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TINYODOM: Hardware-Aware Efficient Neural Inertial Navigation
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Abstract

Deep inertial sequence learning has shown promising odometric resolution over model-based 

approaches for trajectory estimation in GPS-denied environments. However, existing neural 

inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-

constrained (URC) devices due to substantial memory, power, and compute bounds. Current 

deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial 

disturbances, varying sensor orientation, heading rate singularity, and failure in altitude 

estimation. In this paper, we introduce TINYODOM, a framework for training and deploying 

neural inertial models on URC hardware. TINYODOM exploits hardware and quantization-aware 

Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) 

backbone to train lightweight models targetted towards URC devices. In addition, we propose 

a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding 

inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric 

g-h filter robust to inertial and environmental variations. We evaluate TINYODOM for a wide 

spectrum of inertial odometry applications and target hardware against competing methods. 

Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle 

dead-reckoning. Across different applications, TINYODOM reduces the size of neural inertial models 

by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of 

models on URC devices while still maintaining or exceeding the localization resolution over 

the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1m and is robust to 

inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced 

magnetometer, physics, and velocity-centric sequence learning formulation significantly improve 

localization performance even with notably lightweight models.
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1 INTRODUCTION

Odometry is the fusion of onboard sensors for indirect estimation of an object’s position and 

attitude under absence or in conjunction with infrastructure-dependent localization services 

[5]. Given the widespread ubiquity of inertial measurement units (IMU), inertial odometry 

[18, 44, 46, 53, 77] is a viable alternative available to localization applications demanding 

small footprint, low-access delay, low-power pathway, and operating in GPS or network-

denied environments. Examples of such applications include terrestrial and marine “search 

and rescue” missions [82], underwater sensor networks [15], oceanic biodiversity and 

marine health tracking [88], wildlife monitoring [89], deep-space small satellite localization 

[73], and localizing micro unmanned vehicles and robots [10, 29, 96]. For example, marine 

search and rescue missions [82] limit the compute device payload and resource availability 

(e.g., rescuers can only carry limited weight), and cannot assume continuous access to GPS 

or network infrastructure (e.g., the rescue operation can happen underground). The use-case 

of marine health tracking [88] and wildlife monitoring [89] necessitate odometry solutions 

that can operate in the absence of infrastructure and have a light payload of deployment 

hardware not impacting the normal animal behavior. Further, localizing micro unmanned 

vehicles and robots [10, 29, 96] demand a small footprint solution due to compute and 

energy constraints. These environments represent scenarios where compute devices are 

ultra-resource constrained, thus necessitating the need to develop lightweight approaches 

where the smartphone or cloud-based solutions are unusable. However, adopting internal 

odometry for resource-constrained hardware and across different use-cases is challenging, as 

discussed next.

1.1 Challenges

To handle the error explosion inherent in inertial navigation, inertial odometry on URC 

microcontroller-class hardware is heavily hard-coded through application-specific heuristics, 

Bayesian statistics, and human-engineered system models. These techniques, although 

lightweight, are not robust to domain shifts or inertial perturbations [10, 16, 46]. Recently, 

several data-driven techniques based on sequence learning have been used in the attempt to 

alleviate the constraints in model-based approaches for various applications [10, 29, 35, 74, 

96]. However, enabling accurate yet lightweight and real-time neural-inertial methods for 

resource-constrained environments faces the following challenges

• The Real-time Deployment on URC devices: While neural-inertial methods 

have been shown to provide superior long-term resolution over classical 

techniques [16, 46, 74], they are unsuitable for real-time deployment [18, 35] on 

URC hardware due to memory, power, and compute constraints. Consequently, 

no prior work has shown neural-inertial architectures running in real-time under 

extremely resource-constrained settings (e.g., 128 kB RAM, 1 MB flash).
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• The Run-Time Robustness of Existing Approaches: Existing neural-inertial 

methods suffer from gravity pollution, high-frequency inertial artifacts, varying 

device attitude, heading-rate singularity, and 3D estimation failure. The current 

solutions come at the cost of larger neural network models, auxiliary ML 

operations, or the addition of model-based filters [29, 46, 59, 74, 96].

• The Realization of 3-D Odometry: While classical methods can perform 

3D odometry via sensor fusion without significant compute overhead, the data-

driven neural-inertial methods thus far have been mostly limited to 2D tracking 

only [59]. Data-driven methods which attempt to perform 3D tracking with 

inertial sensors suffer from the curse of inertial drift and gravity pollution.

1.2 Contributions

We introduce TINYODOM, a systematic and practical framework for deploying lightweight 

yet robust 3D inertial odometry models on URC hardware. TINYODOM leverages advances in 

NAS to optimize inertial sequence learning models based on hardware constraints, accuracy, 

and latency goals via direct communication with target hardware. In addition, TINYODOM 

uses a magnetometer, physics, and velocity-centric sequence learning formulation with a 

TCN backbone, allowing tiny models to perform accurate inference even under inertial 

disturbances while maintaining the simplicity of models. To expand 2D tracking to 3D, 

we perform sensor fusion using barometric g-h filters robust to inertial and environmental 

variations. To showcase the generalizability of TINYODOM, we evaluate pedestrian, animal, 

aerial, and underwater vehicle dead-reckoning on four different URC hardware platforms. 

TINYODOM reduces the neural network model size between 31× to 134× with 2.5m to 

12m error in 60 seconds over the state-of-the-art (SOTA), thereby enabling the direct 

deployment of neural-inertial odometry using the onboard compute resources of URC 

hardware platforms. Even though our neural network models are notably lightweight, the 

introduced magnetometer, physics, and velocity-centric sequence learning formulation still 

maintain or exceed the tracking performance compared to the existing state-of-the-art. We 

evaluate the proposed barometric g-h filter showing it outperforms the baselines and is 

robust to pressure sensor noises in real data. The superior and lightweight real-time inertial 

tracking enabled by TINYODOM holds the key to improving the tracking performance of 

applications deployed in challenging GPS/network denied environments. Our work not only 

enables always-on and lightweight neural-inertial navigation, but also improves the cost and 

the energy footprint of embedded odometry while being expandable to any reduced footprint 

hardware.

Our contributions are summarized as follows:

• We propose a magnetometer, physics, and velocity-centric inertial sequence 

formulation to generate models robust to gravity pollution, high-frequency 

inertial perturbations, varying sensor attitude, and heading rate singularity, 

without adding significant compute overhead.

• We develop a hardware-in-the-loop (HIL) AutoML framework based on 

Bayesian Optimization (BO) to generate lightweight inertial odometry models 
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without sacrificing resolution significantly. We use a TCN backbone as the basis 

for NAS and TensorFlow Lite Micro (TFLM) as model runtime interpreter.

• We exploit the omnipresence of barometers to expand 2D dead-reckoning to 

3D using lightweight barometric α – β filters that are robust to inertial and 

environmental variations. The filter can perform altitude tracking within ±0.1m.

• We extensively benchmark TINYODOM for pedestrian, animal, aerial, and 

underwater vehicle dead-reckoning on four different URC hardware platforms 

against competing inertial odometry baselines, based on accuracy and resource 

usage.

• To the best of our knowledge, we are the first to showcase a real-world 

evaluation of neural-inertial navigation and discuss challenges and solutions of 

transferring pre-trained odometry models in the real world.

TINYODOM is available open-source1 to promote development and benchmarking of 

lightweight yet robust neural inertial odometry that is generalizable across different 

applications.

1.3 Organization

The rest of the paper is organized as follows: Section 2 mathematically motivates the 

challenges of localization using an inertial sensor. Section 3 presents the related work 

that attempts to mitigate the challenges in inertial tracking, as well as recent advances 

in lightweight deep-learning. Section 4 details the robust 3D inertial sequence learning 

formulation. Section 5 delineates the model architecture and the hardware-aware NAS 

formulation. Section 6 presents the experimental setup, baseline algorithms, and datasets 

used for evaluation. Section 7 presents extensive experimental evaluation of the models 

generated by the TINYODOM framework. Finally, Section 8 provides concluding remarks and 

future directions.

2 BACKGROUND

MEMS inertial sensors are usually equipped with a 3DoF accelerometer, a 3DoF gyroscope, 

and a 3DoF magnetometer [50]. Firstly, when the gyroscope is mounted on an immobile 

platform w.r.t Earth frame close to the Earth’s surface, the gyroscope within a MEMS 

inertial sensor is modeled as follows [50]:

ωib = ωnb + bg + ng

(1)

where, ḃg ∼ N 0, Qg =  bias gradient , ng ∼ N 0, Σω =  additive white Gaussian noise (AWGN) , 
and ωnb = latent and uncorrupted angular velocity. Secondly, assuming negligible effects 

centrifugal or Coriolis components of Earth’s rotation, the accelerometer model is defined as 

[50]:

1 https://github.com/nesl/tinyodom 
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fb = Rbn ann
n − g + ba + na

(2)

where, ann = latent linear acceleration of body, g = gravity vector , 
ḃa ∼ N 0, Qa =  bias gradient , and na ∼ N 0, Σa = AWGN. Lastly, the compass can be 

modeled as [50]:

bn = Rbnmn + nb, mn = cosδ 0 sinδ

(3)

where, nb ∼ N 0, Σm = AWGN, and δ = magnetic inclination due to Earth’s magnetic dip. 

Under ideal geomagnetic conditions void of magnetic disturbances, non-uniform magnetic 

field, or sensor noise, and for slow movements, the heading H can be estimated directly from 

the magnetometer [88] in the body frame I :

H = arctan my, t
I

−mx, t
I ⋅ 180

π

(4)

The latitude (ϕ) and longitude (λ) can be hypothetically obtained via double integration of 

accelerometer readings (ax
I, ay

I, az
I) under empirical accelerometer vector sum threshold α [88] 

to reject noise:

st =
β  I ax, t

2 +I ay, t
2 +I az, t

2 + γ,  I ax, t
2 +I ay, t

2 +I az, t
2 > α

0 otherwise

(5)

ϕt = arcsin sinϕt − 1 ⋅ cos st
RE

+ cosϕt − 1 ⋅ sin st
RE

⋅ cosH , RE = 6.371 × 106m

(6)

λt = λt − 1 + arctan2 sinH ⋅ sin st
RE

⋅ cosϕt − 1, cos st
RE

− sinϕt − 1 ⋅ sinϕt

(7)

While magnetometers are unpolluted by device motion [70], magnetic disturbances coupled 

with sensor placement offset can affect the seemingly simple estimation of H and lead to 

errors as much as 100° [94]. Furthermore, naive double integration (NDI) of accelerometer 

readings cumulatively accumulates the effects of time-varying bias (ba), gravity pollution 

(g), and AWGN (na), causing errors in ϕ and λ to explode in a cubic manner [46, 62, 70, 
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93], illustrated in Fig. 1. The gyroscope suffers from time-varying drift (bg) in the long term 

because of bias instability (BI) and angular random walk (ARW) resulting from AWGN (ng), 

pink noise and thermal effects [62]. The cubic explosion of error in position estimate, σx (t), 
due to gyroscope drift can be modelled as:

σx(t) = v 2 ⋅ ARW ⋅ t3/3
2

+ BI ⋅ t2/2

(8)

The goal of inertial odometry is to address the cumulative error in naive double integration 

of accelerometer readings. Conventional approaches use model-based methods that are 

dependent on application-specific heuristics and demand expert domain knowledge. More 

recently, learning-enabled approaches are proposed that either work in combination with 

model-based methods or work in an end-to-end manner, completely replacing model-based 

methods. In the next section, we present the existing state-of-the-art in both model-based 

methods and learning-enabled approaches. We also briefly discuss recent advances in 

lightweight deep learning.

3 RELATED WORK

In this section, we provide a comprehensive review of the recent advances in inertial 

odometry and efficient DL for URC devices, outlining their strengths and weaknesses. 

Inertial localization can be categorized into model-based systems using Bayesian filters and 

heuristics, or learning-enabled systems exploiting recent advances in DL [46]. Software 

advances in TinyML include the use of pruning, quantization and model compression, 

lightweight neural blocks, hardware-aware NAS and the rise of commercial off-the-shelf 

(COTS) tools [64, 67]

3.1 Model-Based Inertial Odometry

Model-based inertial dead-reckoning frameworks typically employ multimodal fusion via 

physics-based and heuristic priors with occasional support from infrastructure-dependent 

position fixes, along with the application of Bayesian filters for error handling [46]. These 

approaches are commonly hard-coded for specific applications.

3.1.1 Vehicular, Robotic and Animal Localization.—Depending on the target 

application and topography, heuristic drift reduction, magnetic anomaly detection, 

opportunistic calibration, quasi-static moment detection, particle filters, magnetic map 

matching, and inertial signature verification are used to counteract heading estimation 

error [47, 70, 91, 94, 99], typically fused through an error-tracking indirect Kalman filter 

(KF). For displacement estimation, unmanned aerial, ground, and underwater vehicles 

(UAV, UGV, and UUV) typically fuse inertial sensors with GPS, LIDAR, camera, and 

RADAR via KF variants for localization, complemented via map information from known 

localization space [3, 53]. Typical aid includes magnetic map matching, flow-sensors, and 

wheel odometers, with nonholonomic constraints on the motion. Satellites and spacecraft 

perform non-linear Bayesian fusion of physics-based kinematics models with inertial 
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sensor measurements for attitude estimation [22], coupled with position information from 

GPS, kinematics models (e.g. ephemeris and almanac), relative angle measurements (e.g. 

parallax) or ground control [38, 61]. For slow and predictable motion profiles such as in 

wildlife tracking, ecologists formulate animal-specific belief-based constraints on velocity, 

transportation modes, and Boolean decision-trees to mitigate drifts and sensor errors, 

occasionally fusing GPS through KF variants when available [87–89].

3.1.2 Pedestrian Dead Reckoning (PDR).—PDR systems typically decompose 

position estimation problems into direction estimation and stride length estimation [94], 

the latter of which is further partitioned into transportation mode classification, gait cycle 

segmentation, and step length estimation (SLE) subject to environmental constraints and 

iterative updates [44, 47, 91]. For dead-reckoning via foot-mounted IMU, information 

about the linear and angular velocities of the foot during the swing and stance phases 

for various motion primitives can be exploited to constrain the explosion of errors in 

step counting [33, 47, 91]. This is referred to as zero velocity update (ZUPT) or zero 

angular rate update (ZARU) pseudo-measurements [49], segregating the gait cycle into 

identifiable chunks either coarsely or granularly [47]. Temporal and frequency-domain 

analysis (e.g., wavelet and Fourier transforms, level crossing detection, extrema detection, 

autocorrelation, Hidden Markov Models (HMM), and local variance detection) are used 

to extract recurrent and temporal contextual dynamics in the gait cycle to improve the 

robustness of gait phase identification against AWGN for various activity modes [2, 47, 91, 

94]. Typical SLE approaches include physiological knowledge injection (e.g., Weinberg 

SLE), linear regression upon step frequency with aiding covariance heuristics, global 

acceleration extrema difference, knowledge of virtual landmarks, and floor plans or use 

of KF variants [44, 47, 56, 83, 91, 94].

While model-based inertial localization systems are computationally efficient, designing 

generalizable heuristics poses a significant hurdle in the deployment of real-time inertial 

dead-reckoning systems, with no “one size fits all” analytical solution to the problem. 

The system models used by model-based approaches are linear approximations of the state 

evolution in the real world, which do not translate accurately in the long run for eclectic 

scenarios due to non-optimal parametrization. In contrast, in TINYODOM, we propose an 

end-to-end learning-based framework that is generalizable across different applications. We 

show that TINYODOM develops machine learning models that are superior to model-based 

methods and are deployable on resource constraint devices. We outline existing data-driven 

techniques in the next subsection.

3.2 Data-Driven Inertial Odometry

To handle the shortcoming of model-based methods, researchers have recently proposed 

several ML approaches capable of capturing high-dimensional contextual dynamics in the 

non-linear domain void of human knowledge. Next, we categorize existing approaches 

based on the role of data-driven components. They are either used in combination with 

model-based methods or are completely replacing them in an end-to-end manner.
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3.2.1 Aiding Model-Based Systems.—Deep neural networks (DNN) are adept at 

filtering out noise and irrelevant information while extracting useful features from sensors in 

the wild [66]. Intuitively, a hands-off generalizable solution for the curse of drift in inertial 

odometry involves eliminating the root of sensing uncertainty on the fly before the model-

based position estimation step using DL models. Affixing a neural network block dedicated 

to denoising in the Bayesian state estimation framework yields real-time and on-the-fly 

noise reduction while being invariant to random gyrations and actuator micro-vibrations, 

exhibiting generalizability under unseen trajectory projections and robustness to training 

data anomalies and domain shift [1, 11, 12, 98]. An alternative approach involves using 

DNN or reinforcement-learning (RL) agents to dynamically and tightly update KF noise 

covariance parameters instead of sensor errors [10, 36, 90]. In this case, the filter is non-

agnostic to the corrections being made by the DNN, leading to estimates that are statistically 

Pareto-optimal under non-ideal gradient descent convergence. A parallel technique uses 

DNN as tightly coupled state advisors, providing indirect momentary pseudo-measurements 

about position and orientation (such as velocity and heading) from a finite window of raw 

inertial readings to physics-based filters to aid decision making under a broad spectrum of 

motion primitives, topography, environment, sensor-placement and test subjects [20, 59, 72].

3.2.2 Velocity-Profile Heuristics.—For non-Bayesian filters such as in PDR, DL-

based velocity profile detectors (ZUPT and ZARU) and SLE can extract coveted velocity 

intervals for step detection and adapt stride length based upon discerned motion patterns 

[80, 81] for varying gait patterns and sensor placements. In the case of wheeled robots, 

DL-based ZUPT and ZARU allow attitude and bias corrections, with priors on lateral 

and vertical velocity to improve long-term position estimation accuracy [9]. RIDI [93] 

used classical ML to detect sensor placement and regress velocity and direction to correct 

accelerometer readings for usable double integration within a stabilized-inertial frame for 

various transportation modes.

3.2.3 End-to-End Frameworks.—Model-based filters require an accurate 

representation of the evolution of sensor errors and state estimates in terms of the incoming 

measurements. Such system models are only linear approximations and are unable to 

optimally control error explosion from naive double integration due to deviations from 

mathematical abstractions for non-linear complex motions or deployment in different 

domains [16, 46]. IONet [16] introduced the concept of sequence learning for dead-

reckoning, resulting in the first end-to-end neural-inertial model capable of trajectory 

estimation in presence of non-linearities associated with inertial localization which are 

otherwise hard to model mathematically, including effects of unrestricted sensor orientation 

and position, different test subjects, diverse motion primitives and abnormalities, decoupling 

individual sensor errors and biases, sampling rate jitter and physical characteristics of the 

sensors. Notable successors of IONet include RoNIN [46], IDOL [74] and L-IONet [18] 

for PDR, AbolDeepIO for aerial vehicle localization [29], VeTorch for UGV localization 

[35] and NavNet [96] for UUV positioning. MotionTransformer uses a transformer network 

to generate domain invariant inertial sequences from raw sensor data from various sensor 

placements, rotations, or motion types in a completely unsupervised fashion, without 

requiring the exhaustive collection of labeled domain-specific datasets [17].
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Out of the proposed data-driven methods, data-driven end-to-end frameworks are preferred, 

as they are not dependent on any domain heuristics and have shown superior performance 

[16, 18, 46] over model-based techniques. However, currently, none of the data-driven 

methods are suitable for real-time deployment on URC devices. Among all of the data-

driven techniques, only L-IONet [18], VeTorch [35] and the two frameworks by Brossard 

et al. [10, 12] were designed with efficiency in mind to run in real-time on smartphones. 

The constraints of URC devices (e.g., a typical microcontroller has 128 KB RAM and 

1 MB of flash) demand extremely lightweight machine learning models in comparison 

to a smartphone, which can have 4 GB of RAM and 64 GB of storage [57]. TINYODOM 

is designed to address the gap of enabling neural inertial odometry on ultra-resource-

constrained devices. TINYODOM reduces the model size between 31× to 134× in comparison 

to the existing data-driven methods. Even though our models are lightweight, TINYODOM 

either maintains or exceeds the tracking performance in comparison to the existing SOTA 

due to a novel magnetometer, physics, and velocity-centric inertial sequence formulation.

3.3 Deep-Learning for URC devices

Several libraries exist that enable the transfer of trained machine learning models generated 

by well-known libraries (such as Tensorflow) to microcontrollers. These libraries include 

TensorFlow Lite Micro [23, 84], CMSIS-NN [54], uTensor [75], and Microsoft EdgeML 

[24, 25, 39, 40, 42, 51, 52, 65]. Such libraries provide comprehensive sets of optimized ML 

operators, algorithms, and tools, perform pruning, quantization (fixed and mixed precision), 

and model compression [43] and convert models to deployable C code. However, these 

libraries assume that the trained model can fit within the device resource constraints. To 

satisfy the tighter hardware constraints of URC devices, neural architecture search (NAS) 

needs to be optimized by target hardware specifications to strike a balance between accuracy 

and efficiency [30, 57] tradeoff.

Several NAS frameworks have been proposed for microcontroller-class devices. SpArSe 

[30] treats NAS as a gradient-driven multi-objective BO problem, treating hardware 

attributes via proxies and coupling pruning with NAS. MicroNets [6] uses a quantization-

aware gradient-driven approach to optimize task-aware DNN backbones. MCUNet [57] 

tailors Once-for-All (OFA) NAS [14] for microcontrollers, using a two-stage evolutionary 

NAS to train a single OFA network in an optimized search space for a broad spectrum 

of target hardware. Adopting MCUNet is a challenge as it uses a custom inference engine 

and its latency/resource measurements rely on a closed-source software stack. In TINYODOM, 

we perform hardware-aware NAS using multi-objective BO, where the acquisition function 

is optimized using Monte Carlo sampling. We adopt BO due to the following reasons: (i) 

BO provides a state-of-the-art approach to optimize expensive objective functions in a few 

evaluations [69], (ii) BO allows explicit inclusion of non-gradient-friendly constraints of the 

model size and accuracy tradeoffs during the training process [30]. The choice of Monte 

Carlo sampling instead of the gradient-driven approach of SpArSe [30] is based on the fact 

that neural architecture search space consists of categorical variables where the sampling 

approach evaluates the acquisition function only at valid configurations only [37, 68]. 

TINYODOM includes the hardware-aware training where the resource utilization of a model 

is computed at runtime by its real deployment on the target hardware, instead of just using 
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proxies as done by SpArSe [30]. Our evaluation shows that proxies are only approximations 

of the real hardware constraints, which are noisy for extremely resource-constrained devices.

4 ROBUST 3D INERTIAL SEQUENCE LEARNING

To break the cycle of continuous integration and error propagation, IONet [16] proposed 

inertial sequence learning based on Newtonian physics. The goal is to estimate the change in 

navigation state over pseudo-independent inertial windows rather than absolute coordinates, 

constraining the ball of outputs for a neural network f to model. Under loose nonholonomic 

constraints and in polar coordinates, f is given as:

Δlt, Δψt = fθ vI(0), g0
I, aΔt

I , wΔt
I

(9)

where, Δt = t : t – n, referring to a window of accelerometer aI and gyroscope wI

samples of length n. The task involves estimating the initial velocity vI 0  and gravity 

g0
I in each window, which are treated as latent states. Instead, f outputs heading rate 

Δψt and displacement Δlt in the azimuthal plane. However, as we will showcase, the 

vanilla inertial sequence learning formulation suffers from gravity pollution, high-frequency 

inertial perturbations, varying sensor attitude, and heading rate singularity. We introduce 

a magnetometer, physics, and velocity-centric inertial sequence formulation robust to 

aforementioned problems, summarized in Fig. 2.

4.0.1 Latent Heading Information.

Gravity-aligned coordinate frames [46] are polluted by continuous translational motion due 

to the mixture of linear and gravitational acceleration. Gravity pollution can induce short-

term offsets in the estimated orientation, leading to large velocity projection errors [70]. In 

addition, gyroscope BI and ARW generate long-term drift in the latent attitude estimate, 

further degenerating coordinate frame normalization in sensor fusion. As a result, we feed 

f with local magnetometer measurements  I m to provide additional latent information 

about device attitude and body heading, globally anchored by the 3D magnetic North 

NG. Magnetometers are motion-agnostic and do not suffer from long-term drift [70].  I m
provides an additional anchor N0

I to correct and constrain implicit estimation of g0
I and vI 

(0) for each window, robust to varying sensor orientation, gravity pollution and continuous 

movements (e.g., circular trajectories). Furthermore, to emulate unrestricted sensor attitude 

and noise characteristics, we perform data augmentation during training via controlled 

random rotation R of inertial channels and addition of multivariate Gaussian noise N [81]:

sΔt
x, y, z RsΔt

x, y, z + N(0, Σ)

(10)
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4.0.2 Physics Metadata Channel.

Changes in sensor orientation and placement, hardware noise, ferromagnetic disturbances 

and body heading without linear movements can induce high-frequency inertial signatures, 

which can falsely trigger f to output invalid displacements. We supply f with latent valid 

motion metadata ct (·) based on Newtonian kinematics to suppress the effects of high-

frequency inertial artifacts. Specifically, we want f to be activated only when significant 

positional transitions have occurred. For humans, legged robots and terrestrial animals, ct (·) 

corresponds to a local-variance step detector binary mask [71]:

ct  I a =
1, aL, Δt

I > ζ ⋅
∑k ∈ Δt aL, k

I − aL, Δt
I 2

n

0,  otherwise 

(11)

where, aL, Δt
I = G5, fc aΔt

I − G5, fc ∣ aΔt
I ∣ , ζ is a tunable parameter and G5, fc( ⋅ ) represents a 5th 

order low-pass filter with cutoff fc. For vehicles, ct (·) signifies one of four transportation 

modes (stationary, accelerating, decelerating and constant speed) inferred through the 

discrete Fourier transform of  I aΔt  [63]:

ct  I a = min
ct( ⋅ )

FFT aΔt
I − γk , k = 1, 2, 3, 4

(12)

where γk represents predefined threshold for kth transportation mode. The transportation 

mode metadata is important particularly to aid f better differentiate between constant 

velocity and stationary period inertial signatures.

4.0.3 Heading Rate Singularity.

The ground truth heading rate Δψt, g is given as:

Δψt, g = ψt, g − ψt − n, g

(13)

where,

ψt, g = mod arctan2 ΔLy, g, ΔLx, g , 2π
ΔLi, g = Li, g, t − Li, g, t − n

(14)

Li,g represents ground truth location. As ΔLy, g ∧ ΔLx, g 0, Δψt, g , leading to large spikes 

in heading rate. These outliers can severely degrade the performance of deep neural 

architectures [45] using mean squared error (MSE) loss. As a result, we modify the inertial 
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sequence learning problem to regress x and y velocities rather than displacements and 

heading rates. Combined with latent heading and physics metadata channel, f is given as:

vx, t, vy, t = fθ vI(0), g0
I, N0

I, aΔt
I , wΔt

I , mΔt
I , ct  I a

(15)

We use strided velocity loss [46] for optimizing the parameters θ of f :

Lf = E vx, g, t − vx, t
2 + κE vy, g, t − vy, t

2

(16)

The location at time t for sliding window with stride s and length n is given by:

Lx, t = Lx, t − 1 + s ⋅ vx, t
n − s

Ly, t = Ly, t − 1 + s ⋅ vy, t
n − s

(17)

4.0.4 Z-axis Dead-Reckoning.

Barometric sensors share many common coveted characteristics with inertial sensors [76], 

resulting in their widespread availability in current electronic systems [58]. We complement 

2D sequence learning with altitude estimate by exploiting existing barometric chips to 

provide 3D dead-reckoning. We designed a model-free barometric α – β filter [8][86] with 

thermocline, salinity, noise and timestamp jitter mitigation [32]. The altitude measurements 

Lz,m at timestep t are given by:

Lz, t, m =
− R T c, t + 273.15

Mg ln P t, m
P0 air

P t, m
ρ0g

1 − P t, m
K fluid 

(18)

where, Pt,m = pressure measurement, M = air molar mass, 1D454 = gravitational 

acceleration, R = gas constant, Tc,t = temperature in Celsius (from barometer) and P0= 

average sea level pressure (kPa). Furthermore:

ρ0 = D T c, t + sA T c, t + s1.5B T c, t + cs2

(19)

K = E T c, t, s + F T c, t, s P t, m + G T c, t, s P t, m
2

(20)
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where, N T c, t γ10jT c, t
k , M T c, t, s μ10lT c, t

n sq + N T c, t , s = salinity of fluid and μ, γ, j, k, l, 

n and q are constants. The filter prediction steps are given by:

Lz, t, p = Lz, t − 1, p + ΔTL̇z, t − 1, p, L̇z, t, p = L̇z, t − 1, p

(21)

The update steps are given by:

L̇z, t, p = L̇z, t, p + β
ΔT Lz, t, m − Lz, t, p

(22)

Lz, t, p

altitude
= Lz, t, p + α Lz, t, m − Lz, t, p

(23)

L̇z, t, p refers to the vertical velocity of the object, ∆T is the difference between current and 

previous timestamps and (α, β) are filter coefficients. Large values of α favor measurements 

over prediction, while large values of β increase the transient sensitivity of the filter. The 

barometric approach does not suffer from the effects of varying inertial sensor orientation 

and placement, gravity pollution, and unusual movements common in approaches using 

inertial sensors to regress height [59].

5 HARDWARE-AWARE INERTIAL NAVIGATION

In this section, we present the details of the neural network architecture adopted by 

TINYODOM (Section 5.0.1) and our NAS approach to enable deployments on URC devices 

(Section 5.0.2)

5.0.1 Backbone Neural Architecture.

We use a TCN [55, 78] to model f [10, 18, 35], which can jointly handle spatial and 

temporal features hierarchically. The receptive field Fi of each unit in the ith layer in a TCN 

dilated causal kernel of size k × k with dilation factor l is given by:

F i, TCN = F i − 1 + kl − 1 × l, F0 = 1

(24)

Fi,TCN is larger than Fi,TCN, which is i × (k – 1) + k. Without explosion of parameter, 

memory footprint, layer count or overfitting, TCN kernels allow the network discover 

global context in long inertial sequences while maintaining input resolution and coverage. 

Causal convolutions maintain temporal ordering without requiring computationally intensive 

recurrent units, supporting out-of-order parallelization during training. In addition, two 

stacks of dilated causal convolution layers are fused through gated residual blocks z 
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for expressive yet bounded non-linearity, complex interactions and temporal correlation 

modeling in the input sequence:

z = tanh Wf, k ∗ x ⊙ σ Wg, k ∗ x

(25)

5.0.2 Neural Architecture Search.

To find the ideal neural inertial candidate from the backbone TCN for limited flash, 

RAM, and latency requirements, we model the search as a parallelizable black-box BO 

problem. The search space Ω consists of neural network weights w, hyperparameters θ, 

network structure denoted as a directed acyclic graph (DAG) g with edges E and vertices 

V representing activation maps and common ML operations ν (e.g., convolution, batch 

normalization, pooling, etc.) respectively, which act on V. The goal is to find a neural 

network that maximizes the hardware SRAM and flash usage within the device capabilities 

while minimizing latency and validation RMSE.

fopt  = λ1ferror (Ω) + λ2fflash (Ω) + λ3fSRAM (Ω) + λ4flatency (Ω)

(26)

where

ferror (Ω) = Lvalidation (Ω), Ω = V , E , w, θ, v

(27)

fflash (Ω) =
− ℎFB(w, V , E ) 0

 flash max
∨ −  HIL information 

 flash max

∞, fflash (Ω) >  flash max

(28)

flatency (Ω) =  FLOPS 
 FLOPS target FLOPS 

∨  HIL information 
 Latency target latency 

(29)

fSRAM(Ω) =
−

maxl ∈ [1, L] xl 0 + al 0
SRAMmax

∨ −  HIL information 
SRAMmax

∞, fSRAM (Ω) > SRAMmax

(30)
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a = w ∨ y, y = ∑
k = 1

K
vkgk x, wk

The objective function fopt can be thought of as seeking a Pareto-optimal configuration of 

parameters Ω∗ under competing objectives [30] such that:

fk Ω∗ < = fk(Ω) ∀k, Ω ∧ ∃j:fj Ω∗ < fj(Ω) ∀Ω ≠ Ω∗

(31)

We use Gaussian process as the surrogate model to approximate fopt, which allows priors 

on the distribution of moments to propagate forward as the search progresses. In addition, 

the domain of random scalarizations λ can be specified by the user to guide the parallel 

search acquisition functions (hallucination or K-means clustering) into the promising Pareto-

optimal regions of the gradient plane. The acquisition function decides the next set of 

Ωn to sample from the design space using Monte Carlo sampling with Bayesian Upper-

Confidence Bounds (UCB), also known Thompson sampling, which balances exploration 

and exploitation [68]. Apart from speeding up the NAS, parallel search ensures that NAS 

is not being performed on network morphs early on (exploitation) and information gain is 

maximized in the search process (exploration), yielding a stage-wise “coarse-to-fine” search 

space:

f(Ω) ∼ GP μ(Ω), k Ω, Ω′

(32)

Ωt = argmax
Ω

μt − 1(Ω) + β0.5σt − 1(Ω)

(33)

Firstly, validation RMSE serves as a proxy for the error characteristics ferror (Ω) of the model 

candidate. Secondly, when real hardware is absent, we use the size of the flatbuffer model 

schema hFB (·) [23] as a proxy for flash usage. Thirdly, we use the standard RAM usage 

model as a proxy for SRAM usage fSRAM (Ω), with intermediate layer-wise activation maps 

and tensors being stored in SRAM [30]. Lastly, since model latency is linearly proportional 

to the FLOPS count for a variety of convolutional models for microcontrollers, we use 

FLOPS as a proxy for runtime latency flatency (Ω) [6]. When HIL is available, we obtain 

the SRAM, flash, and latency parameters directly from the target compiler and real-time 

operating system (RTOS). All hardware parameters are normalized by device capacity or 

target metrics. The entire NAS pipeline is summarized in Fig. 3.
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6 EXPERIMENTAL SETUP

In this section, we provide details on the implementation of our hardware-aware robust 3D 

sequence learning framework. We list the domain space of the TCN backbone (Section 

6.1) to be optimized by NAS. Next, we provide details on how we setup BO in Python 

(Section 6.2). Then, we outline the datasets (Section 6.3) used to train and benchmark the 

performance TINYODOM models and competing baselines (Section 6.4). Afterward, we list 

the performance metrics used for benchmarking (Section 6.5). Next, we provide details on 

the target hardware, host machine, and software specifications (Section 6.6). Finally, we 

provide details on our real-world experimental setup (Section 6.7).

6.1 NAS Search Space

Our TCN model consists of an input layer, followed by the TCN backbone. The 

hyperparameters to be optimized by the NAS framework for the TCN backbone are as 

follows:

• Number of filters: 2–64

• Kernel size: 2–16

• Use of residual (skip connections): True, False

• Number of layers: 3–8

• Dilation factor to assign to each layer: [1, 2, 4, 8, 16, 32, 64, 128, 256]

• Dropout: 0.0–1.0

• Normalization: Weight, Layer, Batch

The fixed parameters for the TCN backbone are as follows:

• Number of stacks: 1

• Activation: ReLU

• Learning Rate: 0.001 (Adam)

The outputs of the TCN backbone are reshaped, pooled, and flattened. The flattened vectors 

are fed to a 32 unit fully-connected layer. The final output of the TCN model is x and y 

velocities.

6.2 NAS Implementation

Our NAS implementation is based on the state-of-the-art open-source BO library called 

Mango [68][69]. Our NAS implementation consists of three steps: (i) NAS search space 

definition, (ii) multi-objective function specifications, and (iii) hardware-in-the-loop or 

proxy constraints computation. Our NAS search space is a combination of categorical, 

integer, and continuous variables as shown in Section 6.1. This search space is realized 

using python constructs (lists, dictionaries) and SciPy [79] distributions which are directly 

supported in Mango [69]. We create fopt (Equation 26) in Python, where the hardware 

metrics are computed either using proxies or hardware-in-the-loop. For training TCN models 

for each application, we run the BO search strategy for 50 iterations. The internal surrogate 

SAHA et al. Page 16

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model used by our implementation is based on the Gaussian process [69] which uses the 

upper confidence bound as the acquisition function. The surrogate model approximates the 

hyperparameter decision boundary learning the best regions that minimize the fopt. The 

next sampled hyperparameter is selected based on the predicted mean (exploitation) and the 

corresponding variance (exploration) which are included as part of the acquisition function. 

In our implementation, we use the adaptive exploitation versus exploitation trade-off and 

automatic domain size explorations from Mango [68][69].

6.3 Benchmark Datasets

To train the TCN models and evaluate the performance of TINYODOM against competing 

proposals, we selected five inertial odometry datasets that have been widely used to 

benchmark existing inertial dead-reckoning techniques for various applications [16, 18, 29, 

31, 46, 88]. Table 1 summarizes the representative characteristics of the five datasets. For 

PDR, we selected the OxIOD [18] and the RoNIN [46] dataset, the two largest publicly 

available inertial odometry datasets for human localization. Both OxIOD and RoNIN 

use smartphone inertial sensors to collect 9DoF IMU data. However, the RoNIN dataset 

assumes unrestricted phone orientation and phone placement to support natural day-to-day 

smartphone usage and provides a more challenging task of developing inertial models 

invariant to device placement or orientation. Furthermore, the trajectories in the RoNIN 

dataset have a larger spatial span compared to the trajectories in the OxIOD dataset. The 

OxIOD dataset, on the other hand, has a higher ground truth resolution (sub-mm) thanks to 

the use of a Vicon motion capture setup.

For UUV, UAV, and animal localization, we chose the AQUALOC [31], the EuRoC MAV 

[13], and the GunDog [41] dataset, the only publicly available datasets for benchmarking 

dead-reckoning algorithms for UAV, UUV, and animals. The EuRoC MAV, AQUALOC, and 

the GunDog datasets collect IMU data from sensor tags fixed to quadrotors, underwater 

probes, and penguins, respectively. The size of these datasets is much smaller than the 

OxIOD and RoNIN datasets. We used the AQUALOC dataset to evaluate the performance 

of the barometric altitude estimator besides 2D inertial tracking, as it includes underwater 

pressure sensor data. The only caveats in these three datasets are the lack of magnetometer 

and gyroscope readings in the EuRoC MAV and the GunDog dataset, respectively. We 

adapted our TCN input layers to work with the available sensors in these two datasets.

Table 2 lists the window size, stride, data splits, and epochs that we used in the training 

pipeline for our TCN model for each dataset. We split the datasets by sequences (separate 

files). We did not use any validation during the training phase of each candidate model 

but rather used the validation split to compute the error metric ferror (Ω) in the outer loop 

of the NAS. The test split was used in the final evaluation of the best-performing model 

found via NAS against baseline techniques. For the OxIOD and RoNIN dataset, we used 

the same window size and stride used by IONet [16], L-IONet [18], and RoNIN [46] on the 

two datasets. For the EuRoC MAV and GunDog dataset, we chose a window size of 0.25 

seconds to account for the faster maneuverability of drones and penguins over humans. On 

the contrary, since underwater vehicles move slowly, we used a window size of 2 seconds for 

the AQUALOC dataset. Note that the dataset splits are different from each other because the 
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datasets were split by sequences/files and not samples to preserve continuous trajectories. 

For the RoNIN dataset, we used splits provided by the dataset makers [46]. For the OxIOD, 

the AQUALOC, and the EuRoC MAV datasets, we split the files such that the training set, 

the validation set, and the test set roughly have 80%, 5%, and 15% of the total dataset 

samples respectively. Since there are only two complete trajectories in the GunDog dataset, 

we split the training trajectory into a training and validation split, while using the other 

trajectory as a test split.

6.4 Baseline Algorithms

To evaluate the utility of TINYODOM, we use several SOTA inertial odometry techniques as 

baselines for the four applications. For tracking humans via the OxIOD and the RoNIN 

datasets, we use the following baselines:

Step Detector with Weinberg SLE (PDR): We used one of the PDR algorithms 

proposed by Jimenez et al. [48]. The algorithm uses a threshold-based step detector based on 

accelerometer peaks and updates the displacement via Weinberg Stride Length Estimation 

(SLE) [85], which models step length in terms of vertical movement of the pelvis during 

each step. The heading is computed from the gyroscope. PDR is one of the most widely used 

classical inertial localization method [44, 91]. We used a publicly available implementation 

the PDR 2

Naive Double Integration (NDI): We use the ideal formula for dead-reckoning 

(Equations (5–7)), where we simply integrate the linear accelerometer readings to get the 

position after coordinate transformation [88]. We used a publicly available implementation 

of the NDI2.

IONet: IONet [16] is the first deep inertial sequence learning model. The LSTM model 

uses the original heading-displacement formulation of neural inertial localization and takes 

in gyroscope and accelerometer readings as input. IONet was shown to outperform PDR and 

strap-down inertial navigation system (SINS) on the OxIOD dataset. We implemented our 

own version of IONet using the same architectural encodings mentioned in [16], as the code 

is not publicly available.

L-IONet: L-IONet [18] improves the computational efficiency over IONet by using a 

TCN in place of LSTM, without significantly sacrificing localization performance. We 

implemented our own version of L-IONet, as the code is not publicly available.

RoNIN TCN: RoNIN TCN [46] uses robust velocity loss and a heading-agnostic 

coordinate frame to account for unrestricted sensor orientation and placement. RoNIN TCN 

outperformed NDI, PDR, and IONet on the RoNIN and OxIOD datasets. We used the 

publicly available implementation of RoNIN TCN 3 for retraining and benchmarking.

For UUV localization using the AQUALOC dataset, we use the following baseline:

2 https://lopsi.weebly.com/teaching.html 
3 https://github.com/Sachini/ronin 
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NavNet: NavNet [96] asynchronously combines inertial sensor and doppler velocity log 

(DVL) through separate LSTM networks, followed by attention layers to capture relevant 

long-term contextual information across timesteps and regress x and y velocities. NavNet 

was shown to outperform EKF and UKF for underwater localization. We implemented our 

own version of NavNet, as the code is not publicly available.

For UAV localization using the EuRoC MAV dataset, we use two baselines:

AbolDeepIO: AbolDeepIO [29] uses two separate LSTM channels to map accelerometer 

and gyroscope readings to different latent representations while feeding the sampling rate 

of the inertial sensor through a third LSTM channel to make the displacement and heading 

regressor robust to sampling rate jitter. The high-level correlated features are then fused 

using slow fusion. AbolDeepIO was shown to outperform VINet [19], SINS, and IONet. We 

implemented our own version of AbolDeepIO, as the code is not publicly available.

VeTorch: VeTorch [35] uses two TCN to compute the heading and displacement of 

autonomous vehicles from smartphone accelerometer and gyroscope readings. It also 

transforms inertial dynamics from the phone to the car. VeTorch was shown to outperform 

EKF and IONet. We implemented our own version of VeTorch, as the code is not publicly 

available.

Finally, for animal tracking, we use the following baseline:

GunDog: GunDog [41] complements the ideal formula for dead-reckoning (Equations (5–

7)) with a step detector and compass calibration to constrain error explosion during animal 

tracking. We used the publicly available implementation of GunDog 4.

6.5 Performance Metrics

We adopt two widely used [46, 59, 97] metrics to quantify the localization performance:

• Absolute Trajectory Error (ATE): ATE is defined as the average root-mean-

squared-error (RMSE) between the actual and the predicted locations for the 

entire trajectory [46]:

ATE = 1
T ∑

t ∈ T
Lx, t − Lx, g, t

2 + Ly, t − Ly, g, t
2

(34)

The lower the ATE, the better.

• Relative Trajectory Error (RTE): RTE is defined as the average root-mean-

squared-error (RMSE) between the actual and the predicted locations for a 

specific time interval. Inspired from [46], we use a time interval of 1 minute 

to calculate RTE. The lower the RTE, the better.

4 https://github.com/Richard6195/Dead-reckoning-animal-movements-in-R 
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To quantify the resource usage of the proposed dead-reckoning techniques, we use either the 

size (flash usage) of the TFLM flatbuffer serialized model schema for neural-inertial models 

or use the flash usage of the compiled embedded C code for classical techniques.

6.6 Hardware and Software Specifications

For benchmarking HIL NAS, we use three real ARM Cortex-M target boards and one 

virtual hardware model (proxy) with varying resource constraints. The target hardware 

specifications are summarized in Table 3. The processor runs Mbed RTOS and TFLM 

interpreter on-board. To communicate with the target hardware via system commands from 

the host machine, we used the Mbed command-line interface (CLI).

The TINYODOM models were implemented in Jupyter Notebook (Python), using Keras via 

a Tensorflow and TFLM [23] backend. All the publicly-unavailable baselines were also 

implemented similarly. To benchmark PDR, NDI, and GunDog’s resource usage, we rewrote 

their MATLAB and R code in C++. Table 4 lists the specifications of the host machines 

on which we ran the NAS and model training. Our NAS framework supports training on 

machines with a wide range of processor, GPU, and RAM configurations.

6.7 Real-World Setup

To showcase how TINYODOM can support real-world applications, we retrofitted an 

agricultural robot intended for precision farming [27][28] with neural-inertial tracking 

hardware and software. The setup is shown in Fig. 4. The robot is intended for autonomous 

inter-row weed control in flaxseed and canola fields, where the spacing between adjacent 

crop lines can be as small as 30 cm. Thereby, the robot requires a high-sampling rate cm 

level precision localization [27][28], which is not possible to achieve with commodity GPS 

alone. We attached a 9DoF Razor IMU board to the robot to perform inertial data logging 

as well as on-board neural-inertial tracking. The board features a MEMS accelerometer 

(ADXL345), a gyroscope (ITG-3200), and a magnetometer (HMC5883L). The data is 

logged onto an SD card. The board features 32kB of SRAM and 256 KB flash. To log 

sub-mm ground truth position, we used several OptiTrack Prime 17W5 MoCap infrared 

markers [34] mounted in a rigid body configuration. The motion data of the rigid body were 

tracked using Motive:Tracker6 [4]. To synchronize the ground truth data and the IMU data, 

we harmonized the local system clocks to the Network Time Protocol and also performed 

graphically identifiable special movements with the robot before collecting position data. We 

had two experimental phases with the robot:

• Data Collection Phase: In this phase, we drove the robot within a 2×2 m arena 

using a remote controller to collect inertial sensor data and ground truth position 

data. We collected 3 hours of IMU and ground truth position data at a 100 Hz 

sampling rate.

• Evaluation Phase: In this phase, we ported a neural-inertial model on the Razor 

IMU platform. Instead of logging IMU data this time, the board logged the 

5 https://optitrack.com/cameras/prime-17w/ 
6 https://optitrack.com/software/motive/ 
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estimated position of the robot. The driving patterns and ground truth collection 

setup remained the same.

7 EVALUATION, COMPARISON AND DISCUSSION

In this section, first, we showcase the localization performance and resource usage of 

TINYODOM models against competing baselines (Section 7.1). Next, we illustrate how our 

HIL NAS adapts models based on hardware capability (Section 7.2). Third, we show 

the performance of our depth filter for altitude estimation (Section 7.3). Fourth, we 

perform an ablation study to show how the individual components in our physics, velocity, 

and magnetometer-centric sequence learning formulation affect localization performance 

(Section 7.4). Finally, we show transferability and real-world evaluation of TINYODOM 

(Section 7.5).

7.1 Localization Performance and Resource Usage

Table 5 and Fig. 5 showcase the performance of TINYODOM TCN models against competing 

methods for all four applications in terms of ATE, RTE, and resource usage. From Table 

5 and Fig. 5, we can see that TINYODOM models, despite being a fraction of the size of 

competing baselines, are always among the top two best performing models in terms of 

ATE and RTE. Specifically, TINYODOM outperforms the SOTA for UUV, UAV, and animal 

tracking by reducing the ATE by 1.14× to 5×, while being 52× to 134× lighter. Classical 

approaches such as PDR, NDI, and Gundog are outperformed not only by TINYODOM 

but other deep-learning neural inertial models. Notice how our best performing models 

are within 27–72 kB, while the best performing baselines are 33–2200 kB. For human 

localization, TINYODOM competes with RoNIN TCN while outperforming NDI, PDR, IONet, 

and L-IONet. Compared to the RoNIN TCN, the top-performing TINYODOM models are 31× 

to 34× smaller, while overall, the framework provides 31× to 134× reduction in model size 

over the SOTA. We can make several important inferences from Table 5 and Fig. 5:

• Baselines which regress heading and displacement (e.g., IONet, L-IONet, 

AbolDeepIO, and VeTorch) have high ATE and RTE. We observed that the errors 

build up when sharp turns occur in the trajectory. Given that objects in these 

datasets mostly travel in straight lines, the singularities in the heading rates are 

ignored by the neural network during training, leading to large errors in the final 

position estimate.

• Note that the ATE and RTE for all techniques are much higher than RoNIN 

TCN for the RoNIN dataset. We hypothesize that this happened because the 

pre-trained RoNIN TCN was trained on the entire RoNIN dataset, while we only 

had access to 50% of the data (which is challenging due to unrestricted sensor 

configuration). In fact, the performance of RoNIN TCN is similar to TINYODOM 

on the OxIOD dataset, with TINYODOM lagging RoNIN TCN by 0.85 m. The 

performance gain comes from the 34× more weights available to the RoNIN 

TCN. RoNIN TCN also relies on device orientation, which itself is polluted.

• The robust sequence learning and hardware-aware formulation of TINYODOM 

generalize across heterogeneous applications, continuously maintaining superior 
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localization resolution while keeping a low resource overhead. TINYODOM 

attempts to lower the ATE and RTE based on available resources. Observe from 

Fig. 5 that with more available memory, the ATE and RTE generally go down.

• Excluding PDR, NDI and GunDog and L-IONet, none of the baselines are 

suitable for deployment on URC devices due to memory constraints. All 4 of 

these baselines are outperformed in localization resolution.

Fig. 6 shows selected trajectory reconstructions of varying lengths by TINYODOM models 

against competing methods for PDR, UUV, and animal tracking. From Fig. 6, we can see 

that TINYODOM can perform dead-reckoning for varying trajectory lengths without explosion 

of position estimation error. Due to heading rate singularity, IONet and L-IONet struggle 

to constrain the errors generated by sharp turns, evident in Fig. 6(b), where IONet and 

L-IONet tend to over-smooth the turns in the trajectory. PDR has a large error radius 

and completely fails on the RoNIN dataset, where the heading cannot be inferred via 

model-based techniques because of unrestricted phone placements. TINYODOM models are 

more closely able to replicate the trajectories generated by RoNIN TCN with 31×–34× lower 

model size. For UUV and animal tracking, TINYODOM generates trajectories that closely 

mimic the ground truth, while baselines either fail or are further apart from the ground truth.

For small trajectories, the average ATE and RTE metric does not completely state how the 

error evolves with time [97]. For example, if a trajectory is circular with a radius of a few 

meters (common in the OxIOD dataset [18]), the average ATE and RTE would be unable 

to showcase how the location estimation varied with time. As a result, we evaluated how 

the position estimation error evolves with time for PDR, UUV, and animal tracking for all 

methods, shown in Fig. 7. From Fig. 7, we can observe that the position estimation error of 

TINYODOM grows much more slowly with time compared to baseline techniques. TINYODOM 

provides position estimate within 2.5m to 12m for trajectories of length 12m to 1160m 

spanning 60 seconds. Notice how the error of the PDR, IONet, and L-IONet is sinusoidal 

with time in the OxIOD dataset while growing linearly in the case of the RoNIN dataset. 

Since movement is constricted in a limited space for circular trajectories, ATE of these three 

baselines fluctuates for the OxIOD dataset even as they provide poor position estimation. On 

the other hand, the error of RoNIN-TCN, NavNet, GunDog, and TINYODOM grow linearly 

with time.

7.2 Evaluation of Hardware-in-the-Loop Bayesian Neural Architecture Search

Fig. 8 showcases how our hardware-aware NAS adapts architectural encodings of the 

TCN backbone for hardware with different compute constraints for the RoNIN dataset. 

Instead of simply providing small models every time, our NAS framework optimizes the 

TCN model to maximize resource usage, thereby lowering ATE and RTE, when more 

resources are available. For example, in Fig. 8, as the SRAM capacity increases, the NAS 

framework also increases the number of layers, filters, and the kernel size of the TCN 

models. The framework even adds skip connections to prevent exploding and vanishing 

gradient problems for deeper networks. In addition, to capture both local and long-term 

inter-dependencies in the temporal sequence within a limited computing budget, our NAS 

framework assigns small dilation factors to lower layers and large dilation factors to higher 
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layers. This is counter-intuitive, as human designers would normally assign dilation factors 

that grow by a constant factor with each successive layer instead of intelligent assignment 

performed by NAS.

We also performed an ablation study to see how proxyless (with real-hardware) and 

proxied versions (with proxy to simulate hardware metric) of our NAS framework differ 

in performance with three real hardware devices for PDR and UAV localization. The 

results are showcased in Fig. 9 (a)(b)(c). From Fig. 9 (a)(b)(c), we can see that the proxy 

generally tends to provide models which need a higher SRAM compared to HIL NAS. 

This is because the HIL NAS can take into account the model runtime interpreter and 

RTOS overhead, which the proxy for SRAM and flash fails to account for. Thus, some 

well-performing models (models with low ATE) found by proxied NAS may not fit on the 

real hardware. Thus, HIL is especially important for URC devices, where all overheads 

need to be accounted for. Besides quantifying the difference between proxyless and proxied 

NAS for memory and RTE modeling, we also studied the relationship between FLOPS and 

model latency (from real hardware) for all five datasets, with the results summarized in Fig. 

9(d). From Fig. 9(d), we can observe that even though the models were trained on widely 

different datasets, there is still a strong positive correlation (Pearson Coefficient, ρ = 0.933) 

between FLOPS and model latency in the log-log scale, indicating that it is possible to 

develop an analytical model correlating FLOPS and model latency without requiring HIL for 

explicit latency modeling. This would save time as the models do not need to be run on real 

hardware to benchmark latency but would only require compilation to get the SRAM and 

flash, which can be achieved on the host machine.

7.3 Performance of Robust Depth Filter

Fig. 10 shows sample trajectory reconstruction in the z-axis provided by the barometric α 
– β filter on the AQUALOC dataset. As a baseline, we convert the raw pressure sensor 

readings to depth using the formula Pt = ρgLz,t, where Pt is the raw pressure reading at 

time t, ρ is the density of seawater and g = 9.81. From Fig. 10, we can see that our filter 

is robust to sensor noise caused by environmental variations, with the sum of gradients 

of the reconstructed trajectory much closer to the ground truth trajectories. Compared to 

3D-RoNIN and TLIO, which estimate height from IMU and have errors of up to ±1.0m, the 

barometric filter provides altitude estimates within ±0.1m. Moreover, 3D-RoNIN and TLIO 

use neural networks in the pipeline much larger than TINYODOM models to regress height. 

Our filter, on the other hand, is lightweight, requiring only 10 KB SRAM and 51.4 kB flash 

on the target hardware. In addition, our approach for regressing altitude is immune to the 

curse of drift associated with inertial sensors.

7.4 Ablation Study for Sequence Learning Formulation

We performed an ablation study to highlight the importance of the individual components 

(i.e., velocity, magnetometer, and physics module) in our robust sequence learning 

formulation. We took a model, kept the same architectural encodings, and retrained 

the model without one or two of the three components. Fig. 11 summarizes the study 

performed on the OxIOD and AQUALOC dataset for the best performing models on 

STM32F446RE and STM32F746ZG hardware, respectively. From the ablation study, it is 
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clear that the velocity formulation, magnetometer readings, and physics channels all work 

together to reduce the ATE and RTE of the same model. ATE and RTE are lowest when 

all three components are present in both datasets. In particular, the velocity-formulation 

and the inclusion of magnetometer seem to have the greatest effect in reducing the 

position estimation error. The velocity formulation solves the heading rate singularity 

issue associated with heading-displacement formulation, while the magnetometer provides 

an additional anchor for inferring body heading minus the effects of gravity pollution, 

varying sensor attitude, translational movements, and drift associated with accelerometers 

and gyroscopes. The physics channel, on the other hand, helps the neural network decide 

whether valid translational movements have occurred or not, thereby constraining the output 

of the network when the object to be localized is static.

7.5 Transferability and Real-World Evaluation

In this section, we first showcase how pre-trained models perform when they are tested 

on an entirely different dataset, which may or may not come from the same underlying 

application (Section 7.5.1). We then show how very small amounts of data in the new 

domain can fine-tune the weights of a pre-trained model trained on an entirely different 

underlying application and dataset to operate reasonably well in the real-world (Section 

7.5.2).

7.5.1 Transferability Across Applications and Datasets (No Fine-Tuning).—
Table 6 provides an example of the performance of neural inertial models on new 

datasets and applications without fine-tuning. For testing the transferability across the 

same application but different datasets, we tested PDR models across the OxIOD and 

RoNIN datasets. For testing the transferability across different applications, we tested PDR 

(trained on the OxIOD dataset) models and UUV localization models (trained on the 

AQUALOC dataset). From Table 6, it is evident that while neural-inertial models (both 

TINYODOM and large models) perform well within the trained data distribution, they are not 

directly transferable to another dataset or application without fine-tuning. Apart from having 

different data distribution, these odometry datasets have different sampling rates as well as 

different motion primitives (e.g., a UUV’s motion patterns would be different from that of 

a person walking). Thereby, the ideal window sizes and learned physical embeddings would 

be significantly different across datasets and applications. In addition, the TINYODOM models 

perform slightly worse than the large models on different datasets and applications. This 

is because the lightweight models do not have enough redundant weights or parameters to 

model globally significant attributes that may be common across datasets or applications, 

but instead overfit the dataset-specific characteristics in the temporal sequences, sacrificing 

generalizability over accuracy. Thus, it is necessary to perform domain adaption when 

transferring pre-trained models to different applications.

7.5.2 Fine-Tuning and Real-World Usage.—Before fine-tuning pre-trained models, 

we ran NAS using the entire 3-hour dataset to find TINYODOM models that can run in 

real-time on the target hardware listed in Table 3, as well as on the Razor IMU retrofitted to 

the robot. Table 7 lists the hardware and performance metrics of the best performing model 

for each hardware. Note that the ATE and RTE metrics shown for the Razor IMU are from 
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the evaluation phase performed in real-time with the robot. From Table 7, we can observe 

that the RTE over 60 seconds is around 1 meter. This is acceptable for precision agriculture, 

as the robot can intermittently correct its location by fusing GPS with TINYODOM, while 

TINYODOM takes care of a high sampling rate and high-resolution cm-level localization.

Having empirical gurantees of TINYODOM capable of operating on real-world data in real-

time on real hardware, next, we explored whether pretrained models trained on an entirely 

different application (hence dataset) can be fine tuned to operate in the real-world with 

limited labelled data from the new domain using transfer learning. Fig. 12(a) showcases 

how the localization error of a pretrained model (pretrained on the OxIOD dataset) evolve 

with the amount of labelled data in the new domain (agricultural robot positioning) available 

to the model. We compared the error evolution against a model trained from scratch using 

the same amount of limited data. We observed that the RTE of a pre-trained model with 

no fine-tuning reduces by 8× with only 1 minute of labeled data in the new domain. 

Moreover, from the graph, we can observe that a model being trained from scratch needs 

around 100 minutes of data in the new domain to match the RTE of the pre-trained model. 

Intuitively, pre-trained models bring in stability in error evolution which models trained 

from scratch cannot bring with limited data, even if the pre-trained model was trained on 

a different application. Fig. 12(b)(c)(d) shows trajectory reconstructions on unseen data 

for a 20m trajectory on 1 minute, 5 minutes, and 20 minutes of data in the new domain. 

The pre-trained model converges much faster to mimic the ground truth trajectory with an 

increase in available data, while the classifier trained from scratch struggles to converge with 

limited data.

8 CONCLUSION AND FUTURE WORK

Inertial odometry extends the applicability of odometry to GPS and network-denied 

environments. Although the conventional model-based inertial odometry approaches are 

computationally feasible, they demand expert heuristics impacting their generalizability. 

Further, the current data-driven approaches for inertial odometry models, at best, work 

on smartphone class devices and are not transferable to the URC devices. We show that 

the proposed TINYODOM framework introduces a robust 3D inertial sequence learning 

formulation and a hardwareaware NAS framework to train inertial odometry models. 

TINYODOM extends the neural-inertial odometry across heterogeneous applications while 

achieving up to 134× smaller size than the current SOTA while maintaining or exceeding 

localization resolution. Our evaluation shows that the performance of existing data-

driven inertial odometry is susceptible to the vanilla sequence learning formulation. The 

widely adopted heading displacement-based formulation is adversely impacted by heading-

rate singularity (e.g., during share turns in the trajectory). In contrast, the introduced 

magnetometer, physics, and velocity-centric inertial sequence formulation of TINYODOM 

maintain or exceed the tracking performance over the SOTA, even though the model sizes 

are significantly smaller. Finally, we showcased the challenges that arise when trying to 

transfer pre-trained neural-inertial models in the real world and showcased transfer learning 

as a potential solution. There are several avenues of future work. Firstly, we observed that 

in the absence of GPS or infrastructure-provided location fixes, the errors in TINYODOM 

and other SOTA inertial odometry approaches are cumulative with time. This suggests 
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for long-term usage, inertial odometry necessitates intermittent error correction from the 

infrastructure within the available resource budget. Secondly, we saw that complementing 

neural-inertial models with heuristics and physics improves the robustness dramatically. Our 

physics metadata module is not trainable so far and uses domain knowledge. Possible use 

of neurosymbolic reasoning [92], physics-aware embeddings [21][95], or signal temporal 

logic [60] may help improve neural network robustness without domain expertise. Thirdly, 

neural-inertial models trained on one dataset do not directly transfer to another dataset even 

when the application is the same, let alone different applications. While our transfer learning 

approach with a few minutes of labeled data fine-tunes pre-trained models for real-world 

usage, more work needs to be done for on-device fine-tuning [26] and possible use of 

unsupervised pre-trained embeddings [7]. Finally, the resolution achieved by neural-inertial 

odometry models depends on the best possible resolution of the ground truth hardware. 

However, developers may not have access to high-resolution sub-mm accuracy motion 

capture systems, particularly when operating over a large geographical region. Therefore, 

efficient ways to log high-resolution ground-truth data need to be explored.
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CCS Concepts:

• Computing methodologies → Machine learning; • Computer systems organization 
→ Robotics; Embedded systems.
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Fig. 1. 
Example of localization of a quadrotor using GPS+IMU and autonomous IMU via Extended 

Kalman Filter (EKF). (Left) GPS corrects drift induced by naive double integration of 

accelerometer readings, while using autonomous IMU without error correction heuristics 

leads to cumulative drift that explodes with time. (Right) Error in trajectory estimation 

grows cubically with time when autonomous IMU is used without error correction, while 

GPS constrains the error within a few meters. ATE refers to absolute trajectory error.
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Fig. 2. 
Components of robust 3D inertial sequence learning. (1) Velocity and magneto-centric 

DNN regresses velocities and uses magnetic North as an additional anchor point. (2) A 

physics metadata module that supplies latent information about whether valid translational 

movements have occurred or not from accelerometer readings. (3) A barometric g-h filter 

immune to inertial perturbations to regress altitude from pressure sensors.

SAHA et al. Page 35

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Implementation of hardware-aware neural-inertial navigation. The framework supports both 

the use of proxy and real-hardware to get hardware constraint estimates.
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Fig. 4. 
Setup for testing the utility of TINYODOM in the real-world. A 9DoF Razor IMU board 

logs inertial sensor data from an agricultural robot onto an SD card, with developed 

neural-inertial model running in real-time on the board after training. Motion capture 

(MoCap) markers are attached to the robot to log ground truth position on the track using 

high-resolution infrared cameras with respect to the ground plane.
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Fig. 5. 
ATE, RTE, and flash usage (lower is better) of competing dead-reckoning techniques against 

TINYODOM (TO) models. TINYODOM can provide 31–134 reduction in model size without 

significant markup (often improvement) in ATE/RTE over the SOTA methods in each 

application, thanks to robust sequence learning and hardware-aware formulation.

SAHA et al. Page 38

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Selected trajectory reconstructions on unseen test data from (a) OxIOD dataset, (b) RoNIN 

dataset, (c) AQUALOC dataset, and (d) GunDog dataset, in the NE coordinate frame, for 

TINYODOM and competing proposals.
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Fig. 7. 
Evolution of position estimation error with time on selected unseen trajectories from (a) 

OxIOD dataset, (b) RoNIN dataset, (c) AQUALOC dataset, and (d) GunDog dataset, for 

TINYODOM and competing proposals.
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Fig. 8. 
Architectural adaption and device capability exploitation by Bayesian NAS based on 

resource usage for TINYODOM models. The RAM and flash constraints of the device are 

written inside paranthesis. Li refers to ith layer of TCN.
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Fig. 9. 
(a)-(c) RTE and SRAM usage estimation comparison between proxyless Bayesian NAS and 

proxied Bayesian NAS for different devices. The SRAM usage is normalized by maximum 

RAM capacity of each device. (d) Relationship between FLOPS and model latency for 

models trained on all five datasets with HIL.
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Fig. 10. 
Sample z-axis trajectories of barometric g-h filter on three sequences in the AQUALOC 

dataset against baseline depth estimator. The sum of gradients for each plot is shown as well.
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Fig. 11. 
Ablation study showcasing the importance of velocity, magnetometer and physics-centric 

sequence learning formulation for models with same architectural encodings on the OxIOD 

and the AQUALOC dataset.
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Fig. 12. 
(a) Evolution of RTE with increase in availability of labelled data from new domain on 

pretrained TINYODOM model (pretrained on OxIOD) versus TINYODOM model trained from 

scratch. (b)(c) and (d) Trajectory reconstructions for Agrobot localization with a pretrained 

TINYODOM models (fine-tuned and not fine-tuned) and TINYODOM models trained from 

scratch. The minutes of data used by the pretrained TINYODOM model for fine-tuning and 

the model trained from scratch are shown.
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Table 1.

List of datasets used for evaluation. We use five datasets spanning four different applications.

Application Dataset Environment Device Configuration Device 
Placement

Ground 
Truth

Data Specifications

Pedestrian Dead 
Reckoning

OxIOD [18] Indoors Smartphone 9DoF-IMU 
(InvenSense 2600)

Hand, pocket, 
bag, trolley

Vicon 5 subjects, 14.7 hours, 
42.6 km

RoNIN* [46] Indoors Smartphone 9DoF-
IMU (ICM20602, 
LSM6DSL)

Unrestricted Tango 100 subjects, 42.7 
hours

UUV 
Localization

AQUALOC 
[31]

Underwater 9DoF-IMU 
(MPU-9250), Pressure 
Sensor (MS5837–
30BA, Keller 
7LD-100BA)

Fixed, 
underwater 
probe

ColMap 2 probes, 1.74 hours, 
0.78 km

UAV 
Localization

EuRoC MAV 
[13]

Indoors 6DoF-IMU (ADIS 
16488)

Fixed, MAV Vicon 1 MAV, 0.37 hours, 0.9 
km

Animal 
Tracking

GunDog [41] Outdoors 6DoF-IMU (no 
gyroscope)

Fixed, penguin GPS 1 animal, 7.6 km

*
only 50% of the dataset is publicly available.
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Table 2.

Window size, stride,training-validation-test splits (by sequences), and training epochs used in the benchmark 

datasets. The validation split is used to compute error metric during NAS and not for individual model 

training. The test split is used for final evaluation of the model with most optimal hyperparameters found via 

NAS.

Dataset Sampling Rate (Hz) Window Size Stride Splits (Tr, Val, Te) (%) Model Epochs NAS epochs

OxIOD 100 200 10 85, 5, 10 900 50

RoNIN 200 400 20 70, 5, 25 900 50

AQUALOC 200 400 20 80, 5, 15 300 30

EuRoC MAV 200 50 5 80, 10, 10 300 30

GunDog 40 10 10 45*, 5*, 50 300 30

*
Training trajectory split into 2 parts for train and validation splits.
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Table 3.

List of hardware evaluated for NAS.

Hardware SRAM (kB) Flash (kB) Proxy/HIL

STM32F446RE 128 512 HIL, Proxy

STM32L476RG 128 1024 HIL, Proxy

STM32F407VET6 192 512 Proxy

STM32F746ZG 320 1024 HIL, Proxy
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Table 4.

GPU workstations used to perform NAS.

Processor GPU RAM (GB)

3.7 GHz AMD Ryzen Threadripper 3970x 32 core 2× 24 GB Nvidia GeForce RTX 3090 256

2.5 GHZ Intel Xeon W-2175 14 core 2× 24 GB Nvidia Titan RTX 256

3.4 GHz AMD Ryzen Threadripper 1950X 16 core 2× 12 GB Nvidia GeForce GTX 1080 Ti 128

3.0 GHz Intel Core i7–6050x 10 core 2× 12 GB Nvidia GeForce GTX Titan X 128

3.4 GHz Intel Core i7–2600k 4 core 1× 12 GB Nvidia GeForce GTX Titan X 32
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Table 5.

Performance of competing 2D inertial dead-reckoning techniques for human, UUV, UAV and animal tracking 

against TINYODOM in terms of ATE and RTE (lower is better). The top three techniques are shaded. For 

TINYODOM models, the corresponding hardware are shown in parenthesis.

Application Dataset Method SRAM 
(kB)

Flash 
(kB)

FLOPS 
(M) ATE (m) RTE (m)

Pedestrian Dead 
Reckoning

OxIOD [18]

PDR [48] 10.8 49.6 - 3.47 3.24

NDI [88] 1.2 28.1 - 9119.50 247.53

IONet [16] 766.7 679.5 - 5.95 2.84

L-IONet [18] 154.2 182.9 13.87 4.37 2.82

RoNIN TCN [46] 2046.3 2195.5 220 1.95 0.42

TinyOdom 
(STM32F446RE) 52.4 71.6 4.64 3.30 1.24

TinyOdom 
(STM32L476RG) 72.5 89.6 6.65 3.59 1.37

TinyOdom 
(STM32F407VET6) 90.1 117.6 8.92 6.82 1.28

TinyOdom 
(STM32F746ZG) 55.5 71.0 4.92 2.80 1.26

RoNIN [46]

PDR [48] 10.8 49.6 - 34.81 23.62

NDI [88] 1.2 28.1 - 12398.00 59.85

IONet [16] 976.3 782.0 - 22.52 7.63

L-IONet [18] 159.0 182.9 26.8 24.73 14.84

RoNIN TCN# [46] 2046.3 2195.5 440 4.73 1.21

TinyOdom 
(STM32F446RE) 36.2 50.8 4.15 28.3 7.76

TinyOdom 
(STM32L476RG) 56.2 65.3 7.80 23.9 6.74

TinyOdom 
(STM32F407VET6) 138.3 147.1 26.54 27.7 6.20

TinyOdom 
(STM32F746ZG) 257.3 253.9 49.44 27.36 5.84

 

UUV Localization AQUALOC [31]

NavNet [96] 1364.1 1396.5 - 3.80 2.98

TinyOdom 
(STM32F446RE) 18.4 20.5 0.34 4.99 2.78

TinyOdom 
(STM32L476RG) 36.7 34.2 4.03 4.90 3.30

TinyOdom 
(STM32F407VET6) 18.6 20.9 0.40 4.03 2.83

TinyOdom 
(STM32F746ZG) 17.3 26.8 0.14 3.32 2.45

 

UAV Localization EuRoC MAV [13]
AbolDeepIO [29] 4217.9 4217.8 - 11.24 13.96

VeTorch [35] 7325.3 7294.1 899.74 13.5 15.2
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Application Dataset Method SRAM 
(kB)

Flash 
(kB)

FLOPS 
(M) ATE (m) RTE (m)

TinyOdom 
(STM32F446RE) 87.5 110.0 2.95 2.82 2.41

TinyOdom 
(STM32L476RG) 89.8 110.2 3.18 2.24 2.25

TinyOdom 
(STM32F407VET6) 63.8 85.6 2.14 2.90 2.55

TinyOdom 
(STM32F746ZG) 4.37 31.4 0.073 2.19 2.02

 

Animal Tracking GunDog [41]

GunDog [41, 88] 8.5 32.5 - 28.45 10.53

TinyOdom 
(STM32F446RE) 49.9 72.8 2.92 43.9 0.27

TinyOdom 
(STM32L476RG) 32.4 55.9 1.81 60.82 0.35

TinyOdom 
(STM32F407VET6) 84.3 95.9 3.19 28.2 0.20

TinyOdom 
(STM32F746ZG) 45.4 64.0 1.90 11.41 0.15

#
trained on entire RoNIN dataset, while only 50% is publicly available [46].

FLOPS calculation for models with LSTM/GRU/RNN cells were inaccurate and hence ommitted.

 and bolded - best performing technique, - second best performing technique, - third best performing technique.
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Table 6.

RTE (m) of neural-inertial models across different datasets (left) and applications (right) without fine tuning. 

The dataset on which the model is trained on is shown in parenthesis.

Method (Training Dataset) OxIOD RoNIN

IONet (OxIOD)
IONet (RoNIN)

2.84
7.65

4.7
7.63

LIONet (OxIOD)
LIONet (RoNIN)

2.82
8.35

4.7
14.84

RoNIN TCN (OxIOD)
RoNIN TCN (RoNIN)

0.42
10.3

13.4
1.21

TINYODOM (OxIOD)
TINYODOM (RoNIN)

1.26
3.16

97.2
6.74

Method (Trained Application) PDR UUV

IONet (PDR) 2.84 5.15

LIONet (PDR) 2.82 3.94

RoNIN TCN (PDR) 0.42 14.96

TinyOdom (PDR) 1.26 7.83

NavNet (UUV) 93 2.96

TINYODOM (UUV) 5.82 2.45
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Table 7.

Resource and localization metrics for TINYODOM models geared towards different hardware for agricultural 

robot localization trained using the entire dataset (3 hours) from scratch. The ATE is for a 20 minute (250 m) 

trajectory.

Hardware SRAM (kB) Flash (kB) FLOPS (M) ATE (m) RTE (m)

Razor IMU 3.1 16.2 0.012 15.3 1.13

STM32F446RE 4.1 32.4 0.059 24.5 1.47

STM32L476RG 4.6 17.8 0.062 18.3 1.02

STM32F407VET6 15.6 31.9 0.359 22.96 1.28

STM32F746ZG 3.2 19.8 0.016 19.65 0.96
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