
UC Irvine
UC Irvine Previously Published Works

Title
Multicopy Cache: A Highly Energy-Efficient Cache Architecture

Permalink
https://escholarship.org/uc/item/1jt3k8nd

Journal
ACM Transactions on Embedded Computing Systems, 13(5s)

ISSN
1539-9087

Authors
Chakraborty, Arup
Homayoun, Houman
Khajeh, Amin
et al.

Publication Date
2014-12-15

DOI
10.1145/2632162

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jt3k8nd
https://escholarship.org/uc/item/1jt3k8nd#author
https://escholarship.org
http://www.cdlib.org/

150

Multicopy Cache: A Highly Energy-Efficient Cache Architecture

ARUP CHAKRABORTY, University of California, Irvine
HOUMAN HOMAYOUN, University of California, San Diego
AMIN KHAJEH, Qualcomm Inc.
NIKIL DUTT, AHMED ELTAWIL, and FADI KURDAHI, University of California, Irvine

Caches are known to consume a large part of total microprocessor energy. Traditionally, voltage scaling has
been used to reduce both dynamic and leakage power in caches. However, aggressive voltage reduction causes
process-variation-induced failures in cache SRAM arrays, thus compromising cache reliability. We present
MultiCopy Cache (MC2), a new cache architecture that achieves significant reduction in energy consumption
through aggressive voltage scaling while maintaining high error resilience (reliability) by exploiting multiple
copies of each data item in the cache. Unlike many previous approaches, MC2 does not require any error map
characterization and therefore is responsive to changing operating conditions (e.g., Vdd noise, temperature,
and leakage) of the cache. MC2 also incurs significantly lower overheads compared to other ECC-based
caches. Our experimental results on embedded benchmarks demonstrate that MC2 achieves up to 60%
reduction in energy and energy-delay product (EDP) with only 3.5% reduction in IPC and no appreciable
area overhead.

Categories and Subject Descriptors: B.3.1 [Semiconductor Memories]: Static Memory (SRAM); B.3.2
[Design Styles]: Cache Memories; B.1.3 [Control Structure Reliability, Testing and Fault-Tolerance]:
Error Checking, Redundant Design

General Terms: Algorithms, Design, Reliability, Theory

Additional Key Words and Phrases: Variation-aware cache, low-power cache, low-power memory organiza-
tion, low-power design, fault tolerance

ACM Reference Format:
Arup Chakraborty, Houman Homayoun, Amin Khajeh, Nikil Dutt, Ahmed Eltawil, and Fadi Kurdahi. 2014.
Multicopy cache: A highly energy-efficient cache architecture. ACM Trans. Embedd. Comput. Syst. 13, 5s,
Article 150 (July 2014), 27 pages.
DOI: http://dx.doi.org/10.1145/2632162

1. INTRODUCTION

As ITRS roadmap predicts [ITRS 2008; Behmann 2009], in the continued pursuit
of Moore’s law, power densities will continue to affect reliability of both embedded
SoCs and high-performance desktop/server processors. Although the logic content and
throughput of the systems will continue to increase exponentially, a flat curve must
be maintained for dynamic and leakage power in order to prolong battery life, main-
tain cooling costs, and mitigate the adverse effects of increased power densities on
reliability. The resulting power management gap must be addressed through vari-
ous means including architectural techniques. Caches are already known to consume a

This is an expanded version of the paper titled “E < MC2: Less Energy through Multi-Copy Cache” published
in CASES 2010.
Authors’ addresses: A. Chakraborty (corresponding author), Center for Embedded Computer Systems, Uni-
versity of California, Irvine; email: arup@ics.uci.edu; H. Homayoun, Department of Computer Science and
Engineering, University of California, San Diego; A. Khajeh, Qualcomm Inc., Austin, TX; N. Dutt, A. Eltawil,
and F. Kurdahi, Center for Embedded Computer Systems, University of California, Irvine.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1539-9087/2014/07-ART150 $15.00

DOI: http://dx.doi.org/10.1145/2632162

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:2 A. Chakraborty et al.

Fig. 1. Typical cache structure (reproduced from Mamidipaka and Dutt [2004]).

Fig. 2. Power consumption of 16KB cache (using CACTI 4.1 for 70nm technology).

large amount of power, about 30–70% of total processor power [Wong et al. 2007; Zhang
et al. 2005] for embedded systems, and on-chip cache size will continue to grow due to
device scaling coupled with performance requirements. Therefore, in order to manage
total power consumption and reliability of the system, it is important to manage power
and reliability of the caches.

A typical cache structure is shown in Figure 1. It consists of mainly three components:
(a) an SRAM array for storing data; (b) a much smaller SRAM array to store the tag; and
(c) input/output logic, including decoder, comparator, and output muxes and drivers.
Figure 2 shows the breakdown of the power consumption in a 16KB cache for 70nm,
estimated using CACTI 4.1 [Tarjan et al. 2006]. Clearly the data SRAM consumes about
88% of total power, while the rest is shared by the tag SRAM and input/output logic.
Hence, in order to reduce the power consumption of the cache, one must particularly
focus on the data SRAM.

Traditionally, voltage scaling has been used to reduce the dynamic and leakage
power consumption of the cache. However, aggressive voltage scaling causes process-
variation-induced failures in SRAM cells such as read access failures, destructive read
failures, and write failures [Mukhopadhyay et al. 2005; Chen et al. 2005]. Since ap-
plications may not be tolerant to even a single bit error, caches must be operated at a

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:3

high Vdd with a very low probability of failure, leading to high energy consumption.
However, by exploiting mechanisms that allow a cache to become inherently resilient
to large numbers of cell failures, we can operate the cache at a lower Vdd and thus gain
significant energy savings.

In this work, we propose MultiCopy Cache (MC2), a novel cache architecture that
significantly enhances the reliability of the cache by maintaining multiple copies of
every data item. Whenever data is accessed, multiple copies of the accessed data are
processed to detect and correct errors. Specifically in this work, two copies of each clean
data and three copies of each dirty data are maintained in the cache to increase re-
liability. MC2 is particularly useful for embedded applications since their working-set
sizes are often much smaller than existing cache sizes, and the unused cache space
can be effectively used for storing multiple copies, achieving error resiliency through
redundancy. Such a cache has high reliability and can be subject to aggressive volt-
age scaling, resulting in significant reduction in energy consumption. Moreover, since
errors are dynamically detected and corrected, MC2 does not need any a priori error
characterization of the cache. Also, compared to other existing cache architectures that
exploit redundancy (e.g., ECC), MC2 incurs minimal performance and area overheads.
MC2 may decrease cache capacity significantly but, as we show later, for embedded ap-
plications this results in only modest losses in performance. Our experimental results
on embedded benchmarks show that, compared to a conventional cache operating at
nominal Vdd, MC2 reduces energy consumption by up to 60%, with only about 3.5%
loss in performance and no appreciable area overhead.

The rest of the article is organized as follows: Section 2 discusses the opportunity
for efficiently increasing cache reliability and some background related to SRAM re-
liability. Section 3 introduces the MC2 architecture and Section 4 discusses related
works. Section 5 presents the hardware implementation and its overheads. Section 6
evaluates the architecture in terms of performance and energy for a set of embedded
applications, and Section 7 concludes.

2. BACKGROUND

2.1. Opportunity: Small Working-Set Sizes

We exploit the fact that the working-set sizes of many embedded applications are much
lower than available cache space in modern embedded processors. Fritts and Wolf
[2000] define working-set size of an application as the cache size in which the miss rate
decreases dramatically (at least 50%) with respect to smaller cache size. In absence of
such a dramatic decrease, working-set size is defined to be the size that reduces miss
rate below 2%. Fritts et al. [1999] showed that for multimedia applications, working-set
size for instructions is less than 8KB and that for data is less than 32KB. Guthaus
et al. [2001] showed that for most embedded applications, instruction and data working-
set size is less than 4–8KB. Our own investigation for the MiBench embedded suite
(Figure 3) shows that, although there are a few benchmarks with a working-set size
of 16–32K, most of the benchmarks have a working-set size of 8K or less, with about
50% of the applications having less than 2K as working-set size. On the other hand,
as Table I shows, modern SoCs and processors typically have L1 cache of size 16–
64KB and L2 cache of size up to 2MB, demonstrating a significant portion of the cache
(outside of the working set) is not used for many embedded applications.

We exploit this opportunity to utilize the extra cache space to create an efficient error
control mechanism embedded in the cache by maintaining multiple copies of each data
item. A number of techniques have been previously proposed to increase reliability of
caches and SRAM memories. Some of these techniques like parity and ECC [Hsiao
1970; ARM 2010; Sohi 1989] have the ability to dynamically detect and correct only

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:4 A. Chakraborty et al.

Fig. 3. Minimum cache size with associative 8 needed for <2% miss rate.

Table I. L1 and L2 Cache Sizes for Modern Microprocessors

Processor Intel Xscale ARM Cortex A8 ARM Cortex A9 Freescale QorIQ P2
L1 size 32K 16-32K 16-64K 32K
L2 size 512K 2M 2M 512K

a limited number of errors but incur high penalty in access latency and area. Other
techniques [Wilkerson et al. 2008; Agarwal et al. 2005; Djahromi et al. 2007; Makhzan
et al. 2007; Sasan et al. 2009a, 2009b; Shirvani and McCluskey 1999] provide high
error tolerance but require a cache error map of various resolutions (per-byte to per-
cache line) that must be generated by BIST whenever there is a change in operating
conditions such as Vdd and frequency. Since SRAM failures are highly dynamic and
influenced by several conditions beyond the control of users, such failures may not
be captured by infrequent BIST characterizations (as explained later). In contrast to
previous and related works, our MC2 architecture:

—can dynamically detect a very high number of errors in SRAM arrays;
—does not require any BIST characterization;
—is responsive to dynamic changes in the SRAM error pattern;
—unlike SECDED, incurs only a minimal impact on both access latency and SRAM

area and yet has high error tolerance; and
—enables aggressive Vdd scaling, yielding significant reduction in energy consumption.

2.2. Process Variation and SRAM Reliability

Failures of SRAM cells can be of various types caused by different reasons. For example,
there may be manufacturing defects leading to permanent open/short circuits in SRAM
cells, causing permanent failures. These are known as hard failures [Mukhopadhyay
et al. 2005]. There may also be transient errors, caused by radiation particles that
change the stored data in the cell. These are known as soft errors [Chandra and
Aitken 2009; Cai et al. 2006]. However, one of most dominant causes of SRAM cell
failures is process variation [Mukhopadhyay et al. 2005; Djahromi et al. 2007]. It is
well known that the process variations in the semiconductor are a significant con-
cern for designers and this concern is only going to exacerbate for future technology
nodes. Process variations affect various semiconductor process parameters such as
channel length, oxide thickness, etc. These variations in process parameters can be
inter-die or intra-die. Inter-die variations change the parameters in the same direction
for all transistors within a single die. Intra-die variations, on the other hand, cause a
mismatch between parameters of the transistors within a single die. These intra-die

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:5

Fig. 4. 6-T SRAM cell (reproduced from Khajeh et al. [2009]).

variations may be systematic, that is, spatially correlated, or they may be random.
Spatially correlated variations do not cause large mismatches between neighboring
transistors [Mukhopadhyay et al. 2005]. Random intra-die variations, mostly caused
by Random Dopant Fluctuations (RDF), lead to mismatches between neighboring tran-
sistors and are the dominant cause of failures in SRAM cells [Mukhopadhyay et al.
2005; Djahromi et al. 2007; Calhoun and Chandrakasan 2006]. Though process vari-
ation can affect many different process parameters, its influence can be effectively
lumped into variation of threshold voltage Vth for individual transistors.

Figure 4 shows the typical six-transistor cell used in CMOS SRAM. During the read
operation, the read access time is very sensitive to the variations in the threshold
voltages of the access transistors (SR or SL) and the pull-down transistors (NR or NL)
depending on the stored value. During the write operation, threshold voltage variations
of the access transistors and the pull-up transistors (PR or PL) have the strongest effect
on the write time. SRAM cell failures induced by process variations are also known as
parametric failures. Parametric failures can be of different types and are described as
follows [Makhzan et al. 2007].

(a) Read Access Failure. A reduction in bitline voltage differential during a read oper-
ation within the maximum allowed time is called a read access failure.

(b) Write Access Failure. This is an unsuccessful write within the maximum allowed
time.

(c) Read Stability Failure (Destructive Read Failure). An increase in the PMOS/NMOS
node voltage beyond the trip voltage of the inverter pair causing a bit flip during a
read operation is known as a read stability failure or destructive read failure.

(d) Hold Failure. A bit flip while in standby mode caused by decrease in data retention
voltage is referred as a hold failure.

Our proposed MC2 architecture is effective against all of the preceding SRAM
failures.

Dynamic nature of SRAM failures. As shown by Khajeh et al. [2009], the probability
of SRAM failure is highly dependent on Vdd, frequency of operation, and temper-
ature. It is well known that a decrease in Vdd increases the probability of SRAM
failures [Djahromi et al. 2007; Mukhopadhyay et al. 2005]. However, an increase in
Vdd increases the dynamic and leakage power dissipation, which in turn increases the
temperature. Increase in temperature causes an increase in cell delay, resulting in a
higher probability of failure. Moreover, the increase in temperature increases the leak-
age power further, resulting in a positive feedback loop between the two [Khajeh et al.
2009]. Therefore, as Vdd is increased, temperature as well as leakage and dynamic

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:6 A. Chakraborty et al.

Fig. 5. Unexpected increase in failure as Vdd is increased due to interaction between leakage power and
temperature (reproduced from Khajeh et al. [2009]).

Fig. 6. Interrelationship of Vdd, frequency, temperature, leakage/dynamic power, etc., and their effect on
SRAM failure probability (based on Khajeh et al. [2009]).

powers may increase in an interdependent fashion, increasing the failure probability
unexpectedly, as shown in Figure 5. Additionally, if a set of SRAM cells is accessed very
frequently or if they are located near hotspots such as execution units, the dynamic
power dissipation of these cells will increase, leading to an increase in temperature and
inducing the cells towards failure [Meterelliyoz et al. 2008]. Figure 6 (based on Khajeh
et al. [2009]) pictorially depicts the relationships between Vdd, frequency, tempera-
ture, memory activity, power dissipation, and probability of failure. From the previous
discussion, we note that SRAM failures are very dynamic: not only affected by user-
controlled operating conditions such as Vdd and frequency, but also by other conditions
such as voltage irregularities, leakage, temperature, nearby hotspots, memory access
pattern, and drift in frequency—all of which may be constantly changing and are be-
yond the control of the user. It is therefore crucial that any error control mechanism
in SRAM caches be responsive to dynamic changes in error patterns, without being
dependent on static error maps. MC2 accomplishes this.

3. MC2 ARCHITECTURE

3.1. Basic Mechanism

The basic idea behind multicopy cache (MC2) is to maintain multiple copies of each data
item in the cache. Such a mechanism makes the cache resilient to a high number of
SRAM failures. As long as the same bit-position of every copy is not affected by failures,
the errors can always be detected and may also be corrected1. This high error resiliency
technique allows the cache to operate under aggressively low Vdd, leading to reduction

1It is very rare that the same bit-positions of more than one copy will be affected by failures. For a bit failure
rate of 10−6, the failure rate for two copies of a 32-bit word is over 1 million times lower than that with a
single copy.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:7

Fig. 7. Example 1 of reads and writes to MC2.

in energy and power consumption. The multicopy mechanism may be implemented in
many different ways, depending on cache organization, type of cache (instruction or
data), write policy (write-through or write-back), write-miss policy (write-allocate or no
write-allocate), and replacement policy of the cache; each implementation of MC2 will
incur some overhead and potentially some performance degradation. Thus the MC2

architecture must be designed carefully to minimize these overheads while achieving
low energy with high resiliency.

In this article, we present the Redundancy through Duplication and Triplication
(RDT) policy for MC2. We assume a write-back data cache with write-allocate policy
and true LRU replacement policy. MC2 with RDT policy maintains two copies of each
clean data and three copies of each dirty data in the same set. If a data in the cache
is clean (i.e., unmodified by the processor), a correct copy of that data is also available
in the lower level of memory (LLM). Therefore only two copies of the clean data need
to be maintained in the cache. Whenever the processor reads a clean data, both copies
are compared with each other. If there is any mismatch, an error is detected and the
requested data is read from the LLM and forwarded to the processor. On the other
hand, if the requested data in the cache is dirty (i.e., modified by processor), the most
updated version of that data is in the cache and not in the LLM. Hence for dirty
data, three copies are maintained in the cache so that in the event of error(s), the
correct data can be generated by majority voting logic using all three copies. Thus, the
use of the RDT policy would result in two or three cache lines with same data in a
given set.

Examples. Figure 7 shows the physical contents of a particular set s of an 8-way
set-associative MC2 for a sequence of reads and writes. Each of the eight rectangles
represents a cache line in the given set. The top horizontal labels L0 to L7 indicate
indices of the physical cache lines. The vertical left labels T0 to T7 indicate timestamps.
Initially, at time T0, the cache is cold and the set empty. Then four cache lines A, B,
C, and D, belonging to set s, are read one after another from the memory and placed
in the set. At that point, the set s contains four clean data, each with two adjacent
copies. Assume, at time T2, that there are multiple read accesses such that D becomes
the LRU data (marked by dots). The LRU list at time T2 is also shown in the figure.
Now the processor writes to data A. After the write is completed, A would become dirty,
hence it would need three copies instead of its present two copies, requiring a new copy
of A to be created. This is done by evicting both copies of LRU data D and using one of
the freed cache lines to store the third copy of A. Next, the processor writes to data C. A
new copy of C is created using the empty cache line present in the set s. As the example
shows, all copies of a given data may not be physically adjacent. Figure 8 illustrates
a variant of Example 1 in which, at time T2, the processor issues a write to data E,
resulting in a write-miss and a write-allocate. The replacement algorithm replaces two

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:8 A. Chakraborty et al.

Fig. 8. Example 2 of reads and writes to MC2.

Fig. 9. Example 3 of reads and writes to MC2.

lines D and C according to the LRU list and creates three copies of data E. The LRU
list is updated accordingly.

Figure 9 shows another example. Again, assume the cache set s is completely empty
in the beginning. The processor reads data A and B, which are placed in the set with two
adjacent copies for each data. The processor reads these two data multiple times such
that B becomes the least recently used data. Then the processor performs two writes
to two separate cache lines, namely, data C, followed by data D. Since we assume a
write-back cache with write-allocate policy, both writes would result in write-misses.
Therefore, the write-miss for data C is served and three copies of cache line C are
created in set s and updated with the data from the processor. At this point, there is
only one empty cache line left in the set. Now, when the write-miss for data D is served,
three copies of data D must be created. Since data B is the least recently used data,
the cache lines belonging to data B along with the only empty cache line are used to
store three copies of data D. We now describe the detailed MC2 RDT cache architecture
operation and implementation overheads.

3.2. Cache Architecture and Operation

In a conventional N-way associative cache (Figure 10), there are N tag comparators
producing N way-select signals (WS1-N). For each cache access, at most one of the
N way-select signals is true as there is a maximum of one copy of each line in the
set. During cache read, the way-select signals drive the output multiplexer/driver that
outputs the requested data from the selected way. During cache write, way-select sig-
nals are also used to write the data to the selected way. In MC2 the tag comparison
circuit remains unchanged. However, for the RDT policy, for any given access, at most
three of the N way-select signals may be true. In the MC2 architecture (Figure 11),
the output multiplexer is replaced by data error detection and correction logic. Using
the way-select signals, this logic compares multiple copies of the requested data and
accordingly detects and corrects errors. It outputs the corrected data and the read error

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:9

Fig. 10. Conventional cache architecture. Fig. 11. MultiCopy Cache architecture.

signal, indicating whether there is any error in the accessed data. The write demul-
tiplexer of the MC2 allows simultaneous writing to multiple cache lines in the data
and the tag array of the set. Additionally there may be an optional check logic that
processes the cache flags (clean/dirty) and the way-select signals to ensure that the
RDT policy is being followed (i.e., two copies for every clean data, three copies for every
dirty data). The flags logic will raise a machine check interrupt if it finds any policy
violation. In the CC, for each access, the LRU list is updated once to reflect read or write
of maximum one physical cache line in the set. In MC2, as shown in the examples, for
each access, the LRU list is updated multiple times to reflect reads or writes of either
two or three physical lines.

Furthermore, in CC, the entire cache is run on one Vdd domain, typically connected
to the processor Vdd (nominal Vdd) for L1 caches. Similarly, in MC2, the tag side of the
cache (tag SRAM array, comparators, decoder, and write demultiplexer) is connected
to a nominal Vdd. However, MC2’s data side (data array, error detect/correct logic,
decoder, and write demultiplexer) is run on a separate Vdd that can be aggressively
scaled down. Level shifters are required while going from low to high Vdd only (i.e., for
data-side output to processor) [Diril et al. 2005] and generate negligible overheads as
shown in Sections 5 and 6.

Figure 12 shows the flowchart of the MC2 RDT cache operation. The address tag
bits from the processor are compared with the tag bits stored for each cache line of
the selected set. The RDT policy ensures that, for any given address, there can be: no
tag match (cache miss); exactly two matches (cache hit for clean data); exactly three
matches (cache hit for dirty data). In case of a miss (referred to as conventional miss),
a new cache line is fetched from the LLM. Depending upon the type of access (read or
write), either two or three cache lines in the selected set are evicted and replaced by
the newly fetched line. For write accesses, all three copies must be updated. For cache
hits for clean data, the type of access may be either read or write. For read accesses,
both copies of the clean data are compared with each other. If there is a match, the data
is forwarded to the processor. This is referred to as clean read hit. If there is no match,
a read error miss has happened and the correct copy of the requested data is fetched
from LLM. Write accesses to any clean data always result in clean write misses. This
event represents clean to dirty transition (top right corner of Figure 10). The cache
line corresponding to the accessed address is fetched from the LLM. An existing line in
the selected set is evicted and replaced with the newly fetched line, resulting in three
copies of the accessed data. Now all three copies are marked dirty and updated with
the data from the processor. If there are three tag matches during tag comparison, this

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:10 A. Chakraborty et al.

Fig. 12. Flowchart showing operation of MC2 RDT cache (TM represents “Tag Matches”).

must be a cache hit for dirty data. If the access is a read operation, majority-voting
logic among all three copies generates the correct data. This is referred to as dirty read
hit. If the access is a write operation, all three copies must be updated with the data
from the processor. This is referred to as dirty write hit. Whenever there is a dirty data
write-back, all three copies are identified using a secondary tag search and processed;
then the correct data is written to LLM.

Dirty Data Write-back. Whenever there is a conventional miss or a clean write-miss,
one, two, or three cache lines may be replaced with data from LLM. Using a true LRU
policy, up to three cache lines may be evicted in a single cache access (for example, a
conventional write-miss). If any of the replaced lines is dirty, it must be ensured that the
correct data is being written to the memory. Therefore, whenever a dirty line is being
evicted from the cache, all other copies of that dirty line must be located and processed
before writing to the LLM. This is done by accessing the tag array and performing
another set of comparisons with tag bits of the dirty cache line being replaced. After
locating all three copies, they are read into a write-buffer. The write-buffer will store all
three copies of the dirty data if the bus is not available immediately. The write-buffer
will perform a majority-voting logic using all three copies and write the correct data
to the LLM, whenever the bus is available. Irrespective of the size of the write-buffer,
only one majority-voting logic is required, namely, only for the data in the top of the
write-buffer.

The MC2 RDT cache will incur overheads in delay, area, and energy due to error
detect/correct logic, check logic, level shifters, and additional operations required dur-
ing cache access (such as writing to multiple lines and tags). Sections 5 and 6 examine
these overheads and establish that these are minimal.

4. RELATED WORK

There are several previous works related to improving SRAM reliability in the face
of process variation and soft errors, especially for low-voltage operation. A number of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:11

these works approach the problem from a circuit perspective, improving reliability of
each SRAM cell. Apart from the familiar 6-T SRAM cell, 8-T SRAM cell [Chang et al.
2005] and 10-T SRAM cell [Calhoun and Chandrakasan 2006] have been proposed. Both
8-T and 10-T SRAM cells improve read stability, though the stability of the inverter
pair remains unchanged. Kulkarni et al. [2007] proposed a Schmidt-trigger-based 10-T
SRAM cell with inherent tolerance towards process variation using a feedback-based
mechanism. However, this SRAM cell requires a 100% increase in area and about 42%
increase in access time for low-voltage operation.

Several architectural techniques have also been proposed to improve reliability of
on-chip cache by using redundancy. It is typical in the industry to have redundant rows
and columns in the SRAM cache. Any defective row or column may be detected before
shipping and is replaced by a redundant row or column using laser fuses [Schuster
1978]. However, although this technique is effective against manufacturing defects,
it is not against process-variation-induced errors that depend heavily on operating
conditions such as Vdd. A number of other techniques have been proposed to improve
SRAM array reliability against process variation failures. Wilkerson et al. [2008] pro-
posed multiple techniques using part of a cache line as a redundancy for defective
bits for the rest of the cache lines in the same set. It disables the faulty words and
replaces them with nonfaulty ones in the same set. Agarwal et al. [2005] proposed a
fault-tolerant cache architecture in which the column multiplexers are programmed to
select a nonfaulty block in the same row if the accessed block is faulty. A similar work
is PADed caches [Shirvani and McCluskey 1999], which uses programmable address
decoders that are programmed to select nonfaulty blocks as replacements of faulty
blocks. Makzhan et al. [2007] and Sasan et al. [2009a, 2009b] proposed a number of
cache architectures in which the error-prone part of the cache is fixed using either
a separate redundancy cache or parts of the same cache, or using charge pumps to
increase Vdd of the defective wordlines. However, all the techniques proposed in these
works [Wilkerson et al. 2008; Agarwal et al. 2005; Makhzan et al. 2007; Sasan et al.
2009a, 2009b; Shirvani and McCluskey et al. 1999] require BIST characterization of
the cache and generation of some form of a cache error map with various levels of
granularity: per wordline, per cache line, per byte, etc. Whenever Vdd is scaled up or
down, the BIST engine is run and the entire cache memory is characterized, generating
an error map. Every time BIST characterization is run, the cache has to be flushed of
its current contents followed by writing, reading, and comparing by the BIST engine
before the cache is ready for use. The time overhead of the BIST characterization would
limit the frequency at which Vdd can be scaled up or down. The storage of the error
map, depending upon its granularity, also increases the area overhead of the cache.
Even with these costs, a basic assumption behind the preceding works is that, once
the BIST characterization is done, the error map perfectly describes the locations of
process variation errors until the next change in Vdd. As discussed in Section 2, this
assumption is not valid because of the dynamic nature of SRAM failures.

In order to improve SRAM reliability against such dynamic failures, dynamic error
detection and correction ability is required without using any static error map. One
of most popular mechanisms for such dynamic error detection/correction is Error Con-
trol Coding (ECC), widely used in caches and memories. The simplest form of ECC is
one-bit parity, which detects odd numbers of errors in the data and is often used in L1
caches [Genua 2004]. Since such one-bit parity mechanisms do not have any correction
capability, they are not useful except for instruction caches or data caches with a write-
through policy. Another form of ECC used in caches is Single Error Correction, Double
Errors Detection (SECDED). Hsiao et al. [1970] proposed an optimal minimum-odd
weight column SECDED code suitable for fast implementation in memory. However,
despite its optimality, the Hsaio code incurs multiple clock-cycle latencies for caches
and significant area overhead (about 30%), as we show later in the results. Kim et al.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:12 A. Chakraborty et al.

Fig. 13. Output multiplexer/driver of conven-
tional cache (16K 8-way cache).

Fig. 14. Data error detection and correction logic
of MC2 (16K 8-way cache).

[2007] and Naseer and Draper [2008] have proposed ECC schemes to correct multi-
ple error bits and further improve reliability beyond SECDED. However, as shown
by Mazumder [1993] and Agarwal et al. [2005], an ECC mechanism beyond one-bit
correction capability cannot be implemented in memory because of the area and delay
overheads. Zhang et al. [2003] used replication of some “hot” frequently used cache
lines to mitigate soft errors. Such a technique has nonuniform error tolerance and is
ineffective towards process-variation-induced failures. Moreover, it requires an addi-
tional error control mechanism such as parity for its operation. A recent work uses the
configurable part of the cache for storing multiple ECC check bits for different seg-
ments of the cache line using an elaborate orthogonal Latin Square code ECC [Chishti
et al. 2009] to enable dynamic error correction. This requires up to eight levels of XOR
gates for decoding, resulting in a significant increase in cache critical-path delay.

In contrast to previous works, our MC2 architecture is able to detect and correct errors
dynamically without requiring any BIST characterization and error map storage. MC2

provides better reliability than the SECDED cache with minimal area overhead and
much less latency to detect/correct errors. Compared to elaborate ECC mechanisms
such as Chishti et al. [2009], the MC2 architecture has a simple detection/correction
mechanism resulting in much lower delay overhead. Indeed, as we show in the next
section, MC2 incurs less than 3% overhead in cache delay and less than 2% increase in
read hit dynamic energy with negligible area overhead.

5. HARDWARE IMPLEMENTATION AND OVERHEADS

The MC2 architecture has three main changes over a Conventional Cache (CC): (a) the
output mux of the CC (Figure 13) is replaced by the data detection and correction logic
(Figure 14); (b) level shifters are needed only when signals travel from low- to high-Vdd
domains (data-side output to the processor); and (c) additional operations are required
during cache access (writing to multiple lines and tags during cache write, extra line-fill
during clean write miss). For level shifting, we use dual Vdd/Vth logic gates with built-
in level shifting [Diril et al. 2005] at the data-side output of the cache. Such gates use
a higher threshold voltage for PMOS transistors driven by low-Vdd inputs and have
only a slightly increased delay (<10ps) and almost no additional overhead in power
consumption compared to conventional single-Vdd gates.

The data error detection and correction logic is formed by a number of Bit Error
Detect/Correct (BEDC) logic blocks, one for each data bit (Figure 14). BEDCi for the
ith data bit outputs the following signals: (a) REi, read error signal, (b) NE-Di, no-error
data bit, (c) C-Di, corrected data bit. REi indicates whether there is any error and is
relevant only for clean data. NE-Di is the correct output bit if there is no error while
C-Di is the corrected output bit selected using majority voting of three copies. The
BEDC block essentially consists of two parallel parts, namely one for error detection

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:13

and the other for error correction. The error detection logic uses N-input OR and AND
gates to produce outputs REi and NE-Di. The error correction logic uses an N-input
XOR gate to produce output C-Di (Figure 15). To enable quantitative comparisons, we
synthesized the output logic for MC2 (error detect/correct logic and the check logic) as
well as the multiplexer and output driver of CC using Synopsys Design Compiler for
a TSMC 65nm typical library for a 16K 8-way associative cache. We found that the
delay of MC2 output logic is increased only by 5% compared to the CC output mux
while area and power consumption are lower than the CC mux. The output driver of
CC, implemented as specified in Tarjan et al. [2006], uses one multiplexer driver for
each way; each multiplexer driver drives 32 tri-state buffers, resulting in 256 tri-state
buffers for each output bit. However, in MC2 there are only eight 32X1 multiplexers for
all output bits along one BEDC block for each output bit. This results in the CC output
mux incurring higher area and power compared to MC2 output logic.

To put these overheads in perspective of the entire cache, we used CACTI 4.1
[Taijan et al. 2006] and estimated that, for a 16K 8-way associative cache, the out-
put mux/driver contributes to 48% of total delay, 8% of dynamic power, 10% of leakage
power, and 3% of area for CC. Recall that the MC2 architecture replaces CC’s output
mux with MC2 output logic; we expect that the multicopy mechanism will increase the
delay of the cache nominally (estimated <3%). Though the area of MC2 output logic is
found to be less than the CC mux area, we recognize CC mux implementation may be
further optimized and hence we conservatively conclude that MC2 has no appreciable
area overhead.

RH = tR + dR (5.1)

WH = tR + dW,1w (5.2)

RLF = tW,1 + dW,1l + mR (5.3)

WLF = tW,1 + dW,1l + mR (5.4)

WB = dR,1l + mW (5.5)

RM = tR + RLF + WB (5.6)

WM = tR + WLF + WB (5.7)

RLF = tW,2 + dW,2l + mR (5.8)

WLF = tW,3 + dW,3l + mR (5.9)

WB = dR,3l + mW,C (5.10)

ELF = tW,1 + mR + dW,1l + dW,3w (5.11)

RM = tR + f l + RLF + WB (5.12)

WM = tR + f l + WLF + WB (5.13)

CRH = tR + f l + dR,1w + lCORR (5.14)

REM = tR + f l + dR,1w + lCORR + mR (5.15)

CWM = tR + f l + ELF + WB (5.16)

DRH = tR + f l + dR,1w + lCORR (5.17)

DWH = tR + f l + dW,3w (5.18)

In order to account for additional operations in MC2, we developed an analytical
dynamic energy model for each cache event. In a conventional cache, a cache access

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:14 A. Chakraborty et al.

Fig. 15. Bit Error Detection and Correction
(BEDC) logic.

Fig. 16. Normalized dynamic energy of CC and MC2

events (all normalized to CC read hit).

Fig. 17. CC and MC2 latencies.

results in one of the following four mutually exclusive events: (1) Read Hit (RH);
(2) Write Hit (WH); (3) Read Miss (RM); and (4) Write-Miss (WM). Each of these events
consists of several micro-operations such as tag array read, data array read, Read miss
Line-Fill (RLF), Write-miss Line-Fill (WLF), dirty data write-back (WB). Eqs. (5.1)–
(5.7) describe the energy model used for each of these events for the conventional cache.
For the MC2 architecture, a cache access results in one of the following seven mutually
exclusive events: (1) conventional Read Miss (RM); (2) conventional Write-Miss (WM);
(3) Clean Read Hit (CRH); (4) Clean Write-Miss (CWM); (5) Read Error Miss (REM);
(6) Dirty Read Hit (DRH); and (7) Dirty Write Hit (DWH). As explained in Section 3, for
CWM, an extra copy of the existing data is brought into the cache, followed by a write
to all three lines. This is represented as Extra-Copy Line-Fill (ELF). Eqs. (5.8)–(5.18)
describe the energy model of the events for the MC2 architecture.

Individual cache micro-operations referred to in the preceding equations are de-
scribed here.

tR: Tag Read. Read all tags for the selected set and compare with the input tag.
dR: Data Read. Read data for all ways in parallel for the selected set.
dR,1l: Data Read (1 line). Read a given cache line in the set.
dW,iw: Data Write (i words). Write i words of data to the specified way of the selected
set.
tW,i: Tag Write(i). Write i tags of the selected set.
dW,il: Data Write(i lines). Write i cache lines of data to the specified way of the
selected set.
mR: Mem Read. Read lower level of memory (including bus access).
mW : Mem Write. Write to lower level of memory (including bus access).
f l: Flags Logic. Check if number of copies matches status of the line (dirty or clean).
lCORR: Data Corr Logic. Perform data error detection and correction.
mW,C : Mem Write (with correction). Write to LLM after applying majority-voting
logic.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:15

Fig. 18. Cache access pipeline.

We used CACTI 4.1 [Tarjan et al. 2006] to obtain energy consumptions of the individual
micro-operations involved in the events discussed before for a conventional cache and
an MC2 cache. The results of this model are shown in Figure 16. For example, there
is only 2% increase in dynamic energy for read hit and about 17% increase for write-
miss. Since there is only a negligible area overhead, we can safely assume there is no
change in the leakage power. It should be noted that the total energy overhead of MC2

is application dependent. We examine this aspect in more detail in the next section.
As shown in the figure, the access delay of MC2 is increased to less than 3% of

the access delay of the CC due to error detection and correction logic. In addition,
as Vdd is lowered, only the logic stages of the cache, that is, the decoder stage and
the output logic stage, would experience an increase in delay according to the equation
delay ∝ V dd/(V dd−V th)1.3. It is to be noted that the time delay for accessing wordlines,
bitlines, and sense amplifiers will remain unchanged as Vdd is lowered. The probability
of bit failure will increase, as discussed in Section 6.1. Figure 18 shows the pipeline
stages of the cache and the estimated delay of each stage, as obtained from CACTI 4.1
for a 16K 8-way associative cache for 70nm. Recall that in MC2, we scale down the Vdd
of only the data side of the cache. The logic stages of the data side of the cache amounts
to 268ps. Considering Vth = 0.25V, if the Vdd is scaled down from nominal 1.1V to
0.55V, the logic delay will increase by 93%. If we assume a reasonable frequency of 1
GHz, the increase in logic delay due to Vdd scaling amounts to less than one-quarter of
a cycle time. The increased logic delays may be further reduced using dual-Vth caches
[Mamidipaka and Dutt 2004]. In general, the impact on the cache access timing would
vary depending on a number of factors such as cache associativity, organization, logic
implementation, and process (technology node and use of dual Vth). Hence, rather
than examining random design configurations, we evaluate the MC2 architecture for
the design corner cases, that is, the best- and the worst-case timing scenarios. The
load/store latency of two cycles is assumed to be broken into actual cache access takes
place in cycle 1, while the bus access takes only a part of the next cycle. Based on this,
we assume two scenarios for MC2 cache access, as shown in Figure 17: (a) a best-case
(MC2-B) MC2 delay overhead including the increased logic delay due to Vdd scaling
fits in the remaining time in the second cycle, resulting in total 2-cycle latency and no
penalty; (b) a worst-case (MC2-W) error detection/correction delay along with increased
logic delay at the lowest Vdd of operation is long enough such that a total of three cycles

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:16 A. Chakraborty et al.

Table II. Base Processor Configuration (ARM-11-like)

I-cache 16KB, 2 cycle
L2 cache 256KB, 15 cycles
Fetch, dispatch 1 wide
Issue In-order, non blocking
Execution Out-of-order
Memory 30 cycles
Instr Fetch Queue 4
Ld/Str Queue 16
RUU size 8
Execution units 1 INT, 1 FP simple & mult/div
Pipeline 8 stages
Frequency 1 GHz

Table III. Benchmarks (all with large input sets
from MiBench)

Automotive basicmath, bitcnt, qsort,
susan (smooth, edges,
corners)

Consumer jpeg-encode, jpeg-decode,
lame, mad, tiff2bw,
tiff2rgba, tiffdither,
tiffmedian

Networking dijkstra, patricia
Office ghostscript, stringsearch
Security sha, pgp.sign, pgp.verify
Telecom crc32, fft, ifft, gsm-encode

is needed for every access. It is to be noted that as Vdd is scaled down in the data side
of MC2, clock frequency will remain unchanged, since the effect of the increased logic
delay is already considered in the best-case and worst-case access latencies discussed
before. The dynamic energy overhead of MC2 depends on cache miss energy, assumed
to be five times the cache hit energy according to Huang et al. [2001]. As discussed in
Section 3, the LRU list must be updated multiple times for each access to MC2. A true
LRU implementation uses an associative memory of (m− 1) ∗log2m bits [Roy 2009] for
an m-way associative cache, that is, 21-bit memory for an 8-way associative cache. We
expect the delay of additional updates to the LRU structure to be completely hidden by
cache data memory access and to contribute negligible overhead to dynamic energy.

6. EXPERIMENTAL RESULTS

The experiments are designed to evaluate the MC2 architecture in terms of energy and
performance for standard embedded benchmarks.

Tables II and III outline our experimental setup for the base processor configuration
and benchmarks, respectively. The processor is ARM-11-like configured with a 16K 8-
way set-associative cache. We modified Simplescalar 3.0 [Austin et al. 2002] extensively
to support the MC2 architecture. The embedded benchmarks are from the MiBench
suite [Guthaus et al. 2001]. All benchmarks are compiled with Compaq alpha compiler
using an –O4 flag for Alpha 21264 ISA.

We carried out the following detailed experiments to evaluate the MC2 architecture.

(1) Circuit Simulation and Analytical Calculations. We carry out SPICE simulations
to measure probability of failure for an SRAM cell, followed by analytical calcu-
lations to determine the probability of failure for conventional cache and MC2

architectures.
(2) Comparison with Conventional Cache at Nominal Vdd. We compare performance

and energy consumption of a conventional cache (CC) running at nominal Vdd with
that of an MC2 running with scaled Vdd for two different SRAM cells.

(3) Comparison with Conventional Cache at Different Yields. We compare a conven-
tional cache with the MC2 architecture, each operated at its minimum Vdd for a
given set of yields.

(4) Miss-Energy-Sensitivity Analysis. We carry out a sensitivity analysis by increasing
the energy of cache misses and observe the impact on MC2 in comparison to a
conventional cache.

(5) Comparison with Other ECC Caches. We compare a conventional cache with and
without a traditional ECC mechanism (SECDED) versus the MC2 architecture. All

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:17

Fig. 19. Probability of failure vs. Vdd for SRAM cell from SPICE simulation and from Wilkerson et al.
[2008].

Fig. 20. Probability of failure vs. Vdd for a 16KB cache for SRAM cell B.

three caches are constrained to have almost the same area and the same failure
rate.

(6) Comparison with Voltage Frequency Scaling. Finally, we compare voltage frequency
scaling on a conventional cache with voltage scaling with fixed frequency on an MC2

architecture.

6.1. Circuit Simulation and Analytical Modeling

We carried out a Monte Carlo SPICE simulation using Predictive Technology Models
(PTM) [Zhao and Cao 2007] for 65nm with read/write access time of 250ps. The results
show a drastic increase in failure probability due to process variation as Vdd is scaled
down. The general trend of this data is corroborated with the SRAM failure probability
data for 65nm used by Wilkerson et al. [2008], as shown in Figure 19. Based on these
two sets of SRAM cell failure data from Wilkerson et al. [2008], we used analytical
models of failure, as shown in Eqs. (6.1)–(6.4), to estimate the probabilities of failure
for CC and MC2 with 16KB size. The CC fails if there is one or more bit failures in the
entire cache. For MC2, the probability of failure of each data item depends on whether
it is clean (i.e., having two copies) or modified (i.e., having three copies). A clean data in
MC2 fails if there is a bit failure in the same bit-position of both copies. A dirty data in
MC2 fails if there is a failure in two out of three bits occurring in the same bit-position
of the three copies. Probability of failure of the entire cache depends on the numbers of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:18 A. Chakraborty et al.

Fig. 21. Probability of failure vs. Vdd for a 16KB cache using SRAM cell A.

clean and dirty data in the cache. In Eqs. (6.1)–(6.4), p = p(V) = probability of failure
of each SRAM cell at a given voltage V, and N = number of SRAM cells, n = data
bitwidth, ncw and ndw are the numbers of clean and dirty words, respectively, in MC2.

Probability of failure of CC = pfcc (V) = 1 − (1 − p)N (6.1)

Probability of failure of each clean word = pfcw (V) =
n∑

i=1

(
n
i

)
p2i(1 − p)2n−2i (6.2)

Probability of failure of each dirty word = pfdw (V) = 1 − (1 − 2p2 + p3)n (6.3)

Probability of failure of MC2 = pm(V) = 1 − (1 − pfcw)ncw (1 − pfdw)ndw (6.4)

The failure probability of CC and MC2 is shown under two conditions: (a) all clean,
where all data in the cache are clean; and (b) maximally dirty, where the cache has
the maximum possible number of dirty data. The results clearly show that the MC2

architecture achieves significantly higher reliability than CC. For the SRAM cell used
by Wilkerson et al. [2008], the minimum Vdd (Vddmin) at probability of failure of 1e-3
is 0.55V, while for the SRAM cell used for our SPICE simulation the Vddmin for the
same failure probability is 0.75V. Henceforth, the former SRAM cell is referred to as
SRAM cell A, while latter is referred to as SRAM cell B.

Relationship with manufacturing yield. The manufacturing yield of a chip may be
defined as the probability of failure of the entire chip at the recommended conditions
(e.g., nominal Vdd, temperature, etc.). It depends upon the probabilities of different
types of failures (such as parametric failures, soft errors, and hard failures) of the
cache as well as the noncache part of the chip. Since, in this work, we are interested
specifically in parametric failure of the cache and its impact on energy and performance,
we use the probability of failure of the cache as a measure of yield.

6.2. Comparison with Conventional Cache at Nominal Vdd

Recall that a Conventional Cache (CC) is tied to the processor’s nominal Vdd (Figure 10)
whereas for MC2, the data side can exploit voltage scaling (low Vdd in Figure 11). In this
experiment, for SRAM cell A, we scale down the data-side Vdd of MC2 until reaching
0.55V (for a failure rate of 10−3) and measure IPC loss and reduction in total energy
(dynamic and leakage), measured with respect to performance and energy of a CC at
nominal Vdd. This is assumed to be 1.1V for a 65nm LSTP process according to ITRS
[2008].

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:19

Fig. 22. Working-set size for each benchmark and % IPC loss (for 1.05V, 0.55V) with 16KB MC2.

Fig. 23. IPC loss and energy savings of MC2 vs.
Vdd (with respect to CC at 1.1V) (average of all
benchmarks) (SRAM A).

Fig. 24. Average miss rate vs. Vdd (SRAM A).

Figure 22 shows the Working-Set Size (WSS) for each benchmark (as explained in
Section 2) and corresponding IPC loss for MC2-B (best case) at 1.05V and 0.55V. As
expected, benchmarks with low WSS (<=8KB) show low IPC degradation (<2% at
1.05V). This is due to a decrease in effective cache size/associativity in MC2. Some
benchmarks with even high WSS (>=16KB) (e.g., jpeg-encode, lame, ghostscript) have
relatively low performance loss because of latency hiding due to out-of-order execution.
When Vdd is further scaled down to 0.55V (inducing a large number of SRAM errors),
some benchmarks (e.g., tiffmedian and stringsearch) experience high reduction in IPC
relative to 1.05V, while some others (e.g., dijkstra, fft) have almost the same IPC at
1.05V. This is because each benchmark is affected differently depending upon the actual
location of the errors and the memory access pattern.

Figure 23 shows performance degradation and energy savings, averaged for all bench-
marks, as Vdd is scaled down: note that we observe a modest reduction in IPC, but
rapid reduction in energy consumption. At lowest Vdd, the average IPC losses for MC2

are 1% and 3.5% for the best and worst cases, respectively, while the corresponding
reductions in energy are 61.5% and 59.5%. The average miss rate increases from 0.5%
at 1.1V to about 2.1% at 0.55V, as shown in Figure 24. We repeated the preceding ex-
periment using SRAM failure data obtained using SRAM cell B. The results, as shown
in Figure 25, follow the trend observed previously. The average loss in IPC is about
2–4.5% at Vddmin and the reduction in EDP is about 45%. Thus, the MC2 architecture
results in high reduction in energy with low performance degradation.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:20 A. Chakraborty et al.

Fig. 25. IPC loss and energy savings of MC2 vs. Vdd (with respect to CC at 1.1V) (average of all benchmarks)
(SRAM B).

Fig. 26. Vccmin for CC and MC2 using analytical models.

6.3. Comparison with Conventional Cache at Different Yields

In this experiment, we operate both the CC and MC2 at their respective Vccmin for
the target yield points. In this case, we assume that the L1 cache access is on the
critical path of the processor. The nominal Vdd of the cache is constrained by its own
access delay. Under such a condition, the cache Vdd can be scaled down to a level
sufficient to ensure memory reliability according to the target yield point. Based on
the probability of cache failures obtained using analytical models, the minimum Vdd
for CC (Vccmin cc) and minimum Vdd for MC2 (Vccmin mc2) are obtained for different
yield points, as shown in Figure 26. The CC is operated at Vccmin cc while the MC2 is
operated with its data side at Vccmin mc2 and the tag side at nominal Vdd. We used
the SRAM cell A [Wilkerson et al. 2008] for this experiment.

First, we observe that the difference in Vccmin for CC and MC2 is significant at about
200–300mV (Figure 27). The difference increases as the target yield is increased. The
performance loss for MC2 is low at different target yield points; loss in IPC is less than
1% for MC2-B and less than 3.5% for MC2-W. On the other hand, energy and EDP for
MC2 are about 20–40% lower than CC depending upon the yield point (Figure 28). The
results show that MC2 achieves high reduction in energy with low performance loss for
a wide range of yields.

6.4. Miss-Energy-Sensitivity Analysis

We expect that MC2 will have more misses than a CC of the same size, because of the
decrease in effective cache size and SRAM errors at low Vdd. Thus the energy savings

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:21

Fig. 27. Vccmin for CC and MC2 for different
failure rates.

Fig. 28. Difference in EDP for MC2-B and MC2-W
with respect to CC.

Fig. 29. Percentage savings in EDP at 0.55V for
varying normalized miss energy.

Fig. 30. Percentage reduction in EDP for different
Vdd and different NME (average of all benchmarks).

from aggressive voltage scaling may be offset by increased energy from additional
memory accesses due to higher miss rates. To study this phenomenon, we conduct
a sensitivity analysis by varying the cache miss energy. We define normalized miss
energy (NME) as the ratio of read miss energy to read hit energy for a CC of the same
size. Energies of other miss events such as read error miss and clean write-miss are
also increased proportionately. The NME depends on dynamic energy of accessing the
LLM on cache misses. The dynamic energy of LLM, in turn, would be a function of
the LLM architecture such as L2 cache size. In this experiment, NME is varied from
5–100. Though the exact value of NME depends on the implementation, typically for
an L1 cache, an NME of 5 indicates an on-chip L2 cache [Huang et al. 2001], while an
NME of 100 or more is likely if the L2 cache is off-chip [Zhang et al. 2005].

Figure 29 shows the percentage in reduction in Energy-Delay-Product (EDP) of MC2

at 0.55V (measured with respect to CC at nominal Vdd) for the top eight benchmarks
with the highest number of misses. We observe that for some benchmarks (e.g., tiffme-
dian and dijsktra), EDP increases significantly when the cache miss energy increases.
We also measure the trend in EDP reduction, averaged over all benchmarks, for dif-
ferent Vdd and different NME, as shown in Figure 30. We observe that, even for high
NME (50–100), MC2 consumes less energy than CC when operated at Vdd 0.95V or
lower. Therefore, for a wide range of NME and hence with both an off-chip and on-chip
L2 cache, there exists a wide range of Vdd for which the energy and EDP of MC2 are
significantly less than those of CC at nominal Vdd.

6.5. Comparison with SECDED Cache with Equal Area

In this experiment, we compare MC2 with SECDED ECC [Lin and Costello 1983],
which is commonly used in caches for dynamic error detection and correction. Use of

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:22 A. Chakraborty et al.

Fig. 31. Probability of failure vs. Vdd for
SECDED cache, CC, and MC2 under iso-area
constraint.

Fig. 32. Percentage IPC loss and percentage reduction in
EDP (average of all benchmarks for MC2 and SECDED
cache, normalized to CC of equal area and equal proba-
bility of failure).

SECDED ECC for caches leads to significant area overhead because of extra parity
bit storage (8 parity bits for 64 data bits) and associated logic. It also increases cache
access timing significantly due to SECDED decoding logic on every read access. For
a 16KB 8-way associative cache, based on synthesis results for 65nm and estimates
from CACTI 4.1, SEDED ECC logic increases the delay of the output mux/driver by
135% and total cache delay by 65%. Area overhead of the SECDED cache is 45% over
conventional cache without any ECC.

In order to carry out a fair comparison, we scale up SRAM transistor width such that
the total area of the SECDED cache with smaller transistors is equal to the area of a
CC and MC2 with bigger transistors. We determined failure probabilities of both SRAM
cells (bigger and smaller) using a Monte Carlo SPICE simulation with PTM models
[PTM 2010] for 65nm. Then, we used our analytical models of failure to determine the
failure probability of: (1) SECDED cache, (2) CC, and (3) MC2, all with equal area.
The results as shown in Figure 24, demonstrate that, at a given voltage, MC2 is the
most reliable cache whereas SECDED is the least reliable cache. In fact, we observe
that the SECDED cache is worse than a CC of equal area for process-variation-induced
failures. To explain this observation intuitively, SECDED needs additional bits and
hence additional area to do error detection/correction. On the other hand, the same
area may be used just to increase the size of the SRAM cell without using SECDE.
Increasing the area of the SRAM cell slightly increases its reliability significantly,
hence a cache with larger SRAM cells but no SECDED has more reliability than one
with small SRAM cells with SECDED.

In order to compare performance and energy, we further constrain that all three
caches (SECDED, CC, MC2) have equal failure rate. Since SECDED is the least reliable,
it is run at nominal Vdd 1.1V while aggressive voltage reduction is applied to CC and
MC2, such that the probabilities of failure of all three caches are same at the respective
Vdd. We assume the data-side Vdd of CC can be scaled, like MC2, as explained in
Section 3. The latency of CC is assumed to be two cycles while that of the SECDED
cache is assumed three because of the timing overhead of ECC logic. For MC2, like
previous experiments, we consider two different cases, namely, two cycles (best case:
MC2-B) and three cycles (worst case: MC2-W), as discussed earlier.

Figure 25 shows the percentage of IPC loss and percentage difference in Energy-
Delay-Product (EDP), averaged for all benchmarks, for MC2 and SECDED cache when
normalized to CC with equal area and at same probability of failure. We find the IPC
loss for MC2 is ∼0.5% for the best case (MC2-B) and ∼3% for the worst case (MC2-W).
Performance of the SECDED cache is slightly less than that of the MC2 worst case.
The EDP of MC2 is 30–35% lower than that of the SECDED cache. And MC2 achieves

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:23

Fig. 33. Increase in execution time for VFS and MC2. Fig. 34. Reduction in EDP for MC2 and VFS.

greater than 20% reduction in EDP over CC, even when both are subject to aggressive
voltage scaling for iso-failure rate. Hence, given an area budget and a failure rate, the
SECDED cache will consume more energy than CC. We also establish that MC2 would
consume significantly less energy than CC with a low loss in performance.

6.6. Comparison with Traditional Voltage Frequency Scaling

In this experiment, we compare reduction in cache energy using traditional voltage
frequency scaling with the energy reduction achieved in the MC2 architecture as well
as associated performance losses. In a conventional architecture, the cache shares the
Vdd domain with the processor. In order to reduce cache power consumption, the Vdd
is scaled down along with the increase in frequency to account for an increase in logic
delay of the processor. However, in MC2, the data side of the cache uses a Vdd domain
separate from the rest of the system. Therefore, as discussed in Section 5, in MC2,
Vdd can be scaled down without increasing the frequency. We have shown that a 2-
cycle access latency of a conventional cache may increase to maximum three cycles
in the worst case for MC2 for a very low operating Vdd (0.55V). We assume as in
AbouGhazaleh et al. [2007] for traditional voltage frequency scaling, the frequency
scales linearly with voltage. Figure 33 shows the average increase in execution time
for 25 Mibench applications for CC with voltage frequency scaling (VFS) and MC2

with Vdd scaling. Figure 34 shows the reduction in average energy-delay product for
these two architectures. It is evident that the performance penalty for VFS is very high
(about 45% at lowest Vdd) while the performance penalty for MC2 is only modest (at
about 3.5%), as shown in Section 6.2. Thus we find that, for a wide range of voltage,
MC2 consumes significantly lower energy than CC using VFS.

6.7. Discussion

The MC2 architecture exploits redundancy for fault tolerance and thus could be viewed
as an error-correcting mechanism embedded in the cache array. For a wide range of
embedded applications, we have shown that MC2 incurs only modest loss in perfor-
mance, with significant reduction in energy and with only negligible area overhead.
Under equal area constraints, MC2 provides significantly higher error tolerance than
SECDED ECC, leading to higher reduction in Vdd and energy.

Furthermore, we note that MC2 is a complementary technique that can be used
with any existing cache architecture. For instance, it can be combined with SECDED
to further increase the error tolerance, leading to even lower Vdd subject to device
limitations. MC2 can also potentially be combined with error-map-based error cor-
rection techniques or with redundant rows/columns to increase the performance, for
performance-critical applications.

The extent of energy/EDP reduction by use of the MC2 architecture depends on three
factors: (a) the SRAM cell and its inherent probability of failure at the given frequency;
(b) target yield; and (c) memory hierarchy (on-chip versus off-chip next level of memory)

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:24 A. Chakraborty et al.

Fig. 35. Improvement in reliability of the cache for two different SRAM cells.

Table IV. IPC Degradation and Reduction in Energy for
Two Different SRAM Cells at Different Yield Points

Y1 Y2

S
R

A
M

1

Perf loss = 3% Perf loss = 3%

E redn = 25% E redn = 45%

S
R

A
M

2

Perf loss = 3% Perf loss = 3%

E redn = 5% E redn = 20%

and cache miss energy. Figure 35 shows the failure probability of CC and MC2 for two
different SRAM cells. It clearly shows that the reduction in minimum Vdd using MC2

relative to CC depends on the target yield. In Table IV, we show the performance loss
and energy reduction for MC2 in comparison with CC for these two SRAM cells for two
different yields using NME of 5. As NME is increased, the reduction in energy will
reduce further, as shown in Section 6.4. Though performance loss remains similar for
different SRAM cells and yield points, the reduction in energy is clearly dependent on
the SRAM cell used and the yield point. Therefore, for a given SRAM cell and for a
given yield, the MC2 architecture may be very useful, while the same may not be true
for another SRAM cell for either the same or different yield.

Multicopy cache can be treated as a superset of single-copy cache. MC2 can be used
as a conventional single-copy cache with a minor change in hardware. By assuming
all the data as clean, the MC2 data correction logic, as described in Section 3, would
essentially work as a multiplexer in a CC, outputting the single copy of the data
accessed. Therefore a multicopy cache can be used in two modes: (a) a single-copy
conventional mode with a single copy per data, and (b) a multicopy mode with multiple
copies per data. In the single-copy mode, the cache runs at high Vdd with higher energy
consumption and higher performance. By contrast, in multicopy mode the cache runs
at lower Vdd with lower energy consumption and lower performance. Furthermore, in

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:25

multicopy mode, as Vdd is scaled down from nominal Vdd to Vccmin, the performance
and energy consumption are also scaled down. Finally, in multicopy mode, the actual
Vdd of operation may be chosen based on the acceptable loss in performance and desired
energy consumption.

In all, we note that MC2 is a cache architecture effective against all kinds of SRAM
failures, including soft errors and hard failures. While in this article we have studied
the RDT policy for MC2, many other policies can be examined to yield different levels
of power savings and overheads in delay/area.

7. CONCLUSION

In this work, we presented MC2: a novel cache architecture that allows low Vdd opera-
tion for energy savings without affecting the reliability of the system. MC2 maintains
multiple copies of each data item, exploiting the fact that many embedded applica-
tions have unused cache space resulting from small working-set sizes. On every cache
access, MC2 detects and corrects errors using these multiple copies. We have shown
the MC2 architecture is efficient, incurring negligible area overhead and only modest
performance penalty (<3.5%), but achieving significant energy savings for embedded
applications. We have also shown that MC2 exhibits high levels of error tolerance; thus,
we can exploit aggressive voltage scaling for high reductions in energy consumption and
energy-delay product for on-chip caches. Our experiments on embedded benchmarks
demonstrate that MC2 reduces total energy consumption by up to 60% over conven-
tional caches. Future work involves further refinement of the RDT policy, developing
more efficient reliability policies for MC2, as well as integrating the MC2 architecture
with other error-tolerant cache architectures using static error maps.

REFERENCES

N. Aboughazaleh, A. Ferreira, C. Rusu, R. Xu, F. Liberato, et al. 2007. Integrated cpu and l2 cache voltage scal-
ing using machine learning. In Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’07). 41–50.

A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy. 2005. A process-tolerant cache architecture for
improved yield in nanoscale technologies. IEEE Trans. VLSI Syst. 13, 1, 27–38.

ARM. 2010. ARM cortex-a8 technical reference manual. http://www.arm.com/products/CPUs/ARM Cortex-
A8.html.

T. Austin, E. Larson, and D. Ernst. 2002. SimpleScalar: An infrastructure for computer system modeling.
IEEE J. Comput. 35, 2, 59–67.

F. Behmann. 2009. Embedded.com - The itrs process roadmap and nextgen embedded multicore soc de-
sign. http://www.embedded.com/design/mcus-processors-and-socs/4008253/The-ITRS-process-roadmap-
and-nextgen-embedded-multicore-SoC-design.

Y. Cai, M. T. Schmitz, A. Ejlali, B. M. Al-Hashimi, and S. M. Reddy. 2006. Cache size selection for perfor-
mance, energy and reliability of time-constrained systems. In Proceedings of the Asia and South Pacific
Conference on Design Automation (ASP-DAC’06).

B. Calhoun and A. Chandrakasan. 2006. A 256kb sub-threshold sram in 65nm cmos. In IEEE International
Solid State Circuits Conference Digest of Technical Papers (ISSCC’06). 2592–2601.

V. Chandra and R. Aitken. 2009. Impact of voltage scaling on nanoscale sram reliability. In Proceedings of
the Design, Automation, and Test in Europe Conference (DATE’09). 387–392.

L. Chang, D. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard, et al. 2005. Stable sram cell design for
the 32 nm node and beyond. In Proceedings of the Symposium on VLSI Technology Digest of Technical
Papers. 128–129.

Q. Chen, H. Mahmoodi, S. Bhunia, and K. Roy. 2005. Modeling and testing of sram for new failure mechanisms
due to process variations in nanoscale cmos. In Proceedings of the 23rd IEEE Symposium on VLSI Test
(VTS’05). 292–297.

Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu. 2009. Improving cache lifetime reliability at
ultra-low voltages. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’09). 89–99.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

150:26 A. Chakraborty et al.

A. Diril, Y. S. Dhillon, A. Chatterjee, and A. D. Singh. 2005. Level-shifter free design of low power dual supply
voltage cmos circuits using dual threshold voltages. IEEE Trans. VLSI Syst. 13, 9, 1103–1107.

A. K. Djahromi, A. M. Eltawil, F. J. Kurdahi, and R. Kanj. 2007. Cross layer error exploitation for aggres-
sive voltage scaling. In Proceedings of the 8th International Symposium on Quality Electronic Design
(ISQED’07). 192–197.

J. Fritts and W. Wolf. 2000. Multi-level cache hierarchy evaluation for programmable media processors. In
Proceedings of the IEEE Workshop on Signal Processing Systems (SiPS’00). 228–237.

J. Fritts, W. Wolf, and B. Liu. 1999. Understanding multimedia application characteristics for designing
programmable media processors. In Proceedings of the SPIE Conference on Media Processors. Vol. 3655.

P. Genua. 2004. A cache primer. http://www.csd.uwo.ca/∼moreno/CS433-CS9624/Resources/AN2663.pdf.
M. Guthaus, J. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. Brown. 2001. MiBench: A free, commer-

cially representative embedded benchmark suite. In Proceedings of the IEEE International Workshop on
Workload Characterization (WWC’01). 3–14.

M. Y. Hsiao. 1970. A class of optimal minimum odd-weight-column sec-ded codes. IBM J. Res. Develop. 14, 4,
395–401.

M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. 2001. L1 data cache decomposition for energy efficiency. In
Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’01). 10–15.

ITRS. 2008. International technology roadmap for semiconductors. http://www.itrs.net/Links/2008ITRS/home
2008.htm.

A. Khajeh, A. Gupta, N. Dutt, F. Kurdahi, A. Eltawil, K. Khouri, and M. Abadir. 2009. TRAM: A tool for
temperature and reliability aware memory design. In Proceedings of the Design, Automation, and Test
in Europe Conference (DATE’09). 340–345.

J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. 2007. Multi-bit error tolerant caches using two-
dimensional error coding. In Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’07). 197–209.

J. kulkarni, K. Kim, and K. Roy. 2007. A 160 mv robust schmitt trigger based subthreshold sram. IEEE J.
Solid State Circ. 42, 10, 2303–2313.

S. Lin and D. J. Costello. 1983. Error Control Coding: Fundamentals and Applications. Prentice Hall.
M. Makhzan, A. Khajeh, A. Eltawil, and F. Kurdahi. 2007. Limits on voltage scaling for caches utilizing

fault tolerant techniques. In Proceedings of the International Conference on Computer Design (ICCD’07).
488–495.

M. Mamidipaka and N. Dutt. 2004. eCACTI: An enhanced power estimation model for on-chip caches. Tech.
rep. R-04-28, CECS, University of California, Irvine. http://ftp.cecs.uci.edu/technical report/TR04-28.pdf.

P. Mazumder. 1993. Design of a fault-tolerant three-dimensional dynamic random-access memory with on-
chip error-correcting circuit. IEEE Trans. Comput. 42, 12, 1452–1468.

M. Meterelliyoz, J. P. Kulkarni, and K. Roy. 2008. Thermal analysis of 8-t sram for nano-scaled technologies.
In Proceedings of the 13th International Symposium on Low Power Electronics and Design (ISLPED’08).
123–128.

S. Mukhopadhyay, H. Mahmoodi, and K. Roy. 2005. Modeling of failure probability and statistical design of
sram array for yield enhancement in nanoscaled cmos. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. 24, 12, 1859–1880.

R. Naseer and J. Draper. 2008. Parallel double error correcting code design to mitigate multi-bit upsets in
srams. In Proceedings of the 34th European Solid State Circuits Conference (ESSCIRC’08). 222–225.

PTM. 2010. Predictive technology model (ptm). http://ptm.asu.edu.
S. Roy. 2009. H-Nmru: A low area, high performance cache replacement policy for embedded processors. In

Proceedings of the 22nd International Conference on VLSI Design. 553–558.
A. Sasan, H. Homayoun, A. Eltawil, and F. Kurdahi. 2009a. A fault tolerant cache architecture for sub 500mv

operation: Resizable data composer cache (rdc-cache). In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES’09). 251–260.

A. Sasan, H. Homayoun, A. Eltawil, and F. Kurdahi. 2009b. Process variation aware sram/cache for aggressive
voltage-frequency scaling. In Proceedings of the Design, Automation, and Test in Europe Conference
(DATE’09). 911–916.

S. Schuster. 1978. Multiple word/bit line redundancy for semiconductor memories. IEEE J. Solid State Circ.
13, 5, 698–703.

P. Shirvani and E. McCluskey. 1999. PADded cache: A new fault-tolerance technique for cache memories. In
Proceedings of the 17th IEEE VLSI Test Symposium (VTS’99). 440.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

Multicopy Cache: A Highly Energy-Efficient Cache Architecture 150:27

G. Sohi. 1989. Cache memory organization to enhance the yield of high performance vlsi processors. IEEE
Trans. Comput. 38, 4, 484–492.

D. Tarjan, S. Thoziyoor, and N. P. Jouppi. 2006. CACTI 4.0. Tech. rep. 2006-86, HP Laboratories. http://www.
hpl.hp.com/techreports/2006/HPL-2006-86.pdf.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu. 2008. Trading off cache
capacity for reliability to enable low voltage operation. In Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA’08). 203–214.

W. Wong, C.-K. Koh, Y. Chen, and H. Li. 2007. VOSCH: Voltage scaled cache hierarchies. In Proceedings of
the 25th Conference on Computer Design (ICCD’07). 496–503.

C. Zhang, F. Vahid, and W. Najjar. 2005. A highly configurable cache for low energy embedded systems. ACM
Trans. Embed. Comput. Syst. 4, 2, 363–387.

W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam. 2003. ICR: In-cache replication for
enhancing data cache reliability. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN’03). 293–300.

W. Zhao and Y. Cao. 2007. Predictive technology model for nano-cmos design exploration. ACM J. Emerg.
Technol. Comput. Syst. 3, 1.

Received July 2011; revised April 2012; accepted July 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 150, Publication date: July 2014.

