead
Reckoning

OxIOD [18] Indoors Smartphone 9DoF-IMU
(InvenSense 2600)

Hand, pocket,
bag, trolley

Vicon 5 subjects, 14.7 hours,
42.6 km

RoNIN* [46] Indoors Smartphone 9DoF-
IMU (ICM20602,
LSM6DSL)

Unrestricted Tango 100 subjects, 42.7
hours

UUV
Localization

AQUALOC
[31]

Underwater 9DoF-IMU
(MPU-9250), Pressure
Sensor (MS5837–
30BA, Keller
7LD-100BA)

Fixed,
underwater
probe

ColMap 2 probes, 1.74 hours,
0.78 km

UAV
Localization

EuRoC MAV
[13]

Indoors 6DoF-IMU (ADIS
16488)

Fixed, MAV Vicon 1 MAV, 0.37 hours, 0.9
km

Animal
Tracking

GunDog [41] Outdoors 6DoF-IMU (no
gyroscope)

Fixed, penguin GPS 1 animal, 7.6 km

*
only 50% of the dataset is publicly available.

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 47

Table 2.

Window size, stride,training-validation-test splits (by sequences), and training epochs used in the benchmark

datasets. The validation split is used to compute error metric during NAS and not for individual model

training. The test split is used for final evaluation of the model with most optimal hyperparameters found via

NAS.

Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs NAS epochs

OxIOD 100 200 10 85, 5, 10 900 50

RoNIN 200 400 20 70, 5, 25 900 50

AQUALOC 200 400 20 80, 5, 15 300 30

EuRoC MAV 200 50 5 80, 10, 10 300 30

GunDog 40 10 10 45*, 5*, 50 300 30

*
Training trajectory split into 2 parts for train and validation splits.

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 48

Table 3.

List of hardware evaluated for NAS.

Hardware SRAM (kB) Flash (kB) Proxy/HIL

STM32F446RE 128 512 HIL, Proxy

STM32L476RG 128 1024 HIL, Proxy

STM32F407VET6 192 512 Proxy

STM32F746ZG 320 1024 HIL, Proxy

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 49

Table 4.

GPU workstations used to perform NAS.

Processor GPU RAM (GB)

3.7 GHz AMD Ryzen Threadripper 3970x 32 core 2× 24 GB Nvidia GeForce RTX 3090 256

2.5 GHZ Intel Xeon W-2175 14 core 2× 24 GB Nvidia Titan RTX 256

3.4 GHz AMD Ryzen Threadripper 1950X 16 core 2× 12 GB Nvidia GeForce GTX 1080 Ti 128

3.0 GHz Intel Core i7–6050x 10 core 2× 12 GB Nvidia GeForce GTX Titan X 128

3.4 GHz Intel Core i7–2600k 4 core 1× 12 GB Nvidia GeForce GTX Titan X 32

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 50

Table 5.

Performance of competing 2D inertial dead-reckoning techniques for human, UUV, UAV and animal tracking

against TINYODOM in terms of ATE and RTE (lower is better). The top three techniques are shaded. For

TINYODOM models, the corresponding hardware are shown in parenthesis.

Application Dataset Method SRAM
(kB)

Flash
(kB)

FLOPS
(M) ATE (m) RTE (m)

Pedestrian Dead
Reckoning

OxIOD [18]

PDR [48] 10.8 49.6 - 3.47 3.24

NDI [88] 1.2 28.1 - 9119.50 247.53

IONet [16] 766.7 679.5 - 5.95 2.84

L-IONet [18] 154.2 182.9 13.87 4.37 2.82

RoNIN TCN [46] 2046.3 2195.5 220 1.95 0.42

TinyOdom
(STM32F446RE) 52.4 71.6 4.64 3.30 1.24

TinyOdom
(STM32L476RG) 72.5 89.6 6.65 3.59 1.37

TinyOdom
(STM32F407VET6) 90.1 117.6 8.92 6.82 1.28

TinyOdom
(STM32F746ZG) 55.5 71.0 4.92 2.80 1.26

RoNIN [46]

PDR [48] 10.8 49.6 - 34.81 23.62

NDI [88] 1.2 28.1 - 12398.00 59.85

IONet [16] 976.3 782.0 - 22.52 7.63

L-IONet [18] 159.0 182.9 26.8 24.73 14.84

RoNIN TCN# [46] 2046.3 2195.5 440 4.73 1.21

TinyOdom
(STM32F446RE) 36.2 50.8 4.15 28.3 7.76

TinyOdom
(STM32L476RG) 56.2 65.3 7.80 23.9 6.74

TinyOdom
(STM32F407VET6) 138.3 147.1 26.54 27.7 6.20

TinyOdom
(STM32F746ZG) 257.3 253.9 49.44 27.36 5.84

UUV Localization AQUALOC [31]

NavNet [96] 1364.1 1396.5 - 3.80 2.98

TinyOdom
(STM32F446RE) 18.4 20.5 0.34 4.99 2.78

TinyOdom
(STM32L476RG) 36.7 34.2 4.03 4.90 3.30

TinyOdom
(STM32F407VET6) 18.6 20.9 0.40 4.03 2.83

TinyOdom
(STM32F746ZG) 17.3 26.8 0.14 3.32 2.45

UAV Localization EuRoC MAV [13]
AbolDeepIO [29] 4217.9 4217.8 - 11.24 13.96

VeTorch [35] 7325.3 7294.1 899.74 13.5 15.2

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 51

Application Dataset Method SRAM
(kB)

Flash
(kB)

FLOPS
(M) ATE (m) RTE (m)

TinyOdom
(STM32F446RE) 87.5 110.0 2.95 2.82 2.41

TinyOdom
(STM32L476RG) 89.8 110.2 3.18 2.24 2.25

TinyOdom
(STM32F407VET6) 63.8 85.6 2.14 2.90 2.55

TinyOdom
(STM32F746ZG) 4.37 31.4 0.073 2.19 2.02

Animal Tracking GunDog [41]

GunDog [41, 88] 8.5 32.5 - 28.45 10.53

TinyOdom
(STM32F446RE) 49.9 72.8 2.92 43.9 0.27

TinyOdom
(STM32L476RG) 32.4 55.9 1.81 60.82 0.35

TinyOdom
(STM32F407VET6) 84.3 95.9 3.19 28.2 0.20

TinyOdom
(STM32F746ZG) 45.4 64.0 1.90 11.41 0.15

#
trained on entire RoNIN dataset, while only 50% is publicly available [46].

FLOPS calculation for models with LSTM/GRU/RNN cells were inaccurate and hence ommitted.

 and bolded - best performing technique, - second best performing technique, - third best performing technique.

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 52

Table 6.

RTE (m) of neural-inertial models across different datasets (left) and applications (right) without fine tuning.

The dataset on which the model is trained on is shown in parenthesis.

Method (Training Dataset) OxIOD RoNIN

IONet (OxIOD)
IONet (RoNIN)

2.84
7.65

4.7
7.63

LIONet (OxIOD)
LIONet (RoNIN)

2.82
8.35

4.7
14.84

RoNIN TCN (OxIOD)
RoNIN TCN (RoNIN)

0.42
10.3

13.4
1.21

TINYODOM (OxIOD)
TINYODOM (RoNIN)

1.26
3.16

97.2
6.74

Method (Trained Application) PDR UUV

IONet (PDR) 2.84 5.15

LIONet (PDR) 2.82 3.94

RoNIN TCN (PDR) 0.42 14.96

TinyOdom (PDR) 1.26 7.83

NavNet (UUV) 93 2.96

TINYODOM (UUV) 5.82 2.45

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 53

Table 7.

Resource and localization metrics for TINYODOM models geared towards different hardware for agricultural

robot localization trained using the entire dataset (3 hours) from scratch. The ATE is for a 20 minute (250 m)

trajectory.

Hardware SRAM (kB) Flash (kB) FLOPS (M) ATE (m) RTE (m)

Razor IMU 3.1 16.2 0.012 15.3 1.13

STM32F446RE 4.1 32.4 0.059 24.5 1.47

STM32L476RG 4.6 17.8 0.062 18.3 1.02

STM32F407VET6 15.6 31.9 0.359 22.96 1.28

STM32F746ZG 3.2 19.8 0.016 19.65 0.96

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

	Abstract
	INTRODUCTION
	Challenges
	Contributions
	Organization

	BACKGROUND
	RELATED WORK
	Model-Based Inertial Odometry
	Vehicular, Robotic and Animal Localization.
	Pedestrian Dead Reckoning (PDR).

	Data-Driven Inertial Odometry
	Aiding Model-Based Systems.
	Velocity-Profile Heuristics.
	End-to-End Frameworks.

	Deep-Learning for URC devices

	ROBUST 3D INERTIAL SEQUENCE LEARNING
	Latent Heading Information.
	Physics Metadata Channel.
	Heading Rate Singularity.
	Z-axis Dead-Reckoning.

	HARDWARE-AWARE INERTIAL NAVIGATION
	Backbone Neural Architecture.
	Neural Architecture Search.

	EXPERIMENTAL SETUP
	NAS Search Space
	NAS Implementation
	Benchmark Datasets
	Baseline Algorithms
	Step Detector with Weinberg SLE (PDR):
	Naive Double Integration (NDI):
	IONet:
	L-IONet:
	RoNIN TCN:
	NavNet:
	AbolDeepIO:
	VeTorch:
	GunDog:

	Performance Metrics
	Hardware and Software Specifications
	Real-World Setup

	EVALUATION, COMPARISON AND DISCUSSION
	Localization Performance and Resource Usage
	Evaluation of Hardware-in-the-Loop Bayesian Neural Architecture Search
	Performance of Robust Depth Filter
	Ablation Study for Sequence Learning Formulation
	Transferability and Real-World Evaluation
	Transferability Across Applications and Datasets (No
Fine-Tuning).
	Fine-Tuning and Real-World Usage.

	CONCLUSION AND FUTURE WORK
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.

