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ABSTRACT 

 
Three Decades of Anthropogenic Fire Activity in a Neotropical Agricultural Frontier 

 

By Gabriel Antunes Daldegan 

 

In this dissertation, I evaluated the spatiotemporal dynamics of anthropogenic fire 

activity in a neotropical rainforest-savanna agricultural frontier. Given its fast and 

affordable nature, fire is used around the globe as a cost-effective way to clear and 

manage lands. This scenario is especially common in tropical regions experiencing 

high deforestation rates. The Amazon-Cerrado transition zone has been subject to 

the highest deforestation rates in Brazil over the last four decades. In this ecotone, 

fire is mainly used to clear natural vegetation lands and to manage encroachment of 

shrubs and trees in pasturelands; often, these fires spread accidentally. 

Nonetheless, the dynamics of the human-fire interaction are still not fully understood.  

To assess this relationship at a fine-scale, I developed a semi-automatic burned 

area mapping algorithm in Google Earth Engine that applies spectral mixture 

analysis to time-series of Landsat imagery: Burned Area Spectral Mixture Analysis 

(BASMA). Using BASMA, I generated annual burned area maps for a 32-year time-

series (1985 to 2017), testing whether spectral mixture analysis is a robust means 

for mapping fire scars that is stable over time and space. Results showed that 

BASMA successfully identified char fractions and delineated burned area in Landsat 

imagery for a 36 million hectares study region. Accuracy assessment performed 

against independent burned area products returned high Dice coefficients (0.86 on 
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average) demonstrating that BASMA is an effective algorithm to map fire scars for a 

large extent over long time-series analysis.  

The pyric transition, as proposed by Pyne (2001), suggests that human-driven 

fire activity increases at early stages of human occupation in a given region, and 

then decreases as the area is further industrialized. In my third chapter, I developed 

a conceptual model that combines the BASMA-derived burned area maps with a 

land use and land cover (LULC) database produced by the MapBiomas Project to 

evaluate the validity of the pyric transition hypothesis. Merging these two fine-scale 

datasets spanning a long time-series allowed me to quantitatively characterize 

spatiotemporal changes in fire activity occurring in parallel to human occupation 

dynamics. Two pyric phase transitions were observed: from ‘wildland anthropogenic 

fire’ to ‘agricultural anthropogenic fire’, and then to ‘fire suppression and wildfires’ 

phase.  

In my final chapter, I evaluated spatiotemporal patterns of traditional burnings in 

remnants areas of the Cerrado biome within four indigenous lands, assessing 

whether fire frequency can be modeled by statistical models. Three probability 

distribution models were tested: continuous and discrete two-parameter Weibull and 

the discrete lognormal. Results agreed with previous studies, finding a mean fire 

interval of 3 years, similar to metrics estimated in other protected areas of the 

Cerrado. However, the parameters estimated for the probability distribution models 

showed that the study area does not have a homogeneous fire regime, indicating 

that further studies must be conducted to better quantify the fire return interval in 

these fire-prone ecosystems. Thus, we suggest that subdividing the fire frequency 
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modelling by each of the indigenous lands could potentially return better results. 

Ultimately, this dissertation clearly demonstrates the advantages of having fine-scale 

burned area products covering long time-series over large extents. 
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Chapter 1: Introduction 

1.1 Motivation 

Accurately mapping burned area and characterizing human-fire dynamics are 

critical for estimating carbon emissions (Aragão and Shimabukuro, 2010; Chuvieco 

et al., 2018, 2016; Mouillot et al., 2014; Noojipady et al., 2017; Padilla et al., 2015; 

Urbanski et al., 2018) and to improve understanding of vegetation and climate 

relationship (Aragão et al., 2008; Balch et al., 2008; Bowman et al., 2011; Brando et 

al., 2014; Santos et al., 2003; Veenendaal et al., 2018). Further, it also helps to 

evaluate the impacts of fire as a land management tool (Driscoll et al., 2010; Fidelis 

and Pivello, 2011; Pivello, 2011; Ramos-Neto and Pivello, 2000; Thonicke et al., 

2001) and for assessing trends and spatiotemporal patterns in fire occurrence 

(Andela et al., 2017; Andela and van der Werf, 2014; Boschetti et al., 2015; 

Daldegan et al., 2014; Hawbaker et al., 2017; Moreira de Araújo et al., 2012).  

Given its fast and affordable nature, fire has been traditionally used around the 

globe as a cost-effective way to clear and manage lands (Pyne, 1997; Cochrane, 

2009; Pivello, 2011; Schmidt et al., 2011; Scott et al., 2014). This scenario is 

especially common in tropical regions experiencing high deforestation rates 

(Cochrane, 2009). Targeting the international agricultural market for commodity 

crops, Brazil led the worldwide ranking for deforestation of primary forests in 2018 

(Global Forest Watch: https://www.globalforestwatch.org, last accessed August 5th, 

2019).  

The two most extensive biomes in South America, the Amazon forest and the 

Brazilian savanna (Cerrado biome) are well-known for their biodiversity richness 
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and importance worldwide. However, these vegetation domains are experiencing 

high deforestation rates and large extents of their natural vegetation are already 

cleared due to intensive human development occurring at a fast pace and in 

unsustainable way (Nobre et al., 2016). A substantial amount of these areas has 

been converted to farming activities, of which mostly are agriculture targeting 

commodity crops and pasture, among other economic activities (Barreto et al., 

2006; Davidson et al., 2012).  

The anthropogenic use of fire is of particular interest in these environments, 

serving as a cost-effective tool to open extensive areas in near-pristine condition 

landscapes and/or maintenance of already opened lands (Cochrane, 2003; Pivello, 

2011; Souza, Jr. et al., 2013). Even so, the dynamics of the human-fire interaction 

are still not fully understood (Bowman et al., 2011) and to best comprehend the use 

of fire and its relationship to land-use and land cover change, it is necessary to 

analyze changes in fire activity concurring in space and time with fast increase in 

human occupation dynamics. In this regard, the pyric transition concept proposed 

by Pyne (2001) predicts that the use of fire increases at the early stages of human 

occupation and decreases when the land is further colonized, allthough, several 

studies claim that this concept has yet to be quantitatively evaluated. 

As a savanna, the Cerrado has evolved to be adapted to fire (Coutinho, 1977; 

Coutinho, 1990) and is considered a fire-dependent biome (Myers, 2006; Pivello, 

2011). Some studies claim that the Cerrado has been exposed to fire for the last 25 

million years, forging the diversification of many C4 grass species, for example 

(Miranda et al., 2010). Yet, Myers (2006) asserts that many tropical fire-dependent 
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(pyrophilic) ecosystems may be experiencing too frequent burnings and that there is 

an overall lack of knowledge regarding the nature and the ecological 

appropriateness of present fire regimes in many of those environments. Thus, it is 

critical to objectively describe the spatiotemporal dynamics of burnings in a 

pyrophilic ecosystem to better evaluate how vegetation is responding to 

contemporary fire activity.  

In contrast to the savanna environment, the Amazon moist broadleaf forest is 

recognized as a fire-sensitive vegetation (Pivello, 2011). Nonetheless, studies have 

shown that forest patches that have already been disturbed become more prone to 

experience recurrent burns (Cochrane et al., 1999; Laurance et al., 2007). Further, 

forest patches that are adjacent to open/converted areas have their edges exposed 

to more insolation and turbulence, which helps dry out their understory vegetation 

and litter, making those areas even more susceptible to fire. In cases where grass 

species are established in the understory, these can be a renewable source of fuel 

for recurrent burns (Cochrane and Schulze, 1999; Aragão et al., 2008). 

The Amazon-Cerrado transition zone, a region known as “Arc of Deforestation,” 

is subject to the highest deforestation rates in Brazil over the last four decades 

(Valeriano et al., 2004). In this ecotone, fire is mainly used to convert natural 

vegetation to agricultural activities (slash and burn) and to manage pasture for 

livestock (Cochrane, 2009). Often, these fires spread accidentally, getting out of 

control. In the Cerrado biome, fire is often used to stimulate the regrowth of natural 

grasses used as pasture, and also to open new lands for agriculture (Pivello, 2011). 

Conversely, the Amazon forest has not historically been subject to recurrent 
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burnings, and its cycle of deforestation started in the middle of the last century with 

the federal government promoting occupation of the region (Becker, 1974). More 

recently, deforestation has been stimulated by increases in commodities prices, like 

soybean and corn, croplands that have traditionally occupied vast areas of the 

Cerrado biome and are gradually advancing on the rainforest. In the Amazon forest, 

fire is frequently used to further open lands that were previously selectively logged 

and later converted to cattle ranching and agriculture crops. This dynamic has been 

evident over the last four decades, especially in Mato Grosso state (Cochrane, 

2009; Macedo et al., 2012). 

Alongside, there are numerous indigenous lands and protected areas in Mato 

Grosso state where land use and land cover have not changed much in the recent 

period. These large extents of natural vegetation remnants offer the opportunity to 

assess the traditional spatiotemporal dynamics of burnings and to model fire-return 

intervals. Located in a region entirely covered with savanna ecosystems, the Paresi 

plateau hosts several indigenous lands where the Hailiti-Paresi people have been 

traditionally using fire over centuries for many purposes, such as to manage 

biomass in a way to avoid severe burnings, for hunting activities, among others. 

Beginning in 2017, the Brazilian National Center for Prevention and Fighting Forest 

Fires (PrevFogo: https://www.ibama.gov.br/prevfogo, last accessed in August 5th, 

2019) started to implement an Integrated Fire Management plan that seeks to 

restore and maintain the traditional use of fire that was historically applied by the 

Haliti-Paresi people. Accounting for the lack of knowledge of current fire regime in 

this area, quantitatively characterizing the current spatiotemporal burning patterns in 
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this region will certainly help to monitor how the Integrated Fire Management plan is 

changing fire activity and vegetation on the Paresi plateau. 

1.2 Background (Climate, Fire and Remote Sensing) 

The occurrence of fire has a direct relationship to the climate of a region (Scott 

et al., 2014), and the synergistic interaction of rainfall anomalies and anthropogenic 

disturbances, such as deforestation and forest degradation, significantly impact the 

number of fire events in the Amazon and the Cerrado landscapes (Davidson et al., 

2012). The macroclimate of South America is strongly influenced by the South 

America Monsoon System (SAMS), which is primarily driven by the heat difference 

between the continent and the Atlantic Ocean. The continent has a substantial 

landmass within tropical latitudes and is delimited by the South Atlantic to the east. 

These characteristics, combined with the Andes mountain range to the west create 

and maintain SAMS (Carvalho and Cavalcanti, 2016). SAMS is characterized by the 

presence of an upper-level anticyclone over Bolivia, commonly referred to as the 

Bolivia High, and the enhancement of the lower-level cyclone over the Chaco, 

region located in northwest Argentina and Paraguay (Liebman and Mechoso, 2010). 

Furthermore, Carvalho and Cavalcanti (2016) assert that the South Atlantic 

Convergence Zone (SACZ) is the unique and most significant features of SAMS. 

Under the direct influence of SAMS, the climate of the Amazon-Cerrado transition 

zone is characterized by two well-marked seasons: the wet season concentrating 

the vast majority of precipitation (from October to April), and a pronounced dry-

season lasting from May to September (Grimm, 2011).  
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Aragão et al. (2008) and van der Werf et al. (2009) reported that fire in the Amazon-

Cerrado transition zone is mainly anthropogenic, meaning that most fire events are 

concentrated in the dry season, normally from May to October (Grimm, 2011). 

Lightning strikes are the cause of natural fires (Ramos-Neto & Pivello, 2000), 

though this type of ignitions are rare when compared to human induced burning in 

the region. Grimm (2011) summarizes the annual cycles of precipitation over the 

South America and her results were used as a proxy to assess the time and 

geography under the influence of the dry season.  

Remote sensing has been extensively used by a large number of researchers 

studying fire occurrence at a global scale, as well as in both biomes mentioned 

above. Digital image processing aiming to map burned area has been applied to a 

diversity of remotely sensed datasets from sensors of various spatial, temporal, and 

spectral resolutions (Bastarrika et al., 2014, 2011; Brewer et al., 2005; Chuvieco et 

al., 2016; Lentile et al., 2006; Merino-de-Miguel et al., 2010; Quintano et al., 2013, 

2006; Roy et al., 2005; Roy and Landmann, 2005). More specifically, several 

studies have used Landsat data to map fire scars in the Amazon forest and in the 

Cerrado (Alencar et al., 2006, 2004; Daldegan et al., 2019, 2014; França et al., 

2007; Pereira, 2003; Pereira Júnior et al., 2014). An advantage of using Landsat 

data is the potential to map fire scars at a finer spatial resolution when compared to 

products derived from sensors featuring better temporal resolution but coarser 

spatial resolution, such as the Moderate Resolution Imaging Spectrometer (MODIS: 

Giglio et al., 2018, 2016; Roy et al., 2008, 2005) and Geostationary Operational 

Environmental Satellite (GOES: Schmidt and Prins, 2003). Despite having high 
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temporal resolutions, these sensors have the disadvantage of not being able to 

detect relatively small burned areas (Alonso-Canas & Chuvieco, 2015). Landsat 

imagery, in contrast, has been shown to allow improvements in the delineation of 

smaller fragments of fire scars (Pereira et al., 1997). 

The Landsat family of sensors is recognized for its consistency on imaging the 

globe (Hansen and Loveland, 2012). These sensors have been collecting images 

from Brazil for more than 40 years, and their imagery is one of the most used 

remote sensing data applied to research in the country. Several studies have 

demonstrated the advantages of Landsat imagery, not only for mapping fire activity 

(Alencar et al., 2004; Daldegan et al., 2019, 2014; Pereira Júnior et al., 2014), but 

also for several other applications, such as monitoring deforestation and land 

degradation (Matricardi et al., 2010; Souza Jr., et al., 2013, 2005; Valeriano et al., 

2004).  

In 2008, the policy that regulates the distribution of Landsat imagery changed 

and this data archive was made available to the public at no costs. This fact was 

unprecedented and has had a significant impact in the remote sensing community, 

boosting the number of studies that use Landsat data (Wulder et al., 2016). 

Moreover, with the increasing availability of imagery, there has been a consequent 

increase in the demand for high-performance processing capabilities in order to 

enable the mining of the rapidly growing data archive (Hansen and Loveland, 2012). 

The advent of the Google Earth Engine (GEE) API has been considered a valuable 

advance in facilitating remote sensing data mining (Gorelick et al., 2017). In the 
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GEE platform it is possible to access all Landsat legacy data stored at Google’s 

servers and to apply a growing number of remote sensing techniques and methods.  

Beginning with Landsat 5 Thematic Mapper (TM) and its successors Landsat 7 

Enhanced Thematic Mapper (ETM+) and Landsat 8 Operational Land Imager (OLI), 

the Landsat family of sensors is the most appropriate data source for time-series 

analysis of fire in the Amazon-Cerrado ecotone, given its time of operation and 

spectral, temporal and spatial resolutions. These sensors have similar 

specifications, including three visible (486, 571, 661 nm), one Near-infrared (837 

nm), two Short-wave infrared (SWIR, 1677 and 2215 nm) bands, a spatial resolution 

of 30 meters, and revisit time of 16 days.  

Various technical approaches have been applied to multispectral imagery to 

identify and map fire-affected areas around the globe. Pereira et al. (1997) reviewed 

several digital image processing methodologies applied to map fire scars. After 

discussing the details of each of most common techniques, the authors concluded 

that Spectral Mixture Analysis (SMA) is one of the most reliable methods, being 

more efficient than burned area index based approaches, such as Normalized Burn 

Ratio (NBR: López & Caselles, 1991; Key & Benson, 2005), given its skills to model 

inter-pixel spectra responses. Cochrane (1998) showed the potential of SMA to map 

fire scars in tropical landscapes. Further, Veraverbeke et al. (2012) asserts that 

SMA is effective in addressing sub-pixel fractions of fire scars. SMA out performs 

other methodologies mainly due to its ability to minimize the amount of confusion 

between fire-affected areas and well-known sources of confusion, such as urban 

area, water bodies and wetlands (Quintano et al., 2006). Nonetheless, it is more 
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effective to mask these major confusion sources out of the analysis (Pereira et al., 

1997).  

1.3 Research Objectives and Overarching Questions 

This research aims to evaluate the spatiotemporal dynamics of anthropogenic 

fire activity in a neotropical rainforest-savanna agricultural frontier. 

These are the overarching questions that guided this study: 

Question 1 – Can fire scars be mapped semi-automatically at high accuracy 

over an extended time series and large geographic extent using spectral mixture 

analysis and cloud-based analysis tools?  

Question 2 – How has the distinct phases of human occupation influenced the 

fire activity between 1985 and 2017? Did the spatiotemporal burning pattern follow 

a piric transition as proposed by Pyne (2001)? 

Question 3 – What are the current spatiotemporal dynamics and the fire return 

interval in remnants patches of natural vegetation which have been traditionally 

under indigenous people fire management?  

To thoroughly answer these questions, it was necessary to generate a map of 

fire scars for each year of the time-series. Hence, in Chapter Two, I developed a 

Google Earth Engine semi-automatic burned area mapping algorithm that applies 

SMA in Landsat time-series: The Burned Area Spectral Mixture Analysis (BASMA). 

In it, I tested whether SMA is a robust means for mapping fire scars present in 

Landsat imagery for the Amazon-Cerrado transition zone that is stable over time 

and over space. In Chapter Three, I tested the hypothesis of fire activity following a 

pyric transition in the most productive agricultural region in Mato Grosso state. In 
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Chapter Four, I aimed to characterize the spatiotemporal patterns in remnants 

areas of the Cerrado biome under traditional burnings, assessing whether fire 

frequency can be modeled by statistical models.  
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2.0 Abstract 

Fire is used worldwide to clear natural vegetation areas for economic activities 

and to manage the regeneration of already opened sites. In Brazil, fire has been 

traditionally used to convert natural vegetation areas to agricultural lands (slash and 

burn) and to manage pastures for livestock. We developed the Burned Area 

Spectral Mixture Analysis (BASMA) algorithm in Google Earth Engine, which is 

designed to process Landsat data to produce a multi-temporal fire scar database 

representing annual burned area for an extent of 362,000 km2 in the transition zone 

between the Amazon forest and the Cerrado biome. This region is considered a 

conservation hotspot, given its high deforestation rates over the last four decades. 

We digitally processed a 32-year time-series (1985 to 2017) of Landsat 5 Thematic 

Mapper, Landsat 7 Enhanced Thematic Mapper+, and Landsat 8 Operational Land 

Imager data to map fire scars based on sub-pixel char fraction, aiming to generate a 

consistent burned area product at a finer scale and covering a longer period than 

those currently available for the region. Manually interpreted reference burned area 

polygons for each annual mosaic was used to guide the definition of the best fire 

scar endmember and its fraction threshold. To assess our BASMA-delineated fire 

scar, they were compared to independent datasets of manually delineated burned 

area produced by visual analysis of finer spatial resolution imagery, returning an 

average Dice Coefficient value of 0.86. Accuracy was also measured against the 

30-meter Burned Area product available at the ‘Queimadas’ data portal. A total of 

11,106,258 ha was mapped as having been affected by fire during the annual dry 

season over the 32 years, which represents 30.7% of the study region. Results 
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showed a decreasing trend in the annual amount of burned area over the time-

series. It reflects a similar pattern shown in the deforestation rate for the Legal 

Amazon, measured by the Brazilian National Institute of Space Research - INPE. 

Moreover, the Cerrado biome subset of the study region consistently showed higher 

burned area when compared to the Amazon forest subset. Our findings provide 

robust evidence that our approach is a consistent method to identify and delineate 

fire scars for large areas over a long time-series in a very efficient fashion, given the 

digital processing power of Google Earth Engine, which reduces the time necessary 

to analyze such big amount of data.  

Keywords: Landsat, Spectral Mixture Analysis, Endmember, Burned Area, 

Time-series, Amazon Forest, Cerrado Biome, Google Earth Engine  
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2.1 Introduction 

Accurately mapping burned area is essential for quantifying carbon budgets 

(Aragão and Shimabukuro, 2010; Chuvieco et al., 2018, 2016; Mouillot et al., 2014; 

Noojipady et al., 2017; Padilla et al., 2015; Urbanski et al., 2018) and for analyzing 

the relationship between vegetation and climate (Aragão et al., 2008; Balch et al., 

2008; Bowman et al., 2011; Brando et al., 2014; Santos et al., 2003; Veenendaal et 

al., 2018). It is also needed for assessing the impacts of fire as a land management 

tool (Driscoll et al., 2010; Fidelis and Pivello, 2011; Pivello, 2011; Ramos-Neto and 

Pivello, 2000; Thonicke et al., 2001) and for quantifying trends and patterns in fire 

occurrence (Andela et al., 2017; Andela and van der Werf, 2014; Boschetti et al., 

2015; Daldegan et al., 2014; Hawbaker et al., 2017; Moreira de Araújo et al., 2012), 

among other relevant applications.  

Remote sensing has been extensively used by many researchers studying fire 

occurrence at global, regional, and local scale. Digital image processing aiming to 

map fire activity has been applied to a variety of imagery from sensors of various 

spatial, temporal, and spectral resolutions (Alonso-Canas and Chuvieco, 2015; 

Bastarrika et al., 2014, 2011; Boschetti et al., 2015; Chuvieco et al., 2018, 2016; 

Daldegan et al., 2014; Giglio et al., 2018, 2016; Lentile et al., 2006; Libonati et al., 

2015; Melchiori et al., 2014; Merino-de-Miguel et al., 2010; Oliva and Schroeder, 

2015; Pereira et al., 2017; Quintano et al., 2013, 2006; Ramo et al., 2018; Roy et 

al., 2008; Stroppiana et al., 2002; Urbanski et al., 2018; Veraverbeke et al., 2018, 

2012). Burned area products covering large extents and long periods are typically 

extracted from imagery of sensors featuring short revisiting time, such as the 
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Geostationary Operational Environmental Satellite (GOES: Schmidt and Prins, 

2003), the Moderate Resolution Imaging Spectrometer (MODIS: Giglio et al., 2018, 

2016; Roy et al., 2008, 2005), the Satellite Pour l'Observation de la Terre 

Vegetation (SPOT Vegetation: Tansey et al., 2008, 2004) and the Medium 

Resolution Imaging Spectrometer (MERIS: Chuvieco et al., 2016). In spite of having 

high temporal resolutions, these sensors have the disadvantage of not being able to 

resolve relatively small burned areas due to their coarse spatial resolution (Alonso-

Canas and Chuvieco, 2015; Boschetti et al., 2015; Chuvieco et al., 2016; Hawbaker 

et al., 2017; Morton et al., 2013). Consequently, small burned area contributions to 

carbon emissions are still not fully understood (Randerson et al., 2012).  

Mapping burned area at a finer spatial resolution is one of the demands from 

end-users of burned area products (Mouillot et al., 2014), and could facilitate spatial 

analysis to assess how fire varies among land covers and vegetation types, helping 

to improve fire emission modeling (Hawbaker et al., 2017). Landsat imagery has 

been shown to improve the delineation of smaller fragments of fire scars (Bastarrika 

et al., 2014, 2011; Boschetti et al., 2015; Daldegan et al., 2014; Hawbaker et al., 

2017; Liu et al., 2018, Quintano et al., 2017, 2013, 2006). The Landsat program 

comprises the longest continuous Earth Observation mission, which has been 

imaging the surface of the Earth for more than 40 years (Wulder et al., 2016). 

Moreover, it features a consistent spatial and temporal imagery collection, given 

that starting with Landsat 4 Thematic Mapper (TM), sensors have identical spatial 

and spectral resolutions. Recently, digital processing of Landsat data over large 

extents and long time-series has become considerably more cost-effective, given 
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the powerful computational processing of Google Earth Engine (GEE). GEE is a 

remote sensing platform based in the cloud that is designed to perform planetary-

scale analysis of geospatial data. Its catalog stores a massive amount of publicly 

available geospatial datasets, which is accessed and manipulated through an 

application programming interface (API: Gorelick et al., 2017). 

Methodological approaches aiming to map burned area using Landsat imagery 

usually rely on multi-temporal (pre-fire and post-fire) reflectance change detection, 

often using complicated rules for combining results from distinct classifiers 

(Hawbaker et al., 2017). Goodwin and Collett (2014) developed an automated 

burned area mapping algorithm that combines temporal, spectral, and contextual 

metrics. Their approach processes one Landsat Path/Row at a time and requires 

three key processing stages: detection of time-series outliers; region-growing of 

change regions; and attribution of change regions. Bastarrika et al. (2011, 2014) 

designed a two-phase algorithm that first aims to minimize commission errors, and 

secondly aims to reduce omission errors. The approach is based on the calculation 

of a series of burned area spectral indices, each one requiring the selection of a 

threshold value, to identify seed burned pixels and subsequently the application of a 

region-growing algorithm for shaping the burned area. Boschetti et al. (2015) 

introduced a multistage burned area mapping method that uses an initial per-pixel 

change detection centered on the spectral-rule based pre-classification of Landsat 

time-series to identify burned area candidates and on the comparison of these 

candidates with concurrent MODIS active fire signal. The Landsat Burned Area 

Essential Climate Variable algorithm (BAECV: Hawbaker et al., 2017) requires pre-
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fire reference conditions to apply gradient boosted regression models to estimate 

the probability that a pixel was burned. BAECV uses all bands from Landsat 5 

Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper (ETM+) sensors 

plus seven other derived predictors that are ingested to the regression model.  

Among the approaches used to map burned area, Spectral Mixture Analysis 

(SMA) is not commonly used relative to other methods (Cochrane, 1998; Eckmann 

et al., 2008; Fernandez-Manso et al., 2016; Quintano et al., 2017, 2013, 2006; 

Shimabukuro et al., 2009; Souza et al., 2005). SMA is based on the assumption that 

the reflectance spectrum recorded by a pixel is a linear mixture of the spectra of 

many objects, commonly referred as spectral endmembers, present in the scene 

(Adams et al., 1993, Roberts et al., 1993; Settle and Drake, 1993). Each pixel of a 

Landsat image covers an area of 900 m2, which is sufficiently large enough to 

combine distinct land surfaces into one pixel - i.e., green vegetation (GV), Non-

Photosynthetic Vegetation (NPV), soil, and shade. Accounting for this characteristic, 

SMA has the capability of retrieving sub-pixel fractions and thus potentially 

permitting more accurate results when compared to ordinary classification methods 

(Pereira et al., 1997). In their review paper, Pereira et al. (1997) asserted that SMA 

is advantageous over vegetation index-based methods, concluding that SMA 

produces interesting results for burned area detection. Likewise, Smith et al. (2007) 

compared different methods applied to Landsat 7 ETM+ data aiming to identify and 

map fire-affected area, concluding that SMA was the best approach. More recently, 

Quintano et al. (2017, 2013) used SMA to assess burn severity in Mediterranean 

countries, reaching promising results.  
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Given the potential of SMA to accurately delineate burned areas, there is a need 

to further assess its efficiency and stability over time and space. This study aims to 

develop a GEE semi-automatic burned area mapping algorithm that applies SMA in 

Landsat time-series: The Burned Area Spectral Mixture Analysis (BASMA). The 

algorithm takes advantage of the Landsat imagery collections stored in the cloud 

and of the high processing power of the GEE platform. Therefore, there is no need 

to download imagery or to process each scene individually. The algorithm is based 

on the permanence of post-fire reflectance changes. Furthermore, it does not 

require a multi-temporal (pre and post-fire) change detection, which is a significant 

advantage for large study sites in tropical regions, given that it can be challenging to 

create two or more annual mosaics covering the entire area of interest due to cloud 

coverage. The specific objective of BASMA is to accurately map burned area over 

large extents and for long time-series of Landsat imagery, generating results in an 

efficient processing time. Our assumption is that mapping historical spatiotemporal 

patterns of fire events at a finer scale and over long time-series has great potential 

to bring better understandings of fire-driven disturbances and to better characterize 

fire regimes, allowing us to further explore relationships of burning patterns to 

several climatic, economic, and social variables. Moreover, it could increase the 

accuracy of future fire models, as suggested by Andela et al. (2017), and improve 

the estimates of aerosol emission due to biomass burning, thus also improving 

climate models predictions (Mouillot et al., 2014; Roberts et al., 2005). 
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2.2 Materials and Methods 

2.2.1 Study Region 

Fire is one of the most important factors that has shaped tropical savannas 

(Bond et al., 2004) including the Cerrado biome (Medeiros and Miranda, 2005), 

which is considered the most biodiverse savanna in the world (Klink and Machado, 

2005; Myers et al., 2000). Conversely, fire has not played a major role during the 

evolution of the Amazon rainforest, due to its strong capacity to resist burning 

(Laurance and Williamson, 2001; Pivello, 2011). However, as the deforestation 

vector moves towards the Amazon forest, it modifies the natural moist microclimate 

on the edges of the forest patches, allowing fire to occur more frequently within the 

rainforest environment (Balch et al., 2008; Cochrane, 2003). Every year these 

biomes are subject to many natural or human-induced fire events, which are 

responsible for enormous burned extents and greenhouse gas emissions, causing 

loss of biomass, biodiversity, and soil nutrients, among other fire-related 

environmental consequences (Alencar et al., 2004; Balch et al., 2015, 2011; 

Cochrane, 2009; Laurance and Williamson, 2001; Morton et al., 2011; Pereira et al., 

2017; Pereira Júnior et al., 2014; Shimabukuro et al., 2009).  

The region chosen for this study is a subset of the transition zone between the 

Amazon forest and the Cerrado biome known as the arc of deforestation, due to its 

elevated deforestation rates over the last few decades. This region is considered as 

one of the most active agricultural frontiers in the world, (Laurance and Williamson, 

2001; Morton et al., 2006; Souza, Jr et al., 2013). More specifically, the study region 

is located in the State of Mato Grosso - Brazil and extends to approximately 
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360,000 km2, requiring 21 Landsat scenes to cover its area completely (Figure 2.1). 

The coordinates of the upper-left corner and lower-right corner of the rectangle 

defining the study region are (Lat., Long.): -10.0, -60.0; -15.0, -54.0, respectively. 

The defined scale for the products derived from the Landsat imagery is 1:100,000, 

and the Coordinate Reference System is the South America Albers Equal Area 

Conic, Datum South American Datum 1969, units in meters (EPSG: 102033). 

Based on the Brazilian official biome delimitation, the study region extent is split 

into two biomes: 58% in the Amazon forest and 42% in the Cerrado savanna. 

Hence, it is composed of a heterogeneous mosaic of vegetation types: tropical 

rainforests, swamps, woodlands, savanna and grasslands ecosystems. The 

topography of the study region is dominated by low lands, predominantly featuring 

elevation not rising more than 300 meters above sea level. In its southernmost part, 

the elevation reaches highest values at the Chapada dos Guimarães plateaus, with 

values about 800 meters above sea level. The region is under the influence of the 

South America Monsoons System (SAMS: Carvalho and Cavalcanti, 2016), with 

two well-defined seasons: a wet one from October/November to March/April, and a 

dry one from April/May to September/October (Grimm, 2011).  
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Figure 2.1. The study region is located within the Mato Grosso state, Brazil, and is split between the 
Amazon rainforest and the Cerrado savanna. The grid represents the individual Landsat scenes 
required to cover the study region completely, and the numbers are their respective path and row. 

Typically, temperatures are high throughout most of the year, frequently 

exceeding 40°C during Spring. The mean temperatures during the warm months, 

September and October, vary from 32°C to 36°C, with the majority of the region 

having less than a full month with temperatures below 20°C during the winter. 

Rainfall varies considerably with latitude in this region. In its northern part, the mean 

precipitation is around 2,750 mm/yr., gradually decreasing towards the south, 

reaching values of 2,000 mm/yr. Over 70% of the annual precipitation occurs from 

November to March, with January-February-March having the highest values. From 

June through September precipitation is generally below 100mm/mo. and relative 
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humidity is extremely low, which characterizes the dry season in this area (Nimer, 

1989; Grimm 2011). The combination of these climatic factors increases the fire risk 

in the region dramatically. 

Aragão et al. (2008) observed a peak of hot pixels coinciding with the driest 

months, demonstrating that human-induced forces, such as land-use change, is 

critical to determine seasonality and annual patterns of burning activity. Lightning 

strikes are the cause of natural fires (Ramos-Neto and Pivello, 2000), and this type 

of ignition source is rare when compared to human-induced burning. Grimm (2011) 

summarized the annual cycles of precipitation over South America and her results 

were used as a proxy to portray time and space under the influence of the dry 

season.  

2.2.2 BASMA Workflow 

The general procedures to run the BASMA algorithm are summarized in a 

workflow shown in Figure 2.2. Individual methodological steps are presented and 

discussed in detail in the following subsections. 
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Figure 2.2. Burned Area Spectral Mixture Analysis (BASMA) workflow, showing the general 
procedures used to run the algorithm and to validate the results. Annual composite mosaics were 
built using multiple scenes from the dry season (June to September) and had the confusion sources 
masked. Fire scar endmembers (FSEM) were sampled from Landsat 5 TM and Landsat 7 ETM+ 
scenes covering a controlled vegetation burning area. The FSEM that best modeled burned area 
was identified by iteratively testing each endmember in the spectral library. Accuracy assessment 
was calculated based on the agreement and disagreement between the BASMA product and 
independent burned areas manually delineated from SPOT and RapidEye imagery. 

2.2.3 Landsat composite mosaics 

The Landsat data used in this project were converted to surface reflectance by 

the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

algorithm (Schimidt et al., 2013).  Imagery was accessed and digitally processed 

through the GEE Code Editor (https://earthengine.google.com/, last accessed 

January 8th, 2019). GEE is a powerful cloud platform that stores most Landsat 

collection and imagery from other freely available sensors, as well - e.g., the 

Advanced Very High-Resolution Radiometer (AVHRR), the Advanced Spaceborne 
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Thermal Emission and Reflection Radiometer (ASTER), MODIS, and the Sentinel 

family of sensors. Also, GEE provides an application programming interface (API) 

featuring several image visualization and processing algorithms, including functions 

to perform SMA (Gorelick et al., 2017; Housman et al., 2018).  

The analyzed time-series covers the period between 1985 and 2017. Based on 

the availability of images, we built annual multi-temporal composite mosaics for the 

dry season using Landsat 5 TM for most years of the time-series (1985 to 2011). 

Within these years, Landsat 7 ETM+ was used for 2001 and 2002, which lacked 

Landsat 5 TM coverage for the study region. For the years from 2013 to 2017, we 

used Landsat 8 OLI imagery to build the annual composite mosaics. Despite the 

small difference among sensors, we performed a spectral transformation process by 

applying the ordinary least squares regression coefficients provided by Roy et al. 

(2016), in order to broadly normalize the reflectance measured by the six 

comparable Landsat OLI and Landsat ETM+ reflective bands. The year 2012 is the 

only one missing from our time-series since there is no high-quality imagery 

available from the Landsat series of sensors. 

Annual dry season Landsat mosaics covering the entire study region were 

created using the approach described in Housman et al. (2018). The authors built 

an algorithm in GEE that takes advantage of the massive Landsat image collection 

available to increase the likelihood of producing a composite mosaic that is free of 

clouds and cloud shadows. We used the medoid method to build our annual 

mosaics, which retains single date observation across all bands for a given pixel. 

Building multi-temporal image compositing mosaics was critical to consistently have 
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full coverage of the study region for each year (Pereira, 2003), given that the study 

region has abundant presence of cloud cover due to the South Atlantic 

Convergence Zone (Carvalho et al., 2004). Thus, the annual multi-temporal 

composite mosaics were built using multiple scenes (Figure 2.2), meaning that 

pixels from early dry season could be side by side with pixels from late dry season. 

No criteria to favor pixels from later dates within the dry season was implemented 

when building the annual mosaic. Thus, the composite mosaics do not provide a 

complete record of the annual burned area within the study region as some burned 

pixel are likely to be excluded when generating the mosaics. Each mosaic contains 

pixels from at least 11 and up to 15 different imaging dates spanning from June 

through September. We selected this intra-annual period to ensure that all 32 

composite mosaics represent the core dry season across the time-series (Grimm, 

2011, 2004, 2003). Using a shorter intra-annual period resulted in a deficiency in 

pixel coverage for all the years analyzed. 

2.2.4 Water bodies, Wetlands, Topographic Shade, and Rock Outcrops: well-
known sources of confusions with fire scars 

We created a surface water layer by combining the Joint Research Consortium 

(JRC) Yearly Water Classification History v1.0, a high-resolution layer representing 

global surface water (Pekel et al., 2016), to a water layer created using the 

Normalized Difference Water Index – NDWI (McFeeters, 1996). This surface water 

layer was applied to each annual mosaic, masking out major surface water bodies 

present in the study area. A 30 m buffer equivalent to a Landsat pixel size was 

created around the surface water layer in order to mask out pixels immediately 
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adjacent to water bodies. Additionally, fire scar false positives triggered by 

topographic shadows were eliminated by deriving a hillshade masking layer from 

the SRTM 30 m DEM (Farr et al.; 2007) for the region and setting a threshold to 

select topographic shaded areas.  

To the best of our knowledge, there is no independent dataset delineating 

wetlands and rock outcrops for the study region. While testing the BASMA 

algorithm, a meticulous visual revision of the fire scar fractions was performed over 

the entire extent of the study region aiming to identify confusion with these particular 

surfaces. Areas interpreted as wetlands and rock outcrops were selected and 

assembled into a final layer, which was carefully compared to high spatial resolution 

imagery present in Google Earth Pro to confirm their precise delineation. In a final 

step, this layer was merged to the surface water and shade masks, producing a 

final mask composed of water bodies, shade, rock outcrops, and wetlands (Figure 

2.2).  

It is important to stress that the process of identifying sources of confusion with 

burned area was performed during the BASMA testing phase, and that the final 

mask was consolidated before running the algorithm to produce the results reported 

in this study. Therefore, the final BA product reported in this study did not go 

through visual inspection to eliminate potential confusion. 

2.2.5 Visual Delineation of Reference Burned Area 

Each annual dry season (June to September) composite mosaic was visually 

interpreted aiming to manually delineate conspicuous burned area polygons. A set 

of 11 polygons representing fire-affected areas was delineated for each year of the 
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time-series using an R: SWIR1(band 5), G: NIR (band 4), B: red (band 3) 

composite. Band composites using near-infrared and shortwave infrared channels 

readily allow for the clear identification of pixels representing burned areas (Roy et 

al., 2005; Pereira et al., 1997). Polygons were then uploaded to GEE as vector files 

(shapefiles) and overlaid on their respective annual mosaic to align with reference 

burned areas. They were used as a reference for delineating fire-affected shape 

and area, guiding the selection of the fire scar endmember (FSEM) that best 

modeled burned area and its fraction threshold when applying BASMA to map fire 

scars automatically. 

2.2.6 Spectral Mixture Analysis (SMA) 

Spectral Mixture Analysis (SMA) is a physically based model in which a mixed 

spectrum recorded in a pixel is modeled as a combination of two or more pure 

spectra (Adams, et al., 1993; Dennison and Roberts, 2003; Roberts et al.,1998; 

Roberts et al., 1993, Shimabukuro & Smith, 1991) By applying SMA, the reflectance 

of a given pixel (𝑝$𝜆) can be modeled as the sum of the reflectance of each spectral 

endmember that composes this pixel, multiplied by its fractional cover, following the 

equation: 

𝑝$𝜆 = 	(𝑓𝑖 ∗ 𝑝𝑖𝜆
,

-./

	+ 	𝜀𝜆	, 𝑤𝑖𝑡ℎ		(𝑓𝑖
,

-./

= 1.0			𝑎𝑛𝑑			𝑓𝑖 ≥ 0		,									(2.1) 

where 𝑝𝑖𝜆 is the reflectance of a given endmember 𝑖 for a specific band (𝜆); 𝑓𝑖 is 

the fractional cover of this endmember 𝑖; 𝑛 is the number of endmembers; and 𝜀𝜆 is 

the residual error. It is preferable to coerce the endmembers fractions to sum to 1 

and to have positive values to guarantee that results are physically meaningful 
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(Adams et al., 1993; Shimabukuro & Smith, 1991; Somers et al., 2011). Thus, we 

constrained the equation to sum to 1 and to have nonnegative fractions. SMA model 

is assessed by the model residual error (𝜀𝜆), reported as the root mean squared 

error (RMSE): 

RMSE = 	C
∑ (𝜀𝜆)EF
G./
𝑀 				,													(2.2) 

Where	𝑀 is the number of bands. SMA accounts for the fact that GV, NPV, and 

char endmembers are universal in most fire-affected natural landscapes. 

Consequently, there is no need for extra training data after the best endmembers 

have been identified (Smith et al., 2007). Therefore, it requires less a priori 

information about the study site compared to more traditional classification 

methods. Moreover, the estimation of endmember fractions at the sub-pixel level 

provides detailed information about different successional stages related to fire 

scars (e.g., recently burned areas, vegetation regrowth, non-burned), which are 

critical for monitoring carbon accumulation, for example. 

A spectral library containing 136 FSEM from 16 different years within the time-

series was built using VIPER Tools' 

(https://sites.google.com/site/ucsbviperlab/viper-tools, last accessed January 8th, 

2019) EMC (EAR – Endmember Average Root Mean Square Error (Dennison and 

Roberts, 2003); MASA – Minimum Average Spectral Angle (Dennison et al., 2004); 

CoB – Count based Endmember (Roberts et al,. 2003)) endmember selection 

methodology. EMC is commonly used as a library pruning tool (Franke et al., 2009; 

Tane et al, 2018), in which each iteration of identifying optimal endmembers (EAR, 
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MASA, and COB) tends to select a slightly different set of endmembers based on 

subtle discrepancies in spectra. Thus, EMC allows us to capture the endmember 

variability of a specific class. These FSEM are Landsat 5 TM and Landsat 7 ETM+ 

image endmembers extracted from fire-affected pixels sampled from scenes 

covering a controlled vegetation burning area, which is part of the International Long 

Term Ecological Research Network (ILTER) Fire Project at the IBGE Ecological 

Reserve in the surroundings of Brasília, Brazil (Miranda et al., 2010). No Landsat 8 

OLI based image endmember was evaluated, given that its spectral bands are 

slightly different from Landsat 5 TM and Landsat 7 ETM+ bands, yet they have high 

similarities (Li et al., 2013). BASMA was applied to the 32 mosaics individually 

(Figure 2.2), using all six reflective bands and allowing only the FSEM to vary. GV, 

NPV, and Soil endmembers values were kindly shared by the MapBIOMAS project 

(http://mapbiomas.org/, last accessed January 8th, 2019). These endmembers were 

fixed for all the 32 annual models, given that these are not the focus of this 

research. The FSEM that best modeled burned area was identified by iteratively 

testing each one in the spectral library. This step was executed by running BASMA 

models several times for a given year. Each time a unique FSEM was assessed in 

terms of their RMSE values and the extent of modeled char fraction against the 

abovementioned set of 11 reference burned area polygons. Given the fact that 

shadow is an acknowledged error source for burned area (Pereira et al., 1997), it 

was necessary to establish a threshold for the char fraction that would reduce its 

confusion with the inherent shade fraction. A char fraction greater than or equal to 
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98% was defined, aiming to return only those pixels composed by high char fraction 

and consequently enhancing confidence regarding modeled fire scar extent.  

2.2.7 Fire Scars Validation 

Independent validation of the BASMA derived burned area was performed in 

several subsets of the study region. For this, we used a high spatial resolution (2.5 

m) mosaic of Satellite Pour l’Observation de la Terre (SPOT) imagery from August 

2007, kindly shared by The Nature Conservancy Brazil, and 17 RapidEye (spatial 

resolution of 5 m) scenes spanning the years of 2011, 2013, 2014, and 2015 

(Figure 2.3), and collected between June and September (Table 2.1). There are no 

clouds in the SPOT mosaic and a maximum of 10% of cloud cover was set when 

selecting the RapidEye scenes. Parts of the RapidEye images that showed cloud 

cover were disregarded when validating BASMA results. Visual analysis was 

applied to manually delineate fire scars, resulting in a set of 92 polygons 

representing burned area that could be used as a reference. A false-color band 

composite was used for visual interpretation of the SPOT imagery: R: SWIR (band 

4), G; NIR (band 3), B: red (band 2); and the RapidEye imagery: R: red-edge (band 

4), G:NIR (band 5), B: red (band 3). In total, 9,572 ha of manually delineated burned 

area were used as reference to validate the BASMA results (Table 2.1). RapidEye 

imagery was provided by INPE, and the scenes used were based on data 

availability. Unburned reference data were assumed as the complement of the 

visually interpreted polygons representing reference burned area, excluding those 

parts of the imagery with presence of cloud and/or cloud shadows. 
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Figure 2.3. Spatial distribution of the SPOT and RapidEye independent validation subsets over the 
study region. 

Accuracy estimates were calculated based on the agreement and disagreement 

between the BASMA product and references. Given that BASMA produces the 

burned area present in the imagery, which is usually a small fraction of the 

unburned area, the Dice Coefficient (DC) is a more adequate accuracy 

measurement (Chuvieco et al., 2018; Padilla et al., 2017, 2015). DC is defined as 

the probability that a classifier identifies a pixel as burned given that reference 

validation dataset also identifies it as burned (Fleiss, 1981). DC was calculated as 

follows: 
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𝐷𝐶 =
2 ∗ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

2 ∗ 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 																		
(2.3) 

Where Agreement represents the burned area that was mapped by BASMA and 

the reference validation dataset, False Positives represents the burned area that 

was over mapped by BASMA, and False Negatives represents the burned area that 

was under-mapped by BASMA. 

2.2.8 Inter-comparison to other Landsat burned area products 

In addition to the independent validation of the BASMA derived fire scars against 

visually interpreted burned area derived from finer spatial resolution imagery, we 

further assessed the quality of our product by inter-comparing it to supplementary 

burned area products derived from Landsat imagery. Comparison of BA products 

derived from the same imagery using different methods are reported to provide 

additional assessment of the algorithm results. We compared the BASMA results 

against burned area polygons extracted from subsets of four randomly selected 

mosaics out of the 32 annual mosaics in which we tested the algorithm. In order to 

create a database of manually delineated burned area, we visually interpreted these 

subsets of the Landsat mosaics using the R: SWIR1 (band 5), G: NIR (band 4), B: 

red (band 3) false-color band composite. These burned areas polygons were 

delineated over the Amazon and the Cerrado portions of the study region and are 

independent from those used as a reference when testing BASMA parameters. 

Finally, we performed an inter-comparison between results from BASMA and the 

burned area layers consolidated by the Queimadas program managed by the 

Brazilian National Institute for Space Research – INPE (http://prodwww-
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queimadas.dgi.inpe.br/aq30m/#, last accessed January 8th, 2019). This portal hosts 

burned area polygon vectors derived from Landsat based on the calculation of 

Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio Long 

SWIR Variation indexes, a methodology developed by Melchiori et al. (2014). 

Queimadas is the most comprehensive spatial database for fire events in South 

America. Nevertheless, the current limitations of this spatially-explicit database are 

that it only stores layers for 6 years (2011, 2013, 2014, 2015, 2016, and 2017) and 

only includes the Cerrado biome. Thus, it does not cover the entire study region nor 

the full time-series.  

We implemented a site-specific comparison for several Landsat 5 TM and 

Landsat 8 OLI scenes, meaning that a judgement was performed polygon by 

polygon comparing burned area mapped by BASMA to burned area mapped by 

Queimadas. The selection of the validation scenes was based on Queimadas’ 

burned area product availability. As the mosaics covering the entire study region are 

annual dry season composites (June through September), the INPE product does 

not represent the same period, given it is produced scene-by-scene. Therefore, we 

downloaded from the Queimadas database shapefiles representing burned areas 

and the respective Landsat scenes from which they were derived. Only those 

scenes that intersected the study region were selected. We performed a visual 

inventory of the downloaded imagery, aiming to avoid scenes featuring radiometric 

issues and to prioritize those scenes with less than 10% of cloud cover. We 

identified 11 Landsat scenes that met this criterion to further run the BASMA 

algorithm implemented in GEE to delineate burned area. Consecutively, we 
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performed a direct inter-comparison between the burned area modeled by BASMA 

and the burned areas generated by INPE. Inter-comparisons are reported as an 

agreement between BASMA results and the other burned area products. 

2.3 Results 

2.3.1 Spectral Mixture Analysis 

Individual analysis of the 136 FSEM evaluating their corresponding RMSE 

values and burned area extent allowed us to identify a unique FSEM that 

consistently modeled fire-affected pixels over the 32 annual Landsat mosaics. This 

unique FSEM was extracted from the Landsat 5 TM path 221/row 71 from 20th of 

September 2003 scene (Figure 2.4). The application of BASMA produced a set of 

32 layers representing fire scars present on each of the annual Landsat composite 

mosaics. These layers depict the spatiotemporal distribution of fire scars throughout 

the time-series. 

 
Figure 2.4. Endmembers spectra used as reference to run the Burned Area Spectral Mixture 
Analysis (BASMA) algorithm. Green vegetation (GV) is represented by the green line, non-
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photosynthetic vegetation (NPV) is represented by the red line, Soil is represented by blue, and the 
char endmember is represented by the dark line. 

2.3.2 Burned area extent 

It is important to highlight that burned area results reported in this study refer to 

the dry season within each year of the time-series. From the total extent of the study 

site (36,196,320 ha), a total of 11,106,258 ha (30.7%) was mapped as having been 

burned at least once over 32 years (Figure 2.5). The burned area was highest in 

1987, at 891,522 ha. The next largest burned area extents occurred in 1985 

(773,514 ha), 1990 (758,202 ha), and 1986 (573,790 ha). In contrast, 2017, 2013, 

2015 and 2016 had the lowest burned area, with 56,255 ha, 66,310 ha, 97,064 ha, 

and 104,041 ha respectively. The largest fire scar covers an area of 112,496 ha, 

located in the Paresi plateau. Regarding the mean size of fire scars mapped per 

year, 2014 had the highest value (17.69 ha), followed by 2001 (16.95 ha), 2015 

(15.62 ha), and 2003 (15.23 ha). Conversely, the years displaying the lowest 

average burned area size were 1992 (4.93 ha), 1994 (8.32 ha), 1996 (8.50 ha), and 

1995 (8.90 ha). The variance of the burned area was the highest in 1999, with a 

standard deviation equal to 743.55 ha, followed by 2001, with a standard deviation 

of 669.53 ha, 2007 (SD = 609.33 ha) and 2015 (SD = 593.94 ha). The lowest 

standard deviations were found for 1992 (60.55 ha), 1998 (171.06 ha), 2017 

(176.11 ha), and 1988 (187.98 ha). 
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Figure 2.5. Burned area modeled by BASMA over the study region from 1985 to 2017. 

2.3.3 Validation and inter-comparison to other Landsat burned area products 

We validated the BASMA burned area product using independent reference 

layers produced by visual analysis of SPOT and RapidEye imagery for several 

years, returning an average Dice Coefficient equal to 0.86 (Table 2.1). 
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Table 2.1. Validation of burned area mapped by the BASMA algorithm against burned area mapped 
by visual analysis of the SPOT mosaic and the RapidEye imagery. 

Day Month Year Sensor 

Refer
ence  
burn
ed  

area 
[ha] 

BASMA  
burned  

area 
[ha] 

Burned 
area 

 under-
mapped  

by 
BASMA 

[ha] 

Burned  
area 
over  

mapped 
by  

BASMA 
[ha] 

Agreement  
between 
BASMA  

and 
reference 

[ha] 

Dice  
Coefficient 

1
5 August 2007 SPOT                   

3,253  
        

2,980  
                     

457  
                   

185  
           

2,795  0.90 

19, 22 June 
2011 RapidEye                   

1,922  
        

1,943  
                     

282  
                   

303  
           

1,640  0.85 
2,3, 22 August 

1
4 June 

2013 RapidEye                   
1,073  

        
1,107  

                     
129  

                   
163  

              
944  0.87 

3 August 
5 July 

2014 RapidEye                   
1,109  

        
1,269  

                     
107  

                   
267  

           
1,002  0.84 

11, 13 August 
5,16,1

7, 21 July 
2015 RapidEye                   

2,215  
        

2,569  
                     

219  
                   

573  
           

1,996  0.83 
3,9,16 August 

 

Further accuracy assessment was done by inter-comparison of the BASMA 

burned area to the Queimadas 30 m Burned Area product. Table 2.2 displays 

values showing total burned area mapped by each methodology and the estimated 

agreement of the fire scars created with BASMA relative to the Queimadas dataset. 

Table 2.2. Inter-comparison between burned area mapped by BASMA and the INPE/Queimadas 
burned area product. 

Landsat Scene 
sensor_path_row_yyyymmdd 

Queimadas 
Reference  

burned area  
[ha] 

BASMA  
burned  

area [ha] 

Burned 
area 

under-
mapped 

by 
BASMA 

[ha] 

Burned 
area over  

mapped by  
BASMA [ha] 

Agreement 
between BASMA 
and Queimadas 

[ha] (%) 

L5TM_226_69_20110913 17,689 37,419     5,126 24,856   12,564 (71%) 
L5TM_227_69_20110904 1,201 6,413 691 5,904 510 (42%) 
L5TM_228_70_20110623 22,965 56,091   11,979 45,106   10,985 (48%) 
L5TM_228_70_20110725 25,591 46,139     9,045 29,592   16,547 (65%) 
L8OLI_226_69_20130716 1,597 3,177 426 2,005     1,171 (73%) 
L8OLI_226_69_20140804 4,702     4,808     1,193 1,299     3,508 (75%) 
L8OLI_226_69_20150807 771     1,066 323 618 448 (58%) 
L8OLI_226_69_20150823 2,940     4,674     1,242 2,976     1,698 (58%) 
L8OLI_226_70_20130716 6,614     9,743     1,597 4,725     5,017 (76%) 
L8OLI_226_70_20140703 9,173     9,354     3,391 3,572     5,782 (63%) 
L8OLI_228_70_20130730 36,302 90,201   11,577 65,476   24,725 (68%) 
L8OLI_228_70_20140701 42,981 83,384     8,614 49,017   34,367 (80%) 
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Finally, we compared the BASMA fire scars to polygons manually delineated by 

visual analysis of the four randomly selected Landsat annual mosaics, taking 

advantage of the previously mentioned false color composite (R: SWIR1, G: NIR, B: 

red). Values summarized in Table 2.3 report burned area mapped by each product 

and their agreement. 

Table 2.3. Inter-comparison between burned areas mapped by BASMA and manually delineated 
polygons created by visual analysis of the Landsat annual mosaics. 

Year 
Visually 

interpreted burned 
area 
[ha] 

BASMA burned 
area [ha] 

Burned area 
under-mapped 
by BASMA [ha] 

Burned area 
over mapped 

by BASMA [ha] 

Agreement between 
BASMA and 

reference 
[ha] (%) 

1995     29,547    27,735    10,891     9,079       18,655 (63%)  

1997     57,899    50,085    19,969    12,156       37,929 (65%) 

2001   107,051    78,202    32,507      3,658       74,543 (70%)  

2010       9,740      7,522      2,882         664         6,858 (70%) 

2.3.4 Burned Area per Biome 

The Cerrado biome portion of the study region steadily showed more burned 

area than the Amazon forest portion between 1985 and 2017 (Figure 2.6), despite 

the study region having a greater area covered by the Amazon forest (58%) than 

Cerrado (42%). The Cerrado subset shows a higher variability in burned area and 

depicts a negative tendency, accounting for the vast majority of the burning at the 

early stages of human occupation of the study region, whereas the Amazon part 

shows considerably lower burned area for about 10 years (1985 to 1994). Beginning 

in 1995, the annual burned area started to increase within the Amazon portion of 

the study area. In 2002, the proportion of burned area in the Amazon forest surged 

from about 25% to 54% in relation to the burned area in the Cerrado, reaching its 
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peak in 2004 at 60%. After 2004, this proportion declined to rates similar to those 

seen during the first 10 years of the time-series.  

 
Figure 2.6. Temporal distribution of burned area per biome over the 32-year time-series. 

2.3.5 Trends in Burned Area Over the Time-Series 

A linear regression analysis revealed a decreasing trend in burned area over the 

period studied. The identified trend is statistically significant, returning a p-value < 

0.01 (Degrees of Freedom = 27). This trend in the annual burned area is similar to 

the decreasing trend shown in the annual deforestation rate estimated by the 

Brazilian Legal Amazon Monitoring project - PRODES - from INPE 

(http://www.obt.inpe.br/prodes/dashboard/prodes-rates.html#, last accessed 

January 8th, 2019) estimated for the entire territory of Mato Grosso state (Figure 

2.7), a link that has been observed in previous studies (Andela and van der Werf, 

2014; Aragão et al., 2008) . The Pearson’s correlation test was performed between 
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these two variables over the time-series and found a significant linear correlation 

(Correlation Coefficient = 0.51, Degrees of Freedom = 27, p-value < 0.01). Note that 

the historical deforestation data started in 1988 when the PRODES project began. 

Thus, the correlation coefficient was estimated using data from 1988 to 2017.  

 

 
Figure 2.7. Decreasing trend in BASMA-derived burned area and in deforestation rate in the state of 
Mato Grosso measured by PRODES/INPE between 1988 and 2017. 

2.4 Discussion  

Given the multispectral properties of the Landsat sensors, it is often difficult to 

avoid confusion between fire scars and other dark surfaces such as wetlands, 

lakes, and shaded slopes. The application of BASMA over the 32 annual mosaics 

confirmed that water bodies, wetlands, and topographically-shaded areas were the 

major sources of classification confusion with fire scars, as shown in the literature 

(Bastarrika et al., 2011; Pereira et al., 1997; Pereira, 2003; Shimabukuro et al., 
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2009). Fire scars are recognized by their lower reflectance in the visible (VIS), near 

(NIR) and short-wave infrared (SWIR) wavelengths of the electromagnetic 

spectrum. (Pereira, 2003; Veraverbeke et al., 2012). Additionally, fire scar spectral 

characteristics have intrinsic temporal and spatial variability, and despite the variety 

of methods applied to map burned areas in multispectral imagery, there are still 

complications to accurately discriminate char signals from well-known sources of 

confusion (Pereira et al., 1997). Hence, the assembly of a mask excluding lower 

albedo surfaces is a critical step in our methodology, minimizing well-known 

confusions and avoiding manual editing of the final results. 

After identifying the FSEM that best modeled burned area and masking 

confusion sources for all annual mosaics, BASMA takes a few seconds to process a 

Landsat mosaic covering the entire study region, producing a burned area layer 

promptly. The short time it takes to process a large amount of data represents a 

substantial improvement in the implementation of SMA, given GEE’s remarkable 

processing power. As stated by Somers et al. (2011), the key step for applying 

spectral mixture analysis is the ability to identify the best endmember that would 

model the variability of the target being mapped over space and time. Finding the 

endmember that consistently modeled fire scar fractions throughout the time-series 

and over the full extent of the study region was a challenging step, given that each 

endmember of the fire scar spectral library had to be assessed individually. 

Nonetheless, each round of individual endmember evaluation allowed us to discard 

those that did not appropriately modeled burned areas, and therefore the number of 

endmembers was considerably reduced after initial iterations.  
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Another advantageous feature of the tested methodology is the facility to adjust 

the char fraction threshold, allowing the analyst to define the level of confidence to 

be applied to the final product. The ease to modify the fraction threshold combined 

with the efficiency to digitally process a large amount of Landsat data permits a 

researcher to readily generate burned area products in seconds and ultimately 

compare their results. This means that one can be more or less critical when 

delineating burned area, helping to assess different circumstances. This 

characteristic would help, for instance, the calculation of CO2 emissions under 

flexible or rigorous scenarios regarding fire-affected areas. 

We validated the fire scars mapped by BASMA against independent burned 

area products extracted from finer spatial resolution imagery. Layers visually 

interpreted from SPOT (2.5 m) and RapidEye (5 m) imagery for several years were 

used to validate BASMA results, returning an average Dice coefficient of 0.86, lead 

to the conclusion that the methodology tested in this study is sufficient to identify 

and delineate fire scars. Additionally, we compared BASMA results to the 30 m 

Burned Area product generated by the Queimadas project from INPE, and to a set 

of four annual burned area layers produced by visual analysis over subsets of the 

same Landsat mosaics used to generate the SMA product. Agreement with these 

two independent products also derived from Landsat data returned average 

agreement of 64.7% with the Queimadas burned area and 67.2% with the manually 

interpreted burned area. The discrepancies shown in the agreement between 

BASMA and Queimadas products when comparing scene by scene are due to the 
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fact that there are substantial differences between these two products, as discussed 

further in this section. 

Validation of a time-series product representing burned area has proven to be a 

challenging task (Roy and Boschetti, 2009), given the absence of continuous and 

consistent methods for validation and inter-comparison. Humber et al. (2018) 

conducted a study in which they compared four global burned area products 

(Fire_cci, Copernicus Burnt Area, MODIS MCD45A1, and MODIS MCD64A1) and 

found that these products lacked agreement on burn locations or timing, concluding 

that users of burned area products need to account for the inherent nature of 

omission and commission errors embedded in these products. Padilla et al. (2015, 

2014) proposed a statistically rigorous validation method for validation of global 

burned area products, yet it relies on independent reference data derived from 

imagery featuring finer spatial resolution. Hence, comparison to burned area 

products derived from higher spatial resolution imagery is the typical validation 

process for coarser spatial resolution fire-affected products (Smith et al., 2007; Roy 

and Boschetti, 2009; Padilla et al., 2015, 2014). 

Having a high accuracy is one of the major priorities for burned area end-users, 

as reported by Mouillot et al. (2014), who conducted a survey of users of remote 

sensing derived burned area products, and corroborated by Bastarrika et al. (2011). 

Comparing our results to other studies that delineate fire scars using Landsat 

imagery, we have comparable accuracies. Liu et al. (2018) estimated an overall 

accuracy of 79.2 % on their burned area product applying a harmonic model fit to a 

16-year time-series in West African savannas, and Hawbaker et al. (2017) reported 
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an accuracy of 89% on their burned area product for the conterminous United 

States.  

Fire scar extent generated with BASMA consistently estimated more fire-

affected area when compared to the Queimadas product. We rationalize this by the 

fact that BASMA is a sub-pixel approach sensitive to burn heterogeneity and which 

delineates fire scars at a finer scale when compared to the approach used by 

Melchiori et al. (2014), and by the strong aptitude of the FSEM used to model the 

fire scar variability. Burning variability has a strong influence on the ability of a 

method to delineate fire scars (Cochrane, 1998). Fire disturbs vegetation in different 

ways due to local characteristics, such as topography, vegetation structures/types, 

and fuel availability and dryness. Variability in fire spread and intensity is strongly 

influenced by fuel condition and weather, leading to the formation of heterogeneous 

landscapes composed of different degrees of burned patches and unburned islands 

of biomass (Cochrane and Schulze, 1999; Lentile et al., 2006). 

Moreover, sub-pixel analysis has the advantage of being able to model char 

fractions of relatively older fire scars that do not have sufficient signal to trigger 

classification algorithms based on spectral band ratios and/or visual analysis alone. 

An example is shown in Figure 2.8, which displays a false color composite, 

Queimadas 30m Burned Area and the BASMA-derived product. In this figure, a 

considerable agreement between the two fire products is evident. However, there 

are also important differences. For example, a comparison between the products 

shown in the first row, shows areas of pasture that were clearly not burned, yet are 

called burned in the Queimadas product (1), and other areas that were clearly 
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burned yet classified as unburned (2). Although the BASMA product is more 

accurate, it does show some areas that are clearly small-scale burns, yet those 

were not mapped as burned (3). Examples shown in the second and third rows 

clearly illustrate fire scars that were mapped by BASMA but missed by Queimadas 

product (4 & 5).  

 
Figure 2.8. Comparison among fire scars shown in Landsat scenes (R: SWIR1, G: NIR, B: red), 
burned area from the Queimadas database and fire scars delineated by BASMA. Number 1 points to 
an area that was clearly not burned but was mapped as burned by Queimadas; numbers 2, 4 and 5 
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point to areas that were clearly burned but were not mapped by Queimadas; and number 3 points to 
a small-scale area that had burned but not consistently mapped by BASMA. 

Zooming in on the southwestern quadrant of the study region, particularly in the 

grasslands of the Paresi plateau, it is possible to observe several fire scars in which 

dark purple pixels represent either recent burns compared to the date of passage of 

the Landsat sensor or burns that occurred in the late dry season when biomass is 

thoroughly dry, whereas lighter shades of purple represent relatively older fire scars 

and/or burns that occurred in early dry season when biomass is not thoroughly 

cured (Figure 2.9). Further inter-comparison between the BASMA-derived fire scars 

and the Queimadas product for this particular site demonstrates substantial 

agreement, yet some areas that clearly have burned are missed by the Queimadas 

product (6).  
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Figure 2.9. Comparison among fire scars shown in Landsat scenes (R: SWIR1, G: NIR, B: red), 
burned area from the Queimadas database and fire scars delineated by BASMA, for a subset of the 
Paresi plateau in the western part of the study region. Number 6 points to areas that had clearly 
burned but were missed by Queimadas burned area. 

The Paresi plateau is the largest contiguous remnant of grasslands located in 

the state of Mato Grosso, displaying an extensive mosaic of indigenous people 

reserves with a  fire regime grounded in the traditional knowledge regarding the use 

of fire by its historical dwellers (Falleiro, 2011; Falleiro et al., 2016). BASMA 

delineated large fire scars within these indigenous lands, some of them stretching to 

over 70 km in length. In contrast, the Queimadas product underestimates burned 

area within these grassland ecosystems, given that it misses significant fire scars as 

demonstrated in Figure 2.9. The aforementioned author, Rodrigo Falleiro, has 

extensive local experience and knowledge regarding the traditional use of fire by 

indigenous people living in these reserves. He endorsed the spatiotemporal 
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patterns of the SMA-delineated burned area during a personal communication in 

which he had the chance to visually inspect our burned area product for that specific 

area. Falleiro also stressed that the process of reestablishing the traditional fire 

management in this region is resulting in significant ecological benefits, given that it 

is covered by a pyrophilic ecosystem. 

Overall, the burned area modeled by BASMA shows a decreasing trend over the 

32-year time-series (Figure 2.7), a pattern that has been reported by Andela et al. 

(2017). This finding endorses the hypothesis of a pyric transition (Pyne, 2001), 

which suggests that fire activity is highest at the early stages of human occupation 

of a particular region and declines as the population settles. This tendency is 

explained by social characteristics, such as efforts to suppress burning due to the 

threats fire poses to society (health issues, property and economic losses), and by 

environmental characteristics, such as progressive discontinuity of fuel given the 

high level of fragmentation of the remnant vegetation. Inspecting the most 

frequently burned areas identified by the recurrence analysis we observed that a 

substantial extent of the study region displays a relatively high fire recurrence, 

considering that the vegetation covering the study area is an ecotone between 

rainforest and savanna. This suggests that those areas are exposed to higher risk 

of degradation, which often leads to the abandonment of these areas and 

consequently deforestation of new areas. A small extent corresponding to 0.02% of 

the total area was identified as having been burned 32 times over 32 years. 

Carefully analyzing these scattered pixels, we identified that all of them are within 

the grassland ecosystem of the Paresi plateau, an area under traditional fire 
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management that shows the largest fire extents and most recurrent burned areas. 

Therefore, although these may be artifacts in the products, it is not implausible that 

these results could be a product of an actual human-induced fire regime  

2.4.1 BASMA Uncertainties and Limitations 

Given the multi-temporal feature of the annual mosaics, the product reported in 

this study does not provide a complete record of the annual burned area within the 

study region as some burned pixel are likely to be excluded when generating each 

mosaic. Burned pixels could also have been either missed because they occurred 

late in the fire season and were outside of the multi-temporal composite window, or 

they occurred early enough and were masked by vegetation recovery. Thus, further 

exploration on how to build the annual mosaics is necessary, aiming to identify char 

pixels that better express fire-affected areas. In addition, given the extent of the 

study region and resolution of pixels, it is plausible that there are some non-burned 

dark pixels present in the annual mosaic composites (including small scale water 

dams) that were not excluded by the water-topographic shade-wetland mask. Thus, 

these could be likely included as burned area in the final result. 

2.5 Conclusions 

A generic and optimal context-independent method to detect and map fire scars 

is challenging to develop, given the spectral signal captured by spaceborne sensors 

(Pereira et al., 1997). Nevertheless, image endmembers have the advantage of 

having been measured at the same scale as the image data (Quintano et al., 2017). 

Our results demonstrate that BASMA successfully identified char fractions within 

Landsat pixels collected from 1985 to 2017 for an area of 36 million hectares, 
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allowing us to delineate burned areas. Imagery from Landsat 5 TM, Landsat 7 ETM 

+, and Landsat 8 OLI were digitally processed and burned area was consistently 

modeled by a single fire scar image endmember and a single fraction threshold. 

Accuracy assessment done against burned area products extracted from finer 

spatial resolution imagery for several years returned high Dice coefficients (varying 

from 0.83 to 0.90, with 0.86 of average). This is robust evidence that BASMA is an 

effective algorithm to map fire scars for a large extent over long time-series analysis 

using imagery acquired from sensors with similar spatial and spectral resolution. We 

suggest that our method should be tested in other landscapes and sensors. For 

that, the image endmembers must be selected from the image used as input to 

BASMA, assuring that it has the same scale as the imagery covering the study area 

and represents the same fire regime. 

The lack of confidence for accurately mapping fire-affected areas in tropical 

landscapes is considered one of the major sources of error for calculations of 

pyrogenic emissions of carbon monoxide and carbon dioxide (Mouillot et al., 2014). 

Because of that, there is an urgent need for accurate burned area maps that would 

enhance the quality of emissions estimates (Smith et al., 2007). Mapping burned 

area using moderate to high spatial resolution time-series over large extents not 

only has the potential of improving emissions estimates but also allows us to better 

characterize spatiotemporal patterns of fire, given its finer scale results. 

Furthermore, broadly analyzing the burned area database produced by BASMA 

raises the hypothesis that there is a positive correlation between commodities 

prices and the use of fire in this region, as suggested by Morton et al. (2006). 
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However, these are subjects that will be further explored in the next stage of our 

research. 
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3.0 Abstract 

In the Brazilian agricultural frontiers, anthropogenic fire is mainly used to convert 

natural vegetation to agriculture and grazing, to manage pastures and to eliminate 

crop residues. Featuring one of the most active agricultural frontiers in the globe, 

Mato Grosso state features a transition zone between the Amazon rainforest and 

the Cerrado savanna that has experienced intense fire activity over the last 4 

decades. To understand the human use of fire and its relation to land use and land 

cover change (LULCC), it is necessary to analyze changes in fire activity that occur 

with an increase in human occupation. The pyric transition concept proposed by 

Pyne in 2001 predicts that the use of fire is high at the early stages of human 

occupation and decreases when the area is colonized, however, this concept still 

needs to be tested quantitatively. In this study, we combine two fine-scale (30-meter 

spatial resolution) remote sensing derived datasets spanning a long time-series 

(1985 to 2017) to test the pyric transition hypothesis at the tropical forest-savanna 

ecotone in southern Amazon forest. Our results showed clear shifts in burning 

activity, confirming the anthropogenic influence over the pyrogeography of our study 

area. Spatiotemporal patterns of burned area and LULCC demonstrated that fire 

activity increased in the study area as more land was opened for economic use 

during the intermediary period of the analyzed time-series, and that burning 

dramatically decreased towards the end of the analyzed period, mainly driven by 

public policies. 
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3.1 Introduction 

One of the most active deforestation frontiers in the world in recent decades, the 

Arc of Deforestation in Mato Grosso state, Brazil, is marked by frequent and 

widespread anthropogenic fires (Daldegan et al., 2019; Macedo et al., 2012; Morton 

et al., 2006; van der Werf et al., 2009). Pyne (2001) asserts that human-driven fire 

activity in a given region tends to follow a pyric transition. This concept predicts that 

the use of fire increases at the early stages of human occupation and then 

decreases as the region is further developed and industrialized and fuels become 

increasingly fragmented. Furthermore, anthropogenic fire tends to decline due to 

the combination of fire suppression efforts, technology substitution, and increased 

law enforcement (Andela et al., 2017; Bowman et al., 2011; Mann et al., 2016; 

Pyne, 2009).  

People have long used fire to manage lands for food and forage production 

(Cochrane, 2009; Pivello, 2011; Pyne, 1997; Schmidt et al., 2011). Bowman et al. 

(2011) and Roos et al. (2014) affirm that humans not only have direct influence over 

burning patterns via ignition sources and suppression efforts but also modify the 

type, load, structure and continuity of fuel; alter microclimates; and burn biomass in 

different seasons than non-anthropogenic fire regimes. Here we analyze a long-

term (1985 to 2017) and fine-scale (30-meter spatial resolution) spatially-explicit 

database representing burned area and land-use and land-cover change (LULCC) 

for a subset of the active agricultural frontier in Mato Grosso state to characterize 

and quantify anthropogenic fire in relationship to land-use change. Accounting for 

the land-use trajectory over time, which reflects the different colonization stages of 
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the region over the last 30+ years, we propose that fire activity in the most 

productive agricultural part of Mato Grosso state has manifested a pyric transition, 

as predicted by Pyne (2001). 

The study area lies in the transition zone from the Amazon rainforest to the 

Brazilian Cerrado, an area that has high biodiversity and is important for 

conservation (Marques et al., 2019). Featuring intensive human occupation over the 

last four decades, these biomes have been experiencing high deforestation rates 

and increasing fire frequency during the dry season (Aragão et al., 2008; Valeriano 

et al. 2004). A substantial extent of the natural vegetation has been converted 

mainly to agriculture and pasture uses, among other economic activities (Barreto et 

al., 2006; Davidson et al., 2012; Klink and Machado, 2005). The Brazilian National 

Institute for Space Research (INPE) estimates that 46.8% of the Cerrado’s original 

extent has been converted to anthropogenic uses by 2018 

(http://terrabrasilis.dpi.inpe.br, last accessed May 15th, 2019), while Nobre et al. 

(2016) reported that approximately 20% of the Amazon forest has been deforested. 

The flora of the Cerrado biome is adapted to fire (Coutinho, 1977; Coutinho, 

1990) and most of the Cerrado ecosystems are considered fire-dependent 

(pyrophilic: Myers, 2006; Pivello, 2011). In contrast, Amazonian rainforest 

ecosystems are generally considered fire-sensitive (pyrophobic: Myers, 2006; 

Pivello 2011). Once burned, these moist tropical forests are more likely to 

experience recurrent burns (Cochrane et al., 1999; Laurance et al., 2007). Also, 

forest patches that are adjacent to converted lands have their edges exposed to 

more insolation and turbulence, drying out their understory vegetation and litter, 
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making those areas more susceptible to fire (Cochrane, 2003). Grass species 

established in the understory can be a renewable source of fuel for recurrent burns 

(Aragão et al., 2008; Cochrane and Schulze, 1999). 

Normally, the process of land occupation in the Brazilian agricultural frontier 

starts with selective logging of the most valuable timber species, followed by 

additional felling and burning to further clear the land (Cochrane, 2009). Morton et 

al. (2006) suggested that in Mato Grosso soybean expansion tends to occur on 

already-cleared lands. Likewise, Spera et al. (2014) affirmed that soybeans 

commonly expand over lands previously occupied by cattle pastures, and 

consequently additional lands are cleared for livestock. Thus, soybean expansion 

has an indirect impact on deforestation, given that it displaces cattle ranching 

towards the forest frontier. This process is often referred to as land-use 

intensification, where extensive land uses are replaced with intensive production 

(Macedo et al., 2012). In a global assessment of fire activities, Andela et al. (2017) 

assert that trends in regional fire use are directly related to trends in cropland 

expansion or deforestation.  

Human activity is considered to be the primary ignition source in tropical forests, 

savannas, and agricultural systems (Andela et al., 2017). In the Brazilian 

agricultural frontier, fire is mainly used to convert natural vegetation to cropland and 

rangeland, to manage encroachment of shrubs and trees in pastures, and to 

eliminate crop residues (Cochrane, 2009; van der Werf et al., 2009). Fires may 

escape into native vegetation, slowly burning the forest understory or large extents 

of savanna remnants. Thus, anthropogenic fire can be classified into three kinds: 
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Land-clearing; pasture and cropland Maintenance; and Accidental fires (Morton et 

al., 2008; van der Werf et al., 2009). Land-clearing fires, also called slash-and-burn, 

are more intense than the latter two types; flaming combustion can last for many 

hours and smoldering combustion for many days (Cochrane, 2009, 2003). 

Maintenance fires are used to manage shrub encroachment on pastures and 

croplands, preventing natural succession. Accidental fires vary in intensity and 

spread rate depending on the ecosystem. Fire escaping into mature forest tends to 

be understory, low-intensity surface fires that move slowly and consume litter and 

coarse woody debris. Accidental fires in previously disturbed forests can result in 

forest degradation, generally leading to canopy mortality and structure changes 

(Cochrane, 2009; Morton et al., 2011).  

 Andela et al. (2017) documented a decline in fire events and burned area 

globally between 1998 and 2015 but noted that the mechanisms regulating human 

use of fire in diverse ecosystems remain poorly understood. Likewise, Bowman et 

al. (2011) suggested that the pyric transition concept requires additional testing and 

that quantifying the transition from one pyric phase to another is critical for 

understanding the human-fire interaction dynamics and their consequences. For the 

southern Amazon frontier, Morton et al. (2008) asserted that the relationship 

between burning and deforestation remains poorly quantified. In this study, we 

combine two fine-scale remote sensing derived datasets spanning a long time-

series to test the pyric hypothesis at the tropical forest-savanna ecotone in southern 

Amazonia. Following Bowman et al.'s (2011) model of pyric phases, we anticipate 
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observing two pyric transitions: from ‘wildland anthropogenic fire’ to ‘agricultural 

anthropogenic fire’, and then to ‘fire suppression and wildfires’ phase (Figure 3.1). 

 

Figure 3.1. Conceptual scheme representing pyric phases transitions (adapted from Bowman et al., 
2011). 

3.2 Materials and Methods 

3.2.1 Study Area 

The study area spans 108,210 km2, which encompasses the main agricultural 

region in Mato Grosso state (Figure 3.2), a region known for its high agricultural 

yields and for some of the municipalities included in the Brazilian Ministry of the 

Environment’s Deforestation Black List (MMA, 2013). It is split between the Amazon 

biome (69,019 km2 - 64%) and the Cerrado biome (39,191 km2 - 36%). 
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Figure 3.2. The study area covers the main agricultural lands in Mato Grosso state, Brazil, an area 
known for high deforestation rates over the last 4 decades and for high occurrence of anthropogenic 
fire. Study region corner coordinates are: -11.0° S, -57.0° W; -14.0° S, -54.0° W, respectively. 

The Amazon-Cerrado transition zone is the world’s largest tropical ecotone 

(Marques et al., 2019), characterized by well-marked seasons, nutrient-carbon 

hypercycling and the tendency to show faster mortality rates and stem recruitment 

compared to core areas of the Amazon forest (Marques et al., 2019). Most of the 

study area receives a relatively similar amount of rain (Figure 3.3, Funk et al., 

2015), mainly distributed over a well-defined wet season (October to May: Grimm, 

2011). Ackerly et al. (1989) and Marques et al. (2019) describe the transition zone 

from the Amazon forest to the Cerrado biome as a complex vegetational mosaic of 

varying width, exhibiting meanders and intrusions of savannas and forest. This 
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ecotone is composed of a mixture of vegetation types from both biomes: the 

rainforest increasingly limited to major river valleys at lower precipitation, and 

savannas spread over the relatively higher elevation plateaus. Ackerly et al. (1989) 

also highlight the influence of fire on maintaining the marked transition between 

these two biomes. 

 

Figure 3.3. Mean annual precipitation for the study area estimated using the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS) data for the period from 1985 to 2017.  

Climate has a direct relationship to fire occurrence in a region, exerting a 

dominant control on burning activity by regulating vegetation productivity and fuel 

moisture (Andela et al., 2017; Scott et al. 2014). Vegetation grows during the wet 

season and in the dry season its biomass potentially becomes available fuel. The 
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climate in Mato Grosso state is characterized for having two well-defined seasons: a 

rainy season that lasts for about seven months (October to May) and a dry season 

that normally lasts for around 5 months (June to September: Grimm, 2011). The 

synergistic interaction of reduced rainfall and anthropogenic disturbances, such as 

deforestation and forest degradation, significantly impact the number of fire events 

in the Amazon-Cerrado transition zone (Davidson et al., 2012).  

Human occupation of the study area strengthened during the mid-1970’s with 

the opening of the Cuiabá-Santarém Highway (BR-163) – Figure 3.2, which 

crosses the region in the South-North direction (Fearnside, 2007; Margarit, 2013; 

Rosa et al., 2016). The Federal Government encouraged and supported 

colonization programs along the BR-163, mostly attracting people from southern 

Brazil to Mato Grosso state in search of land for agricultural production (Margarit, 

2013; Rosa et al., 2016); several settlements founded during the 1970’s became 

towns in late 1980’s and early 1990’s, such as Claudia, Lucas do Rio Verde, Santa 

Carmen, Sinop, and Vera. By 1985, 11.4% (12,325 km2) of the study area was 

converted to anthropogenic land uses (Project MapBiomas, 2019). Given the 

relative proximity to urban centers such as Cuiabá, colonization started in the 

Cerrado portion of the study area, moving north towards the Amazon, a process 

that is still occurring (Escada et al., 2009; Margarit, 2013; Pinheiro et al., 2016). 
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Figure 3.4. Total, urban and rural population growth in the Mato Grosso state from 1960 to 2010 
(IBGE, 2011). 

Population in Mato Grosso state increased considerably during the last 5 

decades (IBGE, 2011). However, the observed population increase occurred mostly 

in urban areas, whereas population in rural areas has remained relatively stable 

since the 1980’s (Figure 3.4). At the same time, land cover in the study area went 

through an intense change driven by land-use intensification, having a substantial 

fraction of its extent converted from natural vegetation to anthropogenic land-use 

(Figure 3.5, Project MapBiomas, 2019). 
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Figure 3.5. Trajectory of land use and land cover (LULCC) classes showing the increase of human 
occupation over the 32-year time-series in the study area (Project MapBiomas, 2019). 

3.2.2 Burned Area and Land Use and Land Cover (LULCC) Datasets 

Daldegan et al. (2019) developed the Burned Area Spectral Mixture Analysis 

(BASMA) algorithm implemented in the Google Earth Engine cloud-computing 

platform (Gorelick et al., 2017) to efficiently and accurately delineate fire-affected 

areas. A 32-year (1985 and 2017) time-series of Landsat imagery covering 

approximately 40% of Mato Grosso state was digitally processed using BASMA to 

map annual dry-season burned area. Accuracy assessment of the burned areas 

delineated by BASMA compared to an independent burned area reference dataset 

returned an average Dice coefficient of 0.86, indicating a high map accuracy.  

In a separate effort, the MapBiomas project 

(http://mapbiomas.org/pages/about/products, last accessed in May 15th, 2019) 

generated LULCC annual layers derived from Landsat data for the entire Brazilian 
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territory, covering the same period (1985 and 2017). The MapBiomas methodology 

uses training samples acquired from temporally stable LULCC classes as input into 

a random forest classifier, which is followed by spatial and temporal filters to 

remove classification noises. LULCC layers produced by MapBiomas feature 14 

different classes of land use, with accuracy assessment indicating an overall 

accuracy above 90% in the Amazon region and approximately 80% for the Cerrado 

region. For further detailed information on the methodology used to generate the 

LULCC layers, see the MapBiomas General Handbook (2018). In this analysis, we 

aggregated the original classes of the MapBiomas product into two classes: Native 

Vegetation and Anthropogenic Use (Table 3.1). The year of 2012 was excluded 

from the analysis, given that it lacks high-quality Landsat imagery. 

Table 3.1. MapBiomas original LULCC classes regrouped into two main classes: Native Vegetation 
and Anthropogenic Use 

MapBiomas 
Original Classes 

Regrouped 
Classes 

Forest Formation, Grassland Formation, Non-Forest Natural 
Formation, Other Non-Forest Natural Formation, Savanna Formation, 
Wetland 

Native Vegetation 

Agriculture, Annual and Perennial Crop, Farming, Forest Plantation, 
Mining, Mosaic of Agriculture and Pasture, Pasture, Semi-Perennial 
Crop 

Anthropogenic Use 

 

The annual layers representing burned area and LULCC were derived from the 

same Landsat imagery collection stored in Google Earth Engine, thus, these two 

datasets were produced using the same coordinate reference system. Further, we 

performed a visual inspection of the placement between the BA and LULCC 

datasets, detecting that their grids are perfectly aligned. 
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3.2.3 Fire classification 

To classify anthropogenic fires into Accidental, Land-clearing and Maintenance, 

we needed to make some assumptions regarding the data used as input in this 

study. The burned area dataset produced using the BASMA algorithm (Daldegan et 

al., 2019) used multitemporal Landsat mosaics covering the June-September dry-

season when the chance of lightning-induced ignition is minimal. Thus, we assume 

that all fire scars in this geospatial dataset are from anthropogenic fire. 

The LULCC layers produced by the MapBiomas project is a unique fine-scale 

spatially-explicit dataset representing land use classes for the Amazon and the 

Cerrado biomes over 30+ years. By reorganizing the original 14 classes into only 

two land use categories (Native Vegetation and Anthropogenic Use), we assume 

that the MapBiomas product is correctly representing this binary classification within 

the study area. Also, it is critical to stress that the MapBiomas products does not 

distinguish primary from secondary or degraded forest, therefore these classes are 

not assessed in this study. 

 Morton et al. (2011) suggest that satellite observations spanning a three-year 

time-series could potentially be used to distinguish different disturbance activities 

occurring in the southern Amazonian region. Additionally, Morton et al. (2011, 2008, 

2006) documented that the process of forest conversion in the study area is often 

completed in less than one year. Accounting for the dynamic trajectory of the land 

use over time, we developed a conceptual model that uses a three-year rule to 

classify the anthropogenic use of fire (Table 3.2). The LULCC class of a given 

burned area in the current year of the burning (BALandUse in t) is compared to its 
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LULCC class in the previous year of burning (BALandUse in t-1) and to its LULCC class 

in the following year of burning (BALandUse in t+1). Integrating burned area maps and 

LULCC maps allowed us to assign burned cells to one of the three fire types 

annually over the 32-year time-series. The development of such a conceptual model 

allows us to systematically investigate the two-way relationship between LULCC 

and fire activity at the landscape scale, observing changes in vegetation cover and 

the land use mosaic (Eva and Lambin, 2000). 

Table 3.2. Three-year rule conceptual model used to classify the anthropogenic use of fire for a 
given burned area.  

Land-Use and Land-Cover Change (LULCC) Trajectory   
LULCC Class of a 

Burned Area in the 
Previous Year of Burning 

(t-1) 

LULCC Class of a 
Burned Area in the Year 

of Burning (t) 

LULCC Class of a 
Burned Area in the 

Following Year of Burning 
(t+1) 

 Anthropogenic 
Use of Fire 

Native Vegetation Native Vegetation Native Vegetation → Accidental 
Native Vegetation Native Vegetation Anthropogenic Use → Land-clearing 

Native Vegetation Anthropogenic Use Native Vegetation → Land-clearing 

Native Vegetation Anthropogenic Use Anthropogenic Use → Land-clearing 
Anthropogenic Use  Native Vegetation Native Vegetation → Maintenance  

Anthropogenic Use Native Vegetation Anthropogenic Use → Maintenance 

Anthropogenic Use Anthropogenic Use Native Vegetation → Maintenance 

Anthropogenic Use Anthropogenic Use Anthropogenic Use → Maintenance 

 

Accidental fires escaping into mature forest normally tend to be slow-moving 

and low-intensity understory surface fires that consume litter and coarse woody 

debris (Cochrane, 2003), thus burned patches have the chance to fully recover; 

Land-clearing fires have a clear land use trajectory path; Maintenance fires are 

used in already opened lands to clear successional vegetation (van der Werf et al., 

2009). 

Geoprocessing analyses were performed using QGIS 3.8 software (QGIS, 

2019). In a first step, corresponding annual burned area and LULCC layers were 
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intersected to allow the identification of the land use classes that burned in each 

year. Next, the layer representing burned area for a given year 𝑡 was intersected 

with LULCC layers from years 𝑡 − 1 and 𝑡 + 1. Performing these three intersect 

geoprocessing tasks allowed us to characterize the land use trajectory of each 

individual polygon representing burned area over three years. Ultimately, 

descriptive statistics were estimated and summarized for each anthropogenic fire 

category. 

3.3 Results 

3.3.1 Burned area spatiotemporal distribution  

Three distinct phases of the human use of fire are evident (Figure 3.6). During 

the early stages of the time series (1985-1992), maintenance fires were the 

dominant type of fire, given the fraction of the landscape that was already converted 

to anthropogenic land-uses prior to 1985. Land-clearing fires dominated between 

1993 and 2004. Fire use decreased substantially towards the end of the period, 

especially after 2013. 

Accidental fire consistently shows the lowest amount of burned area over the 

time-series, except for two years in the beginning of the period (1985 and 1987) 

and, most importantly, in 2010, when it burned more area than the other two kind of 

fires combined. Maintenance fire has a bimodal distribution, showing high values in 

1985, 1987, 1988, and 1990, followed by three years of relatively modest figures 

(1991—1993), then by a large increase for a 10-year period (1995—2004). Land-

clearing fires were most extensive from 1985 to 1987 and then from 1997 to 2004, 

reaching 80,000 ha in 2003. Probably, the most noticeable feature shown in Figure 
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3.6 is that all classes of fire sharply decreased after 2005, displaying low values 

consistently from 2013 to 2017. 

 
Figure 3.6. Total area burned by each of the three kinds of anthropogenic fire use from 1985 to 2017 
for the study area. The year of 2012 was excluded from the analysis, given that it lacks high-quality 
Landsat imagery. 

Accidental fire was concentrated in the Cerrado portion of the study area, 

spanning over its southernmost part. Additionally, two small clusters of Accidental 

fire can be observed, one in the center close to the northernmost portion of the 

Amazon-Cerrado boundary, and one in the north-west (Figure 3.7). Land-clearing 

and Maintenance fires are spread all over the study area, showing a broad south-

north distribution (Figures 3.8 and 3.9). We could also observe that burned areas 

due to Land-clearing or Maintenance fires tend to have a regular shape, whereas 

areas affected by Accidental fire tend to show more irregular spatial patterns. 
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Figure 3.7. Spatial distribution of accidental fire mapped over the 32-year time-series, split into the 
Amazon and the Cerrado subsets of the study area. 
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Figure 3.8. Spatial distribution of land-clearing fire mapped over the 32-year time-series, split into 
the Amazon and the Cerrado subsets of the study area. 

 
Figure 3.9. Spatial distribution of maintenance fire mapped over the 32-year time-series, split into 
the Amazon and the Cerrado subsets of the study area. 
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3.3.2 Burned area spatiotemporal distribution per biome 

Table 3 presents the overall results of anthropogenic use of fire over the 32-

year time-series per biome. Accidental fire consistently shows higher values in the 

Cerrado portion of the study area than its Amazon subset. Burned area due to 

Land-clearing fire has high values in the Cerrado subset of the study area from 

1985 until 1995. Starting in 1996, this kind of fire burns larger areas in the Amazon 

subset for a period of 10 years, when this trend is markedly interrupted. 

Maintenance fire is clearly concentrated in the Cerrado portion of the study area 

during the first one-third of the time-series, similar to the Land-clearing fire 

distribution. Starting in 1996, this type of fire use steadily increases, showing 

consistent higher values in the Amazon share for the remaining period of the time-

series (Figure 3.10). 

Table 3.3. Anthropogenic use of fire over the 32-year time-series per biome: overall burned area in 
hectares, percent of the study area per biome subset burned and percent of the total study area 
extent burned. 

Use of Fire Biome 
Burned  

Area 
[ha] 

% of the 
Study Area 

per  
Biome 
Subset 
Burned 

% of the  
Total      

Study Area  
Burned 

Accidental Amazon            25,424  0.37 0.23 
Cerrado          144,241  3.68 1.33 

Land-clearing Amazon          283,327  2.62 2.62 
Cerrado          221,944  5.66 2.05 

Maintenance Amazon          311,845  4.52 2.88 
Cerrado          247,089  6.30 2.28 
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Figure 3.10. Temporal distribution of the three kinds of anthropogenic fire use split into the Amazon 
and the Cerrado subsets of the study area. Orange shaded area represents anthropogenic fire use in 
the Cerrado and Green shaded area represents anthropogenic fire use in the Amazon subset of the 
study area. 
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3.4 Discussion 

Humans have modified fire regimes pervasively, including substantially 

increasing ignition sources, changing the fire season, and modifying fuel abundance 

and structure. To clearly identify anthropogenic influence over the pyrogeography of 

a given region it is necessary to demonstrate that changes in fire regime co-occur in 

space and time with changes in human occupation of that same region. Such 

changes in fire regime could be a result of colonization of new lands and increased 

fragmentation of the landscape, as well as economic, political, and technological 

advancements, as suggested by Bowman et al. (2011).  

In the present study we analyzed burned area and LULCC spatially-explicit 

datasets derived from Landsat imagery to characterize fire activity during the annual 

dry season in a 108,210 km2 extent spanning the Amazon-Cerrado transition zone. 

The anthropogenic use of fire in the selected subset of the Brazilian agricultural 

frontier shows clear spatiotemporal patterns over the time-series analyzed: 

Accidental fire is the only kind of fire that showed a downward trend over the entire 

period; Land-clearing fire peaked during the 2001—2004 period, an observation that 

is consistent with deforestation trends reported in previous studies (Diniz et al., 

2015; Morton et al., 2008, 2006); Maintenance fire showed a bimodal distribution, 

peaking during the early human occupation of the study area (prior to 1991) and 

again during the period characterized by land use intensification due to increased 

commodities cultivation (1993 to 2004). Thus, our results clearly demonstrate the 

anthropogenic influence over the pyrogeography of our study area, recognizing 

marked shifts in burning activity in space and time in parallel to increasing human 
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occupation. Further, we quantitatively characterized two pyric phase transitions: 

from ‘wildland anthropogenic fire’ to ‘agricultural anthropogenic fire’, and then to ‘fire 

suppression and wildfires’ phase, as suggested by Bowman et al. (2011), 

confirming our pyric transition hypothesis. 

We can identify Land-clearing burning with confidence given that it changes 

forest and savanna covered lands to other persistent land uses. Maintenance fire is 

also readily identifiable, given its occurrence in previously converted areas. 

Accidental fire is the least apparent type of anthropogenic fire, because it may be 

obscured by overstory vegetation or post-fire recovery. Relatively large-scale 

structural changes in the forest resulting from fire remain noticeable for long periods 

after burning, whereas canopy recovery removes the evidences of understory fire 

disturbance within one year (Asner et al., 2004.; Morton et al., 2011; Souza et al., 

2005). This is further complicated given the subtle changes in surface reflectance 

related to understory burning, which could be obscured by surviving canopy trees 

and undergrowth vegetation (Morton et al., 2011), hindering clear remote sensing 

observations. 

Generally, it is assumed that there is a direct relationship between human 

population and ignition density in a given region. However, this relationship is not 

necessarily linear. Population doubled from 1980 to 2010 in Mato Grosso state 

(IBGE, 2011) but the share of rural population remained relatively stable over this 

period, even slightly declining through the 1990s (Figure 3.4). Andela et al. (2017) 

observed that the spatiotemporal distribution of agricultural activity can influence 

burned area in a manner not predictable by population alone. Given that our study 
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area is dominated by agricultural lands with no large urban centers nearby, a more 

nuanced characterization of burns that recognizes different types of fire use helps to 

explain temporal changes in burned area over the 32-year time-series. Macedo et 

al. (2012) showed, for a similar subset of Mato Grosso state, that cropland 

substantially increased during the early 2000s, with the overall planted area of 

soybean doubling. At the same time, crop areas more than tripled during the same 

period within the Amazon southern frontier. 

The bimodal pattern observed for Maintenance fires reflects the colonization 

history of the study area. Rudel et al. (2009) argue that before 1990 deforestation in 

the Amazon basin was due to smallholder colonists supported by government 

colonization programs that built roads and incentivized the occupation of inner 

lands, providing access to previously isolated areas. Careful observation of the 

early years of our results show the predominance of fire use to manage already 

opened lands, and relatively less occurrence of fires due to land-clearing activities. 

This pattern is even more obvious in the Cerrado part of the study area, where 

human occupation first occurred.  

Starting in the early 1990s, private agricultural enterprise-driven deforestation 

arose to respond to increasing demand for agricultural commodities, such as soy 

beans and beef, mainly linked to international markets. This development drove 

human occupation to the northern part of the study area into lands covered with 

rainforest (Rudel et al., 2009). The spatial patterns of deforestation also changed as 

a result of the different occupation process. Extensive level areas suitable for 

mechanized agriculture were deforested following the enterprise-driven occupation.  
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As described by Spera et al. (2014), crop production commonly expands over lands 

previously occupied by cattle pastures, indirectly driving new deforestation by 

displacing cattle ranching towards the forest frontier. Thus, the second peak of 

Maintenance fire was a result of the land-use intensification of previously opened 

lands.  

Assuming the use of fire to open new land as a proxy, our results suggest that 

this land use intensification started in mid-1990’s and lasted until mid-2000’s, a 

period when Land-clearing fire was predominant (Figure 3.5). Several studies 

(Macedo et al., 2012; Morton et al., 2006; Rudel et al., 2009) describe how the 

agricultural mechanization in this region around the early 2000’s altered the nature 

of deforestation activities, observing that forest clearing for mechanized cropland 

was, on average, larger than clearing for livestock production. Specifically, use of 

fire peaked in the Amazon sub-area between 1997 and 2004, as more land was 

converted for agricultural activities, even without a substantial increase in rural 

population. Rudel et al. (2009) observed that slight increases in rural population 

density in the Brazilian Amazon are associated with high rates of deforestation. This 

surge in fire activity was driven by commodities prices, as previously reported by 

Morton et al. (2006) and Macedo et al. (2012). 

 Andela et al. (2017) suggest that the distribution of agricultural activities has a 

major role in explaining burned area over savannas and grasslands. At the same 

time, population density and agricultural activities are positively correlated with 

spatial patterns of burned area in humid tropical forests, as fire is used for cropland 

maintenance and for opening new lands, producing a sharp rise in fire use. With the 
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progressive human occupation in the landscape and more investment towards the 

agribusiness sector, fire activity will be reduced in both savannas and forests. This 

is most likely a result from improved land management using mechanized 

techniques and a social demand for increase in fire suppression.  

The sharp decline in anthropogenic use of fire observed after 2005 mirrors the 

reduction in deforestation rates also observed for overall deforestation in the Legal 

Amazon as measured by the Program for Estimation of Amazon Deforestation 

(PRODES: Valeriano et al., 2004) and observed by other studies (Morton et al., 

2013; Souza, Jr et al., 2013). The decreasing trend of fire activity starting in 2005 is 

believed to be linked to socio-political circumstances, such as international 

pressures regarding high rates of deforestation in the Amazon rainforest, as 

observed by Macedo et al. (2012). More specifically, the observed reduction in 

deforestation rates can be directly related to the improvement in the remote sensing 

surveillance systems designed to identify clear cutting within the forest (Morton et 

al., 2013). For instance, in 2004, the Brazilian federal government established the 

Federal Action Plan for Prevention and Control of Deforestation in the Amazon, with 

the objective to drastically reduce deforestation rates. Among the actions taken, 

INPE launched the Amazon Near Real-Time Deforestation Detection System – 

DETER, which relied on high temporal resolution (i.e. MODIS) imagery to detect 

occurrence of clear cutting and forest degradation (Diniz et al., 2015). Furthermore, 

the substantial reduction in anthropogenic use of fire observed for the last five years 

of the time-series (2013 – 2017) is most likely due to the Rural Environmental 

Registry (CAR) policy. CAR was established by the revised Forest Code approved 
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in May of 2012 and aims to enable the registration of all rural properties present in 

the Brazilian territory, improving transparency and environmental compliance by the 

agribusiness sector (Soares-Filho et al., 2014). Table 3.4 below summarizes the 

previously reported major land use phases that occurred in the study area and 

respective references, and Figure 3.11 shows the period of land use intensification 

and the public policies designed to monitor deforestation. 

Table 3.4. Phases of human occupation of the study area previously reported and respective 
references 

Phases of human occupation 
of the study area References 

Land use change prior to 1985 

Fearnside (2006) 
Margarit (2013) 
Project MapBiomas (2019) 
Rosa et al. (2016) 

Smallholder colonists  
vs. 
Enterprise-driven deforestation  

Rudel et al. (2009) 

Land use intensification  

Macedo et al. (2012) 
Morton et al. (2006) 
Rudel et al. (2009) 
Spera et al. (2014) 

Relationship between agricultural activities and 
burnings  

Andela et al. (2017) 
Macedo et al. (2012) 
Morton et al. (2006) 
Morton et al. (2008) 
Morton et al. (2011) 
Morton et al. (2013) 

Declining trend in burnings 

Andela et al. (2017) 
Diniz et al. (2015) 
Morton et al. (2013) 
Souza, Jr. et al. (2013) 
Soares-Filho et al. (2014) 
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Figure 3.11. Overall burned area over the 32-year times-series and the eras of land use change: 
according to our results, land-use intensification started in 1993; in 2004 the Brazilian Institute for 
Space Research (INPE) launched the Near Real-Time Deforestation Monitoring (DETER) project; 
and in 2012 the revised Forest Code established the Rural Environmental Registry (CAR) program, 
which improved transparency and the environmental compliancy of the agribusiness sector. 

3.5 Conclusions 

Spatiotemporal dynamics of burned area and LULCC demonstrated that fire 

activity increased in the study area as more land was opened for economic use 

during the intermediary period of the analyzed time-series, and that burning was 

dramatically reduced towards the end of the period. Therefore, analyzing the 

anthropogenic use of fire in the study area we observed pyric transitions as 

expected: from ‘wildland anthropogenic fire’ to ‘agricultural anthropogenic fire’, and 

then to ‘fire suppression and wildfires’ phase (Bowman et al., 2011). At the very 

beginning of the analyzed time-series, human and natural ignitions co-occurred 

given the low fraction of the landscape modified by anthropogenic forces. Next, fire 
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activity increased dramatically, reflecting the high deforestation rates observed in 

the region, mostly driven by agribusiness interests. And finally, a shift in fire regime 

is noticed due to official deforestation monitoring programs and policies designed to 

incentive environmental compliancy of rural properties. 

Such methodological approach should be tested in other active agricultural 

frontiers in the tropics. Currently, the MATOPIBA region located in the intersection 

of Maranhão, Tocantins, Piauí e Bahia, in central-northeastern Brazil, is foci of 

intensive land use and land cover change (Araújo et al., 2019; Graesser et al., 

2015) offering the opportunity to further test the relationship between 

pyrogeography and anthropogenic activities. 
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4.0 Abstract 

Several studies have proposed that tropical rainforests and savannas exist as 

alternative stable systems controlled by fire. The Amazon-Cerrado transition zone in 

Mato Grosso state, Brazil, features a gradient of climate conditions and biomass 

productivity, leading researchers to assert that this region has all the necessary 

climatic conditions to support only rainforest, attributing the presence of the 

savanna to a high fire frequency. Many tropical fire-dependent ecosystems around 

the globe are thought to burn too frequently under current human-induced fire 

regimes. Although, there is an overall lack of knowledge regarding the nature and 

the ecological appropriateness of present fire frequency in many of those 

environments. To best comprehend how vegetation is responding to contemporary 

fire activity, it is important to characterize in detail the spatiotemporal patterns of 

burns in these pyrophilic ecosystems. 

In this study we use a fine-scale dataset (30 m of spatial resolution) of burned 

areas over a long-term times-series (1985 to 2017) to characterize the 

spatiotemporal patterns of burns in four indigenous lands that span one of the last 

continuous remnant areas of Cerrado in Mato Grosso state. Based on this spatially-

explicit dataset, we created a quantitative baseline describing the current vegetation 

burns practiced by the indigenous people living in the study area. This baseline 

would help to assess how the implementation of an Integrated Fire Management 

plan is changing the use of fire and the vegetation distribution in this region. Further, 

we tested three fire frequency statistical distributions to model the observed fire 

return interval: the continuous and discrete Weibull distribution, and the discrete 
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lognormal distribution. Parameters estimated using a maximum likelihood approach 

indicated that the study area does not have a homogeneous fire regime, 

demonstrating that further studies must be conducted to better quantify the fire 

return interval in this pyrophilic region. Thus, we suggest that subdividing the fire 

frequency modelling by each of the four indigenous lands could potentially return 

more plausible results. 
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4.1 Introduction 

Fire is a natural process that has different levels of influence over many 

terrestrial ecosystems (Cochrane, 2003; Scott et al., 2014). In fire-sensitive 

ecosystems such as the Amazon forest, burning is a major agent of disturbance that 

is capable of extreme modification of landscapes (Fischer & Lindenmayer 2007; 

Lindenmayer et al., 2007). Fire-dependent ecosystems, such as tropical savannas, 

can be cleared of vegetation immediately after burning but return vigorously when 

not subject to recurrent disturbance (e.g., the Cerrado: Coutinho 1990). Myers 

(2006) suggested that many tropical fire-dependent (pyrophilic) ecosystems may be 

burning too frequently, and that there is an overall lack of knowledge regarding the 

nature and the ecological appropriateness of present fire frequency in many of 

those environments. To best understand how vegetation is responding to 

contemporary fire activity, it is important to characterize in detail spatiotemporal 

patterns of burnings in these pyrophilic ecosystems. 

Fire interval distribution, which describes the time distribution of fire recurrence, 

helps to quantify burning activity patterns over time and space in a given area 

(Johnson & Gutssel, 1994; Johnson & Van Wagner, 1985; Oliveira et al., 2013). Fire 

frequency can be interpreted as a stochastic process, given the level of 

indeterminacy related to the timing of burnings (Benali et al., 2017; Bowman et al., 

2009; Polakow and Dunne, 1999). Most studies aiming to characterize fire 

frequency tend to rely on measures of central tendency, whereas probability 

distribution models provide improvements to this type of analysis (Oliveira et al., 

2013; Pereira Júnior et al., 2014). Johnson & Gutssel (1994) described the two-
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parameter Weibull as the most common probability distributions used to model fire-

return interval. Additionally, the authors assert that it is not rare to observe 

multimodal distribution when investigating empirical fire frequency, indicating 

variations of the average burning frequency over time and/or space. Analyzing fire 

activity in a tropical savanna, Oliveira et al. (2013) used the discrete lognormal as 

an alternative probability distribution to model fire frequency in northern Australia. 

They concluded that the discrete lognormal distribution is more suitable for 

landscapes experiencing very high fire frequency. Pereira Júnior et al. (2014) also 

successfully applied the dicrete lognormal statistical distribution to model burning 

frequency in an area of Cerrado in Tocantins state, Brazil. 

Bond et al. (2005) hypothesized that fire has played a major role on shaping 

tropical savannas and limiting rainforest coverage over the globe. Several studies 

have proposed that tropical rainforests and savannas exist as alternative stable 

systems controlled by fire; areas with low burning frequency tend to develop forest 

coverage, whereas areas frequently affected by fire are more likely to be covered by 

savannas (Murphy and Bowman, 2012; Scholes and Archer, 1997; Walker, 1987). 

The Amazon-Cerrado transition zone in Mato Grosso state, Brazil, features a 

gradient of climate conditions and biomass productivity: the north is dominated by 

fire-sensitive rainforest, whereas the south is dominated by fire-prone savanna 

(Pivello, 2011). According to Murphy and Bowman (2012), this region has all the 

necessary climatic conditions to support only rainforest and the authors attribute the 

presence of the savanna to a high fire frequency. 
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Fire is a common disturbance in the Brazilian Cerrado, particularly in grasslands 

ecosystems, which are composed of a thick layer of herbaceous species with 

scattered shrubs and small trees (Coutinho, 1990; Pivello, 2011; Ribeiro & Walter, 

2008). Pivello (2011) asserts that prior to the current anthropogenic colonization the 

Cerrado had an average fire return interval between 10 and 20 years. Paleoecology 

research has shown that fire frequency in Cerrado vegetation has been high for 

thousands of years (Miranda et al., 2010), with charcoal particles indicating that 

burns were common during the period from 32,000 to 3,500 years before present 

(Salgado-Labouriau et al., 1994). Fire has played a major role in determining the 

Cerrado vegetation morphology among other environmental pressures, such as 

strong seasonality and nutrient scarcity in soils (Bond et al., 2005). Several other 

studies also indicate the direct influence of historical fire regimes in shaping the 

Cerrado spatial distribution, structure, composition and ecosystem process (Durigan 

& Ratter, 2016; Miranda et al., 2009; Salgado-Labouriau et al., 1997). Morphological 

and physiological adaptations to fire result in low plant mortality rates and lively 

flowering and sprouting just days or weeks after burning (Scott et al., 2014). Several 

of the Cerrado species display characteristics of fire adaptation (i.e., extensive 

subterranean organs), which are the result of adaptations to post-fire environmental 

conditions, such as the elimination of the necromass and consequent increase in 

availability of nutrients and light at the ground level (Miranda et al. 2010). Natural 

wildfires often occur in the Cerrado during the transition from wet-to-dry and dry-to-

wet seasons, mainly caused by lightning, and are considered to be of low intensity 

and low severity (Ramos-Neto & Pivello 2000).  
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The subset of the Amazon-Cerrado transition zone in the western Mato Grosso 

state (Figure 4.1) situated in the Paresi plateau hosts several indigenous lands that 

are home for the Haliti-Paresi ethnic group. This plateau is mostly covered by 

grasslands (Project MapBiomas, 2019) and features a remarkable latitudinal 

savanna-rainforest transition zone (Marques et al., 2019). During the wet season 

(October to April: Grimm, 2011) there is a robust growth of biomass, which cures 

rapidly over the dry season (May to September: Grimm, 2011). Annual fire 

recurrence is common given the amount of precipitation that falls in the region, the 

high productivity of the grassland ecosystems, and the traditional use of fire by the 

indigenous people (Falleiro et al, 2016). Pyne (2014) asserts that “the advent of 

anthropogenic fire was a revolutionary event in Earth history,” given that fire had to 

no longer depend on natural ignition sources to occur. Pivello (2011) reported that 

human-driven fires have been influencing the Cerrado for at least 4,000 years, 

intensifying in recent periods due to the prevalence of late-dry season burnings. 

The Haliti-Paresi people have traditionally used fire over the centuries for 

several reasons: to manage some of the Cerrado ecosystems by controlling the 

amount of biomass; for hunting activities; to open and prepare land for subsistence 

farming; to stimulate the fructification of species of interest; for communication 

purpose; to protect the communities (aldeias) by keeping the surroundings of the 

houses and communal areas clear of vegetation and free of venomous animals 

(Moura et al., 2019). These customary uses of fire are grounded in traditional 

knowledge and closely related to signals from nature: lunar phases, dry and wet 

seasons, plant phenology (Falleiro, 2011; Falleiro et al., 2016; Moura et al., 2019). 
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However, the traditional knowledge that guides burning activities is quickly fading, 

given that the younger Haliti-Paresi generations are not interested in learning and 

keeping the traditions of their culture (Moura et al., 2019). Over the last decades, 

burnings were not as closely tied to natural signals and fire was used during 

inappropriate seasons, resulting in very large burned areas that generally cannot be 

controlled or extinguished (Moura et al., 2019; Santana, 2017).  

In the early 2010’s, the Brazilian National Center for Prevention and Fighting 

Forest Fires (PrevFogo: https://www.ibama.gov.br/prevfogo, last accessed in July 

22nd, 2019) created a project that aims to recover and catalog the traditional 

knowledge regarding the use of fire in several indigenous lands in Brazil (Moura et 

al., 2019). Falleiro (2011) and Falleiro et al. (2016) describe in detail how this 

process took place in several indigenous lands located in western Mato Grosso 

state. One of the most important actions of this project began in 2017 with the 

implementation of an Integrated Fire Management plan in some indigenous lands of 

the Paresi plateau. The concept of Integrated Fire Management (Myers, 2006) 

involves the integration of scientific and social knowledge with fire management 

technologies at multiple levels, aiming to address fire issues that account for 

environmental, ecological, cultural, socio-economic and political interactions. The 

Integrated Fire Management concept is composed of basic community perceptions 

regarding fire: Fire Management (fire prevention, fire suppression, & fire use); Fire 

Ecology (key ecological attributes of fire); and Fire Culture (socio-economic 

necessities & impacts). Therefore, fire management decisions in a given region 

should consider the ecological and socio-economic/cultural context (Myers, 2006). 
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The main focus of Integrated Fire Management plan implemented on the Paresi 

plateau is to avoid very large individual burned areas. PrevFogo is working with the 

Haliti-Paresi people to routinely burn several small patches of vegetation each year 

and it is expected that the execution of this plan would lead to a shift to denser 

vegetation ecosystems (from grasslands to savannas) in the medium to long term 

(Rodrigo Falleiro, personal communication). 

 Here we use a fine-scale dataset (30 m of spatial resolution) of burned areas 

over a long-term times-series (1985 to 2017) to analyze how frequently fire events 

occur in the Paresi plateau, one of the last continuous remnant areas of Cerrado in 

Mato Grosso state. The aim of the study is to characterize the spatiotemporal 

distribution of burned area patterns prior to establishment of the Integrated Fire 

Management plan. Our specific objective is to identify a fire frequency statistical 

model that best describes the observed burning recurrence. Characterizing the 

spatiotemporal patterns of burns and creating a quantitative baseline of the fire 

frequency prior to 2017 would help to evaluate how the Integrated Fire Management 

plan is changing the use of fire and the vegetation distribution in this region. 

4.2 Material and Methods  

4.2.1 Study Area 

The study area (Figure 4.1) is composed of four indigenous lands that occupy 

an extent of approximately 1.2 million hectares on the Paresi plateau, located in the 

western part Mato Grosso state, Brazil -Table 4.1. Population density is low, ~ 

2,200 indigenous people living in small family groups distributed over 68 

communities (Moura et al., 2019).  
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The Paresi plateau is mostly covered by grasslands that spread over the 

extensive level flatlands; savannas and forests are concentrated along the valleys 

and rivers, respectively. There are also relatively localized croplands (Figure 4.1: 

Project MapBiomas, 2019). Also noticeable is a latitudinal vegetation gradient 

characterized by a complex Amazon-Cerrado transition zone that is composed of 

meanders and intrusions between dense forest and savanna vegetation types 

(Ackerly et al., 1989; Marques et. al., 2019). The climate of the region features a 

well-marked dry and wet season: precipitation is concentrated during the period 

from October to April, and the dry season lasts from May to September (Grimm, 

2011), when fire risk increases over time due to dry biomass available to burn, 

warm temperatures, low relative humidity, and the constant source of ignition 

coming from anthropogenic activities 

Table 4.1. Indigenous lands that encompass the study area. 

 
 
 
 
 
 

 

Indigenous Lands Area [ha] 
Tirecatinga (1) 130,880 
Utiariti (2) 409,673 
Paresi (3) 562,560 
Juininha (4) 70,460 
Total Area 1,173,572 
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Figure 4.1. Study area showing the location of the four indigenous lands that occupy the Paresi 
plateau in west Mato Grosso state, Brazil (1- Tirecatinga, 2- Utiariti, 3- Paresi, 4- Juininha) and four 
major land cover/land use classes. 

Vegetation burns are common within the indigenous lands located in the Paresi 

plateau (Falleiro et al., 2016), although extensive land cover change is rare (Morton 

et al., 2008; Nepstad et al., 2006).  

4.2.2 Burned Area 

The annual burned area (BA) dataset for the period 1985—2017 period was 

produced using the Burned Area Spectral Mixture Analysis algorithm (BASMA: 

Daldegan et al., 2019) applied to imagery from the Landsat 5 Thematic Mapper 

(TM), Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Operational 

Land Imager (OLI) sensors. The year 2012 is missing because there is no high-
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quality imagery available from the Landsat sensors. BASMA is a semi-automatic 

algorithm designed to efficiently and accurately delineate burned area present in 

multispectral images. This fine-scale (30m-spatial resolution) spatially-explicit BA 

dataset covers the entire study area and is assumed to represent only 

anthropogenic fire events, given that the multitemporal composite mosaics used to 

run the BASMA algorithm cover the period from June to September, when the 

probability of lightning is minimal. 

Descriptive statistics (Count of Annual Burned Patches, Annual Maximum 

Burned Patch Size, Annual Burned Patch Size, Annual Mean Burned Patch Size, 

Annual Burned Patch Size Standard Deviation) were estimated on an annual basis 

and are presented in Table 4.2. Fire recurrence analysis was performed in ArgGIS 

10.6.1 (ESRI, 2019) by calculating the cell statistics derived from the 32 annual 

burned area layers. In this step, every annual burned area layer was stacked 

together with a perfect grid alignment: fire-affected pixel had value set to 1, and 

non-burned pixel to 0. By adding fire-affected pixels across the 32-year time-series, 

it was possible to estimate how frequently each pixel burned over the period.  

4.2.3 Fire Rotation Period 

The overall fire frequency was assessed with the fire rotation period (FRP), 

which is the length of time necessary to burn a region of the same extent as the 

study region (Heinselman, 1973). FRP is calculated by:  

𝐹𝑅𝑃 =
𝑁𝑆	
∑ 	𝐴`			 																													

(4.1) 
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where 𝑁 is the number of years of the time-series; 𝑆 is the area within the study 

area that is vulnerable to burn;	𝐴 is the annual burned area; and Σ is the integration 

of 𝐴 for the period 𝑁 (Pereira Júnior et al., 2014). 

4.2.4 Fire Frequency Modelling 

Fire frequency modeling was performed with the objective of fitting a probability 

distribution curve of survival (that measures time-since-fire) and mortality (that 

measures fire interval: Johnson & Gutssel, 1994; Oliveira et al., 2013; Pereira 

Júnior et al., 2014). The survival and mortality distributions are tied together by the 

hazard of burning 𝜆(𝑡), which is the individual age-specific mortality from burning, 

calculated as the fire interval divided by the time-since-fire distributions (Oliveira et 

al., 2013). We tested three statistical models to characterize fire frequency, 

previously demonstrated to work in other landscapes: the Weibull distribution, in its 

continuous and discrete versions; and the discrete lognormal (Oliveira et al., 2013; 

Pereira Júnior et al., 2014).  

Following the requirements given by Johnson & Gutssel (1994), 100,000 random 

samples (points) were collected to extract fire interval data to estimate the 

probability distribution functions for the study area. No minimum distance constraint 

between points was set, allowing the 100,000 points to be completely randomized. 

The continuous and discrete versions of the Weibull distribution have a shape 

parameter 𝑐 and a scale parameter 𝑏. Likewise, the discrete lognormal distribution 

also has two parameters: 𝜇	is the mean and 𝜎 is the standard deviation of the of the 

random variable’s natural logarithm. Thus, according to the Akaike Information 

Criterion (AIC), these models can be inter-compared in terms of their log-likelihood, 
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with the model best fitting the observed distribution returning the lowest AIC value. 

We used a maximum likelihood approach to estimate the model parameters 

(Johnson & Van Wagner, 1984), which included complete and single-censored fire 

intervals. Below we present the equations of the fundamental distributions applied in 

fire frequency analysis (Oliveira et al., 2013): the cumulative mortality distribution 

𝐹(𝑡), which estimates the probability of a burning occurring before or at time 𝑡; the 

fire interval distribution 𝑓(𝑡), which estimates the probability of a fire occurring in the 

period	𝑡 to 𝑡 + 	𝛥𝑡; the time-since-fire, or survival distribution, 𝐴(𝑡), which estimates 

the probability of a given area going without fire for longer than 𝑡; and the hazard of 

burning 𝜆(𝑡), which estimates the probability of a given area to burn in an interval 

assuming that fire did not occur up to the beginning of the interval. For more details 

on the fundamental equations for fire frequency, see Johnson and Gutsell (1994) 

and Oliveira et al. (2013). 

For the continuous Weibull model, these are the fundamental equations: 

Cumulative mortality, 𝐹(𝑡):  

𝐹(𝑡|𝑐, 𝑏) = 1 − exp g− h
𝑡
𝑏i

j
k , 𝑡 > 0																			(4.2) 

Fire interval, or mortality, 𝑓(𝑡): 

𝑓(𝑡|𝑐, 𝑏) =
𝑐𝑡jmn

𝑏j exp g−h
𝑡
𝑏i

j
k ,						𝑡 > 0								(4.3) 

Time-since-fire, or survival, 𝐴(𝑡):  

𝐴(𝑡|𝑐, 𝑏) = exp g− h
𝑡
𝑏i

j
k , 𝑡 > 0																									(4.4) 

Hazard of burning, 𝜆(𝑡): 
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𝜆(𝑡|𝑐, 𝑏) =
𝑐𝑡jmn

𝑏j , 𝑡 > 0																																							(4.5) 

where 𝑐 is the shape parameter and 𝑏 is the scale parameter. 

For the discrete version of the Weibull model, the fundamental distributions 

are estimated as follows: 

Cumulative mortality, 𝐹(𝑡):  

𝐹(𝑡|𝑐, 𝑏) =

⎩
⎨

⎧1 − 𝑒𝑥 𝑝 t− h
𝑘
𝑏i

j

v		 , 𝑘 ≤ 𝑡	 ≤ 𝑘 + 1, 𝑘 = 1, 2, 3…				(4.6)

			0, t < 1																																																																																													

 

 Fire interval, or mortality, 𝑓(𝑡): 

𝑓(𝑡|𝜇, 𝜎) =

⎩
⎨

⎧𝑒𝑥 𝑝 t−h
𝑡 − 1
𝑏 i

j

v 		− 𝑒𝑥 𝑝 g−h
𝑡
𝑏i

j
k		 , 𝑡 = 1, 2, 3…			(4.7)

			0, otherwise																																																																																				

 

Time-since-fire, or survival, 𝐴(𝑡): 

𝐴(𝑡|𝑐, 𝑏) = 1 − 𝐹(𝑡|𝑐, 𝑏), 𝑡 > 0																																													(4.8) 

Hazard of burning, 𝜆(𝑡): 

𝜆(𝑡|𝑐, 𝑏) = 1 −
𝑒𝑥 𝑝 g−�𝑡𝑏�

j
k

𝑒𝑥 𝑝 g−�𝑡 − 1𝑏 �
j
k
, 𝑡 = 1, 2, 3…																																			(4.9) 

where 𝑐 is the shape parameter and 𝑏 is the scale parameter. 

Under the discrete lognormal model, the fundamental fire frequency 

distribution functions can be described by the following equations. Parameter 𝜇 ∈ 𝑹	 

(real numbers) and 𝜎 ∈ 𝑹+ (positive real numbers, Oliveira et al. 2013): 

Cumulative mortality 𝐹(𝑡):  
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𝐹(𝑡|𝜇, 𝜎) =

⎩
⎨

⎧ 𝜙	 �
	(ln(𝑘) − 	𝜇)

𝜎 		� , 𝑘 ≤ 𝑡 < 𝑘 + 1		, 𝑘 = 1,2…

			0, otherwise																																																																																				

(4.10) 

Fire interval, or mortality, 𝑓(𝑡): 

𝑓(𝑡|𝜇, 𝜎) = �				∅ �
ln(𝑡) − 𝜇

𝜎
� − ∅�

ln(𝑡 − 1) − 𝜇
𝜎

�		 , 𝑡 = 1,2…

0, otherwise																																																							
																						(4.11) 

Time-since-fire, or survival, 𝐴(𝑡): 

𝐴(𝑡|𝜇, 𝜎) = �				1 − ∅�
ln(𝑘) − 𝜇

𝜎
� , 𝑘 ≤ 𝑡 < 𝑘 + 1		, 𝑘 = 1,2…

0, otherwise																																																							
																						(4.12) 

Hazard of burning, 𝜆(𝑡): 

𝜆(𝑡|𝜇, 𝜎) =

⎩
⎪
⎨

⎪
⎧

1 −		
∅ h𝜇 − ln(𝑡)𝜎 i

∅ h𝜇 − ln(𝑡 − 1)𝜎 i
		 , 𝑡 = 1,2…

			0, otherwise																																																							

																																(4.13) 

where 𝜇	is the mean and 𝜎 is the standard deviation of the of the random 

variable’s natural logarithm, ∅ is the distribution function of the standard normal 

distribution, 	𝑡	is the time span, and 𝑘 is an integer number.  

The modelling analysis incorporated both censored and uncensored fire interval 

data. Censored data refers to partial or incomplete information, i.e., when either the 

start or the end of the fire-free period is unknown. Uncensored data refers to 

complete fire intervals, i.e., when both the start and the end of the fire-free period 

are known. The majority of the mapped annual fire scars are assumed to be 

uncensored data, meaning that the fire event has occurred in a given year and not 
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in an unknown previous moment, but a significant subset of the study region is 

expected to have not burnt at all over the time series (double-censored 

observations), at the same time that some parts will have burned only once or 

become unburnable due to small-scale conversion to cultivated land (single-

censored observations). Including both censored and uncensored observations is 

important to correctly estimate the parameters of the statistical models (Polakow & 

Dunne 1999).  

4.3 Results 

4.3.1 Burned Area Spatiotemporal Patterns 

Over the 32 years studied, 29,731 polygons were delineated by BASMA, 

summing to a total burned area equal to 2,938,761 ha (Table 4.2), which 

corresponds to 2.5 times the extent of the study area. Figure 4.2 summarizes the 

temporal distribution of burned area for the entire study area. The years with the 

highest value for burned area are 1990 (209.607 ha) and 2001 (201,182 ha), 

whereas 1992 (13,185 ha) and 2013 (22, 585 ha) show the lowest values.  
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Figure 4.2. Annual burned area mapped within the four indigenous lands that comprise the study 
area for the period 1985-2017. 
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Table 4.2. Summary of descriptive statistics for annual burned area within the four indigenous lands 
that comprise the study area: Juninha, Paresi, Tirecatinga, and Utiariti. 

Year 
Count of 
Annual 
Burned 
Patches 

Annual 
Maximum 
Burned 
Patch Size 
[ha] 

Annual 
Burned Area 
[ha] 

Annual Mean 
Burned 
Patch Size 
[ha] 

Annual 
Burned 
Patch Size 
Standard 
Deviation 
[ha] 

1985     1,020    26,469.23         121,221.71    118.84    1,110.36  
1986     1,454    20,402.66           93,482.17      64.29       629.38  
1987     1,199    75,075.38         168,956.47    140.91    2,274.12  
1988        683      8,001.72           44,937.25      65.79       399.70  
1989     1,324    39,157.73           89,554.38      67.64    1,106.44  
1990     1,294    90,343.69         209,607.77    161.98    2,650.90  
1991        905    18,707.70         115,363.96    127.47       984.69  
1992        310      1,239.40           13,185.95      42.54       123.28  
1993     1,191    38,546.00         123,889.04    104.02    1,337.18  
1994        990      6,942.54           51,276.82      51.79       398.18  
1995     1,028    17,634.58           97,695.00      95.03       814.44  
1996        911      7,128.40           63,957.37      70.21       438.99  
1997     1,123    13,140.48         104,004.71      92.61       721.64  
1998        697      6,221.67           40,149.12      57.60       358.44  
1999     1,241    50,590.87         183,512.83    147.87    1,721.41  
2000     1,098    22,858.90           97,354.01      88.66       897.69  
2001     1,048    41,546.54         201,182.21    191.97    2,156.71  
2002        872      6,675.93           54,376.68      62.36       415.39  
2003     1,031    15,706.79         103,341.71    100.23       810.09  
2004        720    21,259.40           97,166.90    134.95    1,147.45  
2005     1,077    12,206.84           81,715.99      75.87       606.49  
2006        716    19,729.17           64,299.94      89.80       844.96  
2007     1,010    31,513.81         145,035.69    143.60    1,490.41  
2008        835    13,436.89           74,732.04      89.50       677.04  
2009     1,233    25,349.70         120,869.53      98.03       956.92  
2010     1,131    13,751.57           91,149.07      80.59       606.57  
2011        827    29,146.57           92,560.18    111.92    1,106.91  
2013        431    10,369.69           22,585.06      52.40       505.17  
2014        758    12,093.72           61,807.05      81.54       575.10  
2015        579    19,760.31           45,240.71      78.14       869.29  
2016        754      6,523.36           41,817.89      55.46       320.88  
2017        241      6,008.90           22,732.41      94.33       527.84  
 Total    29,731  -      2,938,761.60   - -  

 

Figures 4.3 and 4.4 present the spatial distribution of annual burned area 

over the time-series (1985--2017). It is noticeable that several years show very 

large burned patches, specially within the Paresi and the Utiariti indigenous lands, 
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corresponding to the overall annual burns. We can also observe that Juininha and 

Tiretatinga indigenous lands concentrated the least fire activity over the time-series. 

 
Figure 4.3. Annual spatial distribution of burned area within the four indigenous lands that comprise 
the study area – 1985 to 2000. 
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Figure 4.4. Annual spatial distribution of burned area within the four indigenous lands that comprise 
the study area – 2001 to 2017 

The cumulative fire recurrence analysis shows that 82.1% of the study area 

burned between 1 and 11 times over 32 year, approximately a burn event every 

three years – Figure 4.5. Fire recurrence analysis demonstrated that frequently 

burned areas are concentrated in the grassland ecosystems present in the Paresi 
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Plateau. Further, fire recurrence was higher in the eastern part of the study area, 

particularly in the Paresi indigenous lands, and lowest in Juininha – Figure 4.6. 

 
Figure 4.5. Fire recurrence analysis shows that the majority of the fire-affected area within the study 
area burned only once over the 32-year time-series. 
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Figure 4.6. Fire recurrence analysis demonstrates that frequently burned areas are concentrated in 
the grassland ecosystems present in the study area. Panel A shows a false-color composite of 
Landsat 8 OLI multitemporal mosaic for 2017 – R: Red (band 4), G: NIR (band 5), B: Blue (band 2); 
Panel B shows land cover classes mapped by MapBiomas for 2017; Panel C shows the fire 
recurrence in a yellow-to-red color grade. 

Subdividing fire recurrence analysis per vegetation classes mapped for the 

first year of the time-series (1985: Project Mapbiomas, 2019) demonstrated that 

grasslands had burned more frequently over the time-series - up to 31 times; 

followed by forest - some forest pixels show fire recurrence up to 24 times; and 

lastly savannas, with pixels burning up to 13 times (Figure 4.7). Croplands were 

excluded from this analysis, given that they are not included in the Integrated Fire 

Management plan. It is also obvious in Figure 4.7 the large-scale difference of 

burned area for each vegetation class. 
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Figure 4.7. Fire recurrence analysis by vegetation type 
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4.3.2 Fire Rotation Period 

The estimated FPR is equal to 12.78 years, meaning that on average it takes 

approximately 13 years to completely burn an area of the same extent as the study 

area. The annual percentage of area burned (APAB), the reciprocal of the FRP, is 

equal to 0.08, which means that 8% (~91,836 ha) of the study area extent burns 

annually. 

4.3.3 Fire Frequency Modelling 

Table 4.3 presents the distributions parameters for the three probability 

models tested and the values of the Akaike Information Criterion (AIC). The shape 

parameter 𝑐 estimated for the probability distribution models returned a value < 1, 

which is not considered realistic or feasible for fire regimes. It is a strong evidence 

that the study area does not have a homogeneous fire regime. Therefore, we did 

not continue the analysis of testing which probabilistic distribution would best fit the 

observed heterogeneous fire frequency. 

Table 4.3.Parameters estimated using a maximum likelihood approach for the probability models 
tested. The continuous and discrete Weibull have 𝒄 as the shape parameter and 𝒃 as the scale 
parameter. For the discrete lognormal, 𝝁

𝝈
	is the shape parameter, and 𝒆𝝁	is the scale parameter. 

Continuous Weibull Discrete Weibull Discrete Lognormal 

𝑏 𝑐 
Log-
Likelihood 𝑏 𝑐 

Log-
Likelihood 

𝜇
𝜎 

 
 
𝑒� 

Log-
Likelihood 

5.72 0.95 
          
1,526,086  4.83 0.69 

          
1,422,611  0.67 2.62 

        
1,389,232  
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4.4 Discussion 

Daldegan et al. (2019) demonstrated that remnant patches of native 

vegetation within the extensively fragmented Amazon-Cerrado transition zone are 

subject to recurrent burning. In this study, we focused our analyzes in the Paresi 

plateau, one of the last areas of continuous Cerrado ecosystems in Mato Grosso 

state. Our results corroborate previous studies that have found the mean fire 

interval in protected areas of the Cerrado is equal to 3 years (Ramos-Neto & 

Pivello, 2000; Daldegan et al., 2014; Pereira Júnior et al., 2014), which is an 

unsustainable fire return interval even in pyrophilic landscapes, given that the 

natural fire frequency in the Cerrado biome is thought to had been considerably 

longer (every 10 to 20 years) prior to human settlements. This very short fire return 

internal favors herbaceous species and promotes vegetation shifts to less-denser 

physiognomies (Pivello, 2011). Consequently, remnant patches of Cerrado are 

potentially exposed to impoverishment and degradation due to high fire frequency 

over long periods (Miranda et al., 2010). Natural landscapes distressed by 

disturbance regimes have their structures and compositions modified, as well as 

their natural processes (White, 2006; Fischer and Lindenmayer, 2007). Further, the 

synergy among natural and human-driven disturbance regimes seriously threatens 

biodiversity (Davidson et al., 2012; Klink & Machado, 2005). Quantitively 

characterizing the spatiotemporal dynamics of burned area and statistically 

exploring the fire return interval of the anthropogenic burning regime over a long 

term is of fundamental importance for the study region.  
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Our analysis focused on a region dominated by grasslands showing elevated fire 

activity since 1985 (Daldegan et al., 2019). Fire incidence was highest in the Paresi 

indigenous land, followed by Utiariti and Tirecatinga indigenous lands, and Juininha 

indigenous land shows the lowest observed fire activity over the 32-year time-

series. These discrepancies are likely an effect of the diverse traditional burning 

practices among indigenous populations. Consequently, fire recurrence analysis 

mirrors the same pattern, returning frequently burned pixels within Paresi, Utiariti 

and Tirecatinga (Figure 4.6). 

Very large extents of burned area were observed within the Paresi and the 

Utiariti indigenous lands (Figures 4.3 and 4.4), mostly spread over grassland 

ecosystems. Murphy et al. (2015) and Schmidt et al. (2018) associate large burned 

area in fire-prone ecosystems to fires occurring in late-dry season, when ground 

fuel is thoroughly cured. Small burned patches were found in savannas and the 

forest ecosystems showed very small burned area (Figure 4.7). Forest burning 

patterns are in accordance to the traditional use of fire by the Haliti-Paresi people, 

who use fire for clearing small patches of forest for subsistence farming, mainly for 

cassava (Manihot esculenta: Moura et al., 2019). Avoiding very large burnings is 

one of the main objectives of the Integrated Fire Management plan implemented by 

PrevFogo in the indigenous lands that occupy the Paresi plateau (Rodrigo Falleiro, 

personal communication); an anticipated outcome is to observe shifts in vegetation 

density, as demonstrated by Miranda et al. (2010).  

Fidelis et al. (2018) assessed how the implementation of Integrated Fire 

Management plans led to changes in spatiotemporal patterns of burnings in five 
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protected areas of the Cerrado biome. According to the authors, 2017 was a 

megafire year, in which long-lasting fires occurred in different continents: Brazil, 

California, Portugal, and Spain registered record fires, either in severity or fire-

affected extent. Several regions of the Cerrado biome also experienced large-scale 

fires in 2017, due to the combination of anthropogenic activities and climate change 

(Fidelis et al., 2018). However, our results show that the Paresi plateau did not 

follow this worldwide trend, as 2017 was one of the years with the least fire activity 

within the study area, with a total of 22,732 ha burned. This is most likely a result of 

the Integrate Fire Management plan, which began to be implemented in that year.  

Likewise, implementation of an Integrate Fire Management plan in the 

Estação Ecológica Serra Geral do Tocantins (ESEC-SGT), one of the largest 

protected areas in the Cerrado, also led to immediate changes in the spatiotemporal 

patterns of fire (Fidelis et al., 2018; Schmidt et al., 2018). PrevFogo and the Haliti-

Paresi people are applying the same strategy adopted in the ESEC-SGT: burning 

several small patches of open physiognomies of the Cerrado, i.e., grasslands and 

open savannas physiognomies (Pivello, 2011; Ribeiro & Walter, 2008), in the early 

dry season, a management practice that tend to increase the number of individual 

fire and to reduce the total annual burned area. This model was built upon the 

Australian experience on managing fire in savannas (Schmidt et al., 2018). 

Therefore, spatiotemporal patterns reported in Table 4.2 would help to keep track of 

the results of the Integrate Fire Management plan in the Paresi plateau. 

By selecting a large land mostly covered with remnant grasslands ecosystems 

and featuring an elevated fire activity over the time-series, we assumed that the fire  
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frequency modelling analysis was constrained to an area of relatively homogenous 

fire return interval (Moritz et al., 2009). Nevertheless, the shape parameter 𝑐 

estimated using the maximum likelihood approach to be used as input to the 

continuous Weibull model is <1, a value that, according to Johnson and van 

Wagner (1984), makes little sense in fire ecology. We believe that this unusual 

value for the 𝑐 parameter is due to the failed assumption made regarding the 

stability of the fire history of the study area. Fire activity in the Paresi plateau is 

strongly influenced by the Hailiti-Paresi traditional use of fire, which is likely to have 

had a heterogeneous pattern amongst the indigenous lands over the time-series. 

Thus, we recommend that this assessment should be subject of further detailed 

studies, looking into ways to stratify the samples by periods and geographies of 

homogenous fire frequency.  

4.5 Conclusion 

Fine-scale burned area mapped over long time-series allowed us to 

quantitatively estimate descriptive statistics regarding spatiotemporal dynamics of 

burnings and to assess the fire frequency in the Paresi plateau. Our results found 

similar mean fire interval as previously reported by other studies for different parts 

of the Cerrado. Further, they demonstrated that the study area is under constant 

anthropogenic use of fire, identifying areas and vegetations types that are frequently 

burned. Spatiotemporal patterns reported here would aid in the process of 

monitoring how the Integrated Fire Management plan is modifying fire activity and 

vegetation in the study region.  
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The fire frequency modelling analysis did not work as expected, returning 

unusual values for the 𝑐 parameter when compared to results reported by Oliveira 

et al. (2013) and Pereira Júnior et al. (2014) for protected areas of the Cerrado. 

Considering that the fire recurrence analysis returned deviating patterns among the 

indigenous lands, it is likely that these have varied traditional burning practices. 

Hence, further studies must be conducted to better understand the human-fire 

relationship in this pyrophilic region; subdividing the fire frequency modelling into 

each of the indigenous lands could potentially return better results. 
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Chapter 5: Conclusions 

In this study, I aimed to assess the spatiotemporal dynamics of anthropogenic 

fire activity in a large subset of a neotropical rainforest and savanna. Below I review 

the overarching questions that guided the study and present the conclusions 

reached based on the methodologies applied and results found. 

 

Research question 1 – Can fire scars be mapped semi-automatically at high 

accuracy over an extended time series and large geographic extent using spectral 

mixture analysis and cloud-based analysis tools?  

 

In Chapter Two, I presented the Burned Area Spectral Mixture Analysis 

(BASMA), a semi-automatic burned area mapping algorithm developed in Google 

Earth Engine to SMA in Landsat time-series. Here, I tested whether SMA is a robust 

means for mapping fire scars present in Landsat imagery for the Amazon-Cerrado 

transition zone that is stable over time and over space. Results showed that 

BASMA successfully identified char fractions and delineated burned area in Landsat 

imagery collected from 1985 to 2017 for an area of 36 million hectares. Imagery 

from Landsat 5 TM, Landsat 7 ETM +, and Landsat 8 OLI were digitally processed 

and burned area was consistently modeled by a single fire scar image endmember 

and a single fraction threshold. Validation of BASMA-derived burned area was 

performed against independent burned area products extracted from finer spatial 

resolution imagery for several years. Accuracy assessment returned high Dice 

coefficients (varying from 0.83 to 0.90, with 0.86 of average). Thus, I reached the 
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conclusion that BASMA is an effective algorithm to map fire scars for a large extent 

over long time-series analysis using imagery acquired from sensors with similar 

spatial and spectral resolution 

Previous studies reported that it is challenging to develop a generic and optimal 

context-independent method to map burned area, given the spectral signal captured 

by spaceborne sensors (Bastarrika et al., 2014, 2011; Hawbaker et al., 2017; 

Pereira et al., 1997). BASMA was shown to be a consistent burned area mapping 

algorithm, given that the image fire scar endmembers applied has the advantage of 

having been measured at the same scale as the input image data. Nevertheless, 

the product reported in Chapter Two does not provide a complete record of the 

annual burned area within the study region, given that some burned pixels are likely 

to be excluded when generating the multi-temporal mosaics. Hence, it is necessary 

to further explore approaches on how to build the annual mosaics, aiming to identify 

char pixels that better express fire-affected areas.  

 

Research question 2 – How has the distinct phases of human occupation 

influenced the fire activity between 1985 and 2017? Did the spatiotemporal burning 

pattern follow a pyric transition as proposed by Pyne (2001)? 

 

In Chapter Three, I tested the hypothesis that fire activity follows a pyric 

transition (Pyne, 2001) in the most productive agricultural region in Mato Grosso 

state, accounting for the land-use trajectory over time, which reflects the different 

colonization stages of the region over the last 30+ years.  
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People have long used fire to manage lands for food and forage production 

(Cochrane, 2009; Pivello, 2011; Pyne, 1997; Schmidt et al., 2011). Anthropogenic 

activities directly influence ignition sources and suppression efforts; modify the type, 

load, structure and continuity of fuel; alter microclimates; and burn biomass in 

different seasons than non-anthropogenic fire regimes (Bowman et al., 2011). To 

test the pyric transition hypothesis, I analyzed a burned area and a LULCC 

spatially-explicit datasets derived from Landsat imagery to characterize fire activity 

during the annual dry season in a 108,210 km2 extent spanning the Amazon-

Cerrado transition zone. Both spatial datasets share the same long-term (1985 to 

2017) and fine-scale (30-meter spatial resolution).  

Spatiotemporal dynamics of burned area and LULCC demonstrated that fire 

activity increased in the study area as more land was opened for economic use 

during the intermediary period of the analyzed time-series, and that burning was 

dramatically reduced towards the end of the period. At the very beginning of the 

analyzed time-series, human and natural ignitions co-occurred given the low 

fraction of the landscape modified by anthropogenic forces. Next, fire activity 

increased considerably reflecting the high deforestation rates observed in the 

region, mostly driven by agribusiness interests. Lastly, a shift in fire regime was 

noticed due to official deforestation monitoring programs and policies designed to 

incentive environmental compliancy of rural properties. Therefore, analyzing the 

anthropogenic use of fire in the study area, pyric transitions as described by 

Bowman et al. (2011) were observed: from ‘wildland anthropogenic fire’ to 

‘agricultural anthropogenic fire’, and then to ‘fire suppression and wildfires’ phase. 
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Based on the evidences found, I concluded that anthropogenic dynamics had a 

direct influence over the pyrogeography of our study area, confirming the pyric 

transition hypothesis. Yet, this hypothesis should be tested in other active 

agricultural frontiers in the tropics, including further developing the conceptual 

methodological approach I used here. A substantial improvement would be the 

inclusion of land use classes representing degraded and secondary forests. 

 

Research question 3 – What are the current spatiotemporal dynamics and the 

fire return interval in remnants patches of natural vegetation which have been 

traditionally under indigenous people fire management?  

 

In Chapter Four, I aimed to characterize the spatiotemporal distribution of 

burned area prior the establishment of an Integrated Fire Management plan in 

remnants areas of the Cerrado biome under traditional burnings, testing if there is a 

fire frequency statistical model that best model the observed fire-return interval. 

In a review of the vegetation-fire relationship across several environments, 

Myers (2006) proposed that many tropical pyrophilic ecosystems are currently 

threatened by human-induced fire regimes. The author reported an overall lack of 

knowledge regarding the nature and the ecological appropriateness of present fire 

frequency in many of those environments. To assess how vegetation is responding 

to contemporary fire activity, detailed characterization of the spatiotemporal patterns 

of burnings in pyrophilic ecosystems is needed. 
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In this chapter, I used focused on a subset of the fine-scale BASMA-derived 

burned area dataset to analyze how frequently fire events occur in the Paresi 

plateau, one of the last continuous remnant areas of Cerrado in Mato Grosso state. 

The results were in agreement with previous studies, finding a mean fire interval 

equal to 3 years, similar to metrics estimated in other protected areas of the 

Cerrado (Ramos-Neto & Pivello, 2000; Daldegan et al., 2014; Pereira Júnior et al., 

2014). Such a short which fire return interval is supposed to be unsustainable even 

in pyrophilic landscapes (Myers, 2006; Pivello, 2011).  

The fire frequency modelling analysis returned relatively high values for the C 

test used to evaluate the goodness-of-fit, indicating that further studies must be 

conducted to better understand the human-fire relationship in the fire-prone 

ecosystems present in the Paresi plateau. Given that the fire recurrence 

assessment indicated deviating patterns among the indigenous lands, likely an 

effect of the diverse traditional burning practices among indigenous lands, 

subdividing the study area by indigenous lands could improve the fire frequency 

modelling analysis. Lastly, I am confident that the spatiotemporal patterns reported 

here would aid in the process of monitoring how the Integrated Fire Management 

plan is modifying fire activity and vegetation in the Paresi plateau. 

5.1 Future Research 

The subsequent development phase of the Burned Area Spectral Mixture 

Analysis (BASMA) algorithm has already began. Currently, I am adapting BASMA to 

run with Sentinel 2 MultiSpectral Instrument (MSI) imagery, which feature a spatial 

resolution of 20 meters, spectral resolution of 13 bands, and a revisiting time of five 
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days. Preliminary results demonstrate great potential of BASMA to efficiently and 

accurately delineate burned areas using a different collection of multispectral 

imagery and in a different geography. As fire is present in many parts of the world, 

there are plenty of opportunities to apply BASMA in studies involving not only 

tropical regions. For instance, BASMA is returning great results for mapping paddy-

rice related burns in the Punjab state, India, at the 20-meter spatial resolution 

featured by Sentinel 2 imagery. 

Moreover, I will keep exploring the Pyric Transition concept, by monitoring how 

the human-fire relationship unfolds in the existing study region in the years to come, 

and by further testing this hypothesis in other regions of Brazil and around the 

world. As demonstrated in Chapter 3, changes in policies and/or political regimes 

have a direct influence on how humans perceive their relationship with vegetation 

burns. The ongoing burns happening in the Amazon basin during the 2019 dry 

season are a clear outcome of the political shift Brazil is experiencing under the new 

federal administration that took power in January 2019. As new lands are cleared 

for anthropogenic activities and expands the agricultural frontier into the rainforest, 

the opportunity to further test the phases of pyric transition hypothesis is offered. 

Besides, such methodological approach should be tested in other active agricultural 

frontiers. Currently, the MATOPIBA region located in the intersection of Maranhão, 

Tocantins, Piauí, and Bahia, in central-northeastern Brazil, is foci of intensive land 

use and land cover change (Araújo et al., 2019; Graesser et al., 2015) offering the 

opportunity to further test the relationship between pyrogeography and 

anthropogenic activities. However, the conceptual model developed in Chapter 3 
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must need to go through modification in case secondary and degraded forest were 

mapped separately. 

Finally, I have just started to explore the subject of testing statistical models to 

describe fire return interval. The fire frequency analysis for the Paresi Plateau 

presented in Chapter 4 indicated that the fire regime in the selected study area is 

not homogeneous. Thus, I am currently exploring methods to stratify the sampling 

points that would potentially lead to more appropriate results regarding which 

probabilistic model best fit the timing of burns in these pyrophilic ecosystems. 

Nevertheless, the methodology applied here was successful to create a 

spatiotemporal baseline for burns that happened in the four indigenous lands prior 

the establishment of the Integrated Fire Management plan in 2017. However, it is 

challenging to predict how the identified patterns might change in the mid to long 

term given the uncertainty related to the continuity of the Brazilian environmental 

policies.  
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