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Abstract

Combating Attacks and Abuse in Large Online Communities

by

Gang Wang

Internet users today are connected more widely and ubiquitously than ever before. As

a result, various online communities are formed, ranging from online social networks (Face-

book, Twitter), to mobile communities (Foursquare, Waze), to content/interests based networks

(Wikipedia, Yelp, Quora). While users are benefiting from the ease of access to information

and social interactions, there is a growing concern for users’ security and privacy against vari-

ous attacks such as spam, phishing, malware infection and identity theft.

Combating attacks and abuse in online communities is challenging. First, todays online

communities are increasingly dependent on users and user-generated content. Securing online

systems demands a deep understanding of the complex and often unpredictable human behav-

iors. Second, online communities can easily have millions or even billions of users, which

requires the corresponding security mechanisms to be highly scalable. Finally, cybercriminals

are constantly evolving to launch new types of attacks. This further demands high robustness

of security defenses.

In this thesis, we take concrete steps towards measuring, understanding, and defending

against attacks and abuse in online communities. We begin with a series of empirical mea-

surements to understand user behaviors in different online services and the unique security and

privacy challenges that users are facing with. This effort covers a broad set of popular online

services including social networks for question and answering (Quora), anonymous social net-

works (Whisper), and crowdsourced mobile communities (Waze). Despite the differences of

specific online communities, our study provides a first look at their user activity patterns based
viii



on empirical data, and reveals the need for reliable mechanisms to curate user content, protect

privacy, and defend against emerging attacks.

Next, we turn our attention to attacks targeting online communities, with focus on spam

campaigns. While traditional spam is mostly generated by automated software, attackers today

start to introduce “human intelligence” to implement attacks. This is malicious crowdsourcing

(or crowdturfing) where a large group of real-users are organized to carry out malicious cam-

paigns, such as writing fake reviews or spreading rumors on social media. Using collective

human efforts, attackers can easily bypass many existing defenses (e.g., CAPTCHA). To un-

derstand the ecosystem of crowdturfing, we first use measurements to examine their detailed

campaign organization, workers and revenue. Based on insights from empirical data, we de-

velop effective machine learning classifiers to detect crowdturfing activities. In the meantime,

considering the adversarial nature of crowdturfing, we also build practical adversarial models

to simulate how attackers can evade or disrupt machine learning based defenses.

To aid in this effort, we next explore using user behavior models to detect a wider range of

attacks. Instead of making assumptions about attacker behavior, our idea is to model normal

user behaviors and capture (malicious) behaviors that are deviated from norm. In this way, we

can detect previously unknown attacks. Our behavior model is based on detailed clickstream

data, which are sequences of click events generated by users when using the service. We build a

similarity graph where each user is a node and the edges are weighted by clickstream similarity.

By partitioning this graph, we obtain “clusters” of users with similar behaviors. We then use

a small set of known good users to “color” these clusters to differentiate the malicious ones.

This technique has been adopted by real-world social networks (Renren and LinkedIn), and

already detected unexpected attacks. Finally, we extend clickstream model to understanding

more-grained behaviors of attackers (and real users), and tracking how user behavior changes

over time.

In summary, this thesis illustrates a data-driven approach to understanding and defending

ix



against attacks and abuse in online communities. Our measurements have revealed new insights

about how attackers are evolving to bypass existing security defenses today. In addition, our

data-driven systems provide new solutions for online services to gain a deep understanding of

their users, and defend them from emerging attacks and abuse.

x
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Chapter 1

Introduction

Internet users today are connected more widely and ubiquitously than ever before. As a result,

various online communities are formed ranging from online social networks (Facebook, Twit-

ter, LinkedIn, Snapchat), to content/interests based communities (Wikipedia, Yelp, Quora), to

mobile and location based networks (Foursquare, Waze). Online communities are gaining an

increasing popularity. As of the first quarter of 2016, the largest online social network Face-

book has reached 1.65 billion monthly active users [30] and Twitter’s population has reached

310 million [34]. Even the much younger Snapchat is catching up with 100 million daily

users around the same time [33]. Online communities not only ease the process of information

seeking for users, but also enable more timely and intimate communications among friends,

families and even strangers. Meanwhile, the massive content in these online communities are

playing a significant role in users’ daily life and decision making, ranging from online restau-

rant reviews in Yelp, to recommendations of cruise lines on TripAdvisor, to financial advice in

SeekingAlpha and StockTwits.

Due to their significant influence, online communities have become attractive targets for

malicious attacks, including opinion manipulation on product reviews [113, 138, 114], polit-

ical lobbying campaigns [180], and massive distribution of malicious content (social spam,
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Introduction Chapter 1

scam and malwares) [77, 88, 206]. Meanwhile, privacy is also a growing concern in on-

line communities, as online services are aggressively aggregating user personal information

such as real names, email addresses, phone numbers, and social connections. Evidence has

shown that dedicated attackers can successfully de-anonymize users based on their online foot-

prints [158, 152]. In addition, with the rise of mobile communities (Foursquare, Uber, Yik

Yak), online data is much more closely linked to users’ physical activities. This renders even

stronger privacy implications since attackers may infer who you are based on where you live

or work.

To put these security and privacy issues into context, we now describe the prevalent attacks

and abusive behaviors in online communities and discuss the challenges to address them.

Social Spam. A key advantage of spam within online communities is the higher-level of

“trust” among social friends. Such trust often gives users the false sense of security making

them more likely to engage with the spam content passed from friends. Several studies have

shown that links embedded in social spam have a much higher click-through rates than those in

email spam [88]. In addition, social spam is usually the first step of more severe attacks such as

phishing or malware infections [77, 222]. When users click on the spam content, they are often

led to malicious websites that lure users to give away valuable information (e.g. passwords) or

trigger drive-by download of malware exploits to compromise their computers [226].

Identity Theft. Today’s online communities often put user information public by default

(e.g., full name, home address, birthday, location traces), which makes it possible for attackers

to massively access the data via simple web crawling. Such information, once collected by

attackers, can be used to facilitate more damaging attacks, from by-passing user’s “security

questions” in online banking [28], to manifesting highly customized spear phishing emails [32,

29]. As of 2015, the FTC received over 490,000 consumer complaints about identity theft,

representing a 47% increase over the prior year [31].

2
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Sybils. For most attacks in online communities (e.g., social spam, identity theft), attackers

often need to first control a large number of user accounts to carry out the attacks. While some

of these accounts are stolen from real users (i.e., compromised accounts) via Botnet [6], many

more are massively created fake identities (i.e., Sybils). Sybils are not uncommon in today’s

online services. As of 2015, Facebook has conservatively estimated that there are at least 170

million Sybils on their service, counting for almost 10% of the Facebook population [27].

Behind the massive Sybils and their attack activities is the growing marketplace for creating

fake accounts [207, 215]. Other than attacks described above, Sybils have been used to create

fake impressions or perceived popularity in social media [10]. For example, during the last US

presidential election (2012), both candidates Mitt Romney and Barack Obama were spot to use

fake Twitter followers to boost their perceived popularity for their campaigns [15, 14].

Cyberbullying. Online communities are not only facing with challenges from external at-

tackers but also need to handle abusive behaviors from real users internally. One of the emerg-

ing issue is cyberbullying in online social networks, particularly, as more and more under-aged

users (teenagers) are now using the services. Bullying behaviors are commonly found in tradi-

tional social media like Twitter [11], and recently get aggravated in anonymous social networks

like Yik Yak, where people can post nasty messages about others anonymously [23]. Many

highschools have prohibited the usage of the service on campus [24], which however cannot

stop the damage. San Clemente, California, a high school was even shut down for a day after

an anonymous bomb threat was posted on Yik Yak [25].

Key Challenges. My work seeks to improve security and privacy in online communities. To

do so, we need to first understand the key challenges we are facing with. The first challenges is

to gain a deep understanding on the problems. Relying on anecdote or pre-defined assumptions

about users or attackers often leads to impractical solutions. For instance, earlier Sybil detec-

tion systems [247, 246, 217, 221, 69, 58] all rely on the assumption that Sybils would have

3
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difficulty in making friends with real users, and thus have to befriend with each other to form

tight-knit Sybil communities. However, recent measurements show the opposite as real-world

Sybils can successfully befriend with real users and blend into the social graph [244], rendering

the proposed systems ineffective.

The second challenge is that attacker behaviors are constantly changing. On one hand,

attackers would launch new attacks when new vulnerabilities are identified. On the other hand,

as services providers deploy more advanced security defense, attackers need to adapt in order to

survive. This creates a highly adversarial environment. For any security defenses, the challenge

is not only to accurately detect existing attacks, but to identify previously unknown attacks and

stay robust against adversarial adaptions of attackers.

Third, online communities not only face with external attacks but also internal abusive

behaviors of real users. Being able to understand real user behaviors and activity patterns is

critical to mitigate abuse. Today’s online communities are huge in terms of the user population

(e.g., in millions or even billions). For such a large population, human behaviors can be highly

diverse and often unpredictable, making this problem highly challenging.

Overview of My Work. In this dissertation, we seek to address the above challenges with

a data-driven approach. First, we want to gain a deep understanding on behaviors of both

real users and attackers in various online communities based measurements. We believe only

by collecting and analyzing real-world data can we truly understand the security and privacy

challenges online communities are facing with. Second, based on our measurement results, we

then build data-driven systems for modeling user behaviors and detecting malicious attacks.

Finally, we again use real-world data to evaluate the system performance and proactively test

prototypes in realistic settings.

We execute the above methodology in 7 highly related projects and collectively present the

results in this dissertation. We start with three measurement studies to discuss the security and

privacy challenges faced by online communities with focus on quality of user content [223],
4
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anonymity and abuse [229], and location and user mobility [228]. Then in the second chapter,

we dive into the problem of social spam campaigns driven by real Internet users [230] and

explore possible defense techniques [229]. Finally we build data-driven solutions to detect

previous unknown attacks [224] and use unsupervised models to capture and identity different

user behaviors in online communities [231]. In the following, we give a briefly summary for

each of the chapters.

1.1 Measurements of Online Communities

In this chapter, we provide contexts for today’s online communities with focus on their user

activities and the security and privacy challenges they are facing with. Based on large-scale

datasets collected from real-world online services, we empirically examine how users behave

and how they interact with each other at both global network level and individual user level.

In addition, we take this chance to explore key questions regarding security and privacy. For

example, how can online services with billions of users effectively maintain high-quality user

generated content? How to preserve user privacy (anonymity) while maintaining accountabil-

ity to constrain abusive behaviors? With the wide adoption of mobile devices, what are the

emerging challenges in preserving user security and privacy while helping users to interact

with the physical world efficiently?

Quality of User Content. First, we focus on Quora, one of the most successful social

question and answering (Q&A) networks, to understand its key mechanisms to maintain high-

quality user generated content. Recently, a number of question and answer (Q&A) sites have

successfully built large growing knowledge repositories, each driven by a wide range of ques-

tions and answers from its users community. While sites like Yahoo Answers have stalled and

begun to shrink, one site still going strong is Quora, a rapidly growing service that augments

a regular Q&A system with social links between users. Despite its success, however, little is
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known about what drives Quora’s growth, and how it continues to connect visitors and experts

to the right questions as it grows. We present results of a detailed analysis of Quora using mea-

surements. In this thesis, we shed light on the impact of three different connection networks

(or graphs) inside Quora, a graph connecting topics to users, a social graph connecting users,

and a graph connecting related questions. Our results show that heterogeneity in the user and

question graphs are significant contributors to the quality of Quora’s knowledge base. One

drives the attention and activity of users, and the other directs them to a small set of popular

and interesting questions.

Anonymity and Abuse. Second, we measure a popular anonymous social network Whis-

per to examine the trade-offs of anonymity of users and the accountability of users’ behaviors.

Social interactions and interpersonal communication has undergone significant changes in re-

cent years. Increasing awareness of privacy issues and events such as the Snowden disclosures

have led to the rapid growth of a new generation of anonymous social networks and messag-

ing applications. By removing traditional concepts of strong identities and social links, these

services encourage communication between strangers, and allow users to express themselves

without fear of bullying or retaliation. Despite millions of users and billions of monthly page

views, there is little empirical analysis of how services like Whisper have changed the shape

and content of social interactions. In this thesis, we present results of the first large-scale em-

pirical study of an anonymous social network, using a complete 3-month trace of the Whisper

network covering 24 million whispers written by more than 1 million unique users. We seek to

understand how anonymity and the lack of social links affect user behavior. We analyze Whis-

per from a number of perspectives, including the structure of user interactions in the absence

of persistent social links, user engagement and network stickiness over time, and content mod-

eration in a network with minimal user accountability. Finally, we identify and test an attack

that exposes Whisper users to detailed location tracking.
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Mobility and User Locations. Finally, we analyze Waze as an example of location-based

crowdsourcing services to understand how manipulating the online information can impact the

physical world. Waze is a mobile app of 50 millions users that provides timely updates on

traffic, congestion, accidents and points of interest. In this thesis, we demonstrate how lack

of strong location authentication allows creation of software-based Sybil devices that expose

crowdsourced map systems to a variety of security and privacy attacks. Our experiments show

that a single Sybil device with limited resources can cause havoc on Waze, reporting false

congestion and accidents and automatically rerouting user traffic. More importantly, we de-

scribe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable

of remotely tracking precise movements for large user populations while avoiding detection.

Finally, we discuss possible solutions to mitigate this threat.

1.2 Spam, Human Factors and Malicious Crowdsourcing

In the second chapter, we specifically focus on the generation and distribution of malicious

content (e.g. spam) in online communities and practical defense techniques. While traditional

spam attacks are mostly generated by automated software, more sophisticated attackers today

start to introduce “human intelligence” to their attacking process. Through extensive measure-

ments, we find strong evidence on the rising ofmalicious crowdsourcing services where a large

number of real users are hired for pennies to perform malicious activities, such as writing fake

product reviews, creating fake social network accounts, and spreading rumors on social media.

The result is a large volume of malicious and misleading content flooding into today’s online

communities. Malicious crowdsourcing poses a significant challenge to existing security sys-

tems (e.g., CAPTCHA), which are initially designed to detect attacks from automated software,

but become ineffective to real users. In this thesis, we describe our efforts in understanding and

defending against malicious crowdsourcing (or crowdturfing).
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Crowdturfing Measurements. Through measurements, we have found that malicious

crowdsourcing systems are rapidly growing in both user base and total revenue. We use detailed

crawls to extract data about the size and operational structure of these crowdturfing systems.

We analyze details of campaigns offered and performed in these sites, and evaluate their end-

to-end effectiveness by running active, benign campaigns of our own. Finally, we study and

compare the source of workers on crowdturfing sites in different countries. Our results suggest

that campaigns on these systems are highly effective at reaching users, and their continuing

growth poses a concrete threat to online communities both in the US and elsewhere.

Defense and Adversarial Attacks. We then explore practical defense against crowdturfing

activities. Recent work in security and systems has embraced the use of machine learning

(ML) techniques for identifying misbehavior, e.g., email spam and fake (Sybil) users in social

networks. To begin with, we examine the possibility to build machine learning classifiers to

detect workers who perform crowdturfing tasks (on Weibo, Chinese Twitter). We show that

traditional ML techniques are accurate (95%–99%).

However, MLmodels are derived from fixed datasets, and must be periodically retrained. In

adversarial environments, attackers can adapt by modifying their behavior or even sabotaging

ML models by polluting training data. In our context, we empirically evaluate the “robust-

ness” of our classifier against a series of adversarial attacks using ground-truth data, including

simple evasion attacks (workers modify their behavior) and powerful poisoning attacks (where

administrators tamper with the training set). We find all of the tested classifiers are vulnerable

to at least one of these adversarial attacks. Our analysis provides a detailed look at practical

adversarial attacks on ML models, and helps defenders make informed decisions in the design

and configuration of ML detectors.
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1.3 User Behavior Modeling for Security Defense

In the final chapter, we develop data-driven systems to capture and understand (malicious)

user behaviors, as a practical solution to combat fake identities and abuse in online commu-

nities. We build a novel user behavior model based on clickstream traces, i.e., server-side

sequences of click events generated by users when they are using the online service. The core

of our proposal is the clickstream similarity graph, which uses similarity distance between pairs

of clickstreams to capture user similarity. The result produces clusters that capture users with

similar behavioral patterns. Based on this clickstream model, we develop two practical sys-

tems: The first system is a semi-supervised system to detect malicious user accounts (Sybils).

We validate the system using ground-truth traces of 16,000 real and Sybil users from Renren,

a large Chinese social network with 220M users. We demonstrate that our system achieves

high detection accuracy with a minimal requirements of ground-truth inputs. The second sys-

tem is an unsupervised system to capture more fine-grained user behavior. Instead of simply

performing binary classification on users (either malicious or benign), this model identifies

natural clusters of different user behaviors, and automatically extracts key features to interpret

the captured behaviors. Applying this system to Renren and another real-world online social

network Whisper (100K users), we help service providers to identify unexpected user behav-

iors (malicious accounts in Renren, hostile chatters in Whisper) and even predict users’ future

actions (dormant users in Whisper).

Both systems have received positive feedback from our industrial collaborators including

Renren, LinkedIn and Whisper, after testing our prototypes on their internal clickstream data.

Following positive results, these companies have expressed strong interest in further experi-

mentation and possible internal deployment.
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1.4 Contributions

This dissertation makes two high-level contributions to improving the security and privacy

in large online communities. First, my work demonstrates the need for conducting real-world

empirical measurements to understand the fundamental problems before designing any security

mechanisms. Our measurements have repeatedly led to findings that contradict common as-

sumptions made by either industrial service providers or prior research work. We have demon-

strated the ineffectiveness of location fuzzing in anonymous social networks, and the attacking

impact of Sybil devices due to the lack of reliable location authentications. In addition, we are

the first to systemically study the use of “human intelligence” in social spam, and demonstrate

their effectiveness in circumventing existing security mechanisms which assume attackers are

automated software.

Second, we have designed, implemented and evaluated practical security solutions for large

online communities. Whether it is the machine learning classifiers to detect crowdturfing work-

ers or the clickstream-based graph model to detect Sybil accounts, we use real-world traces to

drive the system design with focus on practicality. As a result, many of our system prototypes

have been (or in the process to be) adopted by our industry partners including LinkedIn, Ren-

ren, Whisper and Microsoft. This helps to transfer our research efforts into real-world impact

by providing protections for millions of Internet users.

Moving forward, as online communities continue to grow, they are likely to receive even

more attentions from malicious parties. In particular, with the fast development of personal

Internet devices ranging from wearables, to Internet-connected vehicles, to smart houses, we

are very likely to have more online communities formed in the near future where new types of

user interaction and data exchange occur. With this process continuing to shape the surface of

security and privacy, researchers should always expect new attacking strategies from attackers

and their evasions against our defense. This dissertation demonstrates a first step along this
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path: by combining inter-disciplinary tools such as measurements, graph analytics, machine

learning and human factor study, we bring clarity to the problems and develop practical systems

to better prepare users and online services to step up the cybersecurity game.
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Chapter 2

Understanding Online Communities via

Measurements

In this chapter, we seek to provide contexts for today’s online communities, their users’ activ-

ities and most importantly the security and privacy challenges they are facing with. Our key

methodology is to conduct measurements. By collecting and analyzing large-scale datasets

from real-world online services, we empirically examine user activities in those systems and

answer the following key questions. First, how can online services with billions of users effec-

tively maintain high-quality user generated content? Second, how to effectively preserve user

privacy (anonymity) while maintaining accountability to constrain abusive behaviors? Third,

with the widely-adopted mobile devices, what are the emerging challenges in preserving user

security and privacy while helping users to interact with the physical world more efficiently?

In the following, we present three empirical measurement case studies on selected services

to discuss the above questions that broadly cover quality of user content, anonymity and abuse,

and location and user mobility. Through the three case studies, our goal is to provide a deeper

understanding on the problem space and seek for possible directions of solutions.
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2.1 Quality of User Content

2.1.1 Introduction

The Internet is a maelstrom of information, most of it real, and much of it false. Efforts such

as Wikipedia have shown that collectively, Internet users possess much knowledge on a wide

range of subjects, knowledge that can be collated and curated to form valuable information

repositories. In the last few years, community question-and-answer (Q&A) sites have provided

a new way for users to crowdsource the search for specific detailed information, much of which

involves getting first-hand answers of specific questions from domain experts.

While these sites have exploded in popularity, their growth has come at a cost. For example,

the first and still largest of these sites, Yahoo Answers, is showing clear signs of stalling user

growth and stagnation, with traffic dropping 23% in a span of four months in 2011 [148]. In

addition, the Google Answers service launched in 2001 was already shut down by 2006. Why

is this the case? One of the prevailing opinions is that as sites grow, a vast number of low-value

questions overwhelm the system and make it extremely difficult for users to find useful or

interesting content. For example, ridiculous questions and answers are so prevalent on Yahoo

Answers that a quick Google search for “Yahoo Answers Fail” turns up more than 8 million

results, most of which are sites or blogs dedicated to documenting them.

Bucking the trend thus far is Quora, an innovative Q&A site with a rapidly growing user

community that differs from its competitors by integrating a social network into its basic struc-

ture. Various estimates of user growth include numbers such as 150% growth in one month,

and nearly 900% growth in one year [148]. Despite its short history (Quora exited beta status

in January 2010), Quora seems to have achieved where its competitors have failed, i.e. success-

fully drawing the participation of both a rapidly growing user population and specific domain

experts that generate invaluable content in response to questions. For example, founders of In-

stagram and Yelp answered questions about their companies, Stephen Fry and Ashton Kutcher
13
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answered questions about actors, and domain-specific answers come from experts such as Navy

Seals sharpshooters and San Quentin inmates.

So how does Quora succeed in directing the attention of its users to the appropriate content,

either to questions they are uniquely qualified to answer, or to entertaining or informative an-

swers of interest? This is a difficult question to answer, given Quora’s own lack of transparency

on its inner workings. While it is public knowledge that Quora differs from its competitors in

its use of social networks and real identities, few additional details or quantitative measures are

known about its operations. A simple search on Quora about how it works produces numerous

unanswered questions about Quora’s size, mechanisms, algorithms, and user behavior.

In the first part of this chapter, we perform a detailed measurement study of Quora, and

use our analyses to shed light on how its internal structures contribute to its success. To high-

light key results, we use comparisons against Stack Overflow, a popular Q&A site without an

integrated social network. We seek to answer several key questions:

• What role do traditional question topics play in focusing user attention? How much do

followers of a topic contribute to answering its questions?

• What impact do super users have on specific patterns of user activity? Can they generate

and focus user attention on individual questions, thus setting them apart from questions

on related topics?

• Given the rapid growth of questions on question-and-answer sites, how does Quora help

users find the most interesting and valuable questions and avoid spammy or low-value

questions? What role do the “related questions” feature play?

2.1.2 Background: Quora

Quora is a question and answer site with a fully integrated social network connecting its

users. In this section, we introduce Quora, using Stack Overflow as a basis for comparison. We
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then give details on the key Quora graph structures that connect different components together.

Specifically, we describe three types of graphs in Quora: a social graph connecting users, a

user-topic following graph and a related question graph.

2.1.2.1 Quora and Stack Overflow

Quora. Quora is a question and answer site where users can ask and answer questions and

comment on or vote for existing answers. Unlike other Q&A sites where all users exist in a

global search space, Quora allows users to follow each other to form a social network. Social

connections in Quora are directional like Twitter. A user A can follow user B without explicit

permission, and B’s actions (new questions, answers, comments and topics) will appear in A’s

activity stream. We say A is B’s follower and B is A’s followee. In addition, users can follow

topics they are interested in, and receive updates on questions and answers under this topic.

Each Quora user has a profile that displays her bio information, previous questions and

answers, followed topics, and social connections (followers and followees). Each user has a

“Top Stories” page, which displays updates on recent activities and participated questions of

their friends (followees), as well as recent questions under the topic they followed. A small

subset of registered users are chosen by Quora to be reviewers and admins, and have the power

to flag or remove low quality answers and questions.

Finally, each Quora question has its own page, which includes a list of its answers and a

list of related questions. Users can add new answers, and comment, edit and vote on existing

answers.

Stack Overflow. Stack Overflow is another successful Q&A site started in 2008. Stack

Overflow differs from Quora in two main aspects. First, while Quora covers a broad range

of general topics, Stack Overflow focuses specifically on computer programming questions.

Second, users in Stack Overflow are fully independent without social connections.
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Figure 2.1: Structure of questions, topics and users in Quora.

2.1.2.2 Graph Structures In Quora

The internal structure of question-and-answer sites are often a complex mix of questions,

answers, question topics, and users. We summarize the relationships between different entities

in Figure 2.1. Users can follow individual topics and other users for news and events; questions

are connected to other “related” questions, and each question can be tagged with multiple

topics. Finally, for each question in the system, there is a user who asked that question (the

asker), users who answered that question (answerers), and users who voted on an answer

(voters).

Quora’s internal structure is dominated by three graphs that act as channels that guide user

interest and deliver information to users.

1. User-Topic Graph: Quora users follow different topics, and receive updates about ques-

tions under topics they follow.

2. Social Graph: Quora users follow each other to form a Twitter-like social graph. Users

receive newsfeed about questions their friends participated in.

3. Question Graph: Each question has a list of related questions used by users to browse

related questions. The “related” relationship is considered symmetric.

We believe these three graphs are largely responsible for guiding the attention of Quora

users. In the following, we perform detailed analysis on these graphs to understand how they
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Website Data
Since

Total
Questions

Total
Topics

Total
Users

Total
Answers

Stack Overflow Jul. 2008 3.45M 22K 1.3M 6.86M
Quora Oct. 2009 437K 56K 264K 979K

Table 2.1: Data Summary.

impact user activities, especially how they help users separate a small subset of interesting

questions from the larger number of less interesting questions/answers.

2.1.3 Dataset and Preliminary Results

Before diving into main analytical results of our work, we begin in this section by first

describing our data gathering methodology and presenting some preliminary results. Here we

describe the properties and limitations of our Quora and Stack Overflow datasets. We also

analyze some high level metrics of the Quora data, while using Stack Overflow as a baseline

for comparison.

2.1.3.1 Data Collection

Our analysis relies on two key datasets. A publicly available dataset periodically released

by Stack Overflow, and a dataset crawled from Quora that contains multiple groups of data

on users, questions, topics and votes. We describe details below. The basic statistics of both

datasets are shown in Table 2.1.

Stack Overflow. Stack Overflow periodically releases all of their data to the public. Our

site trace was released in August 2012, and covers all activity on Stack Overflow between July

2008 and July 2012.

Quora. We gathered our Quora dataset through web-based crawls between August and

early September 2012. We tried to follow crawler-etiquette defined in Quora’s robots.txt.

Limited portions of data were embedded in Ajax calls. We used FireWatir, an open-source
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Ruby library, to control a FireFox browser object, simulating clicking and scrolling operations

to load the full page. We limited these crawls to 10 requests/second to minimize impact on

Quora.

Since Quora has no predefined topic structures for its questions (questions can have one

or more arbitrary topic “labels”), getting the full set of all questions is difficult. We followed

the advice from a Quora data scientist [16] and start our question crawls using 120 randomly

selected questions roughly evenly distributed over 19 of the most popular question topics. The

crawls follow a BFS pattern through the related questions links for each question. In total, we

obtained 437,000+ unique questions. Each question page contains the topics associated to the

question, a complete list of answers, and the answerers and voters on each answer. As shown in

Table 2.1, this question-based crawl produced 56,000+ unique topics, 979,000+ answers, and

264,000+ unique users who either asked or answered a question, or voted on an answer.

Our biggest challenge is trying to understand how much of the Quora dataset we were able

to gather. The simple answer is we don’t know, since there are no official quantitative mea-

sures about Quora available. But we found a post by a Quora reviewer [13] that hinted the

question ID (or qid) in Quora is sequentially assigned. Thus we can infer the total number

of questions by inspecting the qid of the newly added questions. To validate this statement,

we performed several small experiments where we added small bursts of new (meaningful)

questions to Quora. Each burst contains 10 new questions sent seconds apart, and consistently

produced 10 sequential qid’s. We separated experiments by at least 30 minutes, and observed

increments to the qid consistent with the expected number of new questions in the gap between

experiments. Finally, we plotted qid values for all questions found by our crawl and correlated

them with the estimated date of question creation. The result, discussed below, provides further

support that this qid can be used as an estimate of total questions in the system. The largest

qid from our crawled questions is 761030, leading us to estimate that Quora had roughly 760K

questions at the time of our crawl, and our crawl covered roughly 58% of all questions. Note
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that not all questions remain on the site, as Quora actively deletes spam and redundant ques-

tions [18]. This estimate might provide an upper bound of actual number of questions, and our

coverage of 58% would be a lower bound.

We also crawled the user profiles for users extracted from the crawled questions. Each user

profile contains 6 parts: the list of the user’s followers, list of users they follow (followees),

their previous answers, their previous questions, their followed topics and boards. Out of the

264K extracted users, we found that roughly 5000 (1.9%) profiles were no longer available,

likely deleted either by Quora or the user.

Qid Over Time. Assuming we are correct about the use of qid, we can plot an estimate of

the growth of Quora (and Stack Overflow), by plotting qid against time. Since Quora does not

show when a question is posted, we estimate the posting time by the timestamp of its earliest

answer. For open questions with no answer, we infer the question posting time based on the

latest activity timestamp on the question page. Since reading the question does not update this

“latest activity” timestamp, this timestamp can estimate posting time for unanswered questions.

We estimate the total number of questions in Quora for each month by looking at the largest

qid of questions posted in that month. For Stack Overflow, we use the timestamp for questions

creation in the data trace.

We see in Figure 2.2 that Stack Overflow is an older site with more questions than Quora.

We plot two lines for Quora, a black dashed line for the total number of questions estimated

by qid, and the blue dashed line is the number of questions we crawled from each month.

Both lines increase smoothly without gaps, suggesting that Quora did not reset qid in the past

and the questions we crawled are not biased to a certain time period. Our estimated number

of questions in Quora for June 2012 is 700K, which is consistent with previously reported

estimates [149]. As Quora continues to grow, it is clear that helping users easily identify and

find the most meaningful and valuable questions and answers is a growing challenge.
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Figure 2.3: # of Topics per question.

Topic in Quora # of
Questions

Topic in
Stack Overflow

# of
Questions

Startups 16.3K C# 333K
Survey Questions 10.3K Java 277K
Movies 9.7K PHP 257K
Medicine / Healthcare 9.3K Javascript 242K
Food 8.7K Android 211K
Facebook 7.4K jquery 207K
Music 5.5K iPhone 143K
Google 5.4K C++ 139K
Psychology 5.2K ASP.net 132K
Startup Advice 5.2K .net 125K

Table 2.2: Top 10 topics based on number of questions.

2.1.3.2 Initial Analysis

Topics. Quora is a general Q&A site with a very broad range of topics. We observed 56K

topics in our dataset, which is twice more than that of Stack Overflow, even though Quora is

smaller by question count. Table 2.2 lists the top 10 topics with most number of questions in

each site. In Quora, the top 10 includes topics in various areas including technology, food, en-

tertainment, health, etc. “Startups” is the most popular one which takes 3.7% of the questions.

While all topics in Stack Overflow are different, they are all related to programming. The most

popular topic is “C#,” which represents roughly 10% of all questions.

Questions and Answers. In both systems, one question can have multiple topics. Figure 2.3

shows the number of topics per question. Stack Overflow requires a minimum of 1 topic and
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Figure 2.5: # of Answers per question.

a maximum of 5 topics per question, and the results are evenly distributed between 1 and 5.

Although Quora does not have such requirements, a majority (85%) of questions have no more

than 5 topics. Very few (<1%) of questions end up with more than 10 topics, which might be

an attempt to draw more attention to the question.

Next, we plot the distribution of views and answers per question in Figure 2.4 and Fig-

ure 2.5. We are surprised to find that the curves from Stack Overflow and Quora are nearly

identical. Although 20% of questions in Quora remain unanswered (10% for Stack Overflow),

almost all questions got at least 1 user view. In addition, 99% of questions end up with less

than 10 answers, and 20% of all Quora questions managed to collect ≥4 answers. We use this

as a minimum threshold for our later analyses on social factors on system performance.

Votes. In terms of votes, both Quora and Stack Overflow allow users to upvote and down-

vote answers. Quora makes visible the list of upvoters, but hides downvoters. Downvotes

are processed and only contribute to determining the order answers appear in. Thus in our

analysis of Quora, we only refer to upvotes and disregard downvotes. In contrast, Stack Over-

flow anonymizes all voters and only displays the accumulated number of votes, which can be

negative if an answer is poorly received.

Next, we look at how votes impact the order that answers are displayed. Quora uses a

proprietary algorithm [9] to rank the answers, where best answers show on the top of the page.

In Stack Overflow, the question asker can accept one of the answers as the best answer. First,
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in Stack Overflow.

we examine how well votes work to identify the “best answer.” We select questions with at

least 2 answers, 180K or 40% of all questions in Quora and 1.76M or 51% in Stack Overflow.

Figure 2.6 plots the ratio of the best answer’ votes over the average votes per answer under this

question. We call this as “best answer vote ratio.” Overall, vote count was very effective at

identifying the best answers, and the differences between the two sites might be explained by

the more concrete (right or wrong) nature of Stack Overflow’s questions compared to general

questions on Quora. Surprisingly, some of the best answers have less votes than the average

answer. 5% of Quora questions ranked answers with fewer upvotes on top, likely due to other

features used by Quora’s ranking algorithm such as answerer reputation or downvotes. On

Stack Overflow, 7% of the answers chosen by the asker had lower votes than average.

Content Moderation. Finally, we note that both sites use crowdsourcing to moderate user-

generated content. Stack Overflow has administrators who actively flag unqualified questions

and close them [17]. Roughly 3% of all questions in Stack Overflow have been closed, and

Figure 2.7 shows the reasons why they were closed. The top two reasons were “not-real,”

i.e. ambiguous, vague, incomplete, overly broad or rhetorical, and redundant questions. In

contrast, Quora relies on a total of 43 admins and 140 reviewers chosen from the user popu-

lation to flag low quality answers and redundant questions [19, 20]. The number of flagged

or removed answers and questions is unknown. While it is unclear whether these reviewers
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are responsible for keeping Quora largely free of fake or scripted accounts (Sybils) [230, 244],

recent work has shown that human reviewers can be extremely effective at detecting fake or

forged content [225].

Summary. Despite their different topics of interest, Quora and Stack Overflow share many

similarities in distribution of content and activity. A key observation is that given the broad

and growing number of topics in Quora, identifying the most interesting and useful content, i.e.

separating the wheat from the chaff, is a very difficult problem. Without built-in mechanisms

to lead users to useful content, the service will overwhelm users with the sheer volume of its

content, much like the Internet itself. This is the focus of the rest of analysis, where we will

study different Quora mechanisms to understand which, if any, can keep the site useful by

consistently guiding users to valuable information.

2.1.4 The User-Topic Graph

Quora allows users to track specific fields by following the corresponding topics, such as

“Startups,” “Facebook,” and “Technology.” This also directly connects users to questions (and

associated answers). A question, once created or updated under a topic, will be pushed to the

newsfeeds of users who follow the topic. In this section, we model the interaction between

Quora users and topics using a user-topic graph, and examine the impact of such interactions

on question answering and viewing activities. Specifically, we seek to understand whether

there is a direct correlation between followers of a topic and views and answers to questions,

i.e. do highly-followed topics draw a large number of views and answers to their questions?
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Figure 2.8: Topics followed per user.
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Figure 2.9: Average views and answers
for questions under sorted topic buckets.

2.1.4.1 High-level Statistics

We first examine the number of topics followed by each user1. Figure 2.8 shows the cumu-

lative distribution of the number of topics followed per user. We make three key observations.

First, the large majority (95%) of users have followed at least 1 topic. This is because Quora

recommends topics during the sign-up process. Second, Quora users each tend to follow a

moderate number of topics, e.g. more than 50% of users followed at least 10 topics, but 97%

of users followed no more than 100 topics. Finally, a very small portion of users (27 or 0.01%)

followed more than 1000 topics. We manually checked these users and found that they were

legitimate accounts, and come from various backgrounds such as CEOs, co-founders, bloggers,

students, and were all very active Quora users.

2.1.4.2 Impact on Question-related Activities

We now examine whether user interest towards certain topics translates into higher level of

activities on questions related to those topics. We examine the correlation between the number

of views or answers per question, and the number of followers of each topic. Since the number

of topics is large (35K), we bucketize topics based on the number of followers in a log scale.

For example, topics with number of followers in the range [1, 10] are in one bucket, and topics
1The user-topic interaction is one-way where users can follow multiple topics, but the relation is asymmetric,

i.e. topics do not follow users.
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with number of followers within [10, 100] are in a second bucket. We have a total of 5 buckets.

In each bucket, we compute the number of views (answers) per question, averaged over the

topics and their questions.

Figure 2.9 shows the correlation results for both question views and answers. We observe

a strong correlation: questions under topics with more followers tend to have a higher number

of average page views and answers. This is intuitive: when a user follows a topic, all questions

under the topic and their updates show up on the user’s newsfeed, thus encouraging page views

and answers.

We verify this intuition by examining for each question the percentage of answers that

came from followers of the question’s topic(s). Unfortunately we could not do the same for

question page views, because Quora only reveals the identity of users who answer questions,

but not those who browse each question. We focus on questions with some minimum number

of user interactions (≥4 answers), which filters out all but 87K (20%) questions from our

dataset. Figure 2.10 plots the cumulative distribution of the portion of answers contributed by

topic followers. It is very close to a uniform distribution with mean of 50%, except for roughly

13% of questions, for which none of the answers were produced by followers of the question’s

topic(s). At a high level, this suggests that topics are effective ways of guiding users towards

questions that are valuable and appealing to them.

Summary. The user-topic interaction has considerable impact on question answering ac-

tivities in Quora. Not surprisingly, questions under well-followed topics generally draw more

answers and views. Following the right topics can introduce users to valuable questions and

answers, but is not the only way to access questions.
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Figure 2.10: % of Answers added by the
followers of the question’s topics.
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Figure 2.11: Degree distribution in social
graph.

2.1.5 The Social Graph

In addition to following topics of interest, Quora users also follow each other to form a

Twitter-like directed social graph. Questions that a user interact with are dissiminated to their

followers in the form of events in their newsfeed. Therefore, social relationships clearly affect

Q&A activities, and serve as a mechanism to lead users to valuable information.

In this section, we analyze the Quora social graph to understand the interplay between user

social ties and Q&A activities. Specifically, we seek to answer three key questions. First, what

triggers Quora users to form social ties? Second, does the presence of popular users correlate

with high quality questions or answers? That is, do questions raised by “super-users” with

many followers receive more and/or better answers from her followers? Finally, do strong

social ties contribute to higher ratings on answers to questions? In other words, do questions

answered by super-users get more votes because of the sheer number of their followers?

2.1.5.1 Social Ties

We begin by examining the follower and followee statistics of Quora users. Figure 2.11

plots the complementary cumulative distribution function (CCDF) for both the incoming de-

gree (follower) and outgoing degree (followee). As expected, the degree distribution follows

the power-law distribution [45]. Specifically, 23% of users have no followers and 23% do not
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follow anyone. The vast majority of users (99.6%) have less than 1000 followers, while 23

users have more than 10,000 followers. The exponential fitting parameter α for the incom-

ing degree distribution is 2.49 (with fitting error 0.01). This is very close to that of Twitter

(α=2.28), but higher than that of Facebook and Orkut (α=1.5) [236, 151].

In our data set, 44,091 (17%) of all users have neither followers nor followees. For the rest,

6% of users have no followers, and 7% do not follow anyone, representing the two extremes in

the FFRatio distribution. Overall, more than half (58%) of all users have more followees than

followers. A very small portion (0.1%) have 100 times more followers than followees. Not

surprisingly, these are mostly celebrities, e.g. editors, actors and CEOs.

Triggers of Social Ties. To understand how Quora’s social network functions, a basic

question of interest is how users choose their followees. According to a recent survey of Quora

users [174], they tend to follow users who they consider interesting and knowledgeable. Thus

our hypothesis is that, outside of the small portion of celebrities who get followers just by their

mere presence, the majority of Quora users attract followers by contributing a large number of

high-quality answers.

To validate our hypothesis, we examine the correlation between a user’s follower count and

the quantity and quality of her answers to questions. We approximate the quality of an answer

by the number of votes received. We put users with the same number of answers (votes) into a

group and compute the average number of followers per user for each group. Figure 2.12a plots

the correlation results, which confirm our hypothesis. The correlation is particularly strong for

users with less than 100 followers, which account for 91% of the users in our dataset.

2.1.5.2 Impact on Question Answering

Quora is unique because it integrates an effective social network (shown above) into a

tradition Q&A site. Thus it is important to understand how social ties affect Q&A activities.
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Figure 2.12: Correlation between user answers (received votes) and followers per user.

Specifically, we explore whether super users (or users with many followers) draw more and

better answers from their followers. To answer this question, we first examine for each question

the number of answers, and the portion of answers coming from the asker’s followers. We then

measure the quality of answers based on votes and explore whether followers provide better

answers. We define “Super User” as top 5% of all users by followers. In our dataset, we have

12K super users, each with more 160 followers.

For questions in our dataset, the asker is not shown on the question page. Instead, we match

the originator of the question (the “asker”) to each question based on user profiles. Each user’s

profile page contains a list of user’s previously asked questions. Using this list, we managed

to find the askers for 285K (65%) questions in our question dataset. Since our analysis targets

user social activities in the question thread, we do not consider open questions and questions

that have not gained enough answers. We only consider questions with known askers and at

least 4 answers, which still leaves a large number of questions (59K) for our analysis.

Number of Answers. In Figure 2.5 we have plotted the distribution of the number of an-

swers received per question across all the questions. We repeat this analysis for both questions

raised by super users and non-super users (regardless of the number of answers received), and

found that they follow the same distribution (figure omitted due to the space limitations). This

shows that users do not get more answers for questions just by having more followers.
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Figure 2.13: % of Answers written by
asker’s followers.
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Figure 2.14: Relative answer quality ratio.

Answers by Followers. Next, we examine for each question the portion of answers con-

tributed by the asker’s followers. Figure 2.13 plots the cumulative distribution across all the

questions (marked as “All”), across the questions raised by super users (“Super User”), and

across the questions raised by non-super users (“Normal”).

We make two key observations. First, a big portion of the questions (68% for “All”) did not

receive answers from the asker’s followers. Even half of the questions raised by super users

received no answers from their followers. This is likely because users who follow someone

tend to seek her (helpful) answers to questions, rather than looking for questions to answer.

This also implies that if we build a Q&A site solely as a social network that expects answers

only from friends (followers), most questions will remain unanswered. Second, compared to

normal users, super users do draw more answers from their followers, indicating a moderate

level of social influence on question answers.

We also compare the effectiveness of drawing answers using social ties to that of draw-

ing answers from following topics (discussed in Section 2.1.4), by comparing the results in

Figure 2.13 and Figure 2.10. We see that in general, questions received more answers from

users who follow the associated topic(s). But neither channel appears to be the primary way of

attracting answers, and both channels appear to complement each other in this process.

Answer Quality. We now examine whether answers contributed by the asker’s followers
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have better quality. Again we use the number of votes received to serve as an approximate

measure of the quality of an answer. For each question thread, we first compute the average

votes per answer for all the answers Vall and for all the answers contributed by the asker’s

followers Vfollower. We define R = Vfollower

Vall
as the relative quality of the followers’ answers.

Thus R > 1 indicates that the followers’ answers are of higher quality in general.

Figure 2.14 shows the cumulative distribution of R, where for more than 50% of the ques-

tions, answers from the followers were of higher quality, and for 20% of the questions, answers

from the followers got more than 2 times the votes than average. This result is consistent with

a recent survey study [154] on Q&A behaviors in Facebook, which suggests that close friends

have stronger motivation to contribute good answers.

2.1.5.3 Impact on Voting

Quora applies a voting system that leverages crowdsourced efforts to promote good an-

swers. By positioning good answers at the top of the questions page, Quora allows users to

focus on valuable content. However, the social interaction among Quora users could impact

voting in various ways. The key concern is users who have many followers can get their fol-

lowers to vote for their answers, thus gaining an “unfair advantage” over other users. In the

following, we study this issue in detail by exploring two key questions. First, do user votes

have a large impact on the ranking of answers in Quora? Second, do super users get more

votes, and do these votes mainly come from their followers?

Votes and Ranking. Quora has indicated that the number of votes is the key metric to

determine quality of answers [9]. In fact, our results in Figure 2.6 show that more than 96% of

the best answers (ranked 1st by Quora) received more votes than average. Thus our goal is to

explicitly examine how much the number of votes matters in Quora’s ranking algorithm, and

whether social connections give user advantage to gain more votes.
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Figure 2.16: Votes from answerer’s followers.

For each question thread, we start by ranking the answers by the number of votes received.

Answers with the most votes are ranked first. We then take the best answer (ranked 1st) cho-

sen by Quora’s built-in algorithm and study their vote-based ranking. Figure 2.15 plots the

cumulative distribution of these best answers’ vote-based ranking. We see that for 85% of the

questions, Quora’s best answers also ranked the highest in votes, and for 96% of the questions,

the best answers from Quora are among the top-2 most votes. This result confirms that the

number of votes is the dominating feature for selecting best answers. The same result also

implies that potential bias in the voting process could lead to unfair ranking of answers, which

we study next.

Votes on Super Users. We repeat the above analysis on answers offered by super users

(most followed users). Results in Figure 2.15 show that for 40% of questions, super users’

answers received the highest votes, and for 60% of cases, their answers are among the top-2

most votes. This implies that regardless of the quality of their answers, super users can often

get more votes over other users.

To better understand the bias, we examine whether a large portion of votes come from the

answerer’s followers. For this we gather answers to all the questions and group them by the

number of votes received. For each group of answers, we compute the average percentage

of votes from the answerer’s followers. We also repeat the same process on answers offered
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by super users and those from non-super users. Figure 2.16 shows the average percentage of

followers’ votes across different answer groups. We cut the line at the points where the num-

ber of votes reaches 100, which covers 99.9% of all answers These results show that answers

contributed by super users do receive a large portion of votes (30-40%) from their followers,

which is significantly larger than normal users (<10%). This shows that users with more fol-

lowers tend to get more votes from their followers, which could introduce potential unfairness

in answer ranking. For example, an answer contributed by super users gets a much higher rank

even though the true quality of the answer is not high.

Summary. In Quora, users who contributed more and good answers tend to have more

followers. These well-connected users also gain advantage by having more friends (followers)

to answer their questions and upvote for their answers.

2.1.6 The Related Questions Graph

One of Quora’s core features is the ability to locate questions “related” to a given question.

This effectively creates a related question graph, where nodes represent questions, and links

represent a measure of similarity as determined by Quora. The related question graph provides

an easy way for users to browse through Quora’s repository of questions with similarity as a

distance metric.

In this section, we extract the question graph from our dataset, and seek to determine if the

structure of the graph plays a role in helping users to find top questions. Intuitively, a similarity-

based question graph would produce large clusters of questions around popular topics, with

less popular questions relegated to sparse regions of the graph. Thus users following related

question links could encounter popular questions with a higher probability.
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Figure 2.18: Question degree versus aver-
age views and answers per question.

2.1.6.1 Impact of Degree in the Question Graph

We build the question graph by crawling and extracting related questions links. By default,

Quora lists a fixed number (5) of related questions on each question’s main page. These are

deemed by Quora to be the most related to the question on the current page. Since the “re-

lated” relationship is intuitively a bidirectional property, the question graph is a unweighted,

bidirectional graph.

Our final question graph has a total of 437K nodes and 1.6M edges. We plot the distribution

of question degree in Figure 2.17. Although each question only has at most 5 outgoing related

questions, most questions have incoming connections from other questions, and thus have a

total “related” degree greater than 5. However, there are 9% questions with degree less than

5. This is because some of their related questions were not crawled (questions deleted by

Quora) and thus are not included as nodes. 99% of the questions have degree less than 50. The

distribution shows a distinctive power-law shape, and when we fit the question degree CCDF

to the power-law, we get an α value of 3.5 with fitting error 0.048.

Next, we examine the connectivity of the question graph. The question graph is dominated

by a single large connected component that covers 98% (430K) of all questions. On closer

inspection, we see that the remaining 2% of the questions are either newer questions whose

related questions have not yet been computed, or they belong to esoteric topics with very few
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questions and low user interest.

Stability. One concern we had about the question graph is whether it is stable, i.e. does

it change on a frequent basis as new questions are added to the system. We test the long-

term stability of the related question graph by comparing the related question graph across two

snapshots. The first snapshot was taken in our primary measurement period of August 2012.

We also took another snapshot in October 2012 (two months after the first snapshot). When

we compared the related question set for each question in the system, we found that 60% of

all question had no changes in the time between our snapshots, and 30% of the questions have

only one new entry (out of five) in its related question list. Thus we can assume that the related

question list is relatively stable over moderate time periods, and our snapshots are a reasonable

approximation for earlier versions of the question graph.

Question Degree vs. Attention. On each question page, users can browse a series of

questions via the related question edges. This leads to the hypothesis that a question with

higher question degree can receive more attention, i.e. more user views, and potentially more

answers as a result.

We validate this hypothesis as follows. We first group all questions based on question de-

gree in the related question graph. Then we compute the average number of answers and views

for questions in each group. We plot the results in Figure 2.18. The dashed line represents the

average number of user views across all questions with a given node degree, and the solid red

line represents the average number of answers received by all questions with a given degree.

There are clear trends in both cases. For questions with higher degree (they are listed as being

related to more questions), they are accessible to users via a larger number of incoming links.

Hence these high degree questions receive both more page views as well as more answers.

The takeaway here is that questions with high degree in the question-relation graph correlates

strongly to questions that receive more attention and answers from users.
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2.1.6.2 Locating Similar Questions

In the question graph, questions on similar topics are clustered together, while irrelevant

questions are likely to be “related” to popular questions. Thus they are likely positioned in

sparser regions of the graph. In this subsection, we first leverage the graph structure to identify

groups of similar questions. We then ask two key questions: do similar questions receive equal

attention from users? If not, what are the potential mechanisms that drive users to certain

questions while ignoring other similar questions?

Graph Clustering. We first locate similar questions using the question graph. More specifi-

cally, we want to generate question clusters where questions within the cluster are more tightly

connected than those outside the cluster. This is a simple definition easily characterized by

modularity.

We formalize this problem as a graph partition problem, and use the popular graph parti-

tioning tool METIS to perform a multilevel k-way partitioning [121] on our question graph.

In this case, we predefine K as the number of clusters we want to generate. We run the graph

partitioning algorithm, with K equal to 100, 1000, 10,000 and 100,000. When K is too big,

we end up with many small clusters after cutting many edges. On the other hand, when K is

too small, we get a small number of big clusters which take in many questions under related

topics, but are not truly similar. Since there is no good way to get the ground-truth assessment

on how “similar” the questions are, we randomly sample 10 clusters from each run with differ-

ent K values, and manually inspect questions within each cluster. We find that the best match

between semantic clusters and automatically detected clusters occurs when K =10,000.

So we partition the graph into 10,000 clusters of similar sizes. Table 2.3 shows an example

of one generated cluster. This cluster contains 43 questions, and all questions are related to

“Quora.” We also extract the topics of the questions in the cluster and rank the topics based on

how many questions they are associated with. The top 3 topics of the cluster are listed in the
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ID Question Title
459576 What percentage of questions on Quora have no answers?
370857 Can I search Quora only for questions that have been answered?
45022 How many questions have been answered on Quora?
20195 What percentage of Quora questions receive at least one answer?
17363 What percentage of questions on Quora are answerable?
13323 How many questions are on Quora, answered or not?
... ...
Top Topics Quora, Quora-Usage-Data-and-Analysis, Quora-product

Table 2.3: A cluster of 43 questions, produced by graph partitioning. The top three tags covers
90% of the questions in the cluster.
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table. We see that the three topics are different but all related. In fact, the top three topics cover

90% of the questions in this cluster, which indicates a good cluster focused around a single

subject.

Cluster Analysis. Based on the generated clusters, we can now answer the high level

question: do similar questions receive equal attention? We answer this question by assessing

the distribution of user views and answers between questions in the same cluster. We choose to

use gini coefficient, a uniformity metric commonly used to evaluate the equality of distributions

in economics [67].

We explain how we compute gini coefficient for each question cluster using Figure 2.20.

As an example, the x-axis has the questions sorted by increasing number of views, and the y-
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axis represents the cumulative portion of the views. So the curve represents y% of contribution

(of views) by the bottom x% of questions. By definition, the curve is always at or below the

dashed line which represents perfect equality of the distribution. Gini coefficient is defined

to quantify how close the curve is to the dashed line: G = A
A+B

, where A and B represent

the corresponding areas above and below the curve. As each axis is normalized to 100%, the

gini coefficient G is always within the range of [0, 1], where G=0 means perfect equality or

uniformity (the dashed line in our example) and G=1 means an extremely skewed distribution.

We compute the gini coefficient for the distribution of number of views (and answers) of

questions in each cluster. As shown in Figure 2.19, the solid curve shows the gini coefficient of

number of views is highly skewed towards 1. More than 90% of clusters have gini coefficient

>0.4. This shows that the numbers of views are extremely uneven among similar questions

within each cluster. The same trend applies to answers, as the vast majority of clusters have

extremely skewed answer distributions. This means that user attention is tightly focused on a

small portion of (valuable) questions within each cluster of similar questions.

Our results suggest that the structure of the related question graph (e.g. question degree) is

at least partially responsible for focusing user attention and answers on a small subset in each

cluster of related questions. Next, we ask whether super users play a role in directing traffic

towards specific questions in each cluster of related questions.

Super User Effect. We evaluate whether the skew in the distribution is caused by super user

effect. Intuitively, when a user adds new answers or upvotes existing answers on a question,

that question will be pushed to all her followers. Thus super users with more followers can

disseminate the question to a larger audience. We use the same definition of super users as

in previous analysis by taking the top 5% of most followed users. We measure the super user

effect by comparing the number of views (answers) of questions involving super users to other

questions with no super user involvement. Among all 10000 clusters, only 1 cluster has no

super user in any of its questions, and is not considered in the analysis.
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Figure 2.21: Average # of views (answers) of super user questions vs. normal user questions
in each cluster.

Figure 2.21 shows the scatter plot of average views (and answers) of super user involved

questions and normal user questions in each cluster. The X-axes are presented in ascending

order of the views (answers) of super user questions, thus the super user question points form

a near-continuous line. We first compare the average number of user views in Figure 2.21a. In

the vast majority of the clusters, the super user questions have more views than that of questions

with no super user involvement. There is only a small number of clusters (4%) where normal

user questions receive more user views then super user questions.

Figure 2.21b compares the two type of questions with respect to average number of answers

per question. The result shows that super user involved questions have significantly more

answers than normal user questions. Compared to user views, it shows a even stronger impact

of super users on drawing answers. In different clusters, super user questions have an average

number of answers ranging from 2 to 10, while questions without super user involvement

almost always stays below 2 answers across clusters. Both the number of user views and

answers can reflect how much attention each question receives. The result shows choices made

by a small number of super users on questions usually affect the focus of attention for the whole

community.

In summary, we build the related question graph, and find that it is a relatively stable struc-

ture even as new questions are constantly added to the system. We find that high degree ques-
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tions generally receive more answers and views compared to others. More specifically, the

spread of user views and answers within clusters of related questions is extremely skewed to-

wards a small subset of questions. This bias is likely created by the structure of the question

graph, and enhanced by super users, as the questions they interact with receive additional views

and answers from their followers.

2.1.7 Summary of Results

Community question and answer sites provide a unique and invaluable service to its users.

Yet as these services grow, they face a common challenge of keeping their content relevant,

and making it easy for users to “find the signal in the noise,” i.e. find questions and content that

are interesting and valuable, while avoiding an increasing volume of less relevant content.

In this section, we use a data-driven study to analyze the impact of Quora’s internal mech-

anisms that address this challenge. We find that all three of its internal graphs, a user-topic

follow graph, a user-to-user social graph, and a related question graph, serve complementary

roles in improving effective content discovery on Quora. While it is difficult to prove causal

relationships, our data analysis shows strong correlative relationships between Quora’s internal

structures and user behavior. Our data suggests that the user-topic follow graph generates user

interest in browsing and answering general questions, while the related question graph helps

concentrate user attention on the most relevant topics. Finally, the user-to-user social network

attracts views, and leverages social ties to encourage votes and additional high quality answers.

As Quora and its repository of data continues to grow in size and mature, our results suggest

that these unique features will help Quora users continue find valuable and relevant content.
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2.2 Anonymity and Abuse

2.2.1 Introduction

Over the last decade, online social networks (OSNs) such as Facebook, LinkedIn, and

Twitter have revolutionized the way we communicate. By formalizing our offline social re-

lationships into digital form, these networks have greatly expanded our capacity for social

interactions, both in volume and frequency.

Yet the industry landscape is changing. Content posted on Facebook is now commonly

used to vet job candidates, support divorce litigation, and terminate employees. In addition,

studies have observed a significant growth in privacy-seeking behavior, even despite changes

in social networks to encourage broader information sharing [208]. Finally, these trends have

only been accelerated by recent revelations following the Snowden disclosures, with numerous

headlines reminding Internet users that their online behavior is under constant scrutiny by NSA

and other entities.

All these have contributed to the rapid rise of a new wave of privacy-preserving communi-

cation and social networking tools. These fast-growing services are pseudo-anonymous mes-

saging mobile applications: SnapChat made headlines for ensuring that photos self-destruct in

a few seconds; Whisper allows users to anonymously post their thoughts to a public audience;

and Secret allows users to share content with friends without revealing their own identity. This

is just the tip of the iceberg, as many similar services are popping up with increasing frequency,

e.g., Tinder, Yik-yak, and Wickr.

The anonymous nature of these communication tools has drawn both strong supporters as

well as vocal critics. Supporters believe that they provide valuable outlets for whistleblow-

ers avoiding prosecution, and allow users to express themselves without fear of bullying or

abuse [238, 237]. Critics argue that the lack of accountability in these networks enables and en-

courages negative discourse, including personal attacks, threats, and rumor spreading [42, 40].
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Yet all parties agree that these tools have had a dramatic impact on how users interact and

communicate.

In this part of the chapter, we describe our experience and findings in our effort to study

pseudo-anonymous social networks, through a detailed measurement and analysis of Whisper.

Whisper is a mobile app that allows users to post and reply to public messages on top of an

image (e.g. Internet memes), all using anonymous user identifiers. Whisper does not associate

any personal identifiable information with user IDs, does not archive any user history, and does

not support persistent social links between users. These design choices are the polar opposite

of those in networks such as Facebook. Yet they have made Whisper one of the most popular

new social networks, with more than 3 billion page views per month2. As our working dataset,

we captured 100% of the Whisper data stream for a 3-month period starting in February 2014,

including more than 24 million whispers and replies written by more than 1 million unique

users.

We focus our study on the net impact of anonymity in Whisper, compared to traditional

social media with verified identities and social links. Given the large differences between

Whisper and current leaders such as Facebook and LinkedIn, our analysis can have significant

implications on future infrastructures for social networks, issues of user privacy in messaging

networks, and our understanding of social behavior. More concretely, our study also sheds light

on the long-term sustainability of anonymous communication networks, given the removal of

persistent social links, often considered key to the “stickiness” of today’s networks.

Our analysis provides several key findings.

• First, we seek to understand user interactions in the absence of social links. We build in-

teraction graphs and compare them with those of traditional social networks like Twitter

and Facebook. Not surprisingly, we find that user communication patterns show high dis-

persion, low clustering, significantly different from prior systems. Per user, we observe
2To our knowledge, there is no public data on Whisper user counts.

41



Understanding Online Communities via Measurements Chapter 2

that “friends” are highly ephemeral, and strong, long-term friendships are rare.

• Second, our study of user activity over time shows that a constant stream of new users

contribute significantly to content generation, and users bifurcate clearly into short-lived

(1-2 days) and long-term users. We demonstrate that users can be accurately classified

into either group by applying ML techniques to only 1 week’s worth of activity history.

• Third, we study the question of abusive content through analysis of “deleted whispers.”

We show that most deleted whispers focus on adult content, and Whisper’s moderation

team usually deletes offensive whispers within a short time after initial posting.

• Finally, we identified a significant attack that exposes current Whisper users to detailed

location tracking. We describe the attack in detail and our experiments. Note that we

have already notified Whisper of this vulnerability, and they are taking active steps to

mitigate the problem.

2.2.2 Background: Whisper Network

In this section, we briefly describe background information about the Whisper network,

followed by a high level summary of the goals of our study.

2.2.2.1 The Whisper Network

Whisper.sh is a two-year old smartphone app that has become a leader in a new wave of

pseudo-anonymous messaging and social communication services, including Snapchat, Secret,

Tinder, Yik-yak, Ether and Wickr. While detailed functionality may vary, these services gen-

erally provide ways for users to make statements, share secrets or gossip, all while remaining

anonymous and untrackable.

As a mobile-only service, Whisper allows users to send messages, receive replies using

anonymous nicknames. It has grown tremendously in popularity since launching in 2012, and
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13

Figure 2.22: Screenshot of a sample whisper message (left) and the public stream of latest
whispers (right).

averages more than 3 billion monthly page views as of early 2014 [89]. The functionality is

very simple: the app overlays each user’s short text message on top of a background image

based on keywords from the message (Figure 2.22). The resulting whisper is posted to the

public with the user’s random or self-chosen nickname. Others can heart (Whisper’s version

of “like”) a message anonymously, or post a public followup reply with their own whisper. In

addition, users can send private messages to the author of a whisper to start a chat, and private

messages are only visible to the participants.

User Anonymity. Whisper’s focus on anonymity breaks some of the core assumptions

made in traditional social networks like Facebook or Google+. First, Whisper users are identi-

fied only by randomly assigned (or user-chosen) nicknames, not associated with any personal

information, e.g., phone numbers or email addresses3. Second, Whisper servers only store

public Whispers, and users’ private messages are only stored on their end user devices. There

is no functionality to search or browse a specific user’s historical whispers or replies. Third,
3On the server side, Whisper associates new users with a globally unique identifier (GUID), and binds it to

the DeviceID of user’s phone. Users can transfer their accounts (private message history) when switching to new
phones via iCloud.
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there is no notion of a persistent social link between users (e.g., friends on Facebook, followers

on Twitter). Thus users are encouraged to interact with a wide range of strangers instead of a

known group of “friends.”

Public Feeds. Without social links, users browse content from several public lists instead

of the news feed of their friends (or followees). These lists include a latest list which contains

the most recent whispers (system-wise); a nearby list which shows whispers posted in nearby

areas (about 40 miles of radius range); a popular list which only shows top whispers that

receive many likes and replies; and featured list which shows a subset of popular whispers that

are hand-picked by Whisper’s content managers. All these lists sort content by most recent

first.

2.2.3 Data and Initial Analysis

Before diving into our analysis of Whisper, we first describe our data collection methodol-

ogy and collected datasets. We then describe some high level analyses of our dataset.

2.2.3.1 Data Collection

Our goal is to collect whispers and their replies posted in the entire network. Given that

Whisper does not archive historical data, our method is to keep crawling newly posted whispers

over a long period (February to May 2014). We focus on the “latest” list, which is a public

stream of the latest whispers from all Whisper users. Unlike other public lists e.g., “nearby”

and “popular”, the “latest” list provides access to the entire stream of whispers in the network.

Since Whisper does not provide a third-party API, we crawl the “latest” list by scrapping

Whisper’s website.

Each downloaded whisper includes a whisperID, timestamp, plain text of the whisper, au-

thor’s GUID, author’s nickname, a location tag, and number of received likes and replies. An
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author’s GUID was not intended to act as a persistent ID for each user, but was implemented

that way due to Whisper’s dependency on a third-party service for private messages. Authors’

GUIDs make it possible to track a user’s posts over time. After we reported this issue to Whis-

per’s management team, they removed the GUID field in June 2014. The location tag shows

user location at the city and state level (e.g., Los Angeles, California), and is available only if

the whisper author enabled location sharing permission. Replies to a whisper are similar, the

only difference is that replies are also marked with the whisperID of the previous whisper in

the thread.

Crawling. We implemented a distributed web crawler with two components, a main crawler

that pulls the latest whisper list, and a reply crawler that checks past whispers and collects

all sequences of replies associated with an existing whisper. We observe that Whisper servers

keep a queue of the latest 10K whispers. Running the main crawler every 30 minutes ensures

that we capture all new whispers. In contrast, crawling for replies is more computationally

intensive. We crawl for replies every 7 days, and check for new replies for all whispers written

in the last month. In practice, we observe that whispers usually receive no followup replies 1

week after being posted.

We ran our crawler from February 6 to May 1, 2014. During this period of roughly 3

months, we collected 9,343,590 total Whispers with 15,268,964 replies and 1,038,364 unique

GUIDs. Thanks to server side queues, we collected a continuous data stream despite a small

number of interruptions to update crawler code. The only point of note is that, at Whisper’s

request on April 20, we shifted our crawlers to crawl a different Whisper server using a new

set of API calls. The shift reduced load for Whisper, but produced whispers without location

tags. Since this only affected 10 days of data, we believe this has little impact on our analysis

of location-based features.

Validating Consistency. We further verify the completeness of the “latest” stream using a
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Figure 2.23: Number of new whispers, new replies and deleted whispers each day.

small experiment. We use HTTP requests to simultaneously crawl the “nearby” streams of 6

locations near different cities: Seattle, Houston, Los Angeles, New York, San Francisco and

Chicago. We capture these streams for 6 hours, and confirm that the 2000+ whispers from 6

locations were all present in the “latest” stream during the same timeframe.

Limitations. There are two types of data our measurements do not capture. First, we do not

capture users who only read/consume whispers but never post any content. Since these passive

users do not generate visible user interactions, they are unlikely to affect the majority of our

conclusions. Second, our data is limited to visible public data, and we do not have access to

private messages between users. Thus our results represent a lower bound on user interactions

in the system. As we discuss later, we believe there should be strong correlation between public

interactions and private messages.

2.2.3.2 Preliminary Analysis

Next we present some high level results on our dataset of whispers, replies and users. Our

results in this section set the context for more detailed analysis on user behavior and anonymity

in later sections.

Whispers Over Time. We begin by looking at whisper posts over time. Figure 2.23 shows

number of new whispers and replies posted every day during our study. As shown, new content

in Whisper is relatively stable, averaging 100K new whispers and 200K replies per day. One

interesting observation is that in any time frame, there are significantly more replies than there
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Figure 2.24: Total number of replies
per whisper.
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are original whispers.

During our data collection, we found that a significant portion of whispers is deleted by

either the author or Whisper moderators. As far as we can determine, old Whispers do not

“expire” and stay on Whisper servers, and can be referenced by following a chain of replies.

For deleted whispers, however, we receive an “the whisper does not exist” error when we try

to re-crawl their replies. Among the 100K new whispers posted every day, roughly 18% are

eventually deleted. We analyze deleted whispers in detail later in §2.2.6.

Replies. Users can post replies to a new whisper or other replies. Multiple replies can

generate their own replies, thereby forming a tree structure with the original whisper as the

root. Figure 2.24 and Figure 2.25 show total replies per whisper and the longest chain length
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(maximum tree depth) per whisper. Unsurprisingly, 55% of whispers receive no replies. Since

all whispers are posted to the same public lists, each whisper only has a short time window to

attract users’ attention. Among whispers with replies, roughly 25% have a chain of at least 2

replies. These essentially become threads of conversations between users.

Figure 2.26 plots the distribution of reply arrival time, which is the time gap between each

reply and the original whisper. 54% of replies arrive within an hour of the original whisper,

and more than 94% of replies arrive within a day. Only 1.3% of replies arrive a week or more

after the whisper. This confirms our intuition—if a whisper does not get attention shortly after

posting, it is unlikely to get attention later.

Users. We look at content-generated per user based on unique GUID. Figure 2.27 plots the

number of whispers and replies posted by each user. Most users (80%) post less than 10 total

whispers or replies. Roughly 15% of users only post replies but no original whispers, and 30%

of users only post whispers but no replies.

Content Analysis. A high-level analysis of the contents of whispers shows that users post

highly personal content. A search of singular first-person pronouns (e.g., I, me, my, myself )

hits about 62% of all whispers. We also find a heavy usage of emotional key words. Specifi-

cally, 40% of whispers contain one of the 1,113 human mood related key words provided by

WordNet Affect [205]. Finally, people often ask questions seeking advice or empathy. About

20% of whispers are questions, based on the usage of question marks and interrogatives (e.g.,

what, why, which). These three categories effectively cover 85% of all whispers. It is clear that

the anonymity provided by Whisper encourages users to post personal and intimate content

without privacy concerns. We will take a closer look at “topics” of whispers in §2.2.6.
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2.2.4 User Interactions

Our study begins with user interactions on Whisper. The fact that Whisper users cannot

construct persistent social links between them fundamentally changes how users interact and

develop friendships. In this section, we study the bidirectional interactions built from whispers

and their replies, and seek to understand user interactions from three different levels. First, we

study interactions at a global network level, by comparing structural properties of the Whisper

interaction graph to those of traditional OSNs, e.g., Facebook and Twitter. Then, we look at in-

teractions at per-user level to understand if users still develop strong ties (frequently interacted

friends) in Whisper.

2.2.4.1 Whisper Interaction Graph

We first compare the interaction graph of Whisper with those of traditional online social

networks (Facebook and Twitter). Our goal is to understand whether the lack of social links in

Whisper fundamentally changes users’ interaction patterns at an aggregate network level. We

build a Whisper interaction graph based on whispers and replies, and compare its structure to

those of graphs constructed from Facebook wall posts and Twitter retweets.

Building Interaction Graphs. We build the Whisper interaction graph based on whispers

and followup replies, which are the primary publicly visible interactions in Whisper. The result

is a directed interaction graph, where nodes are users and edges represent reply actions. For

example, if user A posts a reply whisper to B’s whisper, we build a directed edge from A to B.

Only direct replies are used to build edges. We remove disconnected singleton nodes from the

graph. We produce a main interaction graph from our 3 month dataset (Whisper-all).

For comparison, we also build interaction graphs for Facebook and Twitter, based on

anonymous datasets from our prior work [236, 239]. Both datasets crawled historical data

that covers user interactions over at least 3 months. We built a directed interaction graph using
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Figure 2.28: Degree distribution and fitting result.

Graph # Nodes # Edges Degree C. Coef. Path Len. Assort. SCC/WCC
Whisper 690K 6,531K 9.47 0.033 4.28 -0.011 63.3% / 98.9%
Facebook 707K 1,260K 1.78 0.059 10.13 0.116 21.2% / 84.8%
Twitter 4,317K 16,972K 3.93 0.048 5.52 -0.025 14.2% / 97.2%

Table 2.4: High level statistics of different interaction graphs.

Facebook wall post data: if user A posts on user B’s wall, we create a directed edge from

A to B. For Twitter, we built the graph based on retweet interactions: if user A retweets a

tweet from B, we create a directed edge from A to B. To match the 3-month time coverage

of Whisper graph, we build similar Facebook and Twitter graphs each using data covering 3

month periods. Table 2.4 shows the key statistics of all three interaction graphs.

Degree Distribution and Fittings. Users in Whisper show much higher average degree

than users in Facebook and Twitter, meaning users interact with a larger sample of other users.

We determine the best fitting function for each graph’s degree distribution using 3 commonly
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used fitting functions for social graphs, power law (P (k) ∝ k−α), power law with exponential

cutoff (P (k) ∝ k−αe−λk) and lognormal (P (k) ∝ e
(lnx−µ)2

2σ2 ) [86, 236]. We follow the fitting

method in [65] and use Matlab to compute fitting parameters and accuracy (R-squared values),

and show the results in Figure 2.28. For both the Whisper and Facebook graphs, the out-

degree distribution looks similar to the in-degree distribution. For brevity, we only show the

in-degree distribution for each graph. Intuitively, Facebook was designed to emulate offline

social relationships, and the prevalent bidirectional interactions lead to symmetric in- and out-

degree distributions. For Whisper, user interactions are largely random between users. In

contrast, Twitter’s in-degree and out-degree distributions are significantly different. It’s well

known that Twitter is more of an information dissemination medium than a social network, and

interactions are highly asymmetric [128].

Clustering Coefficient. Clustering coefficient is the ratio of the number of connections that

exist between a node’s immediate neighbors over all possible connections that could exist. It

measures the level of local connectivity between nodes. Clustering coefficient in the Whisper

graph (0.033) is much smaller than that of Facebook (0.059) and Twitter (0.048). The cause

is clear: Whisper users are highly likely to interact with complete strangers, who are highly

unlikely to interact with each other.

Average Path Length. Average path length is the average of all pairs of shortest paths in the

graph. Given the size of our graphs, it’s impractical to compute the shortest path for all node

pairs. Instead, we randomly select 1000 nodes in each graph and compute the average shortest

path from them to all other nodes in the graph. The result shows that Whisper graph has the

shortest average path length of the 3 networks. This is again intuitive, since the formation

of interactions between random strangers creates numerous shortcuts in the graph, thereby

shrinking the average path length. Considering Whisper’s high average degree, low clustering

level and short average path length, Whisper exhibits more properties of a random graph [234]

51



Understanding Online Communities via Measurements Chapter 2

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

C
D

F 
of

 U
se

rs
 (%

)

% of Acquaintance Involved

50% Inter Cumulative Frac.
70% Inter Cumulative Frac.
90% Inter Cumulative Frac.

Figure 2.29: The distribution of users’ in-
teraction among their acquaintances, for
different % of interactions.

 0

 20

 40

 60

 80

 100

 1  10  100  1000

C
D

F 
of

 U
se

rs
 (%

)

Number of Acquaintances

Across Whispers
> Once

Total

Figure 2.30: Number of user’s acquain-
tances, and those that users interact >
once and across whispers.

than those of a “small-world” network like Facebook and Twitter.

Assortativity. Assortativity coefficient measures the probability for nodes in a graph to link

to other nodes of similar degrees. Assortativity > 0 indicates that nodes tend to connect with

other nodes of similar degree, while assortativity < 0 indicates that nodes connect to others

with dissimilar degrees. Our result shows the assortativity coefficient of Whisper graph is very

close to zero (-0.011), which closely resembles a random graph [163]. In contrast, similar users

tend to flock together in social networks with bidirectional links (e.g., Facebook), producing

positive assortativity (0.116). In Twitter, large numbers of normal users follow celebrities and

notable figures, thus producing a more negative assortativity (-0.025).

2.2.4.2 User Interactions and Strong Ties

Finally, we analyze user interactions and implicit social links at the per-user level. Recall

that Whisper’s lack of persistent identities and social links encourages users to interact with

strangers. In the following, we seek the answers to two key questions. First, do users have a

fixed set of “friends” that they frequently interact with? Such friendships could have formed

despite the anonymous nature of Whisper nicknames. Second, how likely are any strong ties

the result of offline friendships?
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Per-user Interaction. We search for potential friendships (i.e. strong ties) by looking for

pairs of users who interact more frequently with each other than with others. For convenience,

we call the set of people that a user interacts with (regardless of direction) as her acquaintances.

For each user, we compute a distribution of her interactions across her top acquaintances, and

look for skew in her interactions with all acquaintances.

We select several points (50-, 70- and 90-percentiles) from each user’s distribution and

aggregate them in a CDF to show the percentage of top acquaintances involved (Figure 2.29).

To avoid statistical outliers, we only include users with at least 10 interactions.

We find user’s interactions are distributed rather evenly across acquaintances. Take the

90-percentile line for example, for nearly all the users (∼90%), more than 70% of their ac-

quaintances are responsible for 90% of their interactions. This relatively low skew in Whisper

is exactly the opposite of traditional OSNs like Facebook, where a small fraction of friends

(strong ties) are responsible for the vast majority of user’s interactions [236].

Interaction across Whispers. Across a user’s acquaintances, we look for potential strong

ties, i.e. acquaintances with whom the user interacts often. Figure 2.30 shows user’s number

of total acquaintances, acquaintances that users interacted more than once, and acquaintances

that users interact more than once using multiple whisper threads. In Whisper, it’s common

for people to interact more than once under the same whisper. However, it’s rare to talk with

the same person across different whispers, because keeping track of a particular user via their

anonymous nickname is difficult. As shown in Figure 2.30, only 13% of users have acquain-

tances that they interact with across whispers.

We then select those user pairs who have interacted across whispers for further analysis.

In total, there are 503K such user-pairs. Figure 2.31 presents the heat map of these user-pairs’

lifespan (timespan between their first and last interaction) and their number of interactions

across whispers. Note that the color palette is log-scale—the vast majority of user pairs are

stacked at the left bottom corner, indicating short-lived, low-interaction relationships. Only a
53



Understanding Online Communities via Measurements Chapter 2

 10

 20

 30

 40

 50

0  7  14  21  28  35  42  49  56  63  70  77In
te

ra
ct

io
ns

 a
cr

os
s 

W
hi

sp
er

s

User Pair Lifespan (Day)

 1

 10

 100

 1000

 10000

Figure 2.31: Users pairs with interaction
across whispers: lifespan vs. # of interac-
tions.

 0

 20

 40

 60

 80

 100

<5 [5,50) [50,500) >500

%
 o

f U
se

r P
ai

rs

Geo-distance Between Paried Users (mile)

2 Inter
2-5 Inter
6-10 Inter
>10 Inter

Figure 2.32: For all user pairs, distance
between two users vs. # of interactions of
the user pair.

 0

 20

 40

 60

 80

 100

<10 [10,100) [100,1K) >1K

%
 o

f U
se

r P
ai

rs

User Population in Nearby Region

2 Inter
2-5 Inter
6-10 Inter
>10 Inter

Figure 2.33: For nearby user pairs, user
population in nearby areas vs. # of inter-
action of the user pair.

 0

 20

 40

 60

 80

 100

<50 [50,100) [100,500) >500

%
 o

f U
se

r P
ai

rs

Combined # of Posts of Paried Users

2 Inter
2-5 Inter
6-10 Inter
>10 Inter

Figure 2.34: For nearby user pairs, total
# of whispers vs. # of interactions of the
user pair.

very small fraction of outliers (right top corner) achieved long-term and frequent interactions.

Friends or Random Encounters? Even though the strong ties are outliers, it is interest-

ing to explore how could these user-pairs constantly interact with each other across whispers:

Are these pairs of offline friends who actively track each other in the public feeds (using nick-

names), or are these simply users who bump into each other often by chance? We realize this

is a very hard question to answer deterministically. But we have a key intuition: if these in-

teractions are truly random, then it is highly likely that these two users are co-located in same

geographic area, particularly areas with a sparse population of Whisper users. Then as long as

the two users actively post whispers, they have a good chance to see each other in the nearby

list.
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Now we use our data to test this intuition. For user-pairs with cross-whisper interactions,

we first examine their geographic distances4. We find that among 503K user pairs, 90% have

two users co-located in the same “state” and 75% have their distance <40 miles which is the

maximum range of the nearby stream. Figure 2.32 shows the correlation between geo-distance

and the interaction frequency of user pairs. Each stacked bar adds up to 100%, and each

category represents user pairs with different interaction level (i.e. number of interactions across

whispers). It shows that frequent interactions are more skewed to users that are geographically

close to each other.

Then we further examine these pairs co-located in nearby areas (i.e. distance <40 miles).

More specifically, we analyze two factors that potentially impact users’ likelihood of chance

encounters—the user population in the geographic area and total number of whispers posted

by the two users (Figure 2.33 and Figure 2.34). Intuitively, the smaller user population in the

same nearby area, the higher chance to encounter the same person in the nearby list again and

again. Similarly, the more whispers two users post, the more likely they encounter each other

and form interactions. Here the user population is estimated by the total number of unique

users that have the same city-level location tags with the paired users. Both results confirm our

intuition. As user population density decreases and as the number of user posts increases, the

probability of more frequent user-pair interactions also increases.

In summary, our analysis suggests strong ties are extremely rare in Whisper. We also find

strong ties are skewed to user-pairs who have a higher chance to encounter each other (i.e.

active users that are co-located in areas with sparse user population). Thus while it is pos-

sible to develop strong relationships from Whisper interactions, such relationships are likely

heavily influenced by geographic density and user whisper frequency. Note that our analysis

relies on only public interactions and do not include private messages. Intuitively, we believe
4This is the distance between two user’s city-level tags. The GPS coordinates of each city are obtained from

Google Geocoding API.
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Figure 2.35: The growth of user popula-
tion in our dataset over time.

0

500K

1000K

1500K

2000K

2500K

3000K

1 2 3 4 5 6 7 8 9 10 11

# 
of

 W
hi

sp
er

s 
an

d 
R

ep
lie

s

Time (Week)

Existing
New

Figure 2.36: # of whispers and replies by
new and old users per week.

users’ private interactions should correlate with their public interactions, and we can predict

user pairs with private interactions from their public interactions. Prior work also confirms that

public interactions are more informative when modeling strength of ties than private commu-

nications [117, 83].

2.2.5 User Engagement

Thus far our analysis shows Whisper users tend to interact with strangers rather than stable

friends. The negative consequence is that a lack of strong ties usually produces a less “sticky”

network, i.e. fewer disincentives to prevent users from leaving [78]. This raises a natural

question: without strong ties, can Whisper users stay engaged in the network in the long run?

In this section, we seek to consider this question by looking at per-user engagement. First,

we examine user engagement over time to understand user attrition in the 3 month period of

our dataset. Second, we evaluate a machine learning classifier and show that we can accurately

predict whether users stay engaged in the system using only a short history of their actions after

their first post. We use experiments to determine key signals that indicate a user’s intention to

leave. Note that our analysis is limited to “active” users who have posted at least 1 whisper or

reply, and does not include passive users who consume but do not contribute content.
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Figure 2.37: User’s active lifetime over
staying time in our dataset.

2.2.5.1 User Engagement Over Time

We start with basic analysis of user activity over time using three metrics: user population

growth, content contribution by new versus existing users, and the distribution of users’ active

lifetime.

User Population Growth. Figure 2.35 shows the total number of users over time (11 weeks)

in our dataset. Each bar shows a breakdown of new users who just joined that week (new) and

the existing users we observed before that week (existing). We observe a stable arrival rate of

new users to the network, roughly 80K new users per week. Recall that the daily new posts

(whispers and replies) in the entire network remain roughly stable (see Figure 2.23), despite

the growth in users. This indicates there are an ongoing number of users who “disengage,” i.e.

stop posting whispers or replies.

Content by New and Existing Users. This motivates us to look at the relative contribution

of content by new and existing users. Figure 2.36 shows the breakdown of posts (whispers plus

replies) by users who showed up for the first time in the current week (new) and users who

showed up before this week (existing). We find that new users make significant contributions

to the overall whisper stream (> 20%). However, as more and more users transition from new

to “existing users,” content generation by existing users does not grow significantly over time.

This confirms our intuition that a certain portion of users are disengaging over time.
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Per-user Active Period. Next, we focus on individual users and examine how long users

stay active before they disengage. More specifically, we compute their active “lifetime” (times-

pan between their first and last posts) over their staying time in the dataset (timespan between a

user’s first post and the last date of our data collection). Given our focus on long-term activity,

we exclude users who just recently joined during the last the month of our data collection. Thus

for Figure 2.37, we only consider users who have been in our dataset for at least one month

(70.3% of all users).

Figure 2.37 shows the distribution of user’s ratio of active lifetime (PDF). Users are clearly

clustered into two extremes: one major cluster around an extremely low ratio (0.03), represent-

ing those who quickly turned inactive in 1 or 2 days after their first post; another major cluster

around 1.00, representing users who remain active for their entire time in the dataset (at least

1 month). Similar patterns have also been observed in other user generated content (UGC)

networks, such as blogs and Q&A services [92]. If we set a threshold for active ratio at 0.03,

these “try and leave” users account for 30% of all users. This explains our observation in Fig-

ure 2.36—because a significant portion of users become inactive quickly, the overall content

posting rate remains stable despite a significant number of new users joining the network.

2.2.5.2 Predicting User Engagement

A key observation of the above analysis is that Whisper users tend to fall into one of two

behavioral extremes—either staying active for a long time, or quickly turning inactive (Fig-

ure 2.37). The bimodal nature of the distribution hints at the potential to classify users into the

two clusters.

Here, we experiment with machine learning (ML) classifiers to determine if we can predict

long term user engagement based on their early behavior after their first post (in our dataset).

We seek to answer three key questions: First, is this prediction even possible? Second, what

ML models produce the most accurate predictions? Third, what early-day signals can most
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strongly indicate a user’s intention to leave?

We take three steps to answer the above questions. First, we collect a set of behavioral

features based on users’ activities in their first X days on Whisper, ideally with a small value

for X . Second, we use these features to build different machine learning classifiers to predict

long term user engagement. Finally, we run feature selection to determine the features that

provide the best early signals indicating which users might disengage.

Features. We explore multiple different classes of features (20 features in all) to profile

users’ behavior during their first X days. Out of these, we will select the most essential fea-

tures.

• Content posting features (F1-F7). 7 features: user’s number of total posts, number of

whispers, number of replies, number of deleted whispers, and number of days with at

least one post/whisper/reply.

• Interaction features (F8-F15). 8 features: ratio of replies in total posts, number of ac-

quaintances, number of bi-directional acquaintances, outgoing replies over all replies,

maximum number of interactions with the same user, ratio of whispers with replies, and

average number of replies and likes per whisper.

• Temporal features (F16-F17): 2 features: average delay before first reply to user’s whis-

per; average delay of user’s replies to other users’ whispers.

• Activity trend (F18-F20): 3 features: we equally split each user’s first X days into three

buckets and record the number of posts in each bucket (First, Middle and Last). We

compute 2 features as Middle
F irst

and Last
F irst

. Finally, whether the number of posts decreases

monotonically across the three buckets.

Classifier Experiments. To build a training set for our classifiers, we focus on users that

have at least a month’s worth of activity history in our dataset (730K users). We select a

set of “short-term” users who tried the app for 1-2 days and quickly disengaged (no more
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Figure 2.38: Prediction result using Random Forests and SVM. The model performance is
evaluated by accuracy (left) and Area under ROC curve (right) .

posts). Using results from Figure 2.37, we randomly sample 50K users from those whose

active lifetime ratio < 0.03 as the Inactive set. We then choose a random sample of 50K users

whose active lifetime ratio > 0.03 to form the Active set.

Our goal is to classify the two sets of users solely based on users’ activities in their first

X days, and we use 1, 3 and 7 as values of X . We build multiple machine learning classifiers

including Random Forests (RF), Support Vector Machine (SVM) and Bayes Network (BN),

using implementations of these algorithms in WEKA [94] with default parameters. For each

experiment, we run 10-fold cross validation and report classification accuracy and area under

ROC curve (AUC). Accuracy refers to the ratio of correctly predicted instances over all in-

stances. AUC is another widely used metric, with higher AUC indicating stronger prediction
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Rank Observation Time Frame
1 day 3 days 7 days

1 Interact-F9 (0.15) Post-F5 (0.27) Post-F5 (0.46)
2 Interact-F11 (0.12) Trend-F19 (0.18) Post-F6 (0.31)
3 Interact-F10 (0.11) Post-F6 (0.18) Trend-F19 (0.28)
4 Interact-F12 (0.11) Interact-F9 (0.16) Post-F1 (0.27)
5 Trend-F18 (0.05) Post-F1 (0.16) Post-F7 (0.23)
6 Interact-F15 (0.04) Post-F7 (0.13) Trend-F20 (0.21)
7 Post-F1 (0.04) Interact-F15 (0.12) Interact-F15 (0.21)
8 Interact-F8 (0.04) Interact-F11 (0.12) Post-F2 (0.19)

Table 2.5: The top 8 feature and its categories ranked by information gain (values shown in
parentheses).

power. For instance, AUC > 0.5 means the prediction is better than random guessing.

The experiment results with Random Forests and SVM are shown in Figure 2.38. The

Bayesian results closely match those of SVM, thus we omit them for brevity. We make two

key observations. First, behavioral features are effective in predicting future engagement. The

accuracy is high (75%) even when only using users’ first-day data (RF). This confirms that

users’ early actions can act as indicators of their future activity. If we include a week’s worth of

data, we can achieve accuracy up to 85%. Second, we find different classifiers achieve similar

performance given 7 days of data. However, their results diverge when they are constrained to

using less data (e.g., 1-day). With less data, Random Forests produce more accurate predictions

than SVM and Bayesian networks.

Feature Selection. Finally, we seek to identify the most powerful signals to predict a user’s

long-term engagement. To find the answer, we perform feature selection on the 20 features.

More specifically, we rank features based on Information Gain [93], which measures feature’s

distinguishing power over the two classes of data. We list the top 8 features in Table 2.5.

As expected, prediction power varies significantly, and information gain drops off quickly

(particularly for 1 day) after the top 4 features. To validate their prediction power, we repeat

each experiment with only their top 4 features. The results in Figure 2.38 show that the top 4

features achieve most of the accuracy of the entire classifier, but with much less complexity.
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Then we take a closer look at the top features. First, we note that the 1-day classifier

relies on different set of features compared with 3- and 7-day classifiers. The 1-day models

rely heavily on interaction features. Intuitively, the model predicts whether a user will stay

engaged based on how actively the user participates in social interactions. If a user received

many replies or actively replied to others on her first day, there’s a high chance for this user

to stay longer. For 3- and 7-day models, we find that the key features shift to user’s content

posting and activity trend features. This means once we monitor the users for a longer period,

the user’s intention to stay or leave can be more accurately reflected in her posting frequency

and volume, and whether that activity is declining over time.

Engaging Users with Notifications. Stimulating user engagement is a key goal for any new

service. One tool Whisper has already deployed is push notifications that deliver the “whisper

of the day” to users’ mobile device every evening between 7 and 9pm. The exact notification

time varies each day and between Android and iOS devices. To examine the impact of these

notifications, we conduct a small experiment. We monitor the notification time on 5 different

phones every day for 6 days. We look at user activity in the Whisper stream for 5 minute and

10 minute intervals following the notifications, and find no statistically significant increase in

new replies or whispers compared to other 5 or 10 minute windows between 7 and 9pm. This

means that while these notifications may serve to engage users to read popular whispers, there

is no significant increase in new whispers or replies as a result.

2.2.6 Content Moderation in Whisper

Anonymity facilitates free speech, but also inevitably fosters abusive content and behav-

ior [210, 103]. Like other anonymous communities, Whisper faces the same challenge of deal-

ing with abusive content (e.g., nudity, pornography or obscenity) in their network. In addition

to a crowdsourcing-based user reporting mechanism, Whisper also has dedicated employees
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to moderate whispers [89]. Our basic measurements (§2.2.3.2) also suggest this has a signifi-

cant impact on the system, as we observed a large volume of whispers (>1.7 million) has been

deleted during the 3 months of our study. The ratio of Whisper’s deleted content (18%) is much

higher than traditional social networks like Twitter (<4%) [38, 175].

In this section, we take a closer look at content deletions in Whisper. First, we analyze

the content of deleted whispers to infer the reasons behind deletions. Second, we analyze the

lifetime of deleted whispers to understand how fast do whispers get deleted. Third, we focus

on authors of deleted whispers and compare their behavior to the norm.

Before we begin, we note that while users can delete their own whispers, we believe server-

side content moderation is responsible for the large majority of missing whispers in our data.

Intuitively, users who reconsider and later delete their own whispers are likely to do so within

a relatively short time frame. In contrast, our “deleted” dataset comes from our followup crawl

for replies, which runs once a week. In fact, since our main crawler on the latest stream runs

every 30 minutes, we expect most self-deleted whispers will not even show up in our core

dataset.

Content Analysis of DeletedWhispers. To explore the reasons behind deletion, we analyze

the content of deleted whispers. Since whispers are usually very short, Natural Language

Processing (NLP) tools do not work well (we confirmed via experiments). Thus we take a

keyword-based approach: we extract keywords from all whispers and examine which keywords

correlate with deleted whispers. First, before processing, we exclude common stopwords5 from

our keyword list. Also to avoid statistical outliers, we exclude low frequency words that appear

in less than 0.05% of whispers. Then for each keyword, we compute a deletion ratio as the

number of deleted whispers with this keyword over all whispers with this keyword. We rank

keywords by deletion ratio, and examine the top and bottom keywords.

We run this analysis on all 9 million original (not including replies) whispers in our dataset,
5http://norm.al/2009/04/14/list-of-english-stop-words
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Topic Top 50 Keywords Most Related to Deleted Whispers
Sexting (36) sext, wood, naughty, kinky, sexting, bj, threesome, dirty, role,

fwb, panties, vibrator, bi, inches, lesbians, hookup, hairy, nipples,
freaky, boobs, fantasy, fantasies, dare, trade, oral, takers, sugar,
strings, experiment, curious, daddy, eaten, tease, entertain, athletic

Selfie (7) rate, selfie, selfies, send, inbox, sends, pic
Chat (7) f, dm, pm, chat, ladys, message, m
Topic Top 50 Keywords Least Related to Deleted Whispers
Emotion (17) panic, emotions, argument, meds, hardest, fear, tears, sober, frozen,

argue, failure, unfortunately, understands, anxiety, understood,
aware, strength

Religion (10) beliefs, path, faith, christians, atheist, bible, create, religion, pray-
ing, helped

Entertain. (8) episode, series, season, anime, books, knowledge, restaurant, char-
acter

Life story (6) memories, moments, escape, raised, thank, thanks
Work (5) interview, ability, genius, research, process
Politics (1) government
Others (3) exactly, beginning, example

Table 2.6: Topics of top and bottom 50 keywords related to whisper deletion.

1.7M of which are later deleted. This produces 2324 keywords ranked by deletion ratio. We list

the top and bottom 50 keywords in Table 2.6 and classify them manually into topic categories.

Not surprisingly, many deleted whispers violate Whisper’s stated user policies on sexually

explicit messages and nudity. In contrast, topics related to personal expression, religion, and

politics are least likely to be deleted.

Deletion Delay. Next we analyze the deletion delay of whispers, i.e. how long do whispers

stay in the system before they are deleted? Recall that our reply crawler works once a week,

and thus detects deleted whispers on the granularity of once a week. As shown in Figure 2.39,

the majority (70%) of deleted whispers are “deleted” within one week after posting. A small

portion (2%) of whispers have stayed for more than a month before deletion. Since most

whispers lose user attention after one week (Figure 2.26), we believe these deletions are not

the results of crowdsourcing flagging, but deleted by Whisper moderators.
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Figure 2.40: Deletion speed (fine-grained).

To get a more fine grain view of whisper deletions, we perform a period of frequent crawls

on a small set of whispers. On April 14, 2014, we select 200K new whispers from our crawl

of the latest whisper stream, and check on (recrawl) these whispers every 3 hours over a period

of 7 days. Of the 200K whispers, 32,153 whispers are deleted during our monitoring period (a

week). The more fine-grained distribution of the lifetime (hourly) of these whispers is shown

in Figure 2.40. We find the peak of whisper deletion to be between 3 and 9 hours after posting,

and the vast majority of deletions happen within 24 hours of posting. This suggests that the

moderation system in Whisper works quickly to flag and remove offensive whispers. However,

it is unclear whether this level of responsiveness is sufficient, since user page views focus on

the most recent whispers, and moderation after 3 hours is possibly too late to impact the content

most users see.

Characterizing Authors of Deleted Whispers. Finally, we take a closer look at the authors

of deleted whispers to check for signs of suspicious behavior. In total, 263K users (25.4%)

out of all users in our dataset have at least one deleted whisper. The distribution of deleted

whispers is highly skewed across these users: 24% of users are responsible for 80% of all

deleted whispers. The worst offender is a user who had 1230 whisper deleted during the time

period of our study, while roughly half of the users only have a single deletion (Figure 2.41).
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Figure 2.42: Duplicated vs. deleted whispers.

We observed anecdotal evidence of duplicate whispers in the set of deleted whispers. We

find that frequently reposted duplicate whispers are highly likely to be deleted. Among our

263K users with at least 1 deleted whisper, we find 25K users have posted duplicate whispers.

In Figure 2.42, we plot each user’s number of duplicated whispers versus the number of deleted

whispers. We observe a clear clustering of users around the straight line of y = x. This

indicates that when users post many duplicated whispers, there’s a higher chance that most or

all duplicated whispers are deleted.

We also observe that authors of deleted whispers change their nicknames more often than

the average user. Figure 2.43 shows the distribution of total number of nicknames used by each

user. We categorize users based on how many deletions they have, and also include a baseline

of users with 0 deletions. We find users with no deletion rarely change their nicknames, if

ever, but nickname changes occur far more frequently for users with many deleted whispers.

We speculate that perhaps users change their nickname to avoid being flagged or blacklisted.

Since users cannot see their own GUID when using the app, they may assume the system

identifies them using only their nickname.
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2.2.7 Tracking Whisper Users

In the final component of our Whisper study, we take a close look at a vulnerability that

exposes detailed location of Whisper authors to the system. In practical terms, this attack

allows a Whisper user to accurately track (or potential stalk) another Whisper user through

whispers they’ve written, by writing simple scripts that query Whisper servers. This attack

demonstrates the inherent risks to user privacy in mobile applications, even for apps that target

user anonymity as a core goal. Note that we met the Whisper team in person and informed

them of this attack. They are supportive of this work, and have already taken steps to remove

this vulnerability.

In this section, we describe details of this location tracking attack. The attack makes use of

Whisper’s “nearby” function, which returns a list of whispers posted nearby, attaching a “dis-

tance” field to each whisper. The attack generates numerous “nearby” queries from different

vantage points, and uses statistical analysis to reverse engineer the whisper author’s location.

We validate the efficacy of this attack through real-world experiments.

2.2.7.1 Pinpointing User Locations

We start by describing the high-levels of the attack: when a user (i.e. the victim) posts a

new whisper, he exposes his location to the Whisper server. An attacker in an nearby area can

query the nearby list to get their “distance” to the whisper author. The methodology is simple:

the attacker can move to different (nearby) locations and query the nearby list for the distance

to the victim. Using multiple distance measurements, the attacker can triangulate the whisper

author’s location. The fact that Whisper does not authenticate location in its queries makes this

easier, an attacker can issue numerous distance queries from different locations all while sitting

in the comfort of her living room.

With a bit more effort, an attacker can even track the victim’s movement over time, by
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triangulating his location every time he posts a whisper. In practice, this means the attacker

can physically go and stalk the victim. While the effective error is roughly 0.2 miles (details

below), it is more than sufficient to infer the victim’s movement to specific points of interest.

Considering most Whisper users are young adults or teenagers [42], this attack can lead to

severe consequences.

Distance Granularity and Errors. Implementing this attack is nontrivial. Whisper’s design

team has always been aware of location tracking risks to its users, and built in basic defense

mechanisms into the current system. First, they apply a distance offset to every whisper, so

the location stored on their servers is always off by some distance to the actual author location.

Second, the distance field returned by the nearby function is a coarse-grained integer value

(in miles). This was a recent change made by Whisper in February 2014, before which the

nearby function returned distances with decimal values. Third, Whisper server adds a random

error to the answer to each query, i.e. when we query the nearby list repetitively from the

same location, each query returns a different distance for the same whisper. The specific error

function is unknown.

Attack Details. To accurately pinpoint a user location, our approach is to extensively mea-

sure the “distance” from different vantage points, and use large-scale statistics to infer user’s

location. Specifically, our attack exploits a key property of Whisper: servers allow anyone to
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query the nearby list with arbitrarily self-reported GPS values as input, and impose no rate

limits on such queries. This effectively helps us to overcome the limitations (i.e. random error,

coarse granularity) on the returned distance. First, we can reduce or eliminate per-query noise

by taking the average distance across numerous queries from the same observation location.

Second, even though the absolute distance is still not accurate, we can estimate the direction

to the victim based on the measurements from different locations. Then with distance and

direction, an attacker can repeat the measurement from a location closer to the victim, thus

iteratively deducing the victim’s real location.

We use a simple example to illustrate how this works. Suppose user A (attacker) finds user

B (victim)’s whisper in the nearby list, and A wants to pinpoint B’s location:

1. A queries the nearby list to get its current distance (d) to victim B (averaged across

multiple queries).

2. To estimate the direction, A needs additional observation points. We pick 8 points

{A1, A2, ...A8} evenly distributed on a circle centered at A with radius d (Figure 2.44).

From each point,A queries the nearby list to measure its distance to victim {d1, d2, ..., d8}.

SupposeX is a dot on the circle, then objective functionObj =

√∑8
i=1(|

−−→
AiX|−di)2

8 reaches

the minimum if
−−→
AX is the right direction to the victim.

3. Then the attacker moves to the next location using
−−→
AX and d, and repeats step 1 and 2.

The algorithm terminates if d < Thre1, or the distance d from two consecutive rounds

differs < Thre2.

In practice, the attacker can script all queries with forged GPS values and does not need to

physically move.

Distance Error Correction. Finally, we introduce a final step that uses physical measure-

ments to calibrate and add an additional “correction” factor to location data.

We first post a target whisper at a predefined physical location L (on UCSB campus).
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Figure 2.48: Number of hops to approach
the victim.

Then we measure distances to L using the nearby list from a set of observation points, each

with known ground-truth distances to L. The ground-truth distance ranges cover from 1 to

25 miles (in 5 mile increments) and again from 0.1 to 0.9 miles (in 0.1-mile increments). At

each increment, we use 8 observation points (as specified above) and use each to query the

nearby list 100 times. Figure 2.45 and Figure 2.46 plot the ground-truth distance versus the

measured distance (for 25, 50 and 100 requests per location). For distances greater than 1 mile,

we find that our estimates underestimate true physical distance to the victim. Within 1 mile, it

clearly overestimates. This mapping between true and measured distance serves as a guide for

generating our “correction factor,” which is applied to the final estimate.

2.2.7.2 Experimental Validation of the Attack

A Single-target Experiment. We first post a whisper at a pre-defined location on UCSB
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campus as the target (victim). Then we run the attack algorithm starting from distances of

1, 5, 10 and 20 miles away from the victim. Our algorithm takes the average distance over

50 queries per location, and terminates when the estimated distance from consecutive rounds

differ< 0.1 mile or when estimated distance< 0.5 mile (based on Figure 2.46). We repeat each

experiment 10 times and test the performance with and without our distance error correction

factor. Results are shown in Figure 2.47 and Figure 2.48.

We make two key observations. First, the algorithm is very accurate. The final error dis-

tance, i.e. distance from the estimated victim location to the ground-truth location, is only 0.1

to 0.2 miles. With a radius of 0.2 miles, attackers can already effectively identify user’s signifi-

cant points of interest (e.g., home, work, shopping mall) and reconstruct a victim’s daily routine

using mobility traces [41]. Second, the results show that distance error correction improves al-

gorithm accuracy significantly and reduces the number of iterations needed to determine the

victim’s location.

Geographically Diverse Targets. To make sure our results are not biased and specific to a

single location, we apply the correction factor computed from local measurements (Figure 2.45

and Figure 2.46) to carry out attacks in different cities. More specifically, we post target whis-

pers in Santa Barbara and Seattle Washington, Denver Colorado, New York City, New York

and Edinburgh Scotland. All whispers are posted via an Android phone with forged GPS co-

ordinates. Then we run the algorithm with distance error correction. We find the final error

distances are consistently less than 0.2 miles, and that our correction factor can be generalized

to improve estimation accuracy regardless of geographic region.

2.2.7.3 Countermeasures

This type of statistical attack cannot be mitigated simply by adding more noise into the

system. Attackers can always apply increasingly sophisticated statistical and data mining tools
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to eliminate noise and determine the true location of a whisper. Instead, the key is to restrict

user access to extensive distance measurements. This means putting more constraints (e.g., rate

limits) on queries to the nearby list. For instance, one approach is to enforce per-device rate

limits. Another is detect fake GPS values, either by relying on client hardware (difficult) or by

detecting “unrealistic” movement patterns by potential attackers. Finally, the ultimate defense

is to simply remove the “distance” field altogether. While the Whisper engineering team has

already addressed this issue, we are not aware of the specific steps they took to do so.

2.2.8 Summary of Results

Anonymous, mobile-only messaging apps such as Whisper mark a clear shift away from

traditional social networks and towards privacy-conscious communication tools. To the best of

our knowledge, our study is the first large data-driven study of social interactions, user engage-

ment, content moderation and privacy risks on the Whisper network. We show that without

strong user identities or persistent social links, users interact with random strangers instead of

a defined set of friends, leading to weak ties and challenges in long-term user engagement. We

show that even in anonymous messaging apps, significant attacks against user privacy are very

feasible. We believe that this shift towards privacy in communication tools is here to stay, and

insights from our study on Whisper provides value for developers working on next generation

systems in this space.

2.3 Mobility and User Locations.

2.3.1 Introduction

Crowdsourcing is indispensable as a real-time data gathering tool for today’s online ser-

vices. Take for example map and navigation services. Both Google Maps and Waze use peri-
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odic GPS readings from mobile devices to infer traffic speed and congestion levels on streets

and highways. Waze, the most popular crowdsourced map service, offers users more ways to

actively share information on accidents, police cars, and even contribute content like editing

roads, landmarks, and local fuel prices. This and the ability to interact with nearby users made

Waze extremely popular, with an estimated 50 million users when it was acquired by Google

for a reported $1.3 Billion USD in June 2013. Today, Google integrates selected crowdsourced

data (e.g. accidents) from Waze into its own Maps application.

Unfortunately, systems that rely on crowdsourced data are inherently vulnerable to mis-

chievous or malicious users seeking to disrupt or game the system [203]. For example, business

owners can badmouth competitors by falsifying negative reviews on Yelp or TripAdvisor, and

FourSquare users can forge their physical locations for discounts [59, 251]. For location-based

services, these attacks are possible because there are no widely deployed tools to authenticate

the location of mobile devices. In fact, there are few effective tools today to identify whether

the origin of traffic requests are real mobile devices or software scripts.

The goal of our work is to explore the vulnerability of today’s crowdsourced mobile apps

against Sybil devices, software scripts that appear to application servers as “virtual mobile de-

vices.”6 While a single Sybil device can damage mobile apps through misbehavior, larger

groups of Sybil devices can overwhelm normal users and significantly disrupt any crowd-

sourced mobile app. In this part of the chapter, we identify techniques that allow malicious

attackers to reliably create large populations of Sybil devices using software. Using the con-

text of the Waze crowdsourced map service, we illustrate the powerful Sybil device attack, and

then develop and evaluate robust defenses against them.

While our experiments and defenses are designed with Waze (and crowdsourced maps) in

mind, our results generalize to a wide range of mobile apps. With minimal modifications, our
6We refer to these scripts as Sybil devices, since they are the manifestations of Sybil attacks [71] in the context

of mobile networks.
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techniques can be applied to services ranging from Foursquare and Yelp to Uber and YikYak,

allowing attackers to cheaply emulate numerous virtual devices with forged locations to over-

whelm these systems via misbehavior. Misbehavior can range from falsely obtaining coupons

on FourSquare/Yelp, gaming the new user coupon system in Uber, to imposing censorship on

YikYak. We believe our proposed defenses can be extended to these services as well. We

discuss broader implications of our work in Section 2.3.8.

Sybil attacks inWaze. In the context of Waze, our experiments reveal a number of potential

attacks by Sybil devices. First is simple event forgery, where devices can generate fake events

to the Waze server, including congestion, accidents or police activity that might affect user

routes. Second, we describe techniques to reverse engineer mobile app APIs, thus allowing

attackers to create lightweight scripts that effectively emulate a large number of virtual vehicles

that collude under the control of a single attacker. We call Sybil devices in Waze “ghost riders.”

These Sybils can effectively magnify the efficacy of any attack, and overwhelm contributions

from any legitimate users. Finally, we discover a significant privacy attack where ghost riders

can silently and invisibly “follow” and precisely track individual Waze users throughout their

day, precisely mapping out their movement to work, stores, hotels, gas station, and home. We

experimentally confirmed the accuracy of this attack against our own vehicles, quantifying the

accuracy of the attack against GPS coordinates. Magnified by an army of ghost riders, an

attacker can potentially track the constant whereabouts of millions of users, all without any

risk of detection.

Defenses. Prior proposals to address the location authentication problem have limited ap-

peal, because of reliance on widespread deployment of specialized hardware, either as part

of physical infrastructure, i.e., cellular base stations, or as modifications to mobile devices

themselves. Instead, we propose a practical solution that limits the ability of Sybil devices to

amplify the potential damage incurred by any single attacker. We introduce collocation edges,
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authenticated records that attest to the one-time physical proximity of a pair of mobile devices.

The creation of collocation edges can be triggered opportunistically by the mapping service,

e.g., Waze. Over time, collocation edges combine to form large proximity graphs, network

structures that attest to physical interactions between devices. Since ghost riders cannot physi-

cally interact with real devices, they cannot form direct edges with real devices, only indirectly

through a small number of real devices operated by the attacker. Thus, the edges between an

attacker and the rest of the network are limited by the number of real physical devices she

has, regardless of how many ghost riders are under her control. This reduces the problem of

detecting ghost riders to a community detection problem on the proximity graph (The graph is

seeded by a small number of trusted infrastructure locations).

We have four key contributions:

• We explore limits and impacts of single device attacks onWaze, e.g., artificial congestion

and events.

• We describe techniques to create light-weight ghost riders, virtual vehicles emulated

by client-side scripts, through reverse engineering of the Waze app’s communication

protocol with the server.

• We identify a new privacy attack that allows ghost riders to virtually follow and track

individual Waze users in real-time, and describe techniques to produce precise, robust

location updates.

• We propose and evaluate defenses against ghost riders, using proximity graphs con-

structed with edges representing authenticated collocation events between pairs of de-

vices. Since collocation can only occur between pairs of physical devices, proximity

graphs limit the number of edges between real devices and ghost riders, thus isolating

groups of ghost riders and making them detectable using community detection algo-

rithms.
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2.3.2 Waze Background

Waze is the most popular crowdsourced navigation app on smartphones, with more than 50

million users when it was acquired by Google in June 2013 [85]. Waze collects GPS values of

users’ devices to estimate real-time traffic. It also allows users to report on-road events such

as accidents, road closures and police vehicles, as well as curating points of interest, editing

roads, and even updating local fuel prices. Some features, e.g., user reported accidents, have

been integrated into Google Maps [87]. Here, we briefly describe the key functionality in Waze

as context for our work.

Trip Navigation. Waze’s main feature is assist users to find the best route to their destination

and turn-by-turn navigation. Waze generates aggregated real-time traffic updates using GPS

data from its users, and optimizes user routes both during trip planning and during navigation.

If and when traffic congestions is detected, Waze automatically re-routes users towards an

alternative.

Crowdsourced User Reports. Waze users can generate real-time event reports on their

routes to inform others about ongoing incidents. Events range from accidents to road closures,

hazards, and even police speed traps. Each report can include a short note with a photo. The

event shows up on the map of users driving towards the reported location. As users get close,

Waze pops up a window to let the user “say thanks,” or report the event is “not there.” If

multiple users choose “not there”, the event will be removed. Waze also merges multiple

reports of the same event type at the same location into a single event.

Social Function. To increase user engagement, Waze supports simple social interactions.

Users can see avatars and locations of nearby users. Clicking on a user’s avatar shows more

detailed user information, including nickname, ranking, and traveling speed. Also, users can

send messages and chat with nearby users. This social function gives users the sense of a large

community. Users can elevate their rankings in the community by contributing and receiving
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“thanks” from others.

2.3.3 Attacking Crowdsourced Maps

In this section, we describe basic attacks to manipulate Waze by generating false road

events and fake traffic congestion. Since Waze relies on real-time data for trip planning and

route selection, these attacks can influence user’s routing decisions. Attackers can attack spe-

cific users by forging congestion to force automatic rerouting on their trips. The attack is pos-

sible because Waze has no reliable authentication on user reported data, such as their device

GPS.

We first discuss experimental ethics and steps we took to limit impact on real users. Then,

we describe basic mechanisms and resources needed to launch attacks, and use controlled

experiments on two attacks to understand their feasibility and limits. One attack creates fake

road events at arbitrary locations, and the other seeks to generate artificial traffic hotspots to

influence user routing.

2.3.3.1 Ethics

Our experiments seek to understand the feasibility and limits of practical attacks on crowd-

sourcing maps like Waze. We are very aware of the potential impact to real Waze users from

any experiments. We consulted our local IRB and have taken all possible precautions to ensure

that our experiments do not negatively impact real Waze users. In particular, we choose exper-

iment locations where user population density is extremely low (unoccupied roads), and only

perform experiments at low-traffic hours, e.g., between 2am and 5am. During the experiments,

we continuously scan the entire experiment region and neighboring areas, to ensure no other

Waze users (except our own accounts) are within miles of the test area. If any Waze users

are detected, we immediately terminate all running experiments. Our study received the IRB
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approval under protocol# COMS-ZH-YA-010-7N.

Our work is further motivated by our view of the risks of inaction versus risks posed to

users by our study. On one hand, we can and have minimized risk to Waze users during

our study, and we believe our experiments have not affected any Waze users. On the other

hand, we believe the risk to millions of Waze users from pervasive location tracking (described

in Section 2.3.5) is realistic and potentially very damaging. We feel that investigating these

attacks and identifying these risks to the broad community at large was the ethically correct

course of action. Furthermore, full understanding of the attacks was necessary to design an

effective and practical defense. Please see Appendix A for more detailed information on our

IRB approval and steps taken towards responsible disclosure.

2.3.3.2 Basic Attack: Generating Fake Events

Launching attacks against crowdsourced maps like Waze requires three steps: automate

input to mobile devices that run the Waze app; control the device GPS and simulate device

movements (e.g., car driving); obtain access to multiple devices. All three are easily achieved

using widely available mobile device emulators.

Most mobile emulators run a full OS (e.g., Android, iOS) down to the kernel level, and

simulate hardware features such as camera, SDCard and GPS. We choose the GenyMotion

Android emulator [2] for its performance and reliability. Attackers can automatically control

the GenyMotion emulator via Monkeyrunner scripts [3]. They can generate user actions such

as clicking buttons and typing text, and feed pre-designed GPS sequences to the emulator

(through a command line interface) to simulate location positioning and device movement. By

controlling the timing of the GPS updates, they can simulate any “movement speed” of the

simulated devices.

Using these tools, attackers can generate fake events (or alerts) at a given location by setting

fake GPS on their virtual devices. This includes any events supported by Waze, including
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Figure 2.49: Before the attack (left), Waze shows the fastest route for the user. After the
attack (right), the user gets automatically re-routed by the fake traffic jam.

accidents, police, hazards, and road closures. We find that a single emulator can generate any

event at arbitrary locations on the map. We validate this using experiments on a variety of

unoccupied roads, including highways, local and rural roads (50+ locations, 3 repeated tests

each). Note that our experiments only involve data in the Waze system, and do not affect real

road vehicles not running the Waze app. Thus “unoccupied” means no vehicles on the road

with mobile devices actively running the Waze app. After creation, the fake event stays on the

map for about 30 minutes. Any Waze user can report that an event was “not there.” We find it

takes two consecutive “not theres” (without any “thanks” in between) to delete the event. Thus

an attacker can ensure an event persists by occasionally “driving” other virtual devices to the

region and “thanking” the original attacker for the event report.

2.3.3.3 Congestion and Traffic Routing

A more serious attack targets Waze’s real-time trip routing function. Since route selection

in Waze relies on predicted trip time, attackers can influence routes by creating “fake” traffic

hotspots at specific locations. This can be done by configuring a group of virtual vehicles to

travel slowly on a chosen road segment.
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We use controlled experiments to answer two questions. First, under what conditions can

attackers successfully create traffic hotspots? Second, how long can an artificial traffic hotspot

last? We select three low-traffic roads in the state of Texas that are representative of three popu-

lar road types based on their speed limit—Highway (65 mph), Local (45 mph) and Residential

(25 mph). To avoid real users, we choose roads in low population rural areas, and run tests

at hours with the lowest traffic volumes (usually 3-5AM). We constantly scan for real users in

or nearby the experimental region, and reset/terminate experiments if users come close to an

area with ongoing experiments. Across all our experiments, only 2 tests were terminated due

to detected presence of real users nearby. Finally, we have examined different road types and

hours of the day to ensure they do not introduce bias into our results.

Creating Traffic Hotspots. Our experiment shows that it only takes one slow moving car

to create a traffic congestion, when there are no real Waze users around. Waze displays a red

overlay on the road to indicate traffic congestion (Figure 2.49, right). Different road types

have different congestion thresholds, with thresholds strongly correlated to the speed limit.

The congestion thresholds for Highway, Local and Residential roads are 40mph, 20mph and

15mph, respectively.

To understand if this is generalizable, we repeat our tests on other unoccupied roads in

different states and countries. We picked 18 roads in five states in the US (CO, MO, NM, UT,

MS) and British Columbia, Canada. In each region, we select three roads with different speed

limits (highway, local and residential). We find consistent results: a single virtual vehicle can

always generate a traffic hotspot; and the congestion thresholds were consistent across different

roads of the same speed limit.

Outvoting Real Users. Generating traffic hotspot in practical scenarios faces a challenge

from real Waze users who drive at normal (non-congested) speeds: attacker’s virtual vehicles

must “convince” the server there’s a stream of slow speed traffic on the road even as real users
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Figure 2.50: The traffic speed of the road with respect to different combinations of number of
slow cars and fast cars. We show that Waze is not using the average speed of all cars, and our
inferred function can correctly predict the traffic speed displayed on Waze.

tell the server otherwise. We need to understand how Waze aggregated multiple inputs to

estimate traffic speed.

We perform an experiment to infer this aggregation function used by Waze. We create

two groups of virtual vehicles: Ns slow-driving cars with speed Ss, and Nf fast-driving cars

with speed Sf ; and they all pass the target location at the same time. We study the congestion

reported by Waze to infer the aggregation function. Note that the server-estimated traffic speed

is visible on the map only if we formed a traffic hotspot. We achieve this by setting the speed

tuple (Ss, Sf ) to (10mph, 30mph) for Highway, (5, 15) for Local and (5, 10) for Residential.

As shown in Figure 2.50, when we vary the ratio of slow cars over fast cars (Ns:Nf ), the

Waze server produces different final traffic speeds. We observe that Waze does not simply

compute an “average” speed over all the cars. Instead, it uses a weighted average with higher

weight on the majority cars’ speed. We infer an aggregation function as follows:

Swaze =
Smax ·max(Ns, Nf ) + Savg ·min(Ns, Nf )

Ns +Nf

where Savg = SsNs+SfNf

Ns+Nf
, and Smax is the speed of the group with Nmax cars. As shown in

Figure 2.50, our function can predict Waze’s aggregate traffic speed accurately, for all different

types of roads in our test. For validation purposes, we run another set of experiments by raising

Sf above the hotspot thresholds (65mph, 30mph and 20mph respectively for the three roads).
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Figure 2.51: Long-last traffic jam created by slow cars driving-by.

We can still form traffic hotspots by using more slow-driving cars (Ns > Nf ), and our function

can still predict the traffic speed on Waze accurately.

Long-Lasting Traffic Congestion. A traffic hotspot will last for 25-30 minutes if no other

cars drive by. Once aggregate speed normalizes, the congestion event is dismissed within 2-5

minutes. To create a long-lasting virtual traffic jam, attackers can simply keep sending slow-

driving cars to the congestion area to resist the input from real users. We validate this using a

simple, 50-minute long experiment where 3 virtual vehicles create a persistent congestion by

driving slowly through an area, and then looping back every 10 minutes. Meanwhile, 2 other

virtual cars emulate legitimate drivers that pass by at high speed every 10 minutes. As shown

in Figure 2.51, the traffic hotspot persists for the entire experiment period.

Impact on End Users. Waze uses real-time traffic data to optimize routes during trip

planning. Waze estimates the end-to-end trip time and recommends the fastest route. Once

on the road, Waze continuously estimates the travel time, and automatically reroutes if the

current route becomes congested. An attacker can launch physical attacks by placing fake

traffic hotspots on the user’s original route. While congestion alone does not trigger rerouting,

Waze reroutes the user to a detour when the estimated travel time through the detour is shorter

than the current congested route (see Figure 2.49).

We also note that Waze data is used by Google Maps, and therefore can potentially impact

their 1+ billion users [181]. Our experiment shows that artificial congestion do not appear on

82



Understanding Online Communities via Measurements Chapter 2

Google Maps, but fake events generated on Waze are displayed on Google Maps without ver-

ification, including “accidents”, “construction” and “objects on road”. Finally, event updates

are synchronized on both services, with a 2-minute delay and persist for a similar period of

time (e.g., 30 minutes).

2.3.4 Sybil Attacks

So far, we have shown that attackers using emulators can create “virtual vehicles” that

manipulate the Waze map. An attacker can generate much higher impact using a large group

of virtual vehicles (or Sybils [71]) under control. In this section, we describe techniques to

produce light-weight virtual vehicles in Waze, and explore the scalability of the group-based

attacks. We refer to large groups of virtual vehicles as “ghost riders” for two reasons. First,

they are easy to create en masse, and can travel in packs to outvote real users to generate more

complex events, e.g., persistent traffic congestion. Second, as we show in §2.3.5, they can make

themselves invisible to nearby vehicles.

Factors Limiting Sybil Creation. We start by looking at the limits of the large-scale Sybil

attacks on Waze. First, we note user accounts do not pose a challenge to attackers, since

account registration can be fully automated. We found that a single-threaded Monkeyrunner

script could automatically register 1000 new accounts in a day. Even though the latest version

of Waze app requires SMS verification to register accounts, attackers can use older versions of

APIs to create accounts without verification. Alternatively, accounts can be verified through

disposable phone/SMS services [214].

The limiting factor is the scalability of vehicle emulation. Even though emulators like

GenyMotion are relatively lightweight, each instance still takes significant computational re-

sources. For example, a MacBookPro with 8G of RAM supports only 10 simultaneous em-

ulator instances. For this, we explore a more scalable approach to client emulation that can
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Figure 2.52: Using a HTTPS proxy as man-in-the-middle to intercept traffic between Waze
client and server.

increase the number of supported virtual vehicles by orders of magnitude. Specifically, we

reverse engineer the communication APIs used by the app, and replace emulators with simple

Python scripts that mimic API calls.

Reverse Engineering Waze APIs. The Waze app uses HTTPS to communicate with the

server, so API details cannot be directly observed by capturing network traffic (TLS/SSL en-

crypted). However, an attacker can still intercept HTTPS traffic, by setting up a proxy [1]

between her phone and Waze server as a man-in-the-middle attack [199, 57]. As shown in Fig-

ure 2.52, an attacker needs to pre-install the proxy server’s root Certificate Authorities (CA)

to her own phone as a “trusted CA.” This allows the proxy to present self-signed certificates

to the phone claiming to be the Waze server. The Waze app on the phone will trust the proxy

(since the certificate is signed by a “trusted CA”), and establish HTTPS connections with the

proxy using proxy’s public key. On the proxy side, the attacker can decrypt the traffic using

proxy’s private key, and then forward traffic from the phone to Waze server through a separate

TLS/SSL channel. The proxy then observes traffic to the Waze servers and extracts the API

calls from plain text traffic.

Hiding API calls using traffic encryption is fundamentally challenging, because the attacker

has control over most of the components in the communication process, including phone, the

app binary, and the proxy. A known countermeasure is certificate pinning [75], which embeds a

copy of the server certificate within the app. When the app makes HTTPS requests, it validates

the server-provided certificate with its known copy before establishing connections. However,
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dedicated attackers can extract and replace the embedded certificate by disassembling the app

binary or attaching the app to a debugger [168, 74].

Scalability of Ghost Riders. With the knowledge of Waze APIs, we build extremely

lightweight Waze clients using python scripts, allocating one thread for each client. Within

each thread, we log in to the app using a separate account, and maintain a live session by send-

ing periodic GPS coordinates to the Waze server. The Python client is a full Waze client, and

can report fake events using the API. Scripted emulation is highly scalable. We run 1000 vir-

tual vehicles on a single Linux Dell PowerEdge Server (Quad Core, 2GB RAM), and find that

at steady state, 1000 virtual devices only introduces a small overhead: 11% of memory usage,

2% of CPU and 420 Kbps bandwidth. In practice, attackers can easily run tens of thousands of

virtual devices on a commodity server.

Finally, we experimentally confirm the practical efficacy and scalability of ghost riders. We

chose a secluded highway in rural Texas, and used 1000 virtual vehicles (hosted on a single

server and single IP) to generate a highly congested traffic hotspot. We perform our experiment

in the middle of the night after repeated scans showed no Waze users within miles of our test

area. We positioned 1000 ghost riders one after another, and drove them slowly at 15 mph

along the highway, looping them back every 15 minutes for an entire hour. The congestion

shows up on Waze 5 minutes after our test began, and stayed on the map during the entire test

period. No problems were observed during our test, and tests to generate fake events (accidents

etc.) also succeeded.

2.3.5 User Tracking Attack

Next, we describe a powerful new attack on user privacy, where virtual vehicles can track

Waze users continuously without risking detection themselves. By exploiting a key social

functionality in Waze, attackers can remotely follow (or stalk) any individual user in real time.
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This is possible with single device emulation, but greatly amplified with the help of large

groups of ghost riders, possibly tracking large user populations simultaneously and putting user

(location) privacy at great risk. We start by examining the feasibility (and key enablers) of this

attack. We then present a simple but highly effective tracking algorithm that follows individual

users in real time, which we have validated using real life experiments (with ourselves as the

targets).

The only way for Waze users to avoid tracking is to go “invisible” in Waze. However,

doing so forfeits the ability to generate reports or message other users. Users are also reset to

“visible” each time the Waze app opens.

2.3.5.1 Feasibility of User Tracking

A key feature in Waze allows users to socialize with others on the road. Each user sees

on her screen icons representing the locations of nearby users, and can chat or message with

them through the app. Leveraging this feature, an attacker can pinpoint any target who has

the Waze app running on her phone. By constantly “refreshing” the app screen (issuing an

update query to the server), an attacker can query the victim’s GPS location from Waze in real

time. To understand this capability, we perform detailed measurements on Waze to evaluate

the efficiency and precision of user tracking.

Tracking via User Queries. AWaze client periodically requests updates in her nearby area,

by issuing an update query with its GPS coordinates and a rectangular “search area.” This

search area can be set to any location on the map, and does not depend on the requester’s own

location. The server returns a list of users located in the area, including userID, nickname,

account creation time, GPS coordinates and the GPS timestamp. Thus an attacker can find

and “follow” a target user by first locating them at any given location (work, home) and then

continuously following them by issuing update queries centered on the target vehicle location,
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Figure 2.53: # of queries vs. unique returned users in the area.

all automated by scripts.

Overcoming Downsampling. The user query approach faces a downsampling challenge,

because Waze responds to each query with an “incomplete” set of users, i.e., up to 20 users

per query regardless of the search area size. This downsampled result is necessary to prevent

flooding the app screen with too many user icons, but it also limits an attacker’s ability to

follow a moving target.

This downsampling can be overcome by simply repeatedly querying the system until the

target is found. We perform query measurements on four test areas (of different sizes between

3× 4 mile2 and 24× 32 mile2) in the downtown area of Los Angeles (City A, with 10 million

residents as of 2015). For each area, we issue 400 queries within 10 seconds, and examine

the number of unique users returned by all the queries. Results in Figure 2.53 show that the

number of unique users reported converges after 150-250 queries for the three small search

areas (≤ 12× 16 mile2). For the area of size 24×32 mile2, more than 400 queries are required

to reach convergence.

We confirm this “downsampling” is uniformly random, by comparing our measurement

results to a mathematical model that projects the statistics of query results assuming uniform-

random sampling. Consider totalM users in the search area. The probability of a user x getting

sampled in a single round of query (20 users per query) is P (x) = 20
M
. Over N queries, the

number of appearances per user should follow a Binomial Distribution [119] with meanN · 20
M
.

Figure 2.54 plots the measured user appearances for the four servers on the 6×8mile2 area with
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Figure 2.54: User’s number of appearances in the returned results (6× 8 mile2 area).

N = 100. The measured statistics follow the projected Binomial Distribution (the measured

mean values closely match the theoretical expectation). This confirms that the downsampling

is indeed random, and thus an attacker can recover a (near) complete set of Waze users with

repeated queries. While the number of queries required increases superlinearly with area size,

a complementary technique is to divide an area into smaller, fixed size partitions and query

each partition’s users in parallel.

We also observe that user lists returned by different Waze servers had only a partial overlap

(roughly 20% of users from each server were unique to that server). This “inconsistency”

across servers is caused by synchronization delay among the servers. Each user only sends

its GPS coordinates to a single server which takes 2-5 minutes to propagate to other servers.

Therefore, a complete user set requires queries to cover all Waze servers. At the time of our

experiments, the number of Waze servers could be traced through app traffic and could be

covered by a moderate number of querying accounts.

Tracking Users over Time. Our analysis found that each active Waze app updates its

GPS coordinates to the server every 2 minutes, regardless of whether the user is mobile or

stationary. Even when running in the background, the Waze app reports GPS values every 5

minutes. As long as the Waze app is open (even running in the background), the user’s location

is continuously reported toWaze and potential attackers. Clearly, a more conservative approach

to managing location data would be extremely helpful here.
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We note that attackers can perform long-term tracking on a target user (e.g., over months).

The attacker needs a persistent ID associated to the target. The “userID” field in the metadata

is insufficient, because it is a random “session” ID assigned upon user login and is released

when the user kills the app. However, the “account creation time” can serve as a persistent ID,

because a) it remains the same across the user’s different login sessions, and b) it is precise

down to the second, and is sufficiently to uniquely identify single users in the same geographic

area. While Waze can remove the “account creation time” field from metadata, a persistent

attacker can overcome this by analyzing the victim’s mobility pattern. For example, the attacker

can identify a set of locations where the victim has visited frequently or stayed during the past

session, mapping to home or workplace. Then the attacker can assign a ghost rider to constantly

monitor those areas, and re-identify the target once her icon shows up in a monitored location,

e.g., home.

Stealth Mode. We note that attackers remain invisible to their targets, because queries on

any specific geographic area can be done by Sybils operating “remotely,” i.e. claiming to be

in a different city, state or country. Attackers can enable their “invisible” option to hide from

other nearby users. Finally, disabling these features still does not make the attacker visible.

Waze only updates each user’s “nearby” screen every 2 minutes (while sending its own GPS

update to the servers). Thus a tracker can “pop into” the target’s region, query for the target,

and then move out of the target’s observable range, all before the target can update and detect

it.

2.3.5.2 Real-time Individual User Tracking

To build a detailed trace of a target user’s movements, an attacker first bootstraps by iden-

tifying the target’s icon on the map. This can be done by identifying the target’s icon while

confirming her physical presence at a time and location. The attacker centers its search area
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Location Route
Len. (mile)

Travel
Time (min)

GPS Sent
By Victim

GPS Captured
by Attacker

To
Destination?

Track
Delay (sec.)

User Density
(# Users/mile2)

City A 12.8 35 18 16 Yes 43.79 56.6
Highway B 36.6 40 20 19 Yes 9.24 2.8

Table 2.7: Tracking Experiment Results.

Start End

GPS Points 
Missed by Attacker

Figure 2.55: A graphical view of the tracking result in Los Angeles downtown (City A). Blue
dots are GPS points captured by the attacker and the red dots are those missed by the attacker.

on the victim’s location, and issues a large number of queries (using Sybil accounts) until it

captures the next GPS report from the target. If the target is moving, the attacker moves the

search area along the target’s direction of movement and repeats the process to get updates.

Experiments. To evaluate its effectiveness, we performed experiments by tracking one of

our own Android smartphones and one of our virtual devices. Tracking was effective in both

cases, but we experimented more with tracking our virtual device, since we could have it travel

to any location. Using the OSRM tool [4], we generate detailed GPS traces of two driving

trips, one in downtown area of Los Angeles (City A), and one along the interstate highway-101

(Highway B). The target device uses a realistic driving speed based on average traffic speeds

estimated by Google Maps during the experiment. The attacker used 20 virtual devices to

query Waze simultaneously in a rectangular search area of size 6 × 8 mile2. This should be

sufficient to track the GPS update of a fast-driving car (up to 160 mph). Both experiments were

during morning hours, and we logged both the network traffic of the target phone and query

data retrieved by the attacker. Note that we did not generate any “events” or otherwise affect

the Waze system in this experiment.

Results. Table 2.7 lists the results of tracking our virtual device, and Figure 2.55 presents

a graphical view of the City A result. For both routes, the attacker can consistently follow the
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victim to her destination, though the attacker fails to capture 1-2 GPS points out of the 18-20

reported. For City A, the tracking delay, i.e., the time spent to capture the subsequent GPS of

the victim, is larger (averaging 43s rather than 9s). This is because the downtown area has a

higher Waze user density, and required more rounds of queries to locate the target.

Our experiments represent two highly challenging (i.e., worst case) scenarios for the at-

tacker. The high density of Waze users in City A downtown is makes it challenging to locate

a target in real time with downsampling. On Highway B, the target travels at a high speed

(∼60mph), putting a stringent time limit on the tracking latency, i.e., the attacker must cap-

ture the target before he leaves the search area. The success of both experiments confirms the

effectiveness and practicality of the proposed attack.

2.3.6 Defenses

In this section, we discuss potential defense mechanisms to limit the magnitude and impact

of these attacks. While individual devices can inflict limited damage, an attacker’s ability to

control a large number of virtual vehicles at low cost elevates the severity of the attack in both

quantity and quality. Our priority, then, is to restrict the number of ghost riders available to

each attacker, thus increasing the cost per “vehicle” and reducing potential damage.

The most intuitive approach is perform strong location authentication, so that attackers

must use real devices physically located at the actual locations reported. This would make

ghost riders as expensive to operate as real devices. Unfortunately, existing methods for loca-

tion authentication do not extend well to our context. Some proposals solely rely on trusted

infrastructures (e.g., wireless access points) to verify the physical presence of devices in close

proximity [140, 191]. However, this requires large scale retrofitting of cellular celltowers or

installation of new hardware, neither of which is practical at large geographic scales. Others

propose to embed tamperproof location hardware on mobile devices [145, 192], which incurs
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high cost per user, and is only effective if enforced across all devices. For our purposes, we

need a scalable approach that works with current hardware, without incurring costs on mobile

users or the map service (Waze). In the following, we briefly describe the high level idea of

proposed defense and direct interested readers to our full paper for the detailed system design

and evaluation [228].

2.3.6.1 Sybil Detection via Proximity Graph

Instead of optimizing per-device location authentication, our proposed defense is a Sybil

detection mechanism based on the novel concept of proximity graph. Specifically, we leverage

physical proximity between real devices to create collocation edges, which act as secure attes-

tations of shared physical presence. In a proximity graph, nodes are Waze devices (uniquely

identified by an account username and password on the server side). They perform secure

peer-to-peer location authentication with the Waze app running in the background. An edge is

established if the proximity authentication is successful.

Because Sybil devices are scripted software, they are highly unlikely to come into physical

proximity with real devices. A Sybil device can only form collocation edges with other Sybil

devices (with coordination by the attacker) or the attacker’s own physical devices. The resulting

graph should have only very few (or no) edges between virtual devices and real users (other

than the attacker). Leveraging prior work on Sybil detection in social networks, groups of

Sybils can be characterized by the few “attack edges” connecting them to the rest of the graph,

making them identifiable through community-detection algorithms [221].

We use a very small number of trusted nodes only to bootstrap trust in the graph. We

assume a small number of infrastructure access points are known to Waze servers, e.g., hotels

and public WiFi networks associated with physical locations stored in IP-location databases

(used for geolocation by Apple and Google). Waze also can work with merchants that own

public WiFi access points (e.g., Starbucks). These infrastructures are trusted nodes (we assume
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trusted nodes don’t collude with attackers). AnyWaze device that communicates with theWaze

server under their IPs (and reports a GPS location consistent with the IP) automatically creates

a new collocation edge to the trusted node.

2.3.6.2 Alternative Defenses

In addition to Sybil detection, Waze can incorporate other mechanisms to protect its users.

We briefly describe a few key ideas, but leave the integration with our approach to future work.

First, IP verification: when a user claims she is driving, Waze can examine whether her IP

is a mobile IP that belongs to a valid cellular carrier or a suspicious web proxy. However,

this approach is ineffective if dedicated attackers route the attack traffic through a cellular

data plan. Second, strict rate limit: with that, attackers will need to run more Sybil devices

to implement the same attack. Third, verifications on account registration: this needs to be

handled carefully since email/SMS based verification can be bypassed using disposable email

or phone numbers [214]. Finally, detecting extremely inconsistent GPS/event reports. The

challenge, however, is to distinguish honest reports from the fake ones since attacker can easily

outvote real users. If Waze chooses to ignore all the inconsistent reports, it will lead to DOS

attack where attackers disable the service with inconsistent data.

2.3.7 Our Interactions with Waze

After our study, we have taken active steps to inform the Google/Waze team of our results

and help them to mitigate the threat. In this section, we want to share our experience of inter-

acting with Waze team, and discuss the security measures from Waze and their effectiveness.

Informing Waze Team Directly. Before the first writeup of our work in November 2014,

we sought to inform the Google Waze team of our findings. We first used multiple existing

Google contacts on the Security and Android teams. When that failed to reach the Waze team,
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we got in touch with Niels Provos, who then relayed information about our project to the Waze

team.

As of October 2015, we observed a major change in Waze app on how the app reports

user location data to the server (and other users). In the new version, the app only reports user

GPS values when the user is actively driving (moving at a moderate/fast rate of speed). GPS

tracking stops when a user is walking or standing still. In addition, Waze automatically shuts

down if the user puts it in the background, and has not driven for a while. To resume user

tracking (GPS reporting), users must manually bring the app to the foreground. Finally, Waze

now hide users’ starting and destination locations of their trips. While online documentation

claims that these optimizations are to reduce energy usage for the Waze app, we are gratified by

the dramatic steps taken to limit user tracking and improve user privacy. These changes indeed

reduce the amount of GPS data sent to the server (and made available to potential attackers

through the API). By our estimates, the update reduces the amount of GPS tracking data for

a typical user by nearly a factor of 10x. However, an attacker can still build Sybil devices to

track active Waze users.

Informing Waze via News Media. To further raise awareness on the threat of Sybil de-

vices, in April 2016, we pitched our work to Fusion. We demonstrated the effectiveness of the

tracking attack by tracking one of their reporters with her consent for three days. On April 26,

2016, Fusion covered our story, which went viral within 24 hours with followup stories from

20+ media outlets all around the world. This time, Waze immediately issued a response on

the next day [5], followed with a series of updates to the app. First, Waze disabled the social

feature in older versions (v3.8 or lower). In addition, the latest app uses special encoding on the

communication APIs (binary format, no longer human-readable). In the meantime, we tested

the app and found that Waze was using Google Protocol Buffer to perform the encoding. We

managed to crack the encoding scheme within a day, and validated that our attack still worked.

We notified Waze about our findings.
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Working with Waze. As of May 2016, the product manager of Waze reached out to us to

start a collaboration to improve Waze security. We helped the Waze team to understand our

attacking method, and helped to test any security measures they deployed. As a starting point,

Waze removed the globally unique identifier of users (account creation time) and username,

making it hard to track users over multiple trips. In addition, Waze started to require a two-

factor authentication through SMS before showing any identifiable information to nearby users.

To assess the effectiveness of the security measures, we tested our tracking attack on the

new app. To bypass the two-factor authentication, we tried to use temporal SMS services (or

disposable phone number) [214] to verify the fake accounts. We found that once the account

got verified, our Sybil device can communicate with Waze server and the tracking attack still

worked. We reported our findings and also suggested other potential security measures such as

enforcing a rate limit for queries per device, checking whether the device is using a mobile IP,

and detecting unrealistic movement patterns of a device. It is clear that current countermeasure

is not perfect and it is an on-going effort to further raise the bar for attackers.

Thus far, our efforts have led to significant improvement of the security and privacy in

Waze. After the back-and-forth interaction, much less amount of location information is shared

about users. Currently, only active users (who are driving on the road with Waze app on the

foreground) can be tracked. It is also much more difficult than before to track users across

multiple trips.

2.3.8 Broader Implications

While our experiments and defenses have focused strictly on Waze, our results are applica-

ble to a wider range of mobile applications that rely on geolocation for user-contributed con-

tent and metadata. Examples include location based check-in and review services (Foursquare,

Yelp), crowdsourced navigation systems (Waze, Moovit), crowdsourced taxi services (Uber,
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Lyft), mobile dating apps (Tinder, Bumble), anonymous mobile communities (Yik Yak, Whis-

per) and location-based gaming apps (Pokemon Go).

These systems face two common challenges exposing them to potential attacks. First, our

efforts show that it is difficult for app developers to build a truly secure channel between the

app and the server. There are numerous avenues for an attacker to reverse-engineer and mimic

an app’s API calls, thereby creating “cheap” virtual devices and launching Sybil attack [71].

Second, there are no deployed mechanisms to authenticate location data (e.g., GPS report).

Without a secure channel to the server and authenticated location, these mobile apps are vul-

nerable to automated attacks ranging from nuisance (prank calls to Uber) to malicious content

attacks (large-scale rating manipulation on Yelp).

Attacking other Apps. To validate our point, we run a quick empirical analysis on a broad

class of mobile apps to understand how easy it is to reverse-engineer their APIs and inject

falsified data into the system. We pick one app from each category including Foursquare, Uber,

Tinder, Yik Yak and Pokemon Go (an incomplete list). We find that, although all the listed apps

use TLS/SSL to encrypt their network traffic, their APIs can be fully exposed by the method in

§2.3.4. For each app, we were able to build a light-weight client using python script, and feed

arbitrary GPS to their key function calls. For example, with forged GPS, a group of Foursquare

clients can deliver large volumes of check-ins to a given venue without physically visiting it;

On Uber, one can distribute many virtual devices as sensors, and passively monitor and track

all drivers within a large area (see §2.3.5). Similarly for Yik Yak and Tinder, the virtual devices

make it possible to perform wardriving in a given location area to post and collect anonymous

Yik Yak messages or Tinder profiles. In addition, apps like Tinder also display the geographical

distance to a nearby user (e.g., 1 mile). Attacker can use multiple virtual devices to measure

the distance to the target user, and “triangulate” that user’s exact location [227]. Finally, for

Pokemon Go, we can use simulated devices to capture pokemons without physically walking

outside like other players (cheating in the game). There are possible app-specific defenses, and
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we leave their design and evaluation to future work.

New Countermeasures in the Wild. After our initial report was published, we start to

observe some interesting countermeasures against API reverse-engineerings in these apps. For

example, Yik Yak uses an authentication method in their APIs called HMAC (keyed-hash mes-

sage authentication code). The app developer has embed a key in the app binary, and uses

the key to generate the authentication code. API calls without the authentication code are no

longer accepted by the server. To build a Sybil device for Yik Yak, the attacker need to take

extra effort to extract the key from the app binary. In addition, we observe apps like Twitter,

Periscope have adopted SSL pinning, so that the app no longer accept self-signed certificate.

This makes it more difficult to set up a HTTPS proxy to learn the API calls. Attacker will

need to replace the pinned certificate from the app binary in order to reverse-engineer the API

calls as §2.3.4. We believe further research is needed to empirically understand the usage and

effectiveness of different countermeasures within a wide range of mobile apps.

2.3.9 Summary of Results

In summary, we describe our efforts to identify and study a range of attacks on crowd-

sourced map services. We identify a range of single and multi-user attacks, and describe tech-

niques to build and control groups of virtual vehicles (ghost riders) to amplify these attacks.

Our work shows that today’s mapping services are highly vulnerable to software agents con-

trolled by malicious users, and both the stability of these services and the privacy of millions

of users are at stake. We propose and validate a suite of techniques that help services to build

proximity graphs and use them to effectively detect Sybil devices.

While our study and experiments focus on the Waze system, we believe the large majority

of our results can be generalized to crowdsourced apps as a group. Broadly speaking, for any

apps that support “human-to-human” interactions, they inevitably have to leak some user data
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(e.g., location data, user identity information) to other users through such interactions. This

become a real concern when an attacker controls a large group of Sybil devices to massively

interact with human users and retrive or pollute user data.

98



Chapter 3

Spam, Human Factors and Malicious

Crowdsourcing

Thus far, we have discussed the critical challenges in online communities in Chapter 2 regard-

ing quality of content, user anonymity and location privacy. In this chapter, we specifically

focus on the generation and distribution of malicious content (e.g. spam) in online communi-

ties and practical defense techniques. While traditional spam attacks are mostly generated by

automated software, more sophisticated attackers today start to introduce “human intelligence”

to their attacking process. Through extensive measurements, we find strong evidence on the

rising of malicious crowdsourcing services where a large number of real users are hired for

pennies to perform malicious activities, which poses a significant challenge to existing secu-

rity systems (e.g., CAPTCHA), which are initially designed to detect attacks from automated

software, but become ineffective to real users. In the following, we describe our data-driven

approach to understanding and defending against malicious crowdsourcing (or crowdturfing).
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3.1 Understanding Malicious Crowdsourcing

3.1.1 Introduction

Popular Internet services in recent years have shown that remarkable things can be achieved

by harnessing the power of the masses. By distributing tasks or questions to large numbers

of Internet users, these “crowd-sourcing” systems have done everything from answering user

questions (Quora), to translating books, creating 3-D photo tours [197], and predicting the

behavior of stock markets and movie grosses. Online services like Amazon’s Mechanical Turk,

Rent-a-Coder (vWorker), Freelancer, and Innocentive have created open platforms to connect

people with jobs and workers willing to perform them for various levels of compensation.

On the other hand, crowd-sourcing systems could pose a serious challenge to a number

of security mechanisms deployed to protect Internet services against automated scripts. For

example, electronic marketplaces want to prevent scripts from automating auction bids [146],

and online social networks (OSNs) want to detect and remove fake users (Sybils) that spread

spam [213, 244]. Detection techniques include different types of CAPTCHAs, as well as

machine-learning that tries to detect abnormal user behavior [84], e.g. near-instantaneous re-

sponses to messages or highly bursty user events. Regardless of the specific technique used,

they rely on a common assumption, that the malicious tasks in question cannot be performed by

real humans en masse. This is an assumption that is easily broken by crowd-sourcing systems

dedicated to organizing works to perform malicious tasks.

Through measurements, we have found surprising evidence showing that not only do mali-

cious crowd-sourcing systems exist, but they are rapidly growing in both user base and revenue

generated. Because of their similarity with both traditional crowd-sourcing systems and as-

troturfing behavior, we refer to them as crowdturfing systems. More specifically, we define

crowdturfing systems as systems where customers initiate “campaigns,” and a significant num-

ber of users obtain financial compensation in exchange for performing simple “tasks” that go
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against accepted user policies.

In this part of the chapter, we describe a significant effort to study and understand crowd-

turfing systems in today’s Internet. We found significant evidence of these systems in a number

of countries, including the US and India, but focus our study on two of the largest crowdturf-

ing systems with readily available data, both of which are hosted in and targeted users in

China. From anecdotal evidence, we learn that these systems are well-known to young Internet

users in China, and have persisted despite threats from law enforcement agencies to shut them

down [72, 79, 130].

Our study results in four key findings on the operation and effectiveness of crowdturfing

systems. First, we used detailed crawls to extract data about the size and operational structure

of these crowdturfing systems. We use readily available data to quantify both tasks and revenue

flowing through these systems, and observe that these sites are growing exponentially in both

metrics. Second, we study the types of tasks offered and performed in these sites, which include

mass account creation, and posting of specific content on OSNs, microblogs, blogs, and online

forums. Tasks often ask users to post advertisements and positive comments about websites

along with an URL. We perform detailed analysis of tasks trying to start information cascades

on microblogging sites, and study the effectiveness of cascades as a function of the microblog

social graph.

Third, we want to evaluate the end-to-end effectiveness of crowdturfing campaigns. To do

so, we created accounts on one of our target systems, and initiated a number of benign cam-

paigns that provide unsolicited advertisements for legitimate businesses. By bouncing clicks

through our redirection server, we log responses to advertisements generated by our campaigns,

allowing us to quantify their effectiveness. Our data shows that crowdturfing campaigns can

be cost-effective at soliciting real user responses. Finally, we study and compare the source of

workers on crowdturfing sites in different countries. We find that crowdturfing workers easily

cross national borders, and workers in less-developed countries often get paid through global
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payment services for performing tasks affecting US-based networks. This suggests that the

continuing growth of crowdturfing systems poses a real threat to U.S.-based online communi-

ties such as Facebook, Twitter, and Google+.

This study is the one of the first to examine the organization and effectiveness of large-

scale crowdturfing systems on the Internet. These systems have already established roots in

other countries, and are responsible for producing fake social network accounts that look indis-

tinguishable from those of real users [244]. A recent study shows that similar types of behavior

are also on the rise in the US-based Freelancer site [157]. Understanding the operation of

these systems from both financial and technical angles is the first step to developing effective

defenses to protect today’s online social networks and online communities.

3.1.2 Crowdturfing Overview

In this section, we introduce the core concepts related to crowdturfing. We start by defining

crowdturfing and the key players in a crowdturfing campaign. Next, we present two different

types of systems that are used to effect crowdturfing campaigns on the Internet: distributed and

centralized. Measurements of a distributed crowdturfing system show that it is significantly

less popular with users than centralized systems. Thus we focus on understanding centralized

crowdturfing systems in the remainder of our study.

3.1.2.1 Introduction to Crowdturfing

The term crowdturfing is a portmanteau of “crowd-sourcing” and “astroturfing.” Astro-

turfing refers to information dissemination campaigns that are sponsored by an organization,

but are obfuscated so as to appear like spontaneous, decentralized “grass-roots” movements.

Astroturfing campaigns often involve spreading legally grey, or even illegal, content, such as

defamatory rumors, false advertising, or suspect political messages. Although astroturfing pre-
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Figure 3.1: Work and cash flow of a crowdturfing campaign.

dates the Internet, the ability to quickly mobilize large groups via crowd-sourcing systems has

drastically increased the power of astroturfing. We refer to this combined threat as crowdturf-

ing. Because of its use of real human users, crowdturfing poses an immediate threat to existing

security measures that protect online communities by targeting automated scripts and bots.

Crowdturfing campaigns on the Internet involve three key actors:

1. Customers: Individuals or companies who initiate a crowdturfing campaign. The cus-

tomer is responsible for paying for the monetary costs, and are typically are either related

to or themselves the beneficiaries of the campaign.

2. Agents: Intermediaries who take charge of campaign planning and management. The

agent is responsible for finding, managing, and distributing funds to workers to accom-

plish the goals of the campaign.

3. Workers: Internet users who answer calls by agents to perform specific tasks in exchange

for a fee.

Each campaign is structured as a collection of tasks. For example, a campaign might entail

generating positive sentiment for a new restaurant. In this case, each task would be “post a

single (fake) positive restaurant review online.” Workers who complete tasks generate submis-

sions that include evidence of their work. The customer/agent can then verify that the work

was done to their satisfaction. In the case of the restaurant review campaign, submissions are

screenshots of or URLs pointing to the fake reviews. Ideally, there is a one-to-one mapping be-
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tween tasks and submissions. However, not all tasks may be completed, and submissions may

be rejected due to lack of quality. In these cases, the number of submissions will not match the

number of tasks for a given campaign.

The process for a crowdturfing campaign is shown in Figure 3.1. Initially, a customer brings

the campaign to an agent and pays them to carry it out (1). The agent distributes individual

tasks among a pool of workers (2), who complete the tasks and return submissions back to the

agent (3). The agent passes the submissions back to the customer (4), who evaluates the work.

If the customer is satisfied they inform the agent (5), who then pays the workers (6).

3.1.2.2 Crowdturfing Systems

Crowdturfing systems are instances of infrastructure used to connect customers, agents,

and workers to enable crowdturfing campaigns. These systems are generally created and main-

tained by agents, and help to streamline the process of organizing workers, verifying their

work, and distributing payments.

We have observed two different types of crowdturfing systems in the wild: distributed

and centralized. We now describe the differences between these two structures, highlighting

their respective strengths and weaknesses. Crowdturfing systems are similar to crowd-sourcing

systems like Amazon’s Mechanical Turk, with the exception that they accept tasks that are

unethical or illegal, and that they can utilize distributed infrastructures.

Distributed Architecture. Distributed crowdturfing systems are organized around small

instant message (IM) groups, mailing lists, or chat rooms hosted by group leaders. As illus-

trated in Figure 3.2a, leaders act as middlemen between agents and workers, and organizes the

workers.

The advantage of distributed crowdturfing systems is that they are resistant to external

threats, like law-enforcement. Individual forums and mailing lists are difficult to locate, and
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Figure 3.2: Two different crowdturfing system structures.

they can be dissolved and reconstituted elsewhere at any time. Furthermore, sensitive commu-

nications, such as payment transfers, occur via private channels directly between leaders and

workers, and thus cannot be observed by third parties.

However, there are two disadvantages to distributed systems that limit their popularity.

The first is lack of accountability. Distributed systems do not have robust reputation metrics,

leaving customers with little assurance that work will be performed satisfactorily, and workers

with no guarantees of getting paid. The second disadvantage stems from the fragmented nature

of distributed systems. Prospective workers must locate groups before they can accept jobs,

which acts as a barrier-of-entry for many users. To test this, we located 14 crowdturfing groups

in China hosted on the popular Tencent QQ instant messaging network. Despite the fact that

these groups were well advertised on popular forums, they only hosted ≈2K total users. Over

the course of several days of observation, each group only generated 28 messages per day on

average, most of which was idle chatter. The conclusion we can draw from these measurements

is that distributed crowdturfing systems are not very successful at attracting workers. As we

will show in Section 3.1.3, centralized systems attract orders of magnitude more campaigns

and workers.

Centralized Architecture. Centralized crowdturfing systems, illustrated in Figure 3.2b, are

instantiated as websites that directly connect customers and workers. Much like Amazon’s Me-
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chanical Turk, customers post campaigns and offer rewards, while workers sign up to complete

tasks and collect payments. Both customer and workers register bank information associated

with their accounts, and all transactions are processed through the website. Centralized crowd-

turfing websites use reputation and punishment systems to incentivize customer and workers to

behave properly. The primary role of the agent in centralized architectures is simply to main-

tain the website, although they may also perform verification of submissions at the behest of

customers.

The advantage of centralized crowdturfing systems is their simplicity. There are a small

number of these large, public websites, making them trivial to locate by customers and workers.

Centralized software automates campaign management, payment distribution, and maintains

per-worker reputation scores. These features streamline centralized crowdturfing systems, and

reduce uncertainties for all involved parties.

The disadvantage of centralized crowdturfing systems is their susceptibility to scrutiny by

third parties. Since these public sites allow anyone to sign up, they are easy targets for infil-

tration, which may be problematic for crowdturfing sites that operate in legally grey-areas. On

the other hand, this disadvantage made it possible for us to crawl and analyze several large

crowdturfing websites.

3.1.3 Campaigns, Tasks, and Revenue

We begin our analysis of crowdturfing systems, by analyzing the volume of campaigns,

tasks, users, and total revenue processed by the largest known systems. We first describe

the representative systems in our study along with our data gathering methodology. We then

present detailed results addressing these questions.
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3.1.3.1 Data Collection and General Statistics

While a number of crowdsurfing systems operate across the global Internet, the two largest

and most representative systems are hosted on Chinese networks. Their popularity is explained

by the fact that China has both the world’s largest Internet population (485M) [165] and a

moderately low per-capita income (≈$3,200/year) [131]. Crowdturfing sites in China connect

dodgy PR firms to a large online user population willing to act as crowd-sourced labor, and

have been used to spread false rumors and advertising [64, 130, 72]. This “Shui Jun” (water

army), as it is commonly known, has emerged as a force on the Chinese Internet that authorities

are only beginning to grapple with [79, 8].

This confluence of factors makes China an ideal place to study crowdturfing. In this section,

we measure and characterize the two largest crowdturfing websites in China: Zhubajie (ZBJ,

zhubajie.com) and Sandaha (SDH, sandaha.com). All data on these sites are public,

and we were able to gather all data on their current and past tasks via periodic crawls of their

campaign histories.

Zhubajie and Sandaha. The first site we crawled is Zhubajie (ZBJ), which is the largest

crowd-sourcing website in China. As shown in Table 3.1, ZBJ has been active for five years,

and is well established in the Chinese market. Customers post many different legitimate types

of jobs to ZBJ, including requests for freelance design and programming, as well as Mechanical

Turk-style “human intelligence tasks.” However, there is a subsection of ZBJ called “Internet

Marketing” that is dedicated solely to crowdturfing. ZBJ also has an English-language version

hosted in Texas (witmart.com), but its crowdturfing subsection only has 3 campaigns to date.

Unlike ZBJ, Sandaha (SDH) only provides crowdturfing services, and is four years younger

than ZBJ.

Crawling Methodology. We crawled ZBJ and SDH in September, 2011 to gather data

for this study. We crawled SDH in its entirety, but only crawled the crowdturfing section of
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Website Active
Since

Total
Campaigns (%)

Total
Workers

Total
Tasks

Total
Submissions (%)

Total
Accepted (%)

Total
Money

Money
for Workers

Money for
Website (%)

Zhubajie (ZBJ) Nov. 2006 76K (92%) 169K 17.4M 6.3M (36%) 3.5M (56%) $3.0M $2.4M $595K (20%)
Sandaha (SDH) March 2010 3K (88%) 11K 1.1M 1.4M (130%) 751K (55%) $161K $129K $32K (20%)

Table 3.1: General information for two large crowdturfing websites.

ZBJ. Both sites are structured similarly, starting with a main page that links to a paginated

list of campaigns, ordered reverse chronologically. Each campaign has its own page that gives

pertinent information, along with links to another paginated list of completed submissions from

workers. All information on both sites is publicly available, and neither site employs security

measures to prevent crawling.

Our crawler recorded details of all campaigns and submissions on ZBJ and SDH. Cam-

paigns are characterized by a description, start and end times, total number of tasks, total money

available to pay workers, whether the campaign is completed, and the number of accepted and

rejected submissions. It also includes details for each submission entered by workers, includ-

ing the worker username and UID, a submission timestamp, one or more screenshots and/or

URLs pointing to content generated by the worker, and a flag marking the submission as either

accepted or rejected after review.

Both ZBJ and SDH make the complete history of campaigns available on their sites, which

enables the crawler to collect data dating back to each site’s inception. Table 3.1 lists the

total number of campaigns on each site, as well as the percentage that were usable for our

study. Data on some campaigns is incomplete because the customer deleted them or made

them private. Other data could be missing because either the campaign only provided partial

information (e.g. no task count or price per task), or the campaign was still ongoing at the time

of our crawl. Incomplete campaigns only account for 8% of the total on ZBJ and 12% on SDH,

and thus have little impact on our overall results. For clarity, we convert all currency values on

ZBJ and SDH (Chinese Yuan) to US Dollars using an exchange rate of 0.1543 to 1.

General Statistics. Table 3.1 shows the high-level results from our crawls. ZBJ is older
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and more well-established than SDH, hence it has attracted more campaigns, workers, and

money. Campaigns on both sites each include many individual tasks, and task count is almost

three orders of magnitude greater than number of campaigns. The number of submissions

generated by workers in response to tasks is highly variable: on ZBJ only 36% of tasks receive

submissions, whereas on SDH 130% of tasks receive submissions (i.e. there is competition

among workers to complete the same tasks). Roughly 50% of all submissions are accepted.

Most importantly, more than $4 million dollars have been spent on crowdturfing on ZBJ

and SDH in the past five years. Both sites take a 20% cut of campaign dollars as a fee, resulting

in significant profits for ZBJ, due to its high volume of campaigns. Furthermore, Figure 3.3

shows that the number of campaigns and total money spent are growing exponentially. The

younger SDH has a growth trend that mirrors ZBJ, suggesting that it will reach similar levels

of profitability within the next year. These trends indicate the rising popularity of crowdsurfing

systems, and foreshadow the potential impact these systems will have in the very near future.

3.1.3.2 Campaigns, Tasks, and Workers

Figure 3.4 illustrates the high level breakdown of tasks and submissions on ZBJ and SDH.

There are three lines corresponding to each site: tasks per campaign, submissions per cam-

paign, and accepted submissions per campaign. Campaigns on ZBJ tend to have an order of

magnitude fewer tasks than those on SDH. Although both sites only accept ≈50% of submis-
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Campaign
Type

Num of
Campaigns $/Camp. $/Task Monthly

Growth

ZBJ

Account Reg. 29,413 (39%) $71 $0.35 16%
Forum Post 17,753 (23%) $16 $0.27 19%
QQ Group 12, 969 (17%) $15 $0.70 17%
Microblog 4,061 (5%) $12 $0.18 47%
Blog Post 3,067 (4%) $12 $0.23 20%

SDH

Forum Post 1,928 (57%) $48 $0.19 40%
QQ Group 473 (14%) $48 $0.13 31%
Q&A 463 (14%) $47 $0.21 30%

Blog Post 113 (3%) $49 $0.19 21%
Microblog 93 (3%) $49 $0.27 42%

Table 3.2: The top five campaign types on ZBJ and SDH.

sions, the overabundance of submissions on SDH means that the number of accepted submis-

sions closely tracks the required number of tasks, especially for campaigns with >100 tasks.

Campaign Types. Crowdturfing campaigns on ZBJ and SDH can be divided into several

categories, with the five most popular listed in Table 3.2. These five campaign types account

for 88% of all campaigns on ZBJ, and 91% on SDH.

“Account registration” refers to the creation of user accounts on a target website. Unlike

what has been observed by prior work [157], these accounts are almost never used to automate

the process of spamming. Instead, customers request this service to bolster the popularity of

fledgling websites and online games, in order to make them appear well trafficked.

Four campaign types refer to spamming in specific contexts: QQ instant-message groups,

forums, blogs, and microblogs (e.g. Twitter). Customers in China prefer to pay workers di-

rectly to generate content on popular websites, rather than purchasing accounts from workers

and spamming through them. Note, that QQ and forums represent a larger percentage of cam-

paigns because their existence predates microblogs, which have only become popular in China

in the last year [165]. The last column of Table 3.2 shows the average monthly growth in

number of campaigns, and shows that microblogs campaigns are growing faster than all other
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Figure 3.6: Submissions by top workers.

top-5 categories in both ZBJ and SDH. As the popularity of social networks and microblogs

continues to grow, we expect to see more campaigns targeting them.

Finally, “Q&A” involves posting and answering questions on social Q&A sites like Quora

(quora.com). Workers are expected to answer product-related questions in a biased manner,

and in some cases post dummy questions that are immediately answered by other colluding

workers.

Worker Characteristics. We now focus our discussion on the behavior of workers on

crowdturfing websites. Figure 3.5 shows that the total number of submissions per worker (in-

cluding both accepted and rejected submissions) varies across the worker population, and even

between ZBJ and SDH. Roughly 40% of SDH workers only complete a single task, compared

to 20% on ZBJ. The average worker on both sites complete around 5-7 tasks each.

Figure 3.5 also reveals that a small percentage of extremely prolific workers (especially on

SDH) generate hundreds, even thousands, of submissions. Figure 3.6 plots the percentage of

submissions from top workers ordered from most to least prolific. The distribution is highly

skewed in favor of these career crowdturfers, who are responsible for generating ≈75% of

submissions.

We now examine the temporal aspects of worker behavior. Figure 3.7 plots the time dif-

ference between a campaign getting posted online, and the first submission from a worker.

On SDH, 50% of campaigns become active within 24 hours, whereas on ZBJ (with its larger
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worker population) 75% of campaigns become active within 24 hours. However, some cam-

paigns take significantly longer to ramp up: up to 15 days on ZBJ, and 30 days on SDH. As we

discuss in Section 3.1.3.3, these slow moving campaigns have very specific requirements that

cannot be met by the vast majority of workers.

Figure 3.8 shows the correlation between time of day and number of submissions on ZBJ

and SDH. Most submissions happen during the workday and in the evening. Slight drops

around lunch and dinner are also visible. This pattern confirms that submissions are generated

by human beings, and not automated bots.

3.1.3.3 Money

We now explore the monetary reward component of crowdturfing systems. As is common

on crowd-sourcing systems like Mechanical Turk, workers on ZBJ and SDH make a tiny fee

for each accepted submission. As shown in Figure 3.9, the vast majority of workers on ZBJ

and SDH earn $0.11 per submission, although ≈20% of submissions command higher prices

than this. Workers must complete many submissions in order to earn substantial pay, leading

to the prolific submission habits of career crowdturfers seen in Figure 3.6. Note that this is a

very different model from bid-for-tasks systems like the recent Freelancer study [157].

The total amount of money earned by most workers on ZBJ and SDH is very small. As

illustrated in Figure 3.10, close to 70% of workers earn less than $1 for their efforts. The re-
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Figure 3.12: # of tasks vs. submission price.

maining 30% of workers earn between $1 and $100, making crowdturfing a potentially reward-

ing part-time job to supplement their core income. For a very small group of workers (0.4%),

crowdturfing is a full-time job, earning rewards in the $1,000 dollar range. Not surprisingly,

the distribution of monetary rewards matches this distribution. As seen in Figure 3.11, the top

5% of workers take home 80% of the proceeds on ZBJ and SDH. Clearly, a hard-core contin-

gent of career crowdturfers is taking the bulk of the reward money by quickly completing many

submissions.

Task Pricing. The goal and budget of each crowdturfing campaign affects the number and

price of tasks in that campaign. Figure 3.12 plots the correlation between the number of tasks

in a campaign, versus the price per submission the customer is willing to pay. The vast majority

of campaigns with 1K-10K tasks call for generating numerous “tweets” on microblog sites. We

examine these tasks in more detail in Section 3.1.4.

Although the vast majority of campaigns call for many tasks with low price per submission,
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Figure 3.12 reveals that there is a small minority of well paying tasks. In many cases, these

campaigns only include a single task that can earn an accepted submission ≥$100 dollars. We

examined the 158 outlying tasks that earned ≥$10 and determined that they include a large

range of very strange campaigns, some prominent examples include:

• Pyramid Schemes: Workers recruit their friends into a pyramid scheme to receive a large

payment.

• Commissioned Sales: Workers sell products in order to receive a percentage of the sales.

• Dating Sites: Workers crawl OSNs and clone the profiles of attractive men and women

onto a dating site.

• Power-Users: These tasks call for a single worker who owns a powerful social network

account, well-read blog, or works for a news service to generate a story endorsing the

customer.

3.1.4 Crowdturfing on Microblogs

In this section, we study the broader impact of crowdturfing by measuring the spread of

crowdturf content on microblogging sites. We gather data from Sina Weibo, the most pop-

ular microblogging social network in China that has the same look and feel as Twitter. We

study Weibo for two reasons. First, as shown in Table 3.2, microblogging sites and Weibo in

particular are very popular targets for crowdturfing campaigns. Second, the vast majority of

information on Weibo (i.e. “tweets” and user profile information) is public, making it an ideal

target for measurement and analysis.

We begin by introducing Weibo and our data collection methodology. Next, we examine

properties of crowdturfing tasks and workers on Weibo. Finally, we gauge the success of

campaigns across the social network by analyzing the spread of crowdturfing content.
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3.1.4.1 Weibo Background and Data Collection

Founded in August 2009, Sina Weibo is the most popular microblogging social network in

China, with more than 250 million users as of October 2011 [7]. Weibo has functionality iden-

tical to Twitter: users generate 140 character “tweets,” which can be replied to and “retweeted”

by other users. Users may also create directed relationships with other users by following them.

We focus our study of Weibo campaigns from ZBJ, because ZBJ has the most microblog-

ging campaigns by far. Of the 4,061 microblogging campaigns on ZBJ, 3,145 target Weibo. As

shown in Figure 3.13, the number of Weibo campaigns on ZBJ mirrors Weibo’s rapid growth

in popularity in 2011.

The goal of crowdturfing campaigns on Weibo is to increase the customer’s reach, and to

spread their sponsored message throughout the social network. These goals lead to three task

types: “pay per tweet,” “pay per retweet,” and “purchasing followers.” The most common task

type is retweeting, in which the customer posts a tweet and then pays workers to retweet it.

Alternatively, customers may pay workers to generate their own tweets, laden with specific

keywords and URLs, or to have their accounts follow the customer’s for future messages.

To increase the power of their campaigns, customers prefer workers who use realistic,

well-maintained Weibo accounts to complete tasks. Customers may not accept submissions

from poor quality, e.g. easily detected or banned, Sybil accounts. Conversely, workers who

control popular accounts with many followers can earn more per task than worker accounts
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with average popularity.

Data Collection. Understanding the spread of crowdturfing content on Weibo requires

identifying information cascades [128]. Each cascade is characterized by an origin post that

initiates the cascade, and retweets that further propagate the information. Cascades form a

directed tree with the origin post at the root. In crowdturfing cascades, the origin post is

always generated by a customer or a worker, but retweets can be attributed to workers and

normal Weibo users. Each campaign is a forest of cascade trees.

We crawled Weibo in early September, 2011 to gather data on the spread of crowdturf

content. The crawler was initially seeded with URLs that matched campaigns already found

on ZBJ, and used simple content analysis to determine if each worker submission was an origin

post or a retweet in order to differentiate between “pay to tweet” and “pay to retweet” tasks. In

the latter case, the crawler fetched the origin post using information embedded in the retweet.

Our crawler targets the mobile version of the Weibo site because it lists all retweets of a

given origin post on a single page, including the full path of multi-hop retweets. The crawler

recorded the total number of tweets, followers, and users followed by each user involved in

crowdturfing cascades. Unfortunately, Weibo only divulges the first 1K followers for each

user, so we are unable to fully reconstruct the social graph.

Overall, our crawler collected 2,869 campaigns involving 1,280 customers. These cam-

paigns received submissions from more than 12,000 Weibo accounts, and reached more than

463,000 non-worker users. Among these, 2% of worker accounts were inaccessible, and were

presumably banned by Weibo for spamming. 0.08% of the non-worker user accounts were

inaccessible, and all customer accounts remained active. “Pay per tweet” campaigns initiated

25,000 cascades, while “pay per retweet” campaigns triggered 5,000 cascades. We ignore

“purchase followers” campaigns, since they do not generate crowdturfing cascades.

To get a baseline understanding of normal Weibo user accounts, we performed a snowball

crawl of Weibo’s social graph in October 2011. The result is profile data for 6 million “normal”
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Weibo users.

3.1.4.2 Weibo Account Analysis

We begin by examining and comparing the characteristics of Weibo accounts controlled by

workers and customers to those of normal Weibo users. As shown in Figure 3.14, the number

of accounts controlled by each worker follows the same trend as submissions per worker. This

is intuitive: workers need multiple accounts in order to make multiple submissions to a single

campaign. Hence, professional crowdturfers who generate many submissions need to control a

commensurate number of accounts. In absolute terms, we observe 14,151 accounts controlled

by 5,364 ZBJ workers. The top 1% of workers each control ≥100 accounts, but the average

worker controls only ≈6 accounts.

Comparison to Normal Accounts. We now compare characteristics of worker’s and cus-

tomer’s accounts to normal users. We find that each account type tweets with the same fre-

quency. This suggests that workers and customers are both careful not to overwhelm their

followers with spam tweets.

Previous work on Sybil detection on OSNs showed that follow rate is an effective metric

for locating aberrant accounts [206]. A user’s follow rate is defined as the ratio of followers

to users followed. Sybils often attempt to gain followers by following many other users and

hoping they reciprocate. Thus Sybils have follow rates <1, e.g. they follow more users than

they have followers.

Figure 3.15 shows the follow rates for different Weibo account types. Surprisingly, normal

users have the lowest follow rates. Most worker accounts have follow rates ≈1, allowing them

to easily blend in. This may represent a conscious effort on the part of workers to make their

Weibo accounts appear “normal” so that they will evade automatic Sybil detectors. Customers

tend to have follow rates>1. This makes sense, since customers tend to be commercial entities,
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Figure 3.15: Follow rates for Weibo users.

and are thus net information disseminators rather than information consumers.

3.1.4.3 Information Dissemination on Weibo

Much work has studied how to optimize information dissemination on social networks. We

analyze our data to evaluate the level of success in crowdturfing cascades, and whether there

are factors that can predict the success of social crowdturfing campaigns.

Campaign Analysis. We start by examining the number of messages generated by crowd-

turfing campaigns on Weibo. We define a message as a single entry in a Weibo timeline. A

tweet from a single user generates f messages, where f is their number of followers. The

number of messages in a campaign is equal to the number of messages generated by the cus-

tomer, workers, and any normal users who retweet the content. Total messages per campaign

represents an upper bound on the audience size of that campaign. Since we have an incomplete

view of the Weibo social graph, we cannot quantify the number of duplicate messages per user.

Figure 3.16 shows the CDF of messages generated byWeibo campaigns. 50% of campaigns

generate≤146Kmessages, and 8%manage to breach the 1M-message milestone. As expected,

workers are responsible for the vast majority of messages, i.e. there are very few retweets.

Considering the low cost of these campaigns, however, these raw numbers are nonetheless

impressive.

Next, we want to examine the depth of crowdturfing cascades. Figure 3.17 plots the depth
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Figure 3.19: Cost of Weibo campaigns.

of cascades measured as the height of each information cascade tree. Pay-per-tweet campaigns

are very shallow, i.e. worker’s tweets are rarely retweeted by normal users. In contrast, pay-

per-retweet campaigns are more successful at engaging normal users: 50% reach depths >2,

i.e. they include at least one retweet from a normal user. One possible explanation for the

success of pay per retweet is that normal users may place greater trust in information that is

retweeted from a popular customer, rather than content authored by random worker accounts.

Next, we examine the temporal dynamics of crowdturfing campaigns. Figure 3.18 shows

the number of messages generated per hour after each campaign is initiated. The “all” line

is averaged across all campaigns, while the top- and bottom-25% lines focus on the largest

and smallest campaigns (in terms of total messages). Most messages are generated during a

campaigns’ first hour (10K on average), which is bolstered by the high-degree of customers

(who tend to be super-nodes), and the quick responses of career crowdturfers (see Figure 3.7).

However, by the end of the first day, the message rate drops to≈1K per hour. There is a two or-
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der of magnitude difference between the effectiveness of the top- and bottom-25% campaigns,

although they both follow the same falloff trend after day 1.

Factors Impacting Campaign Success. We now take a look at factors that may affect the

performance of crowdturfing cascades. The high-level question we wish to answer is: are there

specific ways to improve the probability that a campaign goes viral?

The first factor we examine is the cost of the campaign. Figure 3.19 illustrates the number

of messages generated by Weibo campaigns versus their cost. The median line, around which

the bulk of campaigns are clustered, reveals a linear relationship between money and messages.

This result is intuitive: more money buys more workers, who in turn generate more messages.

However, Figure 3.19 also reveals the presence of viral campaigns, which we define as cam-

paigns that generate at least two times more messages than their cost would predict. There

are 723 viral campaigns scattered randomly throughout the upper portion of Figure 3.19. This

shows that viral popularity is independent of campaign budget.

We look at whether specific workers are better at generating viral campaigns. We found that

individual workers are not responsible for the success of viral campaigns. The only workers

consistently involved in viral campaigns are career crowdturfers, who tend to be involved in all

campaigns, viral or not.

Surprisingly, a small number of customers exhibit a consistent ability to start viral cam-

paigns. Figure 3.20 plots the total number of campaigns started by each customer vs. the

number that went viral, for all customers who started at least 1 viral campaign. The vast ma-

jority of customers initiate ≤3 campaigns, which makes it difficult to claim correlation when

one or more go viral. However, the 20 customers (1.5%) in the highlighted region do initiate

a significant number of campaigns, and they go viral ≥50% of the time. Since many of these

customers do not actively participate in their own campaigns, this suggests that campaigns go

viral because their content is of interest to Weibo users, perhaps because they are related to

customers such as well-known actors or performers.
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Figure 3.21: Crowdturfing data collection.

3.1.5 Active Experiments

Our next step to understanding crowdsurfing systems involves a look from the perspective

of a paying customer on ZBJ. We initiate a number of benign advertising campaigns on dif-

ferent platforms and subjects. By redirecting the click traffic through a measurement server

under our control, we are able to analyze the clicks of workers and of users receiving crowdturf

content in real-time. We begin by describing our experimental setup before moving on to our

findings, and conclude with a discussion of practical lessons we learned during this process.

3.1.5.1 Experimental Setup

Methodology. Figure 3.21 depicts the procedure we use to collect real-time data on crowd-

turfing clicks. The process begins when we post a new campaign to ZBJ that contains a brief

description of the tasks, along with a URL (“Task Info” in Figure 3.21) that workers can click

on to find details and to perform the tasks. The task details page is hosted on our measurement

server, and thus any worker who wants to accept our tasks must first visit our server, where we

collect their information (i.e. IP, timestamp, etc). Referring workers to task details on external

sites is a common practice on ZBJ, and does not raise suspicion among workers.

Workers that accept our tasks are directed to post spam messages that advertise real online

stores to one of three target networks: Weibo, QQ instant message groups, and discussion

forums. The posted messages urge normal users to click embedded links (“Visit my store!” in
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Campaign Network Subm. Time Msgs. Clicks W/IP

iPhone4S
Weibo 47 45min 197K 204 24/54
QQ 41 6hr 35K 244 34/36

Forums 71 3day N/A 43 40/22

Maldives
Weibo 108 3h 220K 28 35/30
QQ 118 4h 46K 187 24/29

Forums 123 4h N/A 3 18/11

Raffle
Weibo 131 2h 311K 47 67/38
QQ 131 6day 60K 78 29/33

Forums 124 1day N/A 0 28/9
OceanPark Weibo 204 4day 369K 63 204/99

Table 3.3: Results from our crowdturfing campaigns.

Figure 3.21) that take them to our measurement server. The measurement server records some

user data before transparently redirecting them to the real online store.

We took care to preserve the integrity of our experimental setup. Because some Chinese

Internet users have limited access to websites hosted outside of mainland China, we placed

our measurement server in China, and only advertised legitimate Chinese e-commerce sites. In

addition, we also identified many search engines and bots generating clicks on our links, and

filtered them out before analyzing our logs.

Campaign Details. In order to experiment with a variety of topics and venues, we posted

nine total campaigns to ZBJ in October 2011. As shown in Table 3.3, we created three different

advertising campaigns (iPhone4S, Maldives, and Raffle), and targeted each at three distinct

networks. We discuss a fourth campaign, OceanPark, later in the section.

The first campaign promotes an unofficial iPhone dealer who imports iPhones from North

America and sells them in China. We launched this campaign on October 4, 2011, immediately

after Apple officially unveiled the iPhone 4S. In the task requirements, we required workers to

post messages advertising a discount price from the dealer on the iPhone 4S ($970).

The second campaign tried to sell a tour package to the Maldives (a popular tourist destina-

tion in China). The spam advertises a 30% group-purchase discount offered by the seller that
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saves $600 on the total trip price ($1542 after discount). The third campaign tells users about

an online raffle hosted by a car company. Anyone could participate in the raffle for free, and

the prizes were 200 pre-paid calling cards worth $4.63 each.

All campaigns shared the same set of baseline requirements. Each campaign had a budget

of $15 on each target network, and workers had a time limit of 7 days to perform tasks. The

desired number of tasks was set to either 50 or 100, depending on the campaign type. Submis-

sions were not accepted if the content generated by the worker was deleted by spam detection

systems within 24 hours of creation. These baseline requirements closely match the expected

norms for campaigns on ZBJ (see Figure 3.4 and Table 3.2).

We applied additional requirements for campaigns on specific networks. For campaigns on

the QQ instant messaging network, workers were required to generate content in groups with

a minimum of 300 members. For campaigns on user discussion forums, workers were only

allowed to post content on a predefined list of forums that receive at least 1,000 hits per day.

Each campaign type had additional, variable requirements. For Maldives and Raffle cam-

paigns, the price per task was set to $0.154, meaning 100 submissions would be accepted.

However, the price for iPhone4S tasks was doubled to $0.308 with an expectation of 50 sub-

missions. iPhone 4S tasks were more challenging for two reasons. On Weibo, workers were

required to tweet using accounts with at least 3,000 followers. On QQ, workers needed to spam

two groups instead of one. Finally, on forums, the list of acceptable sites was reduced to only

include the most popular forums.

3.1.5.2 Results and Analysis

Table 3.3 lists the high level results of from our crowdturfing campaigns, including 9 short

campaigns and the “OceanPark” campaign. Seven of the short campaigns received sufficient

submissions, and six were completed within a few hours (Time column). Interestingly, workers

continued submitting to campaigns even after they were “full,” in the hopes that earlier sub-
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Figure 3.23: Long campaign characteristics.

missions would be rejected, and they would claim the reward. In total, the short campaigns

garnered 894 submissions from 224 distinct workers.

Figure 3.22 shows the response times of workers for campaigns targeting different net-

works. We aggregate the data across campaign types rather than networks because workers’

ability to complete tasks is based on the number of accounts they control on each network.

More than 80% of submissions are generated within an hour for Weibo and forum campaigns,

and within six hours for QQ.

The “Msgs” column lists the number of messages generated by each campaign. For Weibo

campaigns, we calculate messages using the same methodology as in Section 3.1.4. For QQ

campaigns, messages are calculated as the number of users in all QQ groups that received spam

from our workers. We cannot estimate the number of messages for forums because we do not

know how many users browse these sites.

We can understand the effectiveness of different crowdturfing strategies by comparing the

number of messages generated to the number of clicks (responses by normal users, “Clicks”

column in Table 3.3). We see that QQ campaigns are the most effective, and generate more

clicks than Weibo campaigns despite generating only 1/5 as many messages as Weibo. One

possible reason is that QQ messages pop-up directly on users’ desktops, leading to more views

and clicks. Tweets on Weibo, on the other hand, are not as invasive, and may get lost in the

flood of tweets in each user’s timeline. Forums perform the worst of the three, most likely
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because admins on popular forums are diligent about deleting spammy posts.

Finally, we try to detect the presence of Sybil accounts (multiple accounts controlled by

one user) on crowdturfing sites. Column “W/IP” in Table 3.3 compares the number of distinct

workers (W ) to the number of distinct IPs (IP ) that click on the “Task Info” link (see Fig-

ure 3.21) in each campaign. If W>IP , then not all ZBJ workers clicked the link to read the

instructions. This suggests that multiple ZBJ worker accounts are controlled by a single user,

who viewed the instructions once before completing tasks from multiple accounts. Our results

show that W>IP for 66% of our campaigns. Thus, not only do crowdturfers utilize multi-

ple accounts on target websites to complete tasks (Figure 3.14), but they also have multiple

accounts on crowdturfing sites themselves.

Long Campaigns. The campaigns we have analyzed thus far all required ≤100 tasks,

and many were completed within about an hour by workers (see Figure 3.22). These short

campaigns favor career crowdturfers, who control many accounts on target websites and move

rapidly to generate submissions.

To observe the actions of less prolific workers, we experimented with a longer campaign

that required 300 tasks. This campaign included an additional restriction to limit career crowd-

turfers: each ZBJ worker account could only submit once. The goal of the campaign was to

advertise discount tickets to an ocean-themed amusement park in Hong Kong on Weibo. This

campaign is listed as OceanPark in Table 3.3.

Figure 3.23 plots the number of worker submissions and clicks fromWeibo users over time

for the OceanPark campaign. Just as in previous experiments, the first 100 submissions were

generated within the first few hours. Clicks from users on the advertised links closely track

worker submission patterns. Overall, 191 submissions were received on day one, 11 more on

day two, and 2 final submissions on day four, for a total of 204 submissions. This indicates that

there are ≈200 active Weibo workers on ZBJ: if there were more, they would have submitted

to claim one of the 97 incomplete tasks in our campaign.
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Discussion. Our real-world experiments demonstrate the feasibility of crowd-sourced spam-

ming. The iPhone4S and Maldives campaigns were able to generate 491 and 218 click-backs

(respectively) while only costing $45 each. Considering that the iPhone 4S sells for $970 in

China, and the Maldives tour package costs $1,542, just a single sale of either item would

be more than enough to recoup the entire crowdturfing fee. The cost per click (CPC) of these

campaigns are $0.21 and $0.09, respectively, which is more expensive than observed CPC rates

($0.01) for traditional display advertising on the web [204]. However, with improved targeting

(i.e. omitting underperformers like forum spam) the costs could be reduced, bringing CPC

more in line with display advertising.

Our Maldives campaign is a good indicator of the effectiveness of crowdturfing. The tour

website listed 4 Maldives trips sold to 2 people in the month before our campaign. However,

the day our Maldives campaign went live, 11 trips were sold to 2 people. In the month after

our campaign, no additional trips were sold. While we cannot be sure, it is likely that the 218

clicks from our campaign were responsible for these sales.

3.1.6 Crowdturfing Goes Global

In previous sections, we focused on the crowdturfing market in China. We now take a global

view and survey the market for crowdturfing systems in the U.S. and India. Additional crawls

conducted by us, as well as prior work from other researchers, demonstrates that crowdturfing

systems in the U.S. are very active, and are supported by an international workforce.

Mechanical Turk. Although prior work has found that 41% of tasks on Mechanical Turk

were spam related in 2010 [107], our measurements indicate that this is no longer the case.

We performed hourly crawls of Mechanical Turk for one month in October 2011, and used

keyword analysis to classify tasks. As shown in Table 3.4, crowdturfing now only accounts for

only 12% of campaigns.
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Website Cam-
paigns.

% Crowd-
turfing Tasks $ per

Subm.
Amazon Turk (US) 41K 12% 2.9M $0.092
ShortTask∗ (US) 30K 95% 527K $0.096

MinuteWorkers (US) 710 70% 10K $0.241
MyEasyTask (US) 166 83% 4K $0.149
Microworkers (US) 267 89% 84K $0.175
Paisalive (India) 107 N/A N/A $0.01

Table 3.4: Details of U.S. and Indian crowd-sourcing sites. Data encompasses one month of
campaigns, except ShortTask which is one year.

Other U.S. Based Sites. However, the drop in crowdturfing on Mechanical Turk does

not mean this problem has gone away. Instead, crowdturfing has just shifted to alternative

websites. For example, recent work has shown that 31% of the jobs on Freelancer over the

last seven years were related to search engine optimization (SEO), Sybil account creation, and

spam [157]. Many SEO products are also available on eBay: trivial keyword searches turn up

many sellers offering bulk Facebook likes/fans and Twitter followers.

To confirm this finding, we crawled four U.S. based crowd-sourcing sites that have been

active since 2009. Since they do not provide information on past tasks, we crawled Min-

uteWorkers, MyEasyTask, and Microworkers once a day during the month of October 2011.

ShortTask does provide historical data for tasks going back one year, hence we only crawled

them once. As shown in Table 3.4, keyword classification reveals that between 70-95% of

campaigns on these sites are crowdturfing. We manually verified that the remaining campaigns

were not malicious. The types of campaigns on these sites closely matches the types found on

Freelancer, i.e. the most prevalent campaign type is SEO [157].

Sites like ShortTask, Microworkers, and MyEasyTask fill two needs in the underground

market. First, they do not enforce any restrictions against crowdturfing. This contrasts with

Mechanical Turk, which actively enforces policies against spammy jobs [73]. Second, these

sites enable a truly international workforce by supporting a wide range of payment methods.
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Amazon requires workers to have U.S. bank accounts, or to accept cheques in Indian Rupees,

and hence most “turkers” are located in the US (46.8%) and India (34%) [106]. However,

alternative crowd-sourcing sites support payments through systems like Paypal and E-Gold,

which makes them accessible to non-U.S. and non-Indian workers. For example, Microworkers

come from Indonesia (18%), Bangladesh (17%), Philippines (5%), and Romania (5%) [101].

Freelancers are also located in the United Kingdom and Pakistan [157].

Paisalive. We located one crowdturfing site in India called Paisalive that takes globaliza-

tion even further. As shown in Table 3.4, Paisalive is very small and the wages are very low

compared to other services. However, the interesting feature of Paisalive is that it is e-mail

based: workers sign up on the website, and afterwards all task requests and submissions are

handled through e-mail. This design is geared towards enabling workers in rural populations

constrained by low-bandwidth, intermittent Internet connectivity.

3.1.7 Summary of Results

In summary, we contribute to the growing pool of knowledge about malicious crowd-

sourcing systems. Our analysis of the two largest crowdturfing sites in China reveals that

$4 million dollars have already been spent on these two sites alone. The number of campaigns

and dollars spent on ZBJ and SDH are growing exponentially, meaning that the problems as-

sociated with crowdturfing will continue to get worse in the future.

We measure the real-world ramifications of crowdturfing by looking at spam dissemination

on Weibo, and by becoming active customers of ZBJ. Our results reveal the presence of career

crowdturfers that control thousands of accounts on OSNs, and manage them carefully by hand.

We find that these workers are capable of generating large information cascades, while avoiding

the security systems that are designed to catch automated spam. We also observe that this spam

is highly effective, driving hundreds of clicks from normal users.
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Finally, our survey of crowdturfing sites in the U.S. and elsewhere demonstrates the global

nature of this problem. Unscrupulous crowd-sourcing sites, coupled with international pay-

ment systems, have enabled a burgeoning crowdturfing market that targets U.S. websites, fu-

eled by a global workforce. As part of ongoing work, we are exploring the design and quanti-

fying the effectiveness of both passive and active defenses against these systems.

3.2 Defense and Adversarial Attacks

3.2.1 Introduction

Thus far, Section 3.1 shows that crowdturfing is an emerging security threat to online users

and online services. Next, we explore possible defense techniques against crowdturfing using

machine learning techniques.

Today’s online services are extremely complex systems with unpredictable interactions be-

tween numerous moving parts. In the absence of accurate deterministic models, applying Ma-

chine Learning (ML) techniques such as decision trees and support vector machines (SVMs)

produces practical solutions to a variety of problems. In the security context, ML techniques

can extract statistical models from large noisy datasets, which have proven accurate in detect-

ing misbehavior and attacks, e.g. email spam [179, 182], network intrusion attacks [129, 250],

and Internet worms [164]. More recently, researchers have used them to model and detect

malicious users in online services, e.g. Sybils in social networks [206, 244], scammers in

e-commerce sites [249] and fraudulent reviewers on online review sites [169].

Detection of Crowdturfing. In the rest of this chapter, we explore the possibility of using

machine learning techniques to detect crowdturfing activities. For our analysis, we focus on

Sina Weibo, China’s microblogging network with more than 500 million users, and a frequent

target of crowdturfing campaigns. Most campaigns involve paying users to retweet spam mes-
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sages or to follow a specific Weibo account. We extract records of 20,416 crowdturfing cam-

paigns (1,012,923 tasks) published on confirmed crowdturfing sites over the last 3 years. We

then extract a 28,947 Weibo accounts belonging to crowdturfing workers. We analyze distin-

guishing features of these accounts, and build detectors using multiple ML models, including

SVMs, Bayesian, Decision Trees and Random Forests.

We seek answers to several key questions. First, can machine learning models detect crowd-

turfing activity? Second, once detectors are active, what are possible countermeasures avail-

able to attackers? Third, can adversaries successfully manipulate ML models by tampering

with training data, and if so, can such efforts succeed in practice, and which models are most

vulnerable?

Adversarial Attacks. Despite a wide range of successful applications, machine learning

systems have a weakness: they are vulnerable to adversarial countermeasures by attackers

aware of their use. First, through either reading publications or self-experimentation, attack-

ers may become aware of details of the ML detector, e.g. choice of classifier and parameters

used, and modify their behavior to evade detection. Second, more powerful attackers can ac-

tively tamper with the ML models by polluting the training set, reducing or eliminating its

efficacy. Adversarial machine learning has been studied by prior work from a theoretical per-

spective [51, 68, 160], using simplistic all-or-nothing assumptions about adversaries’ knowl-

edge about the ML system in use. In reality, however, attackers are likely to gain incomplete

information or have partial control over the system. An accurate assessment of the robustness

of ML techniques requires evaluation under realistic threat models.

The detection of crowdturfing activity is an ideal context to study the impact of adversarial

attacks on machine learning tools. First, crowdturfing is a growing threat to today’s online

services. Because tasks are performed by intelligent individuals, these attacks are undetectable

by normal measures such as CAPTCHAs or rate limits. The results of these tasks, fake blogs,

slanderous reviews, fake social network accounts, are often indistinguishable from the real
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thing. Second, centralized crowdturfing sites like ZBJ and SDH profit directly from malicious

crowdsourcing campaigns, and therefore have strong monetary incentive and the capability to

launch adversarial attacks. These sites have the capability to modify aggregate behavior of

their users through interface changes or explicit policies, thereby either helping attackers evade

detection or polluting data used as training input to ML models.

We consider two types of practical adversarial models against ML systems: those launched

by individual crowd-workers, and those involving coordinated behavior driven by administra-

tors of centralized crowdturfing sites. First, individual workers can perform evasion attacks, by

adapting behavior based on their knowledge of the target classifier (e.g.ML algorithms, feature

space, trained models). We identify a range of threat models that vary the amount of knowl-

edge by the adversary. The results should provide a comprehensive view of how vulnerable ML

systems to evasion, ranging from the worst case (total knowledge by attacker) to more practi-

cally scenarios. Second, more powerful attacks are possible with the help of crowdturfing site

administrators, who can manipulate ML detectors by poisoning or polluting training data. We

study the impact on different ML algorithms from two pollution attacks: injecting false data

samples, and altering existing data samples.

Our study makes four key contributions:

• We demonstrate the efficacy of ML models for detecting crowdturfing activity. We find

that Random Forests perform best out of multiple classifiers, with 95% detection accu-

racy overall and 99% for “professional” workers.

• We develop adversarial models for evasion attacks ranging from optimal evasion to more

practical/limited strategies. We find while such attacks can be very powerful in the opti-

mal scenario (attacker has total knowledge), practical attacks are significantly less effec-

tive.

• We evaluate a powerful class of poison attacks onML training data and find that injecting
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carefully crafted data into training data can significantly reduce detection efficacy.

• We observe a consistent tradeoff between fitting accuracy and robustness to adversar-

ial attacks. More accurate fits (especially to smaller, homogeneous populations) make

models more vulnerable to deviations introduced by adversaries. The exception is Ran-

dom Forests, which naturally supports fitting to multiple populations, thus allowing it to

maintain both accuracy and robustness in our tests.

3.2.2 Datasets and Methodology

In this section, we provide background on crowdturfing, and introduce our datasets and

methodology.

3.2.2.1 Background: Crowdturfing Systems

Malicious crowdsourcing (crowdturfing) sites are web services where attackers pay groups

of human workers to perform questionable (and often malicious) tasks. While these services are

growing rapidly world-wide, two of the largest are Chinese sites ZhuBaJie (ZBJ) and SanDaHa

(SDH) [230]. Both sites leave records of campaigns publicly visible to recruit new workers,

making it possible for us to crawl their data for analysis.

Crowdturfing onWeibo. SinaWeibo is China’s most popular microblogging social network

with over 500 million users [167]. Like Twitter, Weibo users post 140-character tweets, which

can be retweeted by other users. Users can also follow each other to form asymmetric social

relationships. Unlike Twitter, Weibo allows users to have conversations via comments on a

tweet.

Given its large user population, Weibo is a popular target for crowdturfing systems. There

are two major types of crowdturfing campaigns. One type asks workers to follow a cus-

tomer’s Weibo account to boost their perceived popularity and visibility in Weibo’s ranked
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Category # Weibo IDs # (Re) Tweets # Comments
Turfing 28,947 18,473,903 15,970,215
Authent. 71,890 7,600,715 13,985,118
Active 371,588 34,164,885 75,335,276

Table 3.5: Dataset summary.

social search. A second type pays crowd-workers to retweet spam messages or URLs to reach

a large audience. Both types of campaigns directly violate Weibo’s ToS [21]. A recent state-

ment (April 2014) from a Weibo administrator shows that Weibo has already begun to take

action against crowdturfing spam [26].

3.2.2.2 Ground Truth and Baseline Datasets

Our study utilizes a large ground-truth dataset of crowdturfing worker accounts. We extract

these accounts by filtering through records of all campaigns and tasks targeting Weibo from

ZBJ and SDH, and extracting all Weibo accounts that accepted these tasks. This is possible

because ZBJ and SDH keep complete records of campaigns and transaction details (i.e.workers

who completed tasks, and their Weibo identities) visible.

As of March 2013, we collected a total of 20,416 Weibo campaigns (over 3 years for ZBJ

and SDH), with a total of 1,012,923 individual tasks. We extracted 34,505 unique Weibo

account IDs from these records. 5,558 of which have already been blocked by Weibo. We

collected user profiles for the remaining 28,947 active accounts, including social relationships

and the latest 2000 tweets from each account. These accounts have performed at least one

crowdturfing task. We refer to this as the Turfing dataset.

Baseline Datasets for Comparison. We need a baseline dataset of “normal” users for

comparison. We start by snowball sampling a large collection of Weibo accounts1. We ran
1Snowball crawls start from an initial set of seed nodes, and runs breadth-first search to find all reachable

nodes in the social graph [37].
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breadth-first search (BFS) in November 2012 using 100 Seeds randomly chosen from Weibo’s

public tweet stream, giving us 723K accounts. Because these crawled accounts can include

malicious accounts, we need to do further filtering to obtain a real set of “normal” users.

We extract two different baseline datasets. First, we construct a conservative Authenticated

dataset, by including only Weibo users who have undergone an optional identity verification

by phone number or Chinese national ID (equivalent to US drivers license). A user who has

bound her Weibo account to her real-world identity can be held legally liable for her actions,

making these authenticated accounts highly unlikely to be used as crowdturfing activity. Our

Authenticated dataset includes 71,890 accounts from our snowball sample. Second, we con-

struct a larger, more inclusive baseline set of Active users. We define this set as users with at

least 50 followers and 10 tweets (filtering out dormant accounts2 and Sybil accounts with no

followers). We also cross reference these users against all known crowdturfing sites to remove

any worker accounts. The resulting dataset includes 371,588 accounts. While it is not guaran-

teed to be 100% legitimate users, it provides a broader user sample that is more representative

of average user behavior. This is likely to provide a lower bound for detector accuracy, since

more carefully curated baselines would produce higher detection accuracy. Our datasets are

listed in Table 3.5.

3.2.2.3 Our Methodology

We have two goals: evaluating the efficacy ofML classifiers to detect crowdturfing workers,

and evaluating the practical impact of adversarial attacks on ML classifiers.

• We analyze ground-truth data to identify key behavioral features that distinguish crowd-

turfing worker accounts from normal users (§3.2.3).
2Dormant accounts are unlikely to be workers. To qualify for jobs, ZBJ/SDH workers must meet minimum

number of followers/tweets.

134



Spam, Human Factors and Malicious Crowdsourcing Chapter 3

 0

 20

 40

 60

 80

 100

 0.01  0.1  1  10  100

C
D

F 
of

 U
se

rs
 (%

)

Followee to Follower Ratio

Turfing
Active

Authenticated

Figure 3.24: Followee-to-Follower ratio.
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Figure 3.25: Reciprocity.

• We use these features to build a number of popular MLmodels, including Bayesian prob-

abilistic models via Bayes’ theorem (i.e.conditional probability), Support Vector Ma-

chines (SVMs), and algorithms based on single or multiple decision trees (e.g.Decision

Trees, Random Forests) (§3.2.4).

• We evaluate ML models against adversarial attacks ranging from weak to strong based

on level of knowledge by attackers (typically evasion attacks), and coordinated attacks

potentially guided by centralized administrators (possible poison or pollution of training

data).

3.2.3 Profiling Crowdturf Workers

We begin our study by searching for behavioral features that distinguish worker accounts

from normal users. These features will be used to build ML detectors in §3.2.4.

User Profile Fields. We start with user profile features commonly used as indicators of

abnormal behavior. These features include followee-to-follower ratio (FFRatio), reciprocity

(i.e.portion of user’s followees who follow back), user tweets per day, account age, and ratio

of tweets with URLs and mentions.

Unfortunately, our data shows that most of these features alone cannot effectively distin-

guish worker accounts from normal users. First, FFRatio and reciprocity are commonly used
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Figure 3.26: Ratio of commented tweets.
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Figure 3.27: Tweet client usage.

to identify malicious spammers [46, 213, 241]. Intuitively, spammers follow a large number

of random users and hope for them to follow back, thus they have high FFRatio and low reci-

procity. However, our analysis shows worker accounts have balanced FFRatios, the majority of

them even have more followers than followees (Figure 3.24), and their reciprocity is very close

to those of normal users (Figure 3.25). Other profile features are also ineffective, including

account age, tweets per day, ratio of tweets with URLs and mentions. For example, existing

detectors usually assume attackers create many “fresh” accounts to spam [46, 213], thus ac-

count age has potential. But we find that more than 75% of worker accounts in our dataset

have been active for at least one year. These results show that crowd-worker accounts in many

respects resemble normal users, and are not easily detected by profile features alone [225].

User Interactions. Next, we move on to features related to user interactions. The intuition

is that crowdturf workers are task-driven, and log on to work on tasks, but spend minimal time

interacting with others. User interactions in Weibo are dominated by comments and retweets.

We perform analysis on both of them and find consistent results which show they are good

metrics to distinguish workers from non-workers. For brevity, we limit our discussion to results

on comment interactions.

Figure 3.26 shows crowdturf accounts are less likely to receive comments on their tweets.

For 80% of crowdturf accounts, less than 20% of their tweets are commented; while for 70%

of normal users, their ratio of commented tweets exceeds 20%. This makes sense, as the fake
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Categ. Top Tweet Clients
Web Weibo Web, Weibo PC, 360Browser, Weibo Pro.
Mobile iPhone, Android, iPad, XiaoMi
Auto PiPi, Good Nanny, AiTuiBao, Treasure Box
Share Taobao, Youku, Sina Blog, Baidu

Table 3.6: High-level categories for tweeting clients.

content posted by crowdturf workers may not be interesting enough for others to comment

on. We also examine the number of people that each user has bidirectional comments with

(bi-commentors). Crowdturf workers rarely interact with other users, with 66% of accounts

having at most one bi-commentor.

Tweeting Clients. Next we look at the use of tweeting clients (devices). We can use the

“device” field associated with each tweet to infer how tweets are sent. Tweet clients fall into

four categories: web-based browsers, apps on mobile devices, third-party account manage-

ment tools, and third-party websites via “share” buttons (Table 3.6). Figure 3.27 shows key

differences in how different users use tweet clients. First, crowdturf workers use mobile (10%)

much less than normal users (36% − 46%). One reason is that crowdturf workers rely on web

browsers to interact with crowdturfing sites to get (submit) tasks and process payment, actions

not supported by most mobile platforms.

We also observe that crowdturf workers are more likely to use automated tools. A close

inspection shows that workers use these tools to automatically post non-spam tweets retrieved

from a central content repository (e.g.a collection of hot topics). Essentially, crowdturf ac-

counts use these generic tweets as cover traffic for their crowdturfing content. Third, crowd-

turf accounts “share” from third-party websites more often, since that is a common request in

crowdturfing tasks [230].

Temporal Behavior. Finally, we look at temporal characteristics of tweeting behavior: tweet

burstiness and periodicity. First, we expect task-driven workers to send many tweets in a short
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Figure 3.29: Normalized entropy of
tweeting inter-arrival time.

time period. We look for potential bursts, where each burst is defined asm consecutive tweets

with inter-arrival times < d. We examine each user’s maximum burst size (m) with different

time thresholds d, e.g.Figure 3.28 depicts the result for d is set to 1 minute. We find that

crowdturf accounts are more likely to post consecutive tweets within one-minute, something

rarely seen from normal users. In addition, crowdturf workers are more likely to produce big

bursts (e.g.10 consecutive tweets with less than one-minute interval).

Second, workers accept tasks periodically, which can leave regular patterns in the timing of

their tweets. We use entropy to characterize this regularity [81], where low entropy indicates

a regular process while high entropy indicates randomness of tweeting. We treat each user’s

tweeting inter-arrival time as a random variable, and compute the first-order entropy [81]. Fig-

ure 3.29 plots user’s entropy, normalized by the largest entropy in our dataset. Compared

to normal users, crowdturf accounts in general have lower entropy, indicating their tweeting

behaviors have stronger periodic patterns.

3.2.4 Detecting Crowdturfing Workers

We now use the features we identified to build a number of crowdturfing detectors using

machine learning models. Here, we summarize the set of features we use for detection, and

then build and evaluate a number of machine-learning detectors using our ground-truth data.
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3.2.4.1 Key Features

We chose for our ML detectors a set of 35 features across five categories shown below.

• Profile Fields (9). We use 9 user profile fields3 as features: follower count, followee

count, followee-to-follower ratio, reciprocity, total tweet count, tweets per day, mentions

per tweet, percent of tweets with mentions, and percent of tweets with embedded URLs.

• User Interactions (8). We use 8 features based on user interactions, i.e.comments and

retweets. 4 features are based on user comments: percent of tweets with comments,

percent of all comments that are outgoing, number of bi-commentors, and comment h-

index (a user with h-index of h has at least h tweets each with at least h comments). We

include 4 analogous retweet features.

• Tweet Clients (5). We compute and use the % of tweets sent from each tweet client type

(web, mobile, automated tools, third-party shares and others) as a feature.

• Tweet Burstiness (12). These 12 features capture the size and number of tweet bursts.

A burst is m consecutive tweets where gaps between consecutive tweets are at most d

minutes. For each user, we first compute the maximum burst size (m) while varying

threshold d from 0.5 to 1, 30, 60, 120, 1440. Then we set d to 1 minute, and compute the

number of bursts while varying sizem over 2, 5, 10, 50, 100, and 500.

• Tweeting Regularity (1). This is the entropy value computed from each user’s tweeting

time-intervals.

3.2.4.2 Classification Algorithms

With these features, we now build classifiers to detect crowdturf accounts. We utilize a

number of popular algorithms widely used in security contexts, including two Bayesian meth-

ods: Naive Bayesian (NB) [115] and BayesNet (BN) [99]; two Support Vector Machine meth-
3Although profile fields alone cannot effectively detect crowdturf accounts (§3.2.3), they are still useful when

combined with other features.
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Alg. Settings
NB Default
BN Default, K2 function
SVMr Kernel γ =1, Cost parameter C =100
SVMp Kernel degree d =3, Cost parameter C =50
J48 Confidence factor C =0.25, Instance/leafM =2
RF 20 trees, 30 features/tree

Table 3.7: Classifier configurations.

ods [176]: SVM with radial basis function kernel (SVMr) and SVM with polynomial kernel

(SVMp); and two Tree-based methods: C4.5 Decision Tree (J484) [178] and Random Forests

(RF) [55]. We leverage existing implementations of these algorithms in WEKA [94] toolkits.

Classifier and Experimental Setup. We start by constructing two experimental datasets,

each containing all 28K turfing accounts, plus 28K randomly sampled baseline users from

the “authenticated” and “active” sets. We refer to them as Authenticated+Turfing and Ac-

tive+Turfing.

We use a small sample of ground-truth data to tune the parameters of different classifiers.

At a high-level, we use grid search to locate the optimized parameters based on cross-validation

accuracy. For brevity, we omit the details of the parameter tuning process and give the final

configurations in Table 3.7. Note that features are normalized for SVM algorithms (we tested

unnormalized approach which produced higher errors). We use this configuration for the rest

of our experiments.

Basic Classification Performance. We run each classification algorithm on both experi-

mental datasets with 10-fold cross-validation.5 Figure 3.30 presents their classification error

rates, including false positives (classifying normal users as crowdturf workers) and false nega-

tives (classifying crowdturf accounts as normal users).
4J48 is WEKA’s C4.5 implementation.
5Cross-validation is used to compare the performance of different algorithms. We will split the data for training

and testing the detectors later.

140



Spam, Human Factors and Malicious Crowdsourcing Chapter 3

 0

 10

 20

 30

 40

 50

RF J48 SVMr
SVMp

BN NB RF J48 SVMr
SVMp

BN NB
C

la
ss

ifi
ca

tio
n 

Er
ro

r R
at

e 
(%

)

Algorithms

(Auth.+Turfing) (Active+Turfing)

False Positive
False Negative

Figure 3.30: Classification error rates. Tree-based algorithms and SVMs outperform Bayesian
methods.

We make four key observations. First, the two simple Bayesian methods generally per-

form worse than other algorithms. Second, Decision Tree (J48) and Random Forests (RF) are

more accurate than SVMs. This is consistent with prior results that show SVMs excel in ad-

dressing high-dimension problems, while Tree algorithms usually perform better when feature

dimensionality is low (35 in our case) [60]. Third, Random Forests outperform Decision Tree.

Intuitively, Random Forests construct multiple decision trees from training data, which can

more accurately model the behaviors of multiple types of crowdturf workers [55]. In contrast,

decision tree would have trouble fitting distinct types of worker behaviors into a single tree.

Finally, we observe that the two experiment datasets show consistent results in terms of relative

accuracy across classifiers.

Comparing the two datasets, it is harder to differentiate crowdturf workers from active

users than from authenticated users. This is unsurprising, since authenticated accounts often

represent accounts of public figures, while active users are more likely to be representative of

the normal user population. In the rest of the experiments, wherever the two datasets show

consistent results, we only present the results on Active+Turfing for brevity, which captures the

worse case accuracy for detectors.
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Figure 3.32: Classifying different levels
of workers. Workers are filtered by # of
crowdturfing tasks finished.

3.2.4.3 Detecting Professional Workers

Our machine learning detectors are generally effective in identifying worker accounts.

However, the contribution of tasks per worker is quite skewed, i.e. 90% of all tasks are com-

pleted by the top 10% most active “professional” workers (Figure 3.31). Intuitively, these

“professional workers” are easier to detect than one-time workers. By focusing on them, we

can potentially improve detection accuracy while still effectively eliminate the largest majority

of crowdturf output.

We evaluate classifier accuracy in detecting professional workers, by setting up a series

of datasets each consisting of workers who performed more than n tasks (with n set to 1, 10,

and 100). Each dataset also contains an equal number of randomly sampled normal users. We

focus on the most accurate algorithms: Random Forests (RF), Decision Tree (J48) and SVM

(SVMr and SVMp), and run 10-fold cross-validation on each of the datasets.

Figure 3.32 shows the classification results on Active+Turfing. As expected, our classifiers

are more accurate in identifying “professional” workers. Different algorithms converge in

accuracy as we raise the minimum productivity of professional workers. Accuracy is high

for crowdturf workers who performed >100 tasks: Random Forests only produce 1.2% false

positive rate and 1.1% false negative rate (99% accuracy). Note that while these top workers are

142



Spam, Human Factors and Malicious Crowdsourcing Chapter 3

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  0.02  0.04  0.06  0.08  0.1
Tr

ue
 P

os
iti

ve
 R

at
e

False Positive Rate

RF
SVMp
SVMr

J48

Figure 3.33: ROC curves of classifying professional workers (workers who finished more
than 100 tasks).

only 8.9% of the worker population, they are responsible for completing 90% of all tasks. In

the rest of our analysis, we use “professional workers” to refer to workers who have completed

>100 tasks.

False Positives vs. False Negatives. In practice, different application scenarios will seek

different tradeoffs between false positives (FP) and false negatives (FN). For example, a system

used as a pre-filter before more sophisticated tools (e.g. manual examination) will want to

minimize FN, while an independent system without additional checks will want to minimize

false positives to avoid hurting good users.

Figure 3.33 shows the ROC6 curves of the four algorithms on the dataset of professional

workers. Again, Random Forests perform best: they achieve extremely low false positive rate

of <0.1% with only 8% false negative rate, or <0.1% false negative rate with only 7% false

positive rate. We note that SVMs provide better false positive and false negative tradeoffs than

J48, even though they have similar accuracy rates.

Imbalanced Data. We check our results on imbalanced data, since in practice there are more

normal users than crowdturf workers. More specifically, we run our classifier (RF, professional)

on imbalanced testing data with turfing-to-normal ratio ranging from 0.1 to 1. Note that we

can still train our classifiers on balanced training data since we use supervised learning (we
6ROC (receiver operating characteristic) is a plot that illustrates classifier’s false positives and true positives

versus detection threshold.
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make sure training and testing data have no overlap). We find all the classifiers have accuracy

above 98% (maximum FP 1.5%, FN 1.3%) against imbalanced testing data. We omit the plot

for brevity.

Summary. Our results show that current ML systems can be used to effectively detect

crowdturf workers. While this is a positive result, it assumes no adversarial response from the

crowdturfing system. The following sections will examine detection efficacy under different

levels of adversarial attacks.

3.2.5 Adversarial Attack: Evasion

We show that ML detectors can effectively identify “passive” crowdturf accounts in Weibo.

In practice, however, crowdturfing adversaries can be highly adaptive: they will change their

behaviors over time or can even intentionally attack the ML detectors to escape detection.

We now re-evaluate the robustness of ML detectors under different adversarial environments,

focusing on two types of adversaries:

1. Evasion Attack: individual crowd-workers adjust their behavior patterns to evade detec-

tion by trained ML detectors.

2. Poisoning Attack: administrators of crowdturfing sites participate, manipulating the ML

detector training process by poisoning the training data.

We focus on evasion attacks in this section, and delay the study of poisoning attacks to

§3.2.6. First, we define the evasion attack model. We then implement evasion attacks of dif-

ferent strengths, and study the performance of ML detectors accordingly. Specifically, we

consider “optimal evasion” attacks, where adversaries have full knowledge about the ML de-

tectors and the Weibo system, and more “practical” evasion attacks, where adversaries have

limited knowledge about the detectors and the Weibo system.
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3.2.5.1 Basic Evasion Attack Model

Evasion attacks refer to individual crowdturfing workers seeking to escape detection by al-

tering their own behavior to mimic normal users. For example, given knowledge of a deployed

machine learning classifier, a worker may attempt to evade detection by selecting a subset of

user features, and replacing their values with the median of the observed normal user values.

Since mimicking normal users reduces crowdturfing efficiency, workers are motivated to min-

imize the number of features they modify. This means they need to identify a minimal core set

of features enabling their detection.7

This attack makes two assumptions. First, it assumes that adversaries, i.e.workers, know

the list of features used by the classifiers. Technical publications, e.g.on spam detection [46,

213, 241], make it possible for adversaries to make reasonable guesses on the feature space.

Second, it assumes that adversaries understand the characteristics of normal users in terms of

these features. In practice, this knowledge can be obtained by crawling a significant portion of

Weibo accounts.

Depending on their knowledge of the ML features and of normal user behavior, adversaries

can launch evasion attacks of different strengths. We implement and evaluate ML models

on a range of threat models with varying levels of adversary knowledge and computational

capabilities. We start from the optimal evasion scenario, where adversaries have complete

knowledge of the feature set. The corresponding ML detector results represent worst-case

performance (or lower bound) under evasion attacks. We also study a set of practical evasion

models where adversaries have limited (and often noisy) knowledge, and constrained resources.
7For simplicity, we consider features to be independent.
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3.2.5.2 Optimal Evasion Attack

In this ideal case, adversaries have perfect knowledge about the set of features they need

to modify. To understand the impact of the feature choices, we look at multiple variants of

the optimal evasion models. These include the per-worker optimal evasion model, where each

worker finds her own optimal set of features to alter, the global optimal evasion where all

workers follow the same optimal set of features to alter, and feature-aware evasion where

workers alter the most important features. We implement these evasion models on our ground-

truth dataset, and evaluate ML detector accuracy. Note that these attacks we identify are not

necessarily practical, but are designed to explore worse-case scenarios for ML models.

Per-worker Optimal Evasion. Intuitively, each worker should have her own optimal strat-

egy to alter features, e.g.some workers need to add followers first, while others need to reduce

tweeting burstiness. Doing so is hard in practice: each worker has to apply exhaustive search

to identify its optimal strategy that minimizes the set of features to modify.

We implement this scenario on our Active+Turfing dataset. We first split the data into

equal-sized training and testing datasets, and use the top-4 most accurate algorithms to build

classifiers with authentic training data. We then run detection on worker accounts in the testing

dataset. Here for each worker, we exhaustively test all combinatorial combinations of possible

features to modify until the classifier classifies this worker as normal. In this way, we find the

minimal set of features each user must modify to avoid detection.

Figure 3.34a plots the evasion rate for the four ML algorithms. Clearly, this optimal eva-

sion model is highly effective. By simply altering one feature, 20-50% of workers can evade

detection (different workers can choose to alter different features). And by altering five fea-

tures, 99% of workers can evade all four classifiers. We also observe that the Random Forests

(RF) algorithm achieves the best robustness, since it requires the most number of features to be

altered.
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(a) Per-worker Optimal Evasion
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(b) Global Optimal Evasion
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(c) Feature Importance Aware Evasion

Figure 3.34: Evasion rate of optimal evasion strategies (all workers).

Global Optimal Evasion. The per-worker model makes a strong assumption that each

worker can identify her own optimal feature set. Next, we loosen this assumption and only

assume that all workers exercise a uniform strategy. This is possible if a third-party (e.g.site

admin) guides workers in altering their features.

To identify the global optimal strategy, we search exhaustively through all possible feature

combinations, and locate the feature set (for a given size) that allows the majority of workers

to achieve evasion. The corresponding evasion rate result is in Figure 3.34b. 99% of workers

can successfully evade all four detectors by altering 15 features, which is much larger than

the per-worker case (5 features). This is because any one-size-fits-all strategy is unlikely to be

ideal for individual workers, thus the feature set must be large enough to cover all workers.

Feature-aware Evasion. Achieving optimal evasion is difficult, since it requires adversaries

to have knowledge of the trained classifiers. Instead, this model assumes that adversaries can
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accurately identify the relatively “importance” of the features. Thus workers alter the most

important features to try to avoid detection.

We implement this attack by building the classifiers and then computing the feature impor-

tance. For this we use the χ2 (Chi Squared) statistic [242], a classic metric to measure feature’s

discriminative power in separating data instances of different classes8. During detection, work-

ers alter features based on their rank.

Figure 3.34c plots evasion results for the four classifiers. We make two key observa-

tions. First, this feature-aware strategy is still far away from the per-worker optimal case

(Figure 3.34a), mostly because it is trying to approximate global optimal evasion. Second, per-

formance depends heavily on the underlying classifier. For RF and J48, performance is already

very close to that of the global optimal case, while the two SVM algorithms are more resilient.

A possible explanation is that the χ2 statistic failed to catch the true feature importance for

SVM, since SVM normalizes feature values before training the classifier. These results sug-

gest that without knowing the specific ML algorithm used by the defenders, it is hard to avoid

detection even knowing the importance of features.

3.2.5.3 Evasion under Practical Constraints

Our results show workers can evade detection given complete knowledge of the feature set

and ML classifiers. However, obtaining complete knowledge is very difficult in practice. Thus

we examine practical evasion threat models to understand their efficacy compared to optimal

evasion models. We identify practical constraints facing adversaries, present several practical

threat models and evaluate their impact on our detectors.

Practical Constraints. In practice, adversaries face two key resource constraints. First, they

cannot reverse-engineer the trained classifier (i.e.the ML algorithm used or its model parame-
8We also tested information gain to rank features, which produced similar ranking results (i.e. the same top-10

as using χ2).
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ters) by querying the classifier and analyzing the output – it is too costly to establish millions of

profiles with controlled features and wait for some of them to get banned. Thus workers cannot

perform exhaustive search to launch optimal evasion attacks, but have to reply on their partial

knowledge for evasion. Second, it is difficult for adversaries to obtain complete statistics of

normal users. They can estimate normal user statistics via a (small) sampling of user profiles,

but estimation errors are likely to reduce their ability to precisely mimic normal users.

Next, we will examine each constraint separately, and evaluate the likely effectiveness of

attacks under the more realistic conditions.

Distance-aware Evasion. We consider the first constraint which forces workers to rely

on partial knowledge to guide their evasion efforts. In this case, individual workers are only

aware of their own accounts and normal user statistics. When choosing features to alter, they

can prioritize features with the largest differential between them and normal users. They must

quantify the “distance” between each crowdturf account and normal users on a given feature.

Here, we pick two very intuitive distance metrics and examine the effectiveness of the corre-

sponding evasion attacks. For now, we ignore the second constraint by assuming workers have

perfect knowledge of average user behaviors.

• Value Distance (VD): Given a feature k, this captures the distance between a crowd-

worker i and normal user statistics by V D(i, k) = |Fk(i)−Median(Nk)|
Max(Nk)−Min(Nk)

where Fk(i) is the

value of feature k in worker i, and Nk is normal user statistical distribution on feature k.

When altering feature k, worker i replaces Fk(i) withMedian(Nk).

• Distribution Distance (DD): Here the distance depends on where Fk(i) is positioned

within Nk. For example, if Fk(i) is around 50%-tile of Nk, then worker i is similar to a

normal user. Therefore, we define the distance byDD(i, k) = |Percentile(Nk, Fk(i))−

50|/100 where Percentile(Nk, Fk(i)) is the percentile of Fk(i) in the normal user CDF

Nk. Note that when Fk(i) exceeds the range ofNk, this distance metric becomes invalid.
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(a) Random Evasion Strategy (Random)
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(b) Value Distance Aware Strategy (VD)
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(c) Distribution Distance Aware Strategy (DD)

Figure 3.35: Evasion rate of practical evasion strategies (all workers).

However, our data suggests that this rarely happens (<1%).

To evaluate the impact of practical evasion attacks, we split the Active+Turfing data into

equal-sized training and testing sets. After classifier training, we simulate the distance-aware

evasion attacks on the testing data. Figure 3.35b and 3.35c show evasion rates based on VD and

DD respectively. As a baseline, we also show Figure 3.35a where adversaries randomly select

features to alter. Compared to random evasion, distance-based approaches require much less

feature altering. For example, when altering 15 features, random approach only saves<40% of

workers, while distance strategies provide as high as 91% (VD-SVMp) and 98% (DD-SVMp).

The four classifiers perform very differently. RF and J48 classifiers are much more vulner-

able to DD based evasion than to VD based evasion. While SVMs perform similarly in both

strategies. In general, Tree-based algorithms are more robust than SVM classifiers against

distance-aware evasions. This is very different to what we observed in the optimal evasion
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Figure 3.36: Evasion rate using distribu-
tion distance aware strategy (DD) for pro-
fessional workers.

cases (Figure 3.34a–3.34b), where SVMs are generally more robust. This suggests that theo-

retical bounds on ML algorithms may not truly reflect their performance in practice.

Consistently, the impact of practical evasion attacks is much weaker than that of optimal

evasion (i.e.per-worker optimal). Adversaries are severely constrained by lack of knowledge

of detection boundaries of the classifiers, and have to guess based on “distance” information.

The implication is that the less adversaries know about classifiers, the harder it is for them to

evade detection.

We also evaluate the attack impact on classifiers to detect professional workers. We find

the general trends are similar and only show the results of DD-based attack in Figure 3.36. We

note that it is easier to evade classifiers dedicated to detect professionals (compared with Fig-

ure 3.35c). This is because when trained to a smaller, more homogeneous worker population,

classifiers expect strong malicious behaviors from crowd-workers. Thus even a small deviation

away from the model towards normal users will help achieve evasion.

Impact of Normal User Estimation Errors. We extend the above model by accounting for

possible errors in estimating normal user behaviors (the second constraint). These errors exist

because adversaries can only sample a limited number of users, leading to noisy estimations.

Here, we investigate the impact of sampling strategies on the attack efficacy.

For all 35 features, we vary the sampling rate, i.e. the ratio of normal users sampled by
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Figure 3.37: The percentile of estimated
median value in the true normal user CDF.
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Figure 3.38: Impact of median value es-
timation error on evasion rate, using DD
evasion on SVMp.

adversaries, by taking random samples of 0.001%, 0.01% to 0.1% of the Active dataset. We

repeat each instance 100 times, and compute the mean and standard deviation of the estimated

median feature values (Figure 3.37). We show each feature’s percentile in the true CDF of

the Active dataset. In this case, the optimal value is 50%. Clearly sampling rate does impact

feature estimation. With the 0.001% sampling rate, the estimated value varies significantly

across instances. Raising the sample rate to 0.1% means attackers can accurately estimate the

median value using only a few instances. Furthermore, we see that burstiness features (e.g.

features 30-34) are easy to sample, since normal user values are highly skewed to zero.

Finally, we evaluate the impact of estimation errors on practical evasion attacks. This

time we run distance-aware evasions based on the estimated median feature values. For each

worker’s feature k, we estimate the median valueM ′(k) with a given bound of error ∆. That

is, M ′(k) is randomly picked from the percentiles within [50% − ∆, 50% + ∆] on the true

CDF of normal user behaviors. By iterating through different∆ (from 5% to 25%), our results

show that ∆ only has a minor impact. The most noticeable impact is on SVMp using DD

distance (Figure 3.38). Overall, we conclude that as long as adversaries can get a decent guess

on normal user behaviors, the residual noise in the estimation ∆ should not affect the efficacy

of evasion attacks.

Summary. Our work produces two key observations.
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• Given complete knowledge, evasion attacks are very effective. However, adversaries

under more realistic constraints are significantly less effective.

• While no classifier is robust against all attack scenarios, there is a consistent inverse

relationship between single model fitting accuracy and robustness to adversarial evasion.

Highly accurate fit to a smaller, more homogeneous population (e.g.professionals) makes

models more vulnerable to evasion attacks.

3.2.6 Adversarial Attack: Poisoning

After examining evasion attacks, we now look at how centralized crowdturfing sites can

launch more powerful attacks to manipulate machine learning models. Specifically, we con-

sider the poisoning attack where administrators of crowdturfing sites intentionally pollute the

training dataset used to buildML classifiers, forcing defenders to produce inaccurate classifiers.

Since the training data (i.e. crowdturfing accounts) actually comes from these crowdturfing

sites, administrators are indeed capable of launching these attacks.

In the following, we examine the impact of poisoning attacks on ML detection accuracy.

We consider two mechanisms for polluting training data. The first method directly adds mis-

leading/synthetic samples to the training set. Adversaries in the second method simply alter

data records, or modify operational policies to alter the composition of the training data used

by ML models.

3.2.6.1 Injecting Misleading Samples

Perhaps the simplest way to pollute any training data is to add misleading or false samples.

In our case, since the training data has two classes (groups) of accounts, this can be done by

mixing normal user samples into the “turfing” class, i.e. poisoning the turfing class, or mixing

crowdturf samples into the “normal” user class, i.e. poisoning the normal class. Both introduce
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incorrectly labeled training data to mislead the classifier.

Poisoning Turfing Class. To poison the turfing class, adversaries (e.g.ZBJ and SDH admin-

istrators) add normal Weibo accounts to the public submission records in their own systems.

Since ML classifiers take ground-truth crowdturf accounts from those public records, these

benign accounts will then be mixed into the training data and labeled as “turfing.” The result

is a model that marks some characteristics of normal users as crowdturfing behavior, likely

increasing false positive rate in detection.

We simulate the attack with our ground-truth dataset. At a high level, we train the classifiers

on “polluted” training data, and then examine changes in classifiers’ detection accuracy. Here

we experiment with two strategies to pollute the turfing class. First, as a baseline strategy,

adversaries randomly select normal users as poison samples to inject into the turfing class.

Second, adversaries can inject specific types of normal users, causing the classifiers to produce

targeted mistakes.

Random Poisoning: We simulate this poisoning attack with Active+Turfing dataset, where

adversaries inject random normal accounts to the turfing class. Specifically, for training, the

turfing class (14K accounts) is a mixture of crowdturf accounts and poison samples randomly

selected from Active, with a mixing ratio of p. The normal class is another 14K normal accounts

from Active. Then we use 28K of the rest accounts (14K turfing and 14K normal users) for

testing. For any given p, we repeat the experiment 10 times with different random poison

samples and training-testing partitions to compute average detection rates.

Results are shown in Figure 3.39b. As a baseline comparison, we also present the results

of the classifiers for professional workers in Figure 3.39a. We have three observations. First,

as poison-to-turfing ratio p increases, false positive rates go up for all four algorithms. False

negative rates are not much affected by this attack, thus are omitted from the plot.9 Second,

we find that the SVM classifiers are more resilient: SVMp’s false positive rate increases <5%
9False negative rates increase < 2% when p approaches 1.0.
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(b) All Workers

Figure 3.39: Poisoning training dataset by injecting random normal user samples to the turfing class.

as p approaching 1.0, while the analogous increases exceed 10% for Random Forests and J48.

Particularly, J48 experiences more drastic fluctuations around average, indicating it is very

sensitive to the choice of poison samples. This is consistent with our prior observation that

more accurate single model fitting (i.e.J48 is more accurate than SVM) is more vulnerable to

adversarial attacks. Similarly, highly accurate detection of the more homogeneous population

of professional workers (§3.2.4) means the models experience larger relative impacts from

attacks compared to classifiers over all workers.

Note that we limited the poison-to-turfing ratio <1, since in practice adversaries cannot

inject unlimited poison samples to defender’s training data. First, injecting noise causes incon-

venience to their own customers in locating qualified workers. Second, defenders may collect

ground-truth records from multiple crowdturfing sites.

Targeted Poisoning: Next, we explore targeted poisoning to the turfing class. Here the ad-

versaries want to carefully inject selected poison samples so classifiers make targeted mistakes.

For example, our classifier uses “ratio of commented tweets” as a feature with the intuition that

worker’s tweets rarely receive comments (§3.2.3). Once adversaries gain this knowledge, they

can intentionally select accounts whose tweets often receive comments as the poison samples.

As a result, the trained classifier will mistakenly learn that users with high comment ratio can
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(a) Injecting Accounts with > 50% tweets
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(b) Injecting Accounts with < 150 followers

Figure 3.40: Targeted poisoning. Adversaries inject specific type of normal users to the turfing
class (all workers).

be malicious, thus are likely to misclassify this kind of normal users as crowd-workers.

To evaluate the impact of targeted poisoning, we perform similar experiments, except that

we select poison samples based on specific feature. Figure 3.40 shows the attacking results

on two example features: ratio of tweets with comments and follower count. Compared with

Figure 3.39, targeted poisoning can trigger higher false positives than randomly selecting poi-

son samples. Also, the previous observations still hold with SVM being more robust and J48

experiencing unstable performance (large deviation from average).

Poisoning Normal User Class. Next, we analyze the other direction where adversaries

inject turfing samples into the “normal” class to boost the false negative rate of classifiers. This

may be challenging in practice since the normal user pool – Weibo’s whole user population –

is extremely large. Hence it requires injecting a significant amount of misleading samples in

order to make an impact. Here from defender’s perspective, we aim to understand how well

different classifiers cope with “noisy” normal user data.

We repeat the previous “Random Poisoning” attack on the normal class. Figure 3.41a and

Figure 3.41b show the attack results on classifiers for professional workers and all workers

respectively. As we increase the ratio of poison samples, the false negatives of all four classi-
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Figure 3.41: Poisoning training dataset by adding turfing samples to normal class.

fiers increase. This is expected as the classifiers will mistakenly learn crowdturf characteristics

when modeling normal users, thus are likely to misclassify turfing accounts as benign later.

In addition, we find the robustness of different classifiers varies, with Random Forests

algorithm producing the lowest overall false negatives. Finally, we again observe that the more

accurate classifier for professional workers suffers larger relative impacts from adversaries than

classifiers for all-workers.

3.2.6.2 Altering Training Data

The above poisoning attacks focus on misleading classifiers to catch the wrong target. How-

ever, it does not fundamentally prevent crowd-workers from detection, since workers’ behavior

patterns are still very differently from normal users. To this end, we explore a second poisoning

attack, where adversaries directly alter the training data by tuning crowd-workers’ behavior to

mimic normal users. The goal is to make it difficult (or even impossible) to train an accurate

classifier that isolates crowdturf accounts with normal accounts.

To carry out this attack, adversaries (e.g.administrators of ZBJ and SDH) need to modify the

behaviors of numerous crowdturf workers. This can be done by centrally enforcing operational

policies to their own system. For example, enforcing minimal time interval between taking
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tasks to reduce the tweeting burstiness or enforcing screening mechanisms to reject worker

accounts with “malicious” profile features. In the following, we evaluate the attack impact

using simulations, followed by the discussion of practical costs.

Feature Altering Attack. To simulate this attack, we let adversaries select a set of features

F of crowdturf accounts and alter F to mimic the corresponding features of normal users.

Unlike evasion attacks that can simply mimic normal users’ median values, here we need to

mimic the whole distribution in order to make the two classes indistinguishable on these fea-

tures. Since the feature altering is for all workers in the crowdturfing system, thus it actually

applies to crowdturf accounts in both training and testing datasets. Finally, note that features

are not completely independent, i.e.changing one feature may cause changes in others. To

mitigate this, we tune features under the same category simultaneously.

Figure 3.42 shows the attack results on Turfing+Active dataset. We attack each feature

category and repeat the experiment for 10 times. Here we simulate attacking one category at

a time, and will discuss attacking category combinations later. In general, the attack makes all

classifiers produce higher error rates compared with baseline where no feature is altered (the

horizontal lines). However the impact is mild compared to injection-based poisoning attacks.

For example, the most effective attack is on J48 when altering interaction features, which

causes error rate increased by 4%, while injection-based attack can boost error rate by more

than 20% (Figure 3.40). One possible reason is that unlike injection-based poisoning, altering-

based poisoning does not cause inconsistencies in training and testing data, but only make the

two classes harder to separate.

Costs of Altering. In practice, feature altering comes with costs, and some features may

be impossible to manipulate even by crowdturfing administrators. For instance, Tweeting Reg-

ularity (Entropy) and Burstiness features are easier to alter. Recall that crowdturfing systems

can enforce minimal (random) time delay between workers taking on new tasks, or use delays
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Figure 3.42: Performance of different classifiers when adversaries alter crowd-workers’ fea-
tures to mimic normal users. The horizontal lines represent the baseline false positive (false
negative) rates when no feature is altered.

to increase entropy. Changing the Tweet Client feature is also possible, since crowdturfing sys-

tems can develop mobile client software for their workers, or simply release tools for workers

to fake their tweeting clients.

Profile and Interaction features are more difficult to alter. Some features are mandatory

for common tasks. For example, workers need to maintain a certain number of followers in

order to spread spam to reach large enough audiences. In addition, some features are rooted

in the fact that crowd-workers don’t use their accounts organically, which, making it hard

to generate normal user interactions. Although, crowdturfing systems could potentially use

screening mechanisms to reject obviously-malicious crowdturf accounts from their system.

However, this high bar will greatly shrink the potential worker population, and likely harm the
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Features Error Rate (FP %, FN %)
Attacked RF J48 SVMr SVMp
None (6.2, 3.4) (6.7, 6.8) (7.7, 10.1) (7.9, 12.1)
C+B (5.7, 4.4) (7.9, 8.7) (8.7, 12.2) (8.0, 14.0)
B+E (6.5, 3.9) (7.1, 7.8) (8.7, 12.5) (7.3, 13.1)
C+E (6.4, 4.5) (7.9, 8.2) (7.5, 11.8) (6.3, 13.8)
C+B+E (5.8, 4.2) (8.3, 8.5) (8.6, 13.2) (7.7, 15.2)

Table 3.8: Error rates when features are altered in combinations. We focus on attacking
low-cost features: Tweet Client (C), Burstiness (B) and Entropy (E).

system’s spam capacity.

Considering practical costs, we consider whether it is more impactful to alter the combi-

nations of features from different categories. Here we focus on altering the low cost features

in Tweet Client (C), Burstiness (B) and Entropy (E). As shown in Table 3.8, attacking feature

combinations produces slightly higher error rates than attacking a single feature category, but

the overall effect is still small (less than 4% error rate increase).

Discussion. Through our analysis, we find that injecting misleading samples into training

data causes more significant errors than uniformly altering worker behavior. In addition, we

again observe the inverse relationship between single model fitting accuracy and robustness.

To protect their workers, crowdturfing sites may also try to apply stronger access control

to their public records in order to make training data unavailable for ML detectors10. However,

this creates obvious inconvenience for crowdturfing sites, since they rely on these records to

attract new workers. Moreover, even if records were private, defenders can still obtain train-

ing data by joining as “customers,” offering tasks, and identifying accounts of participating

workers.
10As of late 2013, some crowdturfing sites (e.g. ZBJ) have already started to follow this direction, by limiting

access to public transaction records to verified active participants.
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3.2.7 Summary of Results

We use a large-scale ground truth dataset to develop machine learning models to detect

malicious crowdsourcing workers. We show that while crowdturfing workers resemble normal

users in their profiles, ML models can effectively detect regular workers (95% accuracy) or

“professionals” (99% accuracy) using distinguishing features such as user interactions and

tweet dynamics.

More importantly, we use crowdturfing defense as context to explore the robustness of ML

algorithms against adversarial attacks. We evaluate multiple adversarial attack models targeting

both training and testing phases of ML detectors. We find that these attacks are effective against

all machine learning algorithms, and coordinated attacks (such as those possible in crowdturf-

ing sites) are particularly effective. We also note a consistent tradeoff where more accurate

fits (especially to a smaller, more homogeneous population) result in higher vulnerability to

adversarial attacks. The exception appears to be Random Forests, which often achieves both

high accuracy and robustness to adversaries, possibly due to its natural support for multiple

populations.

We note that our study has several limitations. First, our analysis focuses onWeibo, and our

adversary scenarios may not generalize fully to other platforms (e.g.review sites, instant mes-

sage networks). However, more work is necessary to validate our findings on other platforms.

Second, our adversarial models use simplifying assumptions, i.e.features are independent and

costs for feature modification are uniform. In addition, attackers may behave differently to

disrupt the operation of ML detectors.

Moving forward, one goal is to validate our adversarial models in practice, perhaps by car-

rying out a user-study on crowdturfing sites where we ask workers to actively evade and disrupt

ML detectors. In addition, our results show we must explore approaches to improve the robust-

ness of ML-based systems. Our analysis showed that ML algorithms react differently to differ-
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ent adversarial attacks. Thus one possible direction is to develop hybrid systems that integrate

input from multiple classifiers, ideally without affecting overall accuracy. We also observe that

limiting adversaries’ knowledge of the target system can greatly reduce their attack abilities.

How to effectively prevent adversaries from gaining knowledge or reverse-engineering models

is also a topic for future work.
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Chapter 4

User Behavior Modeling for Security

Defense

So far in Chapter 2 and Chapter 3 we have shown that the next generation of Internet services

is increasingly dependent on human users and their content, which makes it more challeng-

ing than ever to secure online services. In this chapter, we move our attention to developing

practical solutions towards identifying and understanding (malicious) user behaviors in online

communities. We build a novel framework for behavior modeling using (semi-)unsupervised

learning techniques based on clickstream traces.

In the following, we first explain the clickstream-based user behavior model and the exam-

ple application for Sybil detection (Section 4.1). Then we extend this to identify and understand

more fine-grained user behavior groups within user population (Section 4.2).
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4.1 Sybil Detection using Clickstream Analysis

4.1.1 Introduction

It is easier than ever to create fake identities and user accounts in today’s online commu-

nities. Despite increasing efforts from providers, existing services cannot prevent malicious

entities from creating large numbers of fake accounts or Sybils [71]. Current defense mecha-

nisms are largely ineffective. Online Turing tests such as CAPTCHAs are routinely solved by

dedicated workers for pennies per request [156], and even complex human-based tasks can be

overcome by a growing community of malicious crowdsourcing services [157, 230]. The re-

sult of this trend is a dramatic rise in forged and malicious online content such as fake reviews

on Yelp [219], malware and spam on social networks [77, 88, 213], and large, Sybil-based

political lobbying efforts [187].

Recent work has explored a number of potential solutions to this problem. Most proposals

focus on detecting Sybils in social networks by leveraging the assumption that Sybils will find

it difficult to befriend real users. This forces Sybils to connect to each other and form strongly

connected subgraphs [221] that can be detected using graph theoretic approaches [69, 217,

246, 247]. However, the efficacy of these approaches in practice is unclear. While some Sybil

communities have been located in the Spanish Tuenti network [58], another study on the Chi-

nese Renren network shows the large majority of Sybils actively and successfully integrating

themselves into real user communities [244].

In this chapter, we describe a new approach to Sybil detection rooted in the fundamental

behavioral patterns that separate real and Sybil users. Specifically, we propose the use of

clickstream models as a tool to detect fake identities in online services such as social networks.

Clickstreams are traces of click-through events generated by online users during each web

browsing “session,” and have been used in the past to model web traffic and user browsing

patterns [91, 139, 166, 189]. Intuitively, Sybils and real users have very different goals in their
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usage of online services: where real users likely partake of numerous features in the system,

Sybils focus on specific actions (i.e.acquiring friends and disseminating spam) while trying

to maximize utility per time spent. We hypothesize that these differences will manifest as

significantly different (and distinctive) patterns in clickstreams, making them effective tools

for “profiling” user behavior. In our context, we use these profiles to distinguish between real

and Sybil users.

Our work focuses on building a practical model for accurate detection of Sybils in social

networks. We develop several models that encode distinct event sequences and inter-event gaps

in clickstreams. We build weighted graphs of these sequences that capture pairwise “similarity

distance” between clickstreams, and apply clustering to identify groups of user behavior pat-

terns. We validate our models using ground-truth clickstream traces from 16,000 real and Sybil

users from Renren, a large Chinese social network with 220M users. Using our methodology,

we build a detection system that requires little or no knowledge of ground-truth. Finally, we

validate the usability of our system by running initial prototypes on internal datasets at Renren

and LinkedIn.

The key contributions are as follows:

• To the best of our knowledge, we are the first to analyze click patterns of Sybils and

real users on social networks. By analyzing detailed clickstream logs from a large social

network provider, we gain new insights on activity patterns of Sybils and normal users.

• We propose and evaluate several clickstream models to characterize user clicks patterns.

Specially, we map clickstreams to a similarity graph, where clickstreams (vertices) are

connected using weighted edges that capture pairwise similarity. We apply graph parti-

tioning to identify clusters that represent specific click patterns. Experiments show that

our model can efficiently distinguish between clickstreams of Sybil and normal users.

• We develop a practical Sybil detection system based on our clickstream model, requiring
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minimal input from the service provider. Experiments using ground-truth data show that

our system generates <1% false positives and <4% false negatives.

• Working closely with industrial collaborators, we have deployed prototypes of our sys-

tem at Renren and LinkedIn. Security teams at both companies have run our system

on real user data and received very positive results. While corporate privacy policies

limit the feedback visible to us, both companies have expressed strong interest in further

experimentation and possible deployment of our system.

To the best of our knowledge, we are the first to study clickstream models as a way to detect

fake accounts in online social networks. Moving forward, we believe clickstream models are

a valuable tool that can complement existing techniques, by not only detecting well-disguised

Sybil accounts, but also reducing the activity level of any remaining Sybils to that of normal

users.

Roadmap. We begin in Section 4.1.2 by describing the problem context and our ground-

truth dataset, followed by preliminary analysis results in Section 4.1.3. Next, in Section 4.1.4

we propose our clickstream models to effectively distinguish Sybil with normal users. Then

in Section 4.1.5, we develop an incremental Sybil detector that can scale with today’s large

social networks. We then extend this detector in Section 4.1.6 by proposing an unsupervised

Sybil detector, where only a minimal (and fixed) amount of ground-truth is needed. Finally, in

Section 4.1.7, we describe experimental experience of testing our prototype code in real-world

social networks (Renren and LinkedIn). We then conclude in Section 4.1.8.

4.1.2 Background: Renren and Clickstream

In this section, we provide background for our study. First, we briefly introduce the Renren

social network and the malicious Sybils that attack it. Second, we describe the key concepts of

user clickstreams, as well as the ground-truth dataset we use in our study.
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Renren. Renren is the oldest and largest Online Social Network (OSN) in China, with more

than 220 million users [112]. Renren offers similar features and functionalities as Facebook:

users maintain personal profiles and establish social connections with their friends. Renren

users can update their status, write blogs, upload photos and video, and share URLs to content

on and off Renren. When a user logs-in to Renren, the first page they see is a “news-feed” of

their friends’ recent activities.

Sybils. Like other popular OSNs, Renren is targeted by malicious parties looking to dis-

tribute spam and steal personal information. As in prior work, we refer to the fake accounts

involved in these attacks as Sybils [244]. Our goal is to detect and deter these malicious Sybils;

our goal is not to identify benign fakes, e.g.pseudonymous accounts used by people to preserve

their privacy.

Prior studies show that attackers try to friend normal users using Sybil accounts [244]. On

Renren, Sybils usually have complete, realistic profiles and use attractive profile pictures to

entice normal users. It is challenging to identify these Sybils using existing techniques because

their profiles are well maintained, and they integrate seamlessly into the social graph structure.

Clickstream Data. We investigate the feasibility of using clickstreams to detect Sybils.

A clickstream is the sequence of HTTP requests made by a user to a website. Most requests

correspond to a user explicitly fetching a page by clicking a link, although some requests

may be programmatically generated (e.g.XmlHttpRequest). In our work, we assume that a

clickstream can be unambiguously attributed to a specific user account, e.g.by examining the

HTTP request cookies.

Our study is based on detailed clickstreams for 9994 Sybils and 5998 normal users on Ren-

ren. Sybil clickstreams were selected at random from the population of malicious accounts that

were banned by Renren in March and April 2011. Accounts could be banned for abusive be-

haviors such as spamming, harvesting user data or sending massive numbers of friend requests.

167



User Behavior Modeling for Security Defense Chapter 4

Dataset Users Clicks Date (2011) Sessions
Sybil 9,994 1,008,031 Feb.28-Apr.30 113,595
Normal 5,998 5,856,941 Mar.31-Apr.30 467,179

Table 4.1: Clickstream dataset.

Normal user clickstreams were selected uniformly at random from Renren user population in

April 2011, and were manually verified by Renren’s security team.

The dataset summary is shown in Table 4.1. In total, our dataset includes 1,008,031 and

5,856,941 clicks for Sybils and normal users, respectively. Each click is characterized by a

timestamp, an anonymized userID, and an activity. The activity is derived from the request

URL, and describes the action the user is undertaking. For example, the “friend request”

activity corresponds to a user sending a friend request to another user. We discuss the different

categories of activities in detail in Section 4.1.3.2.

Each user’s clickstream can be divided into sessions, where a session represents the se-

quence of a user’s clicks during a single visit to Renren. Unfortunately, users do not always

explicitly end their session by logging out of Renren. As in prior work, we assume that a user’s

session is over if they do not make any requests for 20 minutes [47]. Session duration is cal-

culated as the time interval between the first and last click within a session. Overall, our traces

contain 113,595 sessions for Sybils and 467,179 sessions for normal users.

4.1.3 Preliminary Clickstream Analysis

We begin the analysis of our data by looking at the high-level characteristics of Sybil and

normal users on Renren. Our goals are to provide an overview of the dataset, and to motivate

the use of clickstreams as a rich data source for uncovering malicious behavior. Towards these

ends, we analyze our data in four ways: first, we examine session-level characteristics. Second,

we analyze the activities users engage in during each session. Third, we construct a state-based

Markov Chain model to characterize the transitions between clicks during sessions. Finally, we
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Figure 4.1: # of sessions per user.
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Figure 4.2: Sessions through the day.
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Figure 4.3: Sessions per day per user.
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Figure 4.4: Average session length per user.

use a Support Vector Machine (SVM) approach to learn the important features that distinguish

Sybil and normal user clickstreams.

4.1.3.1 Session-level Characteristics

In this section, we seek to determine the session-level differences between normal and

Sybil accounts in our dataset. First, we examine the total number of sessions from each user.

As shown in Figure 4.1, >50% of Sybils have only a single session; far fewer than normal

users. It is likely that these Sybils sent spam during this single session and were banned shortly

thereafter. A small portion of Sybils are very active and have >100 sessions.

Next, we examine when Sybils and normal users are active each day. Figure 4.2 shows that

all users exhibit a clear diurnal pattern, with most sessions beginning during daytime. This

indicates that at least a significant portion of Sybils in our dataset could be controlled by real

people exhibiting normal behavioral patterns.
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Figure 4.6: Average time interval between
clicks per session per user.

Next, we investigate the number of sessions per user per day. Figure 4.3 shows that 80%

of Sybils only login to Renren once per day or less, versus 20% of normal users. The duration

of Sybil sessions is also much shorter, as shown in Figure 4.4: 70% of Sybil session are <100

seconds long, versus 10% of normal sessions. The vast majority of normal sessions last several

minutes.

Figure 4.5 shows the number of clicks per session per user. Almost 60% of Sybil sessions

only contain one click, whereas 60% of normal user sessions have ≥10 clicks. Not only do

Sybil sessions tend to be shorter, but Sybils also click much faster than normal users. As shown

in Figure 4.6, the average inter-arrival time between Sybil clicks is an order of magnitude

shorter than for normal clicks. This indicates that Sybils do not linger on pages, and some of

their activities may be automated.

The observed session-level Sybil characteristics are driven by attacker’s attempts to cir-

cumvent Renren’s security features. Renren limits the number of actions each account can

take, e.g.50 friend requests per day, and 100 profiles browsed per hour. Thus, in order to maxi-

mize efficiency, attackers create many Sybils, quickly login to each one and perform malicious

activities (e.g.sending unsolicited friend requests and spam), then logout and move to the next

Sybil. As shown in Table 4.2, Sybils spend a great deal of clicks sending friend requests and

browsing profiles, despite Renren’s security restrictions.
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Category Description Sybil Clks Nrml Clks
# (K) % # (K) %

Friending
Send request 417 41 16 0
Accept invitation 20 2 13 0
Invite from guide 16 2 0 0

Photo Visit photo 242 24 4,432 76
Visit album 25 2 330 6

Profile Visit profiles 160 16 214 4
Share Share content 27 3 258 4
Message Send IM 20 2 99 2
Blog Visit/reply blog 12 1 103 2
Notification Check notification 8 1 136 2

Table 4.2: Clicks from normal users and Sybils on different Renren activities. # of clicks are
presented in thousands. Activities with <1% of clicks are omitted for brevity.

4.1.3.2 Clicks and Activities

Having characterized the session-level characteristics of our data, we now analyze the type

and frequency clicks within each session. As shown in Table 4.2, we organize clicks into

categories that correspond to high-level OSN features. Within each category there are activities

that map to particular Renren features. In total, we observe 55 activities that can be grouped

into 8 primary categories. These categories are:

• Friending: Includes sending friend requests, accepting or denying those requests, and

un-friending.

• Photo: Includes uploading photos, organizing albums, tagging friends, browsing friend’s

photos, and writing comments on photos.

• Profile: This category encompasses browsing user profiles. Like Facebook, profiles on

Renren can be browsed by anyone, but the information that is displayed is restricted by

the owner’s privacy settings.

• Share: Refers to users posting hyperlinks on their wall. Common examples include links

to videos and news stories on external websites, or links to blog posts and photo albums

on Renren.
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• Message: Includes status updates, wall posts, and real-time instant-messages (IM).

• Blog: Encompasses writing blogs, browsing blog articles, and leaving comments on

blogs.

• Notification: Refers to clicks on Renren’s notification mechanism that alerts users to

comments or likes on their content.

• Like: Corresponds to the user liking (or unliking) content on Renren.

Table 4.2 displays the most popular activities on Renren. The number of clicks on each

activity is shown (in thousands), as well as the percent of clicks. Percentages are calculated

for Sybils and normal users separately, i.e.each “%” column sums to 100%. For the sake of

brevity, only activities with ≥1% of clicks for either Sybils or normal users are shown. The

“Like” category has no activity with ≥1% of clicks, and is omitted from the table.

Table 4.2 reveals contrasting behavior between Sybils and normal users. Unsurprisingly,

normal users’ clicks are heavily skewed toward viewing photos (76%), albums (6%), and shar-

ing (4%). In contrast, Sybils expend most of their clicks sending friend requests (41%), viewing

photos (24%), and browsing profiles (16%). The photo browsing and profile viewing behavior

are related: these Sybils crawl Renren and download users’ personal information, including

profile photos.

Sybils’ clicks are heavily skewed toward friending (41% for Sybils, 0.3% for normal users).

This behavior supports one particular attack strategy on Renren: friending normal users and

then spamming them. However, given that other attacks are possible (e.g.manipulating trending

topics [109], passively collecting friends [213]), we cannot rely on this feature alone to identify

Sybils.

Normal users and Sybils share content (4% and 3%, respectively) as well as send messages

(2% and 2%) at similar rates. This is an important observation, because sharing and messaging

are the primary channels for spam dissemination on Renren. The similar rates of legitimate and
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illegitimate sharing/messaging indicate that spam detection systems cannot simply leverage

numeric thresholds to detect spam content.

4.1.3.3 Click Transitions

Sections 4.1.3.1 and 4.1.3.2 highlight some of the differences between Sybils and normal

users. Next, we examine differences in click ordering, i.e.how likely is it for a user to transition

from activity A to activity B during a single session?

We use a Markov Chain model to analyze click transitions. In this model, each state is

a click category, and edges represent transitions between categories. We add two abstract

states, initial and final, that mark the beginning and end of each click session. Figure 4.7 and

Figure 4.8 show the category transition probabilities for both Sybils and normal users. The

sum of all outgoing transitions from each category is 1.0. To reduce the complexity of the

Figure, edges with probability <5% have been pruned (except for transitions to the final state).

Categories with no incoming edges after this pruning process are also omitted.

Figure 4.7 demonstrates that Sybils follow a very regimented set of behaviors. After

logging-in Sybils immediately begin one of three malicious activities: friend invitation spam-

ming, spamming photos, or profile browsing. The profile browsing path represents crawling

behavior: the Sybil repeatedly views user profiles until their daily allotment of views is ex-
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hausted.

Compared to Sybils, normal users (Figure 4.8) engage in a wider range of activities, and

the transitions between states are more diverse. The highest centrality category is photos, and

it is also the most probable state after login. Intuitively, users start from their newsfeed, where

they are likely to see and click on friends’ recent photos. The second most probable state after

login is checking recent notifications. Sharing and messaging are both low probability states.

This makes sense, given that studies of interactions on OSNs have shown that users generate

new content less than once per day [236, 112].

It is clear that currently, Sybils on Renren are not trying to precisely mimic the behavior

of normal users. However, we do not feel that this type of modeling represents a viable Sybil

detection approach. Simply put, it would be trivial for Sybils to modify their behavior in order

to appear more like normal users. If Sybils obfuscated their behavior by decreasing their tran-

sition probability to friending and profile browsing while increasing their transition probability

to photos and blogs, then distinguishing between the two models would be extremely difficult.

4.1.3.4 SVM Classification

The above analysis shows that Sybil sessions have very different characteristics compared

to normal user sessions. Based on these results, we explore the possibility of distinguishing

normal and Sybil sessions using a Support Vector Machine (SVM) [177]. For our SVM experi-

ments, we extract 4 features from session-level information and 8 features from click activities:

• Session Features: We leverage 4 features extracted from user sessions: average clicks

per session, average session length, average inter-arrival time between clicks, and aver-

age sessions per day.

• Click Features: As mentioned in Section 4.1.3.2, there are 8 categories of clicks activ-

ities on Renren. For each user, we use the percentage of clicks in each category as a
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Feature Weight
% of clicks under Friending +5.65
% of clicks under Notification -3.68
Time interval of clicks (TBC) -3.73
Session length (SL) +1.34
% of clicks under Photo +0.93

Table 4.3: Weight of features generated by SVM.

feature.

We computed values for all 12 features for all users in our dataset, input the data to an

SVM, and ran 10 fold cross-validation. The resulting classification accuracy was 98.9%, with

0.8% false positives (i.e.classify normal users as Sybils) and 0.13% false negatives (i.e.classify

Sybils as normal users). Table 4.3 shows the weights assigned to the top 5 features. Features

with positive weight values are more indicative of Sybils, while features with negative weights

indicate they are more likely in normal users. Overall, higher absolute value of the weights cor-

responds to features that more strongly indicate either Sybils or normal users. These features

agree with our ad-hoc observations in previous sections.

While our SVM results are quite good, an SVM-based approach is still a supervised learn-

ing tool. In practice, we would like to avoid using any ground truth datasets to train detection

models, since they can introduce unknown biases. Later, we will describe our unsupervised

detection techniques in detail.

4.1.3.5 Discussion

In summary, we analyze the Renren clickstream data to characterize user behavior from

three angles: sessions, click activities, and click transitions. SVM analysis of these basic

features demonstrates that clickstreams are useful for identifying Sybils on social networks.

However, these basic tools (session distributions, Markov Chain models, SVM) are of lim-

ited use in practice: they require training on large samples of ground-truth data. For a practical
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Sybil detection system, we must develop clickstream analysis techniques that leverage unsu-

pervised learning on real-time data samples, i.e. require zero or little ground-truth. In the next

section, we will focus on developing clickstreams models for real-time, unsupervised Sybil

detection.

4.1.4 Clickstream Modeling and Clustering

In Section 4.1.3, we showed that clickstream data for Sybils and normal users captured

the differences in their behavior. In this section, we build models of user activity patterns that

can effectively distinguish Sybils from normal users. Our goal is to cluster similar clickstreams

together to form general user “profiles” that capture specific activity patterns. We then leverage

these clusters (or profiles) to build a Sybil detection system.

We begin by defining three models to represent a user’s clickstream. For each model, we

describe similarity metrics that allow us to cluster similar clickstreams together. Finally, we

use our ground-truth data to evaluate the efficacy of each model in distinguishing Sybils from

normal users. We build upon these results later to develop practical Sybil detection systems

based on clickstream analysis.

4.1.4.1 Clickstream Models

We define three models to capture a user’s clickstream.

Click SequenceModel. We start with the most straightforward model, which only considers

click events. As shown in Section 4.1.3, Sybils and normal users exhibit different click tran-

sition patterns and focus their energy on different activities. The Click Sequence (CS) Model

treats each user’s clickstream as a sequence of click events, sorted by order of arrival.

Time-based Model. As shown in Figure 4.6, Sybils and normal users generate click events

at different speeds. The Time-based Model focuses on the distribution of gaps between events:
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each user’s clickstream is represented by a list of inter-arrival times [t1, t2, t3, ..., tn] where n is

the number of clicks in a user’s clickstream.

Hybrid Model. The Hybrid Model combines click types and click inter-arrival times. Each

user’s clickstream is represented as an in-order sequence of clicks along with inter-event gaps

between clicks. For example: a(t1)c(t2)a(t3)d(t4)b where a, b, c, d are click types, and ti is the

time interval between the ith and (i+ 1)th event.

Click Types. Both the Click Sequence Model and the Hybrid Model represent each event in

the sequence by its click event type. We note that we can control how granular the event types

are in our sequence representation. One approach is to encode clicks based on their specific

activity. Renren’s logs define 55 unique activities. Another option is to encode click events

using their broader category. In our dataset, our 55 activities fall under 8 click categories (see

Section 4.1.3.2). Our experimental analysis evaluates both representations to understand the

impact of granularity on model accuracy.

4.1.4.2 Computing Sequence Similarity

Having defined three models of clickstream sequences, we now move on to investigating

methods to quantify the similarity between clickstreams. In other words, we want to compute

the distance between pairs of clickstreams. First, we discuss general approaches to computing

the distance between sequences. Then we discuss how to apply each approach to our three

clickstream models.

Defining Distance Functions

Common Subsequences. The first distance metric involves locating the common subse-

quences of varying lengths between two clickstreams. We formalize a clickstream as a se-

quence S = (s1s2...si...sn), where si is the ith element in the sequence. We then define

Tk as the set of all possible k-grams (k consecutive elements) in sequence S: Tk(S) = {k-
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gram|k-gram = (sisi+1...si+k−1), i ∈ [1, n + 1 − k]}. Simply put, each k-gram in Tk(S) is

a subsequence of S. Finally, the distance between two sequences can then be computed based

on the number of common subsequences shared by the two sequences. Inspired by the Jaccard

Coefficient [135], we define the distance between sequences S1 and S2 as:

Dk(S1, S2) = 1−
|Tk(S1) ∩ Tk(S2)|
|Tk(S1) ∪ Tk(S2)|

(4.1)

We will discuss the choice of k in Section 4.1.4.2.

Common Subsequences With Counts. The common subsequence metric defined above only

measures distinct common subsequences, i.e. it does not consider the frequency of common

subsequences. We propose a second distance metric that rectifies this by taking the count

of common subsequences into consideration. For sequences S1, S2 and a chosen k, we first

compute the set of all possible subsequences from both sequences as T = Tk(S1) ∪ Tk(S2).

Next, we count the frequency of each subsequence within each sequence i (i = 1, 2) as array

[ci1, ci2, ..., cin] where n = |T |. Finally, the distance between S1 and S2 can be computed as

the normalized Euclidean Distance between the two arrays:

D(S1, S2) =
1√
2

√

√

√

√

n
∑

j=1

(c1j − c2j)2 (4.2)

Distribution-basedMethod. Unfortunately, the prior metrics cannot be applied to sequences

of continuous values (i.e.the Time-based Model). Instead, for continuous value sequences S1

and S2, we compute the distance by comparing their value distribution using a two-sample

KolmogorovSmirnov test (K-S test). A two-sample K-S test is a general nonparametric method

for comparing two empirical samples. It is sensitive to differences in location and shape of the

empirical Cumulative Distribution Functions (CDF) of the two samples. We define the distance
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function using K-S statistics:

D(S1, S2) = supt|Fn,1(t)− Fn′,2(t)| (4.3)

where Fn,i(t) is the CDF of values in sequence Si.

Applying Distances Functions to Clickstreams

Having defined three distance functions for computing sequence similarity, we now apply

these metrics to our three clickstream models. Table 4.4 summarizes the distance metrics we

apply to each of our models. The Time-based Model is the simplest case, because it only has

one corresponding distance metric (K-S Test). For the Click Sequence and Hybrid Models, we

use several different parameterizations of our distance metrics.

Click Sequence Model. We use the common subsequence and common subsequence with

counts metrics to compute distances in the CS model. However, these two metrics require that

we choose k, the length of k-gram subsequences to consider. We choose two values for k:

1 and 10, which we refer to as unigram and 10gram. Unigram represents the trivial case of

comparing common click events in two clickstreams, while ignoring the ordering of clicks.

10gram includes all unigrams, as well as bigrams, trigrams, etc. As shown in Table 4.4, we

also instantiate unigram+count and 10gram+count, which include the frequency counts of

each unique subsequence.

Although values of k > 10 are possible, we limit our experiments to k = 10 for two rea-

sons. First, when k = n (where n is the length of a clickstream), the computational complexity

becomes O(n2). This overhead is significant when you consider that O(n2) subsequences will

be computed for every user in a clickstream dataset. Second, long subsequences have dimin-

ishing utility, because they are likely to be unique for a particular user. In our tests, we found

k = 10 to be a good limit on computational overhead and subsequence over-specificity.

Hybrid Model. Like the Click Sequence Model, distances between sequences in the Hy-
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Model Distance Metrics

Click Sequence Model unigram, unigram+count,
10gram, 10gram+count

Time-based Model K-S test
Hybrid Model 5gram, 5gram+count

Table 4.4: Summary of distance functions.

brid Model can also be computed using the common subsequence and common subsequence

plus count metrics. The only change between the Click Sequence and Hybrid Models is

that we must discretize the inter-arrival times between clicks so they can be encoded into

the sequence. We do this by placing inter-arrival times into log-scale buckets (in seconds):

[0, 1], [1, 10], [10, 100], [100, 1000], [1000,∞]. Based on Figure 4.6, the inter-arrival time dis-

tribution is highly skewed, so log-scale buckets are better suited than linear buckets to evenly

encode the times.

After we discretize the inter-arrival times and insert them into the clickstream, we use k = 5

as the parameter for configuring the two distance metrics. Further increasing k offers little im-

provement in the model but introduces extra computation overhead. As shown in Table 4.4, we

refer to these metrics as 5gram and 5gram+count. Thus, each 5gram contains three consecutive

click events along with two tokens representing inter-arrival time gaps between them.

4.1.4.3 Sequence Clustering

At this point we have defined models of clickstreams as well as metrics for computing the

distance between them. Our next step is to cluster users with similar clickstreams together. As

shown in Section 4.1.3, Sybil and normal users exhibit very different behaviors, and should

naturally form distinctive clusters.

To achieve our goal, we build and then partition a sequence similarity graph. Each user’s

clickstream is represented by a single node. The sequence similarity graph is complete, i.e.

every pair of nodes is connected by a weighted edge, where the weight is the similarity distance
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between the sequences. Partitioning this graph means producing the desired clusters while

minimizing the total weight of cut edges: users with similar activities (high weights between

them) will be placed in the same cluster, while users with dissimilar activities will be placed

in different clusters. Thus the clustering process separates Sybil and normal users. Note that

not all Sybils and normal users exhibit homogeneous behavior; thus, we expect there to be

multiple, distinct clusters of Sybils and normal users.

Graph Clustering. To cluster sequence similarity graphs, we use METIS [121], a widely

used multilevel k-way partitioning algorithm. The objective of METIS is to minimize the

weight of edges that cross partitions. In the sequence similarity graph, longer distances (i.e.dissimilar

sequences) have lower weights. Thus, METIS is likely to place dissimilar sequences in differ-

ent partitions. METIS requires a parameter K that specifies the number of partitions desired.

We will assess the impact ofK on our system performance in Section 4.1.4.4.

Cluster Quality. A key question when evaluating our methodology is assessing the qual-

ity of clusters produced by METIS. In Section 4.1.4.4, we leverage our ground-truth data to

evaluate false positives and negatives after clustering the sequence similarity graph. We label

each cluster as “Sybil” or “normal” based on whether the majority of nodes in the cluster are

Sybils or normal users. Normal users that get placed into Sybil clusters are false positives,

while Sybils placed in normal clusters are false negatives. We use these criteria to evaluate

different clickstream models and distance functions.

4.1.4.4 Model Evaluation

We now evaluate our clickstream models and distance functions to determine which can

best distinguish Sybil activity patterns from those of normal users. We examine four different

variables: 1) choice of clickstream model, 2) choice of distance function for each model, 3)

what representation of clicks to use (specific activities or categories), and 4) K, the number of
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Figure 4.9: Error rate of three models.

desired partitions for METIS.

Experiment Setup. The experimental dataset consists of 4000 normal users and 4000 Sybils

randomly selected from our dataset. In each scenario, we build click sequences for each user

(based on a given clickstream model and click representation), compute all distances between

each pair of sequences, and then cluster the resulting sequence similarity graph for a given

value ofK. Finally, each experimental run is evaluated based on the false positive and negative

error rates.

Model Analysis. First, we examine the error rates of different clickstream models and

click representations in Figure 4.9. For the CS and Hybrid models, we encode clicks based on

activities as well as categories. In the Time model, all clicks are encoded as inter-arrival times.

In this experiment, we use 10gram+count, 5gram+count, and K-S as the distance function for

CS, Hybrid, and Time, respectively. We fix K = 100. We investigate the impact of distance

functions and K in subsequent experiments.

Two conclusions can be drawn from Figure 4.9. First, the CS and Hybrid models signifi-

cantly outperform the Time-based model, especially in false negatives. This demonstrates that

click inter-arrival times alone are insufficient to disambiguate Sybils from normal users. Man-

ual inspection of false negative Sybils from the Time experiment reveals that these Sybils click

at the same rate as normal users. Thus these Sybils are either operated by real people, or the

software that controls them has been intentionally rate limited.
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Figure 4.11: Impact of number of clusters
(K).

The second conclusion from Figure 4.9 is that encoding clicks based on category outper-

forms encoding by activity. This result confirms findings from the existing literatures on web

usage mining [44]: representing clicks using high-level categories (or concepts) instead of raw

click types better exposes the browsing patterns of users. A possible explanation is that high-

level categories have better tolerance for noise in the clickstream log. In the rest of our analysis,

we use categories to encode clicks.

Next, we examine the error rate of different distance functions for the CS and Hybrid

models. As shown in Figure 4.10, we evaluate the CS model using the unigram and 10gram

functions, as well as counting versions of those functions. We evaluate the Hybrid model using

the 5gram and 5gram+count functions.

Several conclusions can be drawn from Figure 4.10. First, the unigram functions have

the highest false negative rates. This indicates that looking at clicks in isolation (i.e.without

click transitions) is insufficient to discover many Sybils. Second, the counting versions of all

three distance functions produce low false positive rates. This demonstrates that the repeat

frequency of sequences is important for identifying normal users. Finally, we observe that CS

10gram+count and Hybrid have similar accuracy. This shows that click inter-arrival times are

not necessary to achieve low error rates.

Finally, we examine the impact of the number of clusters K on detection accuracy. Fig-
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ure 4.11 shows the error rate of Hybrid 5gram+count as we vary K. The overall trend is that

larger K produces lower error rates. This is because larger K grants METIS more opportuni-

ties to partition weakly connected sequences. This observation is somewhat trivial: if K = N ,

where N is the number of sequences in the graph, then the error rate would be zero given our

evaluation methodology. In Section 4.1.6, we discuss practical reasons why K must be kept

≈100.

Summary. Our evaluation shows that the Click Sequence and Hybrid models perform

best at disambiguating Sybils and normal users. 10gram+count and 5gram+count are the best

distance functions for each model, respectively. We find that accuracy is highest when clicks

are encoded based on categories, and when the number of partitionsK is large. In the following

sections, we will use these parameters when building our Sybil detection system.

4.1.5 Incremental Sybil Detection

Our results in Section 4.1.4 showed that our models can effectively distinguish between

Sybil clickstreams and normal user clickstreams. In this section, we leverage this methodology

to build a real-time, incremental Sybil detector. This system works in two phases: first, we

create clusters of Sybil and normal users based on ground-truth data, as we did in Section 4.1.4.

Second, we compute the position of unclassified clickstreams in our sequence similarity graph.

If an unclassified clickstream falls into a cluster representing clickstreams from ground-truth

Sybils, we conclude the new clickstream is a Sybil. Otherwise, it is benign.

4.1.5.1 Incremental Detection

To classify a new clickstream given an existing clustered sequence similarity graph, we

must determine how to “re-cluster” new sequences into the existing graph. We investigate

three algorithms.
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The first is K Nearest Neighbor (KNN). For a given unclassified sequence, we find the top-

K nearest sequences in the ground-truth data. If the majority of these sequences are located in

Sybil clusters, then the new sequence is classified as a Sybil sequence.

The second algorithm is Nearest Cluster (NC). We compute the average distance from an

unclassified sequence to all sequences in each cluster. The unclassified sequence is then added

to the cluster with the closest average distance. The new sequence is classified as Sybil or

normal based on the cluster it is placed in.

The third algorithm is a less computationally-intensive version of Nearest Cluster that we

refer to as Nearest Cluster-Center (NCC). NC and KNN require computing the distance from

an unclassified sequence to all sequences in the ground-truth clusters. We can streamline NC’s

classification process by precomputing centers for each cluster. In NCC, we only need to

compute the distance from an unclassified sequence to the center of each existing cluster.

For each existing cluster, the center is chosen by closeness centrality. Intuitively, the center

sequence is the one that has the shortest distance to all the other sequences in the same cluster.

To be more robust, we precompute three centers for each cluster, that is, the three sequences

with highest closeness centrality.

4.1.5.2 System Evaluation

In this section, we evaluate our incremental Sybil detection system using our ground-truth

clickstream dataset. We start by evaluating the basic accuracy of the system at classifying

unknown sequences. Next, we evaluate how quickly the system can identify Sybils, in terms

of number of clicks in their clickstream. Finally, we explore how long the system can remain

effective before it needs to be retrained using updated ground-truth data.

Detection Accuracy. We start with a basic evaluation of system accuracy using our ground-

truth dataset. We split the dataset into training data and testing data. Both datasets include 3000
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Figure 4.12: Error rate of three recluster-
ing algorithms.

Sybils and 3000 normal users. We build sequence similarity graphs from the training data using

Hybrid Model with 5gram+count as distance function. The number of clusters K = 100. In

each sequence similarity graph, we label the Sybil and normal clusters.

Next, we examine the error rates of the incremental detector when unclassified users (3000

Sybils and 3000 normal users) are added to the sequence similarity graph. We perform this

experiment three times, once for each of the proposed reclustering algorithms (KNN, NC and

NCC). As shown in Figure 4.12, the error rates for all three reclustering algorithms are very

similar, and all three have <1% false positives. NC has slightly fewer false positives, while

NCC has the fewest false negatives.

Detection Speed. The next question we want to address is: what is the minimum number

of clicks necessary to accurately classify clickstreams? Another way to frame this question

is in terms of detection speed: how quickly (in terms of clicks) can our system accurately

classify clickstreams? To identify and respond to Sybils quickly, we must detect Sybils using

the minimal number of click events.

Figure 4.13 shows the results of our evaluation when the maximum number of clicks in all

sequences are capped. The “All” results refer to a cap of infinity, i.e.all clicks in our dataset are

considered. Note that not all sequences in our dataset have 50 or 100 clicks: some Sybils were

banned before they produced this may clicks. Hence, the caps are upper bounds on sequence
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training data is two weeks old.

length.

Surprisingly, the “All” results are not the most accurate overall. As shown in Figure 4.13,

using all clicks results in more false negatives. This occurs due to overfitting: given a large

number of very long clickstreams from normal users, it is likely that they will occasionally

exhibit unusual, Sybil-like behavior. However, this problem is mitigated if the sequence length

is capped, since this naturally excludes these infrequent, aberrant clickstreams.

In contrast to the “All” results, the results from the≤ 50 click experiments produce the most

false positives. This demonstrates that there is a minimum sequence length necessary to per-

form accurate classification of clickstreams. We repeated these experiments using CS/10gram+count

and received similar result, which we omit for brevity.

There are two additional, practical take-aways from Figure 4.13. First, the NCC algorithm

performs equally well versus NC and KNN. This is a positive result, since the computational

complexity of NCC is dramatically lower than NC and KNN. Second, we observe that our

system can produce accurate results (false positives <1%, false negatives <3%) when only

considering short sequences. This means that the system can make classifications quickly,

without needing to store very long clickstreams in memory.

Accuracy Over Time. In order for our incremental detection system to be practically

useful, its accuracy should remain high for long periods of time. Put another way, sequence
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similarity graphs trained with old data should be able to detect fresh Sybil clickstreams. To

evaluate the accuracy of our system over time, we split our dataset based on date. We train

our detector using the early data, and then apply the detector to the later data. We restrict our

analysis to data from April 2011; although we have Sybil data from March 2011, we do not

have corresponding data on normal users for this month.

Figure 4.14 shows the accuracy of the detector when it is trained on data from March

31-April 15, then applied to data from April 16-30. As the results show, the detector remains

highly accurate for at least two weeks after it has been trained using the NCC reclustering algo-

rithm. Unfortunately, the limited duration of our dataset prevents us from examining accuracy

at longer time intervals.

We repeated this experiment using only one week of training data, but the false negative

rate of the detector increased to ≈10%. This shows that the detector needs to be trained on

sufficient data to provide accurate results.

4.1.6 Unsupervised Sybil Detection

Our incremental Sybil detection system from Section 4.1.5 has a serious shortcoming: it

must be trained using large samples of ground-truth data. In this section, we develop an un-

supervised Sybil detection system that requires only a small, constant amount of ground-truth.
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The key idea is to build a clustered sequence similarity graph as before. But instead of using

full ground-truth of all clickstreams to mark a cluster as Sybil or normal, we only need a small

number of clickstreams of known real users as “seeds” that color the clusters they reside in.

These seeds can be manually verified as needed. We color all clusters that include a seed se-

quence as “normal,” while uncolored clusters are assumed to be “Sybil.” Since normal users

are likely to fall under a small number of behavioral profiles (clusters in the graph), we expect a

small fixed number of seeds will be sufficient to color all clusters of normal user clickstreams.

Figure 4.15 depicts our unsupervised approach, showing how METIS partitions nodes into

clusters which are then colored if they contain seed users. Once the system is trained in this

manner, it can be used incrementally to detect more Sybils over time, as described in Sec-

tion 4.1.5.

In this section, we discuss the design of our unsupervised system and evaluate its perfor-

mance. We begin by analyzing the number and composition of seeds that are necessary to

ensure high accuracy of the system. Next, we evaluate the performance of the system by com-

paring its accuracy to our ground-truth data. Finally, we examine how the ratio of Sybils to

normal users in the unclassified data impacts system accuracy.

4.1.6.1 Seed Selection and Composition

Number of Seeds. The most important parameter in our unsupervised Sybil detection

system is the number of seeds. On one hand, the number of seeds needs to be large and diverse

enough to color all “normal” clusters. Normal clusters that remain uncolored are potential false

positives. On the other hand, the seed set needs to be small enough to be practical. If the size

of the seed set is large, it is equivalent to having ground-truth about the dataset, which is the

situation we are trying to avoid.

We now conduct experiments to determine how many seeds are necessary to color the
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clusters. We choose 3000 Sybils and 3000 normal users at random from our dataset to be the

unclassified dataset. We also randomly choose some number of additional normal users to

be the seeds. As in Section 4.1.5, we use the Hybrid Model with the 5gram+count distance

function. We also conducted experiments with CS/10gram+count, but the results are very

similar and we omit them for brevity.

Figure 4.16 depicts the percentage of normal of clusters that are correctly colored for differ-

ent values of K (number of METIS partitions) as the number of seeds is varied. As expected,

fewer seeds are necessary when K is small because there are fewer clusters (and thus each

cluster includes more sequences). WhenK = 100, 250 seeds (or 4% of all normal users in the

experiment) are able to color 99% of normal clusters.

Seed Consistency Over Time. Next, we examine whether a set of seeds chosen at an early

date are equally effective at coloring clusters based on later data. In other words, we want to

know if the seeds are consistent over time. If this is not the case, it would represent additional

overhead on the deployment of our system.

To test seed consistency over time, we divide our two months of Sybil clickstream data

into four, two-week long datasets. We add an equal number of randomly selected normal users

to each of the four datasets. Finally, we select an additional x random normal users to act as

seeds. We verify (for each value of x) that these seeds color 100% of the normal clusters in
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the first temporal dataset. We then evaluate what percentage of normal clusters are colored in

the subsequent three temporal datasets. In all experiments, we set K = 100, i.e.the worst case

scenario for our graph coloring approach.

The results of the temporal consistency experiments are shown in Figure 4.17. In general,

even though the Sybil and normal clickstreams change over time, the vast majority of normal

clusters are successfully colored. Given 600 seeds, 99% of normal clusters are colored after 4

weeks, although the percentage drops to 83% with 300 seeds. These results demonstrate that

the seed set does not need to be drastically altered over time.

4.1.6.2 Coloring Evaluation

We now evaluate the overall effectiveness of our Sybil detection system when it leverages

unsupervised training. In these experiments, we use our entire clickstream dataset. We choose

x random normal users as seeds, build and cluster the sequence similarity graph using Hy-

brid/5gram+count, and then color the clusters that contain the seeds. Finally, we calculate

the false positive and negative rates using the same methodology as in Section 4.1.5, i.e.by

comparing the composition of the colored clusters to ground-truth.

The results are shown in Figure 4.18. As the number of seeds increases, the false pos-

itive rate decreases. This is because more seeds mean more normal clusters are correctly

colored. With just 400 seeds, the false positive rate drops to <1%. Unfortunately, relying

on unsupervised training does increase the false negative rate of our system by 2% versus

training with ground-truth data. However, in cases where ground-truth data is unavailable, we

believe that this is a reasonable tradeoff. Note that we also repeated these experiment with

CMS/10gram+count, and it produced slightly higher false positive rates, although they were

still <1%.

Unbalanced Training Dataset. Next, we evaluate the impact of having an unbalanced
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training dataset (e.g.more normal users than Sybils) on the accuracy of our system. Thus far,

all of our experiments have assumed a roughly equal percentage of Sybils and normal users

in the data. However, in practice it is likely that normal users will outnumber Sybils when

unsupervised learning is used. For example, Facebook suspects that 8.7% of its user base is

illegitimate, out of >1 billion total users [12].

We now evaluate how detection accuracy changes when we decrease the percentage of

Sybils in the training data. In these experiments, we construct training sets of 6000 total users

with different normal-to-Sybil ratios. We then run unsupervised training with 500 seeds. Fi-

nally, we incrementally add an additional 3000 Sybils and 3000 normal users to the colored

similarity graph using the NCC algorithm (see Section 4.1.5.1). We ran additional tests using

the NC and KNN algorithms, but the results were very similar and we omit them for brevity.

Figure4.19 shows the final error rate of the system (i.e.after 6000 users have been incre-

mentally added) for varying normal-to-Sybil ratios. The false positive rate remains ≤1.2%

regardless of the normal-to-Sybil ratio. This is a very good result: even with highly skewed

training data, the system is unlikely to penalize normal users. Unfortunately, the false negative

rate does rise as the number of Sybils in the training data falls. This result is to be expected:

the system cannot adequately classify Sybil clickstreams if it is trained on insufficient data.

Handling False Positives. The above analysis demonstrates that our system achieves
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high accuracy with a false positive rate of 1% or less. Through manual inspection, we find

that “false positives” generated by our detector exhibit behaviors generally attributed to Sybils,

including aggressively sending friend requests or browsing profiles. In real-world OSNs, sus-

picious users identified by our system could be further verified via existing complementary

systems that examines other aspects of users. For example, this might include systems that

classify user profiles [213, 244], systems that verify user real-world identity [22], or even Sybil

detection systems using crowdsourced human inspection [225]. These efforts could further

protect benign users from misclassification.

4.1.7 Practical Sybil Detection

In this section, we examine the practical performance of our proposed Sybil detection sys-

tem. First, we shipped our code to the security teams at Renren and LinkedIn, where it was

evaluated on fresh data in a production environment. Both test results are very positive, and we

report them here. Second, we discuss the fundamental limits of our approach, by looking at our

impact on Sybil accounts that can perfectly mimic the clickstream patterns of normal users.

4.1.7.1 Real-world Sybil Detection

With the help of supportive collaborators at both Renren and LinkedIn, we were able to

ship prototype code to the security teams at both companies for internal testing on fresh data.

We configured our system to use unsupervised learning to color clusters. Sequence similarity

graphs are constructed using the Hybrid Model and the 5gram+count distance function, and

the number of METIS partitions K is 100.

Renren. Renren’s security team trained our system using clickstreams from 10K users, of

which 8K were randomly selected, and 2K were previously identified as suspicious by the secu-

rity team. These clickstreams were collected between January 17–27, 2013. 500 honest users
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that have been manually verified by Renren’s security team were used as seeds. Once trained,

our system was fed clickstreams from 1 million random users (collected in early February,

2013) for classification as normal or suspicious. In total, our system identified 22K potential

Sybil accounts. These accounts are now being investigated by the security team.

While corporate privacy policies prevented Renren from sharing detailed results with us,

their feedback was very positive. They also indicated that our system identified a new attack

performed by a large cluster of users whose clickstream behavior focused heavily on photo

sharing. Manual inspection revealed that these photos used embedded text to spread spam for

brands of clothes and shoes. Traditional text analysis-based spam detectors and URL blacklists

were unable to catch this new attack, but our system identified it immediately.

LinkedIn. LinkedIn’s security team used our software to analyze the clickstreams of 40K

users, of which 36K were randomly sampled, and 4K were previously identified as suspicious

by the security team. These clickstreams were gathered in February, 2013. Again, our feedback

was very positive, but did not include precise statistics. However, we were told that our system

confirmed that ≈1700 of the 4000 suspicious accounts are likely to be Sybils. Our system also

detected an additional 200 previously unknown Sybils.

A closer look at the data shows that many of the accounts not detected by our system

were borderline accounts with specific flags popping up in their profiles. For example, some

accounts had unusual names or occupational specialties, while others had suspicious URLs

in their profiles. These results remind us that a behavior model is clearly only a part of the

equation, and should be used in conjunction with existing profile analysis tools and spam de-

tectors [46, 77, 222, 225, 245].

Ongoing Collaboration. In summary, the security teams at both Renren and LinkedIn were

very pleased with the initial results of our system. We plan to continue collaborating with both

groups to improve our system and implement it in production.
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Figure 4.20: Clicks per day by outlier normal users.

4.1.7.2 Limits of Sybil Detection

Finally, we wish to discuss the worst case scenario for our system, i.e.a scenario where

attackers have full knowledge of the clickstream patterns for real users, and are able to instru-

ment the behavior of their Sybils to mimic them precisely. In this attack model, the attacker’s

goal is to have Sybils carry out malicious actions (e.g.sending spam) without being detected.

However, to evade detection, these Sybils must limit themselves to behavior consistent with

that of normal users.

We can thus bound the capabilities of Sybils that avoid detection in this attack model. First,

the Sybil’s clickstream must remain inside the “normal” clusters produced by our detector.

Second, the most aberrant behavior within a given “normal” cluster is exhibited by real users

within the cluster who are farthest from the center. The activities performed by these outliers

serve as effective bounds on Sybil behavior. Sybil clickstreams cannot deviate from the center

of the cluster more than these outliers, otherwise they will be excluded from the cluster and

risk detection. Thus, we can estimate the maximum amount of malicious activity a Sybil could

perform (without getting caught) by studying these outliers.

We now examine the behavior of outliers. We calibrate our system to produce clusters

with false positive rate <1% using Hybrid/5gram+count, and K = 100. In this configuration,

the detector outputs 40 Sybil and 60 normal clusters when run on our full dataset. Next, we

identify the two farthest outliers in each normal cluster. Finally, we plot the clicks per day
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in three activities from the 120 outliers in Figure 4.20. We focus on clicks for sending friend

requests, posting status updates/wall messages, and viewing user profiles. These activities

correspond to the three most common attacks we observe in our ground-truth data, i.e.sending

friend request spam, status/wall spam, and profile crawling.

As shown in Figure 4.20, 99% of outliers generate≤10 clicks per day in the target activities.

In the vast majority of cases, even the outliers generate <2 clicks per day. These results show

that the effective bound on Sybil behavior is very tight, i.e.to avoid detection, Sybils can barely

generate any clicks each day. These bounds significantly increase the cost for attackers, since

they will need many more Sybils to maintain the same level of spam generation capacity.

4.1.8 Summary of Results

To the best of our knowledge, this is the first work to leverage clickstream models for

detecting malicious users in OSNs. Our results show that we can build an accurate Sybil

detector by identifying and coloring clusters of “similar” clickstreams. Our system has been

validated on ground-truth data, and a prototype has already detected new types of image-spam

attacks on Renren.

We believe clickstream models can be a powerful technique for user profiling in contexts

outside of OSNs. In our ongoing work, we are studying ways to extend clickstream models to

detect malicious crowdsourcing workers and forged online product and travel reviews.

4.2 Interpretable User Behavior Model

4.2.1 Introduction

Thus far, we have demonstrated the effectiveness of using clickstream similarity graph to

detect Sybils. However, the current model only performs binary classification among users
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(i.e., either malicious or benign). It helps to capture attackers but does not provide explicit

knowledge about how users (or attackers) behave and how their behavior changes over time.

For instance, among the Sybil accounts, there are likely different attacking strategies used

by different attackers while the current model cannot differentiate them. Even among real

users, there can be undesired behaviors such as bully or trolling that are remain undetected.

So in the following sections, we extend this clickstream model beyond binary classification to

identifying and understanding fine-grained user behaviors in online services.

Understanding user behavior in today’s online services is a complex and difficult challenge.

In systems with millions of users, how can system builders understand the factors that drive

each user’s behavior? Understanding such factors can dramatically improve a user’s experi-

ence, either through better performance, customized user interface features, or better targeted

ads. Take for example the LinkedIn social network. LinkedIn is used by different types of users

ranging from students not yet on the job market, happily employed professionals, professionals

seeking new positions, and recruiters. Each user type uses the service differently, and yet rarely

identifies their usage type explicitly in their profile data or elsewhere.

The intuitive solution is to survey users on how they use these systems through well-

designed user studies [49, 243]. Unfortunately, this approach is limited by three factors. First,

detailed user studies are limited in scale because of their significant cost to conduct and ana-

lyze. Studies sacrifice scale for depth on a small sample of the user population. Second, users

may not be willing or able to self-identify into different user categories. Finally, user surveys

rely on known questions or hypotheses. Unknown or new user behaviors cannot be anticipated

in these studies.

These issues can be addressed by a data-driven approach to understanding user behavior.

With improving data mining tools, today’s online services collect all traces of user activity to

produce clickstreams, sequences of timestamped events generated by user actions. For web-

based services, these might include detailed HTTP requests. For mobile apps, clickstreams
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can include everything from button clicks, to finger swipes and text or voice input. Compared

to user studies, clickstream analysis can scale to large user populations, identify behaviors

without user assistance, and identify previously unknown behaviors.

Yet identifying common user behaviors in clickstreams is very challenging. Early works

on clickstreams are limited, and focused on users’ “navigation paths” within a website [200,

216, 100], or use Markov Chain models to predict popular webpages [189, 139]. To identify

user behaviors today, we need a sophisticated clickstream analysis system that meets three re-

quirements. First, it must scale and function well on large, noisy clickstream datasets. Second,

the system should be able to capture previously unknown user behavior, i.e. capture behavior

without categories or labels defined a priori. This is critical, because users often utilize popular

services in unexpected ways, and adapting to these behaviors can determine the long-term vi-

ability of a service. Finally, the system should be interactive, and help others understand user

behavior by presenting detected behaviors in an intuitive and understandable way. In contrast,

current tools usually treat user models as a “black box” for classification tasks, while offering

little explanations on how users behave and why [91].

In this work, we present the design and evaluation of a practical and scalable clickstream

tool for user behavior analysis. Based on clickstream similarity graph (previous section), we

use a hierarchical clustering approach to detect the most popular behavior patterns, and use an

iterative feature pruning technique to remove the influence of dominating features from each

subsequent layer of clusters. The result is a hierarchy of behavioral clusters where higher-

level clusters represent more general user behavior patterns, and lower-level clusters further

identifying smaller groups that differ in key behavioral patterns. We can further use Chi-

square statistics to identify statistical features that can be used to categorize and label behavior

clusters.

Our system provides an easy way for service providers to analyze and understand groups

and patterns in user behavior. First, the hierarchy of behavior clusters presents a compressed
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view of the most dominant user behavior patterns. In addition, because our approach does not

rely on prior knowledge of categories or labels, it is able to capture any behavior patterns, both

known and unknown. Finally, we integrate an interactive visualization tool to help service

providers to examine the clustering results in real time.

To demonstrate the effectiveness of our system, we perform case studies using two large-

scale, real-world clickstream datasets. One clickstream captures 135 million smartphone app

events from 100K users on Whisper, a popular anonymous social network app. A second

dataset comes from Renren (China’s Facebook) and contains 7 million click events from 16K

normal and malicious users. Our tool produces user behavioral models and reveals key in-

sights about users on both networks. First, we identify patterns that capture different levels

of “dormant users” on Whisper, and effectively predict dormant users based on neighboring

behavior clusters. Second, we study user blocking behavior on Whisper and show that much

of the blocking behavior is bidirectional, often following private message sessions, and is often

correlated with sexually suggestive messages (sexting). On our Renren dataset, our system not

only accurately identifies fake accounts with 95% accuracy, but also reveals subgroups that uti-

lize different attack strategies. For example, we identify attacker subgroups that try to emulate

normal users by intentionally slowing down their attack speed to avoid detection.

Finally, we evaluate our tool on two key benchmarks: First, we evaluate whether the

algorithm-generated behavioral cluster are easy to understand with a controlled user study.

We let participants summarize the corresponding user behaviors in a given cluster by exam-

ining cluster features. We find that most participants can interpret the semantic meaning of

the user behavior and their summaries reach a high level of consistency. Second, we evaluate

the clustering quality produced by our algorithm, in comparison to existing clustering methods

(e.g., K-means). Results show that our approach reaches a higher accuracy in detecting and

grouping similar users.

We make three key contributions.
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• We propose a novel unsupervised method to model online user behaviors. By building

and partitioning a clickstream similarity graph, we capture the detailed user behavior

models as hierarchical clusters in the graph. In addition, our tool automatically produces

intuitive features to interpret the meaning of the behavioral clusters.

• We perform real-world case studies on two large-scale clickstream traces (142 million

click events in total). We demonstrate that our tool can effectively help service providers

to identify unexpected user behaviors (malicious accounts in Renren, hostile chatters in

Whisper) and even predict users’ future actions (dormant users in Whisper).

• Finally, we perform benchmark evaluations on our tool. The results show that the

algorithm-generated cluster labels are easy to understand, and our tool produces highly

accurate user behavioral models.

4.2.2 Whisper Datasets

In this work, we seek to build a clickstream tool for user behavioral modeling in online

services. To provide context, we first describe the clickstream datasets used in our study. In

addition to the Renren clickstream dataset described in the above section (Section 4.1), we

introduce a new clickstream dataset from a popular mobile social network Whisper. In the

following, we describe Whisper and the clickstream dataset in details. Note that we have taken

careful precautions to avoid any personally identifiable information in our datasets, and our

study has been approved by our local IRB under protocol #COMS-ZH-YA-010-6N.

Whisper is a popular smartphone app for anonymous social messaging. It allows users

to share confessions and secrets under anonymous nicknames without worrying about pri-

vacy [66]. As of April 2015, Whisper has reached 10 million users. Unlike traditional social

networks, Whisper does not maintain user profiles or social connections. Its key function is

messaging: the app overlays a user’s short text message on top of a background picture se-
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Category Event Type Events Initiated
# (K) % By User?

Browsing View whisper 52437 38 Yes
View popular feed 16008 12 Yes
View nearby feed 5354 4 Yes
View latest feed 2346 2 Yes
View other feed 196 1 Yes

Account Login 16994 12 Yes

Posting
Heart whisper 2156 2 Yes
Upload image 1325 1 Yes
Create whisper 1308 1 Yes

Chatting
Being blocked in chat 3271 3 No
Block user in chat 3271 3 Yes
Start a chat 2238 2 Yes

Notification Receive notification 9680 7 No
Whisper recommendation 2530 2 No

Table 4.5: Event types in the Whisper dataset. # of click events are presented in thousands.
Events that are <1% are omitted for brevity.

lected by keywords. The resulting whisper message is posted to the public stream where other

users can read, reply or heart (like) it. In addition, the app provides a chat feature to facilitate

direct communication. Any user can start a private chat with the whisper author. Finally, users

browse whispers from several public lists.

We collect detailed clickstream data from Whisper in collaboration with Whisper’s Data

Science team. The dataset contains 135,208,159 click events from 99,990 users over 45 days

in 2014. Users were randomly selected from the Whisper user population as a representative

sample. Each click event is characterized by userID, timestamp, event type and event param-

eter. The userID in our dataset (including Renren data) is globally unique and has been fully

anonymized to protect user privacy. We obtained userIDs from each company through inter-

nal collaborators. The Whisper dataset contains 33 types of events that can be grouped into 6

categories. These categories are:

• Browsing: Browsing whispers, visiting the public whisper feeds (popular/nearby/latest
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list).

• Account: Creating a user account and login the app.

• Posting: Posting original whispers and replies, hearting/unhearting a whisper, sharing

whispers, and tagging a whisper to a topic.

• Chatting: Initiating a chat, blocking other users in a chat, and being blocked in a chat.

• Notification: Receiving notifications about hearts/replies on their whispers, and whisper

recommendations.

• Spam: Whisper being examined or deleted by system admins, flagging other people’

whispers. Events in this category are all below 1% (omitted from Table 4.5).

Among the 33 event types, 25 are user-initiated events corresponding to the user performing

an action on the app (e.g., “posting a whisper”). The rest 8 events are system events which don’t

require user action (e.g., “receiving notifications”). Table 4.5 shows the most popular events

and the absolute number (in thousands) and the percent of clicks. Overall, the most preva-

lent events are related to content consumption such as viewing whispers. Interestingly, under

the chatting category, the most prevalent events are “blocking users” and “being-blocked” by

others. Intuitively, anonymous environment is more likely to foster abusive behaviors (e.g.,

bullying) [210]. Later, we investigate this behavior in greater details using behavioral models.

Our dataset also contains the content of the public whispers (about 1 million) posted by

these users. This content data is not used to construct clickstreams, but used to understand

specific user behavior and user intent later in our analysis.

4.2.3 Unsupervised User Behavior Modeling

In this section, we describe our unsupervised method to build user behavior models from

clickstream data. At the high level, our system assumes that human behavior naturally forms

clusters. Despite users’ differences in personalities and habits, their behavioral patterns within

202



User Behavior Modeling for Security Defense Chapter 4

Unclustered
Users

K=2

K=5

K=7

C1 C2

C3 C4 C5 C6 C7

C8

C3

C9 C10 C11 C12 C13 C14

Figure 4.21: Hierarchy of the behavioral clusters.

a given service cannot be entirely disparate. Our goal is to identify such natural clusters as

behavioral models. In addition, user behavior is likely multi-dimensional. We expect user

clusters to fall into a tree hierarchy instead of a one-dimensional structure (Figure 4.21). In this

hierarchy, most prominent features are used to place users into high-level categories while less

significant features characterize detailed sub-structures.

To these ends, we design an algorithm to captures hierarchical clickstream clusters with it-

erative feature pruning. At the high-level, we partition the similarity graph to identify clusters

of users with similar clickstream activities. To capture the hierarchical structure, we recursively

partition newly generated clusters, while pruning the feature set used to measure clickstream

similarity. Intuitively, by identifying and pruning dominating features in higher-level clus-

ters, we allow the secondary features to manifest and discover more fine-grained subclusters.

Also, the pruned features are indicative of why this cluster is formed, which can help service

providers to understand the behavioral model.

In the following, we describe the feature-pruning algorithm to identify clusters in the sim-

ilarity graph. Finally, we build a visualization tool to help service providers examine and

understand behavioral clusters.
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4.2.3.1 Feature Pruning based Clickstream Clustering

A similarity graph dominated by very few features gives little insight on subtle differences

between users. The generated clusters may only describe the broadest user categories, while

interesting and detailed behavioral patterns remain hidden. We recognize that similarity graph

has the capability to capture user behavior at different levels of granularity. We implement iter-

ative feature pruning as a means of identifying fine-grained behavioral clusters within existing

clusters, and recursively partitioning the similarity graph. In the following, we first introduce

the key steps of our clustering algorithm and feature pruning. Then we describe using pruned

features to interpret the meaning of the clusters, and the technical details to determine the

number of clusters.

Iterative Feature Pruning & Clustering. We explain how our algorithm works using

the example in Figure 4.21. We start with a similarity graph of all users, where clickstream

similarity is measured based on the full feature set (union of all k-grams). By partitioning the

similarity graph, we get the top-level clusters C1 and C2. The partitioning algorithm we use

is Divisive Hierarchical Clustering [122], which can work on arbitrary metric space and find

clusters of arbitrary shapes.

To identify more fine-grained subclusters within C1 or C2, we perform feature pruning: We

identify the primary features that are responsible for forming the parent cluster, remove them

from the feature set, and use the remaining secondary features to further partition the parent.

For example, suppose C1 is the current parent cluster. We first perform feature selection to

determine the key features (i.e., k-grams) that classify users into C1. Then to partition C1, we

remove those top k-grams from the feature set, and use the remaining k-grams to compute

a new similarity graph for C1. In this way, secondary features can step out to partition C1

into C3 and C4 (by running Divisive Hierarchical Clustering on the new similarity graph). For

each of the newly generated clusters (e.g., C3 and C4), we recursively run the same process
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to produce more fine-grained subclusters. Our algorithm stops when all the new partitions

cannot be further split, i.e. clustering quality reaches a minimal threshold. The result is a tree

hierarchy of behavioral clusters.

The key step of feature pruning is finding the primary features responsible for forming the

parent cluster. We select features based on Chi-square statistics (χ2) [242], a classic metric to

measure feature’s discriminative power in separating data instances of different classes. For a

given cluster, e.g., C1, we measure the χ2 score for each feature based the distribution of users

in C1 and those outside C1. We sort and select the top features with the highest χ2 scores.

Our empirical data shows χ2 distribution usually exhibits “long-tail” property — only a small

number of dominating features have high χ2 scores. We automatically select top features by

identifying the sweet point (or turning point) in the χ2 distribution [190].

Understanding the Behavioral Clusters. We can infer the meaning of the clusters based

on the selected features during feature pruning phase. A feature is selected because users

in this cluster are distinct from users outside the cluster on this particular feature dimension.

Thus it can serve as explanations for why a cluster has formed and which user behaviors the

cluster encompasses. Later we construct a visualization tool to help service providers interpret

behavioral clusters.

Determining the Number of Subclusters. For each parent cluster (and its similarity graph),

our system identifies the natural number of subclusters within. To do so, we monitor the

changes of the overall clustering quality while continuously partitioning the graph to more

subclusters. We stop when generating more subclusters will no longer improve the clustering

quality. The metric to assess clustering quality is the widely-used modularity, which measures

the density of edges inside clusters to edges outside clusters [52]. The modularity value ranges

from -1 to 1, with a higher value indicating a better clustering quality.
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#1: Read Whispers Sequentially 

#2: Inactive Users

#3: Scan Popular Feed

#7: Browse Whispers
from Popular Feed

#6: Give Hearts

#5: Login Occasionally 

#4: Block Users in Chat

Click Event Time Gap Event
Distribution within cluster (red)

Distribution outside cluster (green) Chi-square score

Figure 4.22: Whisper behavioral clusters. Cluster labels are manually input based on results
of each cluster. The pop-up window shows users in Cluster #1 tend to sequentially read
whispers.

4.2.3.2 Cluster Visualization

We build a visualization tool for service providers to examine and understand user behav-

ioral clusters generated by our algorithm. The tool allows service providers to answer key

questions about their users, e.g., what are the major behavioral categories? Which behavior is

more prevalent? What’s the relationship between different types of behavior?

Visualization Interface. Figure 4.22 shows a screenshot of our tool displaying the behav-

ioral clusters of Whisper (best viewed in color). We build this tool using D3.js, a JavaScript

library for data visualization. By default, we display the cluster hierarchy using Packed Cir-

cle [232], where child clusters are nested within their parent cluster. This gives a clear view of

the hierarchical relationships of different clusters. Circle sizes reflect the number of users in

the cluster, which allows service providers to quickly identify the most prevalent user behav-
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Figure 4.23: Renren behavioral clusters. The pop-up window shows users in Cluster #2 focus
on sending friend requests and browsing user profiles.

iors. Finally, the visualization tool is zoomable and easy to navigate among clusters. We also

implemented other interfaces such as Treemaps [116], Sunburst [202] and Icicle [127]. Service

providers can choose any of these based on personal preference (Figure 4.24). We use Packed

Circle as default because it leaves more space between clusters, making it easier to visually

separate different clusters.

To understand the user behavior in a specific cluster, we can click the cluster to pop-up

an information window. Take the one in Figure 4.22 for example: we show the basic cluster

information on top, including clusterID and the number of users. Below is a list of “Action

Patterns” (k-grams) selected by our Feature Pruning algorithm to describe how users behave.

Each row contains one pattern, ranked by χ2 score (brighter color indicates higher score). The

“Frequency (PDF)” column shows how frequently each action pattern appears among users of

this cluster. The red bar indicates the pattern frequency (probability density function) inside

the cluster, and the green bar denotes frequency outside of this cluster. Intuitively, the more
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(a) Treemaps (c) Sunburst(b) Icicle
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Figure 4.24: Whisper hierarchical clusters displayed with different visualization methods. We
mark the cluster number of the top-level clusters in the text box.
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Figure 4.25: # of Selected features per cluster.

divergent the two distributions are, the more distinguishing power the pattern has. In this

example, the first pattern shows users viewing whispers sequentially with a time interval of

one minute or less. The red bar is much more skewed to the right, indicating users in this

cluster perform this action more often than users outside. Finally, service providers can “add

descriptions” to the cluster using the button in blue.

Visualizing Whisper and Renren Clusters. We run our system on Whisper and Renren

datasets and display the behavioral clusters in Figure 4.22–4.23. We apply the same configura-

tion on both runs: the partitioning of a cluster stops if the modularity reaches a threshold 0.01

(insignificant cluster structure). We intentionally set a loose threshold to let the algorithm dig

out very detailed sub-clusters. In practice, service providers can tune this parameter depending

on how detailed behavioral clusters they need. For our Whisper dataset, our system produces a
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tree hierarchy of 107 clusters (root included) with 95 leaf clusters. The maximum tree depth is

4. For Renren, the hierarchy contains 108 clusters (95 leaf clusters) with a maximum depth of

4.

Note that our visualization tool only displays the selected features for each cluster. As

shown in Figure 4.25, 80% of the clusters have less than 5 selected features, and 90% of the

clusters have less than 10. This indicates that the prevalent user behavior can be characterized

by a small number of key feature dimensions. Also, this makes it possible for people to un-

derstand the cluster without looking through the full feature set (e.g., Whisper data has 80903

unique kgrams as features).

4.2.4 Evaluation: Cluster Labels

In the following, we analyze the behavioral clusters in Whisper and Renren, and demon-

strate their effectiveness in identifying unexpected behavior and predicting future activities.

Our evaluation contains three steps. First, To evaluate the ease of understanding and labeling

behavioral clusters, we run a user study. We ask the participant to read cluster information

and describe the corresponding user behavior. Then we examine whether different people give

consistent descriptions. Second, we perform in-depth case studies on the unusual behavioral

clusters, and provide new insights to both networks. Third, we evaluate cluster quality, i.e.,

how well behavioral clusters capture similar users.

4.2.4.1 User Study to Interpret Clusters

User behavioral models need to be intuitive and understandable to the service providers.

Thus we conduct a user study to answer two key questions: Are these behavioral clusters

understandable to humans? How consistently do different people interpret the corresponding

user behaviors?

209



User Behavior Modeling for Security Defense Chapter 4

 0

 5

 10

 15

 20

0.0 0.2 0.4 0.6 0.8 1.0

N
um

be
r o

f C
lu

st
er

s

Consistency Score

Figure 4.26: Distribution of consistency
score.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

C
on

si
st

en
cy

 S
co

re

Cluster Level

Figure 4.27: Consistency score vs. cluster
level.

In this user study, we ask participants to browse behavioral clusters using our visualization

tool (Packed Circle interface). For each cluster, the participant is asked to describe the user

behavior using her own words (in one sentence) based on the information displayed. If a cluster

is not understandable to the participant, she can mark it as “N/A”. Since our tool is designed

for service providers, we expect they will have basic technical backgrounds. Our participants

include 15 graduate students in Computer Science who have basic knowledge in online social

networks. To best utilize participants’ time, we only use theWhisper clusters (Figure 4.22), and

the participants only look at top clusters that cover 90% of users at each level of the hierarchy

(37 clusters in total). Before the test, we ask the participants to use the Whisper app for at

least 10 minutes to get familiar with it. Each participant also goes through a quick instruction

session to learn how to use the visualization tool and how to read the information in the pop-up

window.

4.2.4.2 User Study Results

We gathered a total of 555 descriptions from the participants on the 37 clusters (15 de-

scriptions per cluster). We find that the behavioral clusters are generally understandable to

the participants. Out of the 555 descriptions, 530 (95.5%) are valid descriptions about user

behaviors (others are “N/A” marks). In addition, most participants can finish the task within
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a reasonable amount of time. The average completion time is 28.7 minutes (46 seconds per

cluster).

To understand the “consistency” of the descriptions, we let 3 external experts independently

read and assess the collected descriptions. These experts are graduate students recruited outside

of our research group (to avoid bias) and none of them participated in labeling clusters in the

first round. For each cluster, an expert reads all 15 descriptions and assigns a consistency score

(0 to 1), which is the ratio of the maximum number of consistent descriptions over all descrip-

tions. For example, if 10 out of the 15 descriptions are consistent, the score is 10/15=0.667.

The final consistency score is averaged over three experts. Figure 4.26 shows the consistency

score distribution. The most common scores range from 0.6 to 0.8. The score distribution

skews heavily to the right. This indicates that most clusters can be interpreted consistently.

Upon examining clusters with low consistency scores, we have two key observations. First,

lower-level clusters are more difficult to interpret. As shown in Figure 4.27, average consis-

tency scores decrease as we move further along the tree hierarchy. Intuitively, lower-level

clusters represent more specific or even outlier behavior that is difficult to describe. Second,

we find clusters with more selected features are harder to interpret. We perform correlation

analysis between the consistency score and the number of selected features per cluster, and

find they correlate negatively (Pearson coefficient r =-0.1, p =0.5). Noticeably, the consis-

tency score also correlates negatively with the unique event types in selected features (Pearson

coefficient r =-0.4, p =0.02).

Finally, we add short labels to the top-level clusters in Whisper and Renren based on the

descriptions from user study and our own interpretations. The labels are shown in Figure 4.22

and Figure 4.23 respectively.

211



User Behavior Modeling for Security Defense Chapter 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45

C
D

F 
of

 U
se

rs

Number of Days with Active Events

Within Cluster #2
Outside Cluster #2

Figure 4.28: Number of days when users
have active events in their clickstreams.
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Figure 4.29: Ratio of blocking event over
all click events in a user’s clickstream.

4.2.5 Evaluation: Case Studies

Next, we present in-depth analysis on a few behavioral clusters as case studies. We have

two goals. First, by analyzing the user behavior in these clusters, we validate the correctness

of our cluster labels. Second, we explore the interesting (or unexpected) user behavior, and

demonstrate the prediction power of the user behavioral models. Due to space limitation, we

focus on two clusters from Whisper (Cluster#2 and Cluster#4), and one from Renren (Sybil

Cluster).

4.2.5.1 Case Study 1: Inactive Whisper Users

We start with Cluster#2, which is labeled as inactive users. The selected action patterns

of this cluster consist almost entirely of “receiving notification” events, indicating these users

have not been actively engaged with the app. This is also confirmed in Figure 4.28: users

in Cluster#2 have far fewer active days (when users actively generate clicks) than the rest of

users. A remarkable 80% of users in Cluster#2 did not generate any active events through the

45 days, representing completely dormant users. In fact, our algorithm successfully groups

dormant users into a separate subcluster (Figure 4.22, the biggest subcluster in Cluster#2).

Contrary to expectation, inactive users are not outliers. Cluster#2 is the second largest

cluster with 21,962 users (20% of all users). From the perspective of service providers, it is
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important to identify the early signals of user disengagement, and implement mechanisms to

re-gain user activities.

Predicting Dormant Users. We demonstrate the effectiveness of our behavioral models in

predicting future user dormancy. The high-level idea is simple: Whisper can build behavioral

models using users’ most recent clickstreams, and update the models at regular intervals (e.g.,

every month). Our hypothesis is that users placed in the “inactive” cluster are more likely to

turn completely dormant. Thus we can use the inactive cluster to predict future dormant users.

We validate this hypothesis by investigating whether users in the “inactive” cluster will

migrate to the “dormant” cluster over time. To do so, we split our clickstream data by date

into three snapshots: Oct.13–27, Oct.28–Nov.12 and Nov.13–26. Then we generate behavioral

clusters for each snapshot. The inactive cluster can be easily pinpointed within each snapshot

based on selected activity patterns (i.e., notification events). Also, we consistently find the

following sub-structures within the inactive cluster: a big “dormant” cluster in which users have

zero active events, alongside several “semi-dormant” clusters in which users are occasionally

active.

In Table 4.6, we compare clusters from two adjacent snapshots to determine the likelihood

of users migrating into the dormant cluster. The results confirm our hypothesis: Users in semi-

dormant clusters are more likely to migrate to the dormant cluster than others. For example,

17% of semi-dormant users in snapshot-2 end up in the dormant cluster in snapshot-3, while

only 1.1% of other users do so. Users already within the dormant cluster are highly likely

to remain there through future snapshots (94%-99%). This result shows that our behavioral

models can successfully track and predict the dormancy of Whisper users. It allows service

providers to make timely interventions before losing user participation.
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Cluster # (%) of Users Join the Dormant Cluster
Snap 1→ Snap 2 Snap 2→ Snap 3

Dormant Cluster 15873/16872 (94%) 16161/16314 (99%)
Semi-dormant Clusters 363/9383 (4%) 2026/11773 (17%)
Other Clusters 63/73735 (0.09%) 804/71903 (1.1%)

Table 4.6: Users becoming dormant over time. We split the clickstream data into three snap-
shots, and report the number of users who migrate to the dormant cluster over two adjacent
snapshots.

Actions per day Statistics: Mean (STD) T-statistics (p value)
Inside C#4 Outside C#4 In vs. Out

Whisper Posted 1.25 (1.77) 0.65 (1.46) 27.43 (p<0.001)*
Replies Received 0.70 (4.09) 0.26 (1.41) 8.89 (p<0.001)*
Heart Received 2.39 (48.68) 0.69 (5.34) 2.93 (p=0.0034)*
Chats Initiated 2.20 (10.93) 1.18 (3.98) 7.79 (p<0.001)*

Table 4.7: Activity statistics for users inside and outside Cluster#4. *The difference is statis-
tically significant based on Welch two-sample t-tests.

4.2.5.2 Case Study 2: Hostile Behaviors of Whisper Chatters

Next, we analyze Cluster#4, which contains 7026 users who tend to block other people

during private chat. As shown in Figure 4.29, users in this cluster perform blocking actions

much more frequently. 80% of users spend more than 10% of their total clicks on blocking

events. In contrast, only 1% of users outside Cluster#4 achieve this ratio.

Next, we explore the possible causes to the blocking events. A private chat is initiated by

the user who wants to talk to whisper authors. Our hypothesis is that users in Cluster#4 are

more likely to post whispers which attract unwanted chatters to harass them. To validate this,

we list behavioral statistics for users inside and outside Cluster#4 in Table 4.7. Users in Clus-

ter#4 are more active in posting public whispers, which attract more hearts and replies from

others (statistically significant based on Welch t-tests). These users are likely to experience

harassment as a side effect.

Users may attract unwanted chat messages due to the topics they write about. We analyze

users’ whisper content in Cluster#4 and find they often consist of sexually explicit messages
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Users Top 30 Keywords
Inside C#4 20f, 19f, 18f, 17f, 29, f, roleplay, daddy, wet, role,

lesbians, 17, lesbian, kinky, trade, bored, kik, weak-
ness, nude, threesome, bestfriend, msg, shower, boys,
chubby, nipples, horny, female, dirty, message

Outside
C#4

religion, que, bullshit, 18m, personally, bible, even-
tually, faith, sign, plenty, hilarious, congratulations,
gender, brain, idiot, dumbass, ignorant, quite, de-
pends, animals, google, society, loss, count, health,
sexuality, em, business, sound, foot

Table 4.8: Top whisper keywords for users in Cluster#4 and users outside Cluster#4.

#4: Block Users in Chat  

#4-1: Less Active Uers
#4-2: More Ative Users

#4-2-1: Get Blocked

#4-2-2: Not Get Blocked

Figure 4.30: The sub-clusters within Cluster#4.
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Figure 4.31: Number of being-blocked
events per user.

(sexting). Table 4.8 lists top keywords from users in and outside Cluster#4. Keywords are

ranked based on how strongly they are associated with the cluster. For each keyword, we com-

pute a simple correlation ratio for ranking, as the number of whispers in Cluster#4 containing

this keyword divided by the total number of whispers with this word. We exclude common

stopwords [53] and low frequency words to avoid statistical outliers. A mere glance at Ta-

ble 4.8 reveals that Cluster#4 users are focused on exchanging sexual content. Terms like

“20f”, “f”,“17” and “lesbian” indicate age, gender (f = female) and sexual orientation. Other

frequently used words are associated with the exchange of nude photos (“trade”, “shower”,

“nipples”) or more general erotic terms.

Users Who Get Blocked. Within Cluster#4, we find a subcluster of 1412 users who often
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Figure 4.32: Number paired blocking and blocked events per user. We match blocking and
blocked events under the same whisper with time interval < 1 hour.

get blocked by others (Cluster#4-2-1 in Figure 4.30). As shown in Figure 4.31, these users have

more “being-blocked” events in their clickstreams. In the meantime, as members of Cluster#4,

these users are also highly likely to block other users.

Then the question is how often blocks are “bidirectional”, i.e., userX blocks Y and then Y

immediately blocksX . Unfortunately, our dataset cannot directly measure bidirectional blocks.

For a blocking event, the known information includes the whisperID where two users chat, the

userID issuing the block, but not the userID being blocked. Thus we take an approximation

approach to match potential “bidirectional” blocks (as upper bound). For each user, we group

her blocking and being-blocked events under the same whisperID as a pair if their time interval

is within a short time window (e.g., one hour). This approximates immediate blocking back

after getting a block. Figure 4.32 shows the matching result using time window as 1-hour.

Users in Cluster#4, particularly in Cluster#4-2-1 have a higher number of paired blocking

events. It is likely these users are easily offended or often offend other users during private

chat, suggesting a strong hostile behavior. We also test 10 minutes and 1-day time window and

have similar conclusion.
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4.2.5.3 Case Study 3: Renren Sybil Accounts

Finally, we analyze the Sybil cluster in Renren (Cluster#2 in Figure 4.23). Our system

groups Sybil accounts into one single cluster with high accuracy. 95% of true Sybils are clus-

tered into the cluster and only 0.74% of normal users are misclassified. The selected features

indicate Sybils are more likely to engage in sending friend requests. This makes sense because

a Sybil must first befriend a user before accessing private information or spamming.

In addition, our system uncovers more fine-grained subclusters within the Sybil cluster,

representing different attack strategies. Here we focus on the largest 5 (out of 8 subclusters),

which encompass 99.36% of Sybil accounts. Table 4.9 shows their behavioral statistics. First,

S3 appears to describe “crawlers” who specialize in collecting user information and photos for

sale on the black market [155]. Second, S1, S2 and S4 all focus on “sending friend requests.”

Sybils in S1 send requests in bulks via Renren’s friend recommendation system, resulting in a

high volume of friend requests per day (25.13). On the other hand, Sybils in S4 tend to build

social connections slowly (8.76 requests per day), possibly to avoid being detected. Finally,

Sybils in S5 are likely to receive friend requests. The ratio of incoming friend requests over

outgoing ones is notably higher (0.286) than other Sybil clusters (< 0.05). One possible ex-

planation is that these Sybils are controlled by a single attacker to befriend with each other to

bootstrap their social connections.

4.2.6 Evaluation: Cluster Quality

Finally, we evaluate the quality of behavioral clusters produced by our system by examining

how well they capture similar users. For this analysis, we compare our algorithm with existing

clustering methods.
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ID Cluster # of FrdReq ProfileReq In/out
Label Users per Day per Day FrdReq

S1 Friending in bulks 4064 25.13 0.30 0.002
S2 Friending quickly 1891 19.81 2.08 0.004
S3 Crawl profiles 1348 11.41 6.44 0.050
S4 Friending slowly 899 8.76 1.93 0.00004
S5 Receive FrdReq 129 25.65 3.43 0.286
#1 Normal users 6141 1.65 2.80 1.06

Table 4.9: Characteristics of users the 5 biggest Sybil clusters (S1–S5) and the normal user
cluster. We add the cluster label based on the selected action patterns per cluster. “FrdReq”
stands for “friend requests.”

4.2.6.1 Clustering Quality

At the high-level, an effective clustering algorithm should accurately group similar users

together while separating different ones. We evaluate the quality of our behavioral clusters by

testing how well they capture similar users. More specifically, given a small sample of known

users, how accurately can they retrieve other users of the same type?

Experiment Setups. We first explain our experiment method, using Sybil detection in

Renren as an example. Suppose a small sample of Sybils are known to us (x%). To detect the

rest of the Sybil accounts, we use the known samples as seeds to color Renren’s behavioral

clusters. Any cluster that contains a known Sybil will be colored as Sybil-cluster (uncolored

ones as normal). We evaluate the accuracy using two metrics: Precision (percentage of users

in Sybil-clusters that are true Sybil accounts) and Recall (percentage of true Sybils that are

captured by Sybil-clusters). A higher precision and recall indicate a better clustering quality.

We vary the parameter x (1%, 5%, 10%) and repeat each experiment 10 times.

To perform this experiment on Whisper dataset, we need to construct known groups of

users. We use the two types of users identified in earlier analysis: Dormant users who have

zero active events (16688 users) and Blocked users who have been blocked at least once in a

private chat (68302 users).
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Figure 4.33: The precision and recall of using the behavioral clusters to detect certain type of
users. We compare our method with K-means and Hierarchical Clustering algorithm (HC).

Comparison Baselines. Our baselines are two widely used clustering algorithms: K-

means[97] and Hierarchical Clustering (HC) [122]. We run both algorithms to cluster the full

similarity graph (without feature pruning). At the high-level, K-means divides users into K

clusters where each user is assigned to the nearest cluster (center). The number of clusters K

must be pre-defined. Here we generate multiple versions of K-means clusters, and pick the K

with the highest clustering quality (modularity). As a result, K-means generates 10 clusters on

the Renren dataset and 10 for Whisper. In the same way, HC generates 7 clusters for Whisper

and 2 clusters for Renren.

Results. First, for Sybil detection on Renren, our algorithm is highly accurate with a preci-

sion of 93% and a recall of 94% (1% ground-truth as seed) as shown in Figure 4.33a. Using

more seeds (e.g. 5%) produces a higher recall (99%) but reduces precision (82%). Nonethe-

less, the overall performance is better than K-means and HC (precision 67% and 61%). On the

Whisper dataset, our algorithm achieves accurate results (98% precision, 100% recall) in iden-
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tifying dormant users (Figure 4.33b). K-means and HC have a much lower precision (32% and

78%) with the same recall. Finally, all three algorithms achieve similar accuracy in detecting

blocked users (73% precision and 99% recall). These results indicate that our system produces

high quality clusters to capture similar users.

4.2.7 Summary of Results

In this work, we describe a practical clickstream tool to model online user behavior. Our

tool captures complex human behaviors while presenting them in a simple and intuitive man-

ner. For a given clickstream dataset, it automatically identifies clusters of users with similar

clickstream activities, and captures the natural hierarchical structure for user clusters. With

a visualization tool, service providers can explore dominating user behaviors and categories

as an overview, while tracking fine-grained user behavioral patterns along each category. Our

tool does not require prior knowledge or assumptions of user categories (unsupervised), thus

it can effectively capture unexpected or previously unknown behaviors. We demonstrate its

effectiveness using case studies on two large-scale online social networks. Our tool accurately

identifies unusual behaviors (malicious Sybils, hostile users) and even predicts users’ future

activities (dormant users). Finally, we shared our tool and results with the Whisper Data Sci-

ence team. While we are awaiting more detailed comments, the initial feedback was extremely

positive.

We believe our proposed techniques are generalizable beyond online social networks. To

obtain clickstream traces, service providers can extract “user events” from their HTTP logs.

In our analysis, we define user events based on social network features. For other services,

specific events will depend on the service functionalities. For example, Wikipedia, News or

Q&A sites might extract events based on the category or topic of the pages. E-commerce

web sites can define user events based on the functionality of the clickable links or product
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categories. Crowdsourcing sites can define click events based on the crowdsourcing workflow.

In future work, we will explore broader applications of clickstream behavioral models, and

expand our tool to other user-driven systems.
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Related Work

5.1 Social Question Answering

Community based Q&A. Researchers have studied community based Q&A (CQA) sites

such as Yahoo Answers [96, 35, 95, 150, 194, 195], MSN QnA [104, 183], Stack Over-

flow [39, 143], Math Overflow [212] from different perspectives. Some looks into managing

questions and topics in CQA sites. Others study question archiving and tagging [183]. In

addition, researchers have proposed methods to classify factual questions with conversional

questions [95, 150], or reuse the knowledge collected from old questions to answer new sim-

ilar questions [195]. Finally, others evaluate the quality of user generated content, including

answer quality [194, 212, 35, 110] and question quality [39, 136].

Experts in Q&A Sites. A second group of work seeks to develop algorithms to identify

experts in Q&A sites. One direction is to rank users based on expertise measures generated

from user history data (e.g. questions, answers, votes) [35, 170, 137]. Another direction is

modeling user interaction to design network-based ranking algorithms to identify experts [118,

134, 248]. Finally, other works study user community from perspectives such as answering

speed [143] and user incentives in CQA sites [104].
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Q&A in Social Networks. Studies have also looked into the question and answering behav-

iors in existing online social networks. Users can ask their friends questions by posting tweets

in Twitter [173] or updating status in Facebook [171, 154, 102].

Our work (Section 2.1) is the first to analyze a social network based Q&A site using large-

scale data measurement and analysis. Instead of treating all users as one big community, we

explore the impact of a built-in social network and other graph structures. A recent report [174]

looks at Quora’s reputation system in depth with a small dataset of 5K questions.

5.2 Online Social Networks and Anonymity

Over the last few years, researchers have performed measurement studies on online social

networks (OSNs) including Facebook [236, 218], Twitter [61, 128], Pinterest [82], and Tum-

blr [62]. Most of today’s online social networks have stored large volumes of sensitive data

about users (e.g., personal profile, friending information, activity traces), all of which pose

potential privacy risks. Various techniques have been proposed to compromise user anonymity

and infer users’ sensitive information from social network data [158, 152, 253, 43].

Anonymous online social networks such as Whisper and Yik Yak allow users to post con-

tent and communicate without revealing their real identity. Prior works have studied various

anonymous platforms including anonymous forums [193], discussion boards [48, 124, 162]

and Q&A sites [103]. Most earlier works study user communities focusing on content and

sentiment analysis. More recently, anonymous social networks have emerged, particularly on

mobile platforms. A recent work [184] conducted a user survey on SnapChat to understand

how they used the anonymous social app. Another recent user study explores the correlation

between content intimacy (real-name or anonymous) and willingness to self-disclose [141]

In comparison, our study (Section 2.2) is the first to quantitively study user interaction, user

engagement, and security implications in the anonymous Whisper network.
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5.3 Security and Privacy in Location based Services

Attacks on Location based Services. Location-based services face various threats, rang-

ing from rogue users reporting fake GPS [59, 98], to malicious parties compromising user

privacy [70, 125, 126]. A related study on Waze [196] demonstrated that small-scale attacks

can create traffic jams or track user icons, with up to 15 mobile emulators. Our work (Sec-

tion 2.3) differs in two key aspects. First, we show that it’s possible to reverse engineer its

APIs, enabling light-weight Sybil devices (simple scripts) to replace full-stack emulators. This

increase the scale of potential attacks by orders of magnitude, to thousands of Waze clients

per commodity laptop. The impact of thousands of virtual vehicles is qualitatively different

from 10-15 mobile simulators. Second, as possible defenses, [196] cites known tools such

as phone number/IP verification, or location authentication with cellular towers, which have

limited applicability.

Protecting Location Privacy against Service Providers. Researchers have proposed to

preserve user location privacy against map services such as Waze and Google. Earlier stud-

ies apply location cloaking by adding noise to the GPS reports [90]. Recent work use zero-

knowledge [111] and differential privacy [56] to preserve the location privacy of individual

users, while maintaining user accountability and the accuracy of aggregated statistics. Our

work differs by focusing on the attacks against the map services.

Mobile Location Authentication. Defending against forged GPS is challenging. One di-

rection is to authenticate user locations using wireless infrastructures: WiFi APs [140, 191],

cellular base stations [140, 191] and femtocells [54]. Devices must come into physical prox-

imity to these infrastructures to be authenticated. But it requires cooperation among a wide

range of infrastructures (also modifications to their software/hardware), which is impractical

for large-scale services like Waze. Our work (Section 2.3) only uses a small number of trusted

infrastructures to bootstrap, and relies on peer-based trust propagation to achieve coverage.
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Other researchers have proposed “peer-based” methods to authenticate collocated mobile de-

vices [211, 233, 254, 144, 159].

5.4 Spam, Malicious Crowdsourcing and Sybil Detection

OSN Spam and Detection. Researchers have identified copious amounts of fake accounts

and spam campaigns on large OSNs like Facebook [77], Twitter [88, 213], and Renren [244].

The growing threat posed by this malicious activity has spurred work that aims to detect and

stop OSN spam using machine learning techniques [46, 222, 206]. This body of research

has focused on analyzing and defending against the outward manifestations of OSN spam. In

contrast, our work (Section 3.1) identifies some of the underlying systems used by attackers to

generate spam and evade security measures.

Opinion Spam. Spam that attempts to influence the opinions and actions of normal people

has become more prevalent in recent years [113]. Researchers have been working on detecting

and characterizing fake product reviews [138, 114], fake comments on news sites [64], and

astroturf political campaigns on Twitter [180]. The authors of [169] created a model to help

classify deceptive reviews generated by Mechanical Turk workers. These works reaffirm our

results (Section 3.1), that crowdturfing is a growing, global threat on the web.

Crowdsourcing and Crowdturfing. Since coming online in 2005, Amazon’s Mechanical

Turk has been scrutinized by the research community. This includes studies of worker demo-

graphics [106, 185], task pricing [76, 108], and even meta-studies on how to use Mechanical

Turk to conduct user studies [123]. The characteristics of Micro Workers have also been thor-

oughly studied [101].

Our work is among the first to look into the misuse of crowdsourcing for malicious cam-

paigns in online services. After our work, other researchers have conducted measurements on

different crowdturfing sites to understand their operation and economic structure [132, 133,
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157]. Some systems have been developed to detect paid human spammers in online review

sites [169] and Q&A systems [63]. We are also among the first to explore detection of crowd-

turfing behaviors in adversarial settings (Section 3.2).

Sybil Detection. Sybils or fake accounts are the fundation of many online attacks (e.g.,

spam, malware distribution) and have become a significant threat in online services [71]. In

the context of online social networks, most Sybil detection systems rely on social graphs [247,

246, 217, 221, 69, 58]. These systems detect tight-knit Sybil communities that have a small

quotient-cut from the honest region of the graph. However, recent studies have demonstrated

the limitations of this approach. Yang et al.show that Sybils on Renren blend into the social

graph rather than forming tight communities [244]. Mohaisen et al.show that many social

graphs are not fast-mixing, which is a necessary precondition for community-based Sybil de-

tectors to be effective [153].

A second body of work has used machine learning to detect Sybil behavior on Twit-

ter [245, 46, 222] and Facebook [206]. However, relying on specific features makes these

systems vulnerable to Sybils with different attack strategies. Finally, one of my earlier work

proposes using crowdsourcing to identify Sybils [225]. In Section 4.1, our clickstream based

Sybil detection is semi-unsupervised, which does not rely on specific assumptions about Sybil

behaviors, and thus can detect previously unknown Sybils.

5.5 Adversarial Machine Learning

In an early study [105], researchers classify ML adversarial attacks into two high-level cat-

egories: causative attacks where adversaries alter the training process to damage the classifier

performance, and exploratory attacks where adversaries try to circumvent an already-trained

classifier. Much of existing work focuses on exploratory attacks [50, 68, 142, 161] with less fo-

cusing on causative attacks [51, 186], since it’s usually more difficult for adversaries to access
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training data in practice.

Several studies have examined attacks on specific ML-based applications, from email spam

detection [68] to network intuition detection [186, 198, 220] to malicious (PDF) file classifi-

cation [50, 142, 201, 240] and malware detection [120]. Our work (Section 3.2) focuses on

crowdturfing and explores a wider range of adversarial attacks, including active evasion and

more powerful poison attacks against the model training process.

5.6 Clickstream Analysis and User Behavior Study

Understanding Web Usage via Log Analysis. Understanding user behavior is important

to the design and operation of online services. Recent works analyze network traces or logs to

understand online users’ browsing habits [166, 36]. Researchers also built more specific user

behavioral models to study users’ search intent [172] and Wikipedia editing patterns [80], to

predict crowdsourcing worker performance [188].

Clickstream Analysis. Earlier research also used clickstream data for Web Usage Min-

ing [200]. Researchers applied simple methods such as Markov Chains to capture users’ nav-

igation paths within a website [139, 189, 47]. However, these models focus on the simple

aspects of user behavior (e.g., user’s favorite webpage), and are incapable of modeling more

sophisticated user behavior. Other approaches use clustering techniques to identify user groups

that share similar clickstream activities [216, 224, 209, 91]. The resulting clusters can be used

to infer user interests [209] or predict future user behaviors [91]. However, existing clustering

based models are largely supervised (or semi-supervised), requiring large samples of ground-

truth data to train or fine-tune the model parameters [224, 216, 189]. Also, many behavioral

models are built as “black boxes” for classification tasks, offering little explanations on how

users behave and why [91]. Our work in Section 4.2 seeks to build unsupervised clickstream

behavioral models and produce intuitive explanations on the models.
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Clickstream Visualization. Researchers have developed interactive interfaces to visu-

alize and inspect clickstream data. Existing tools generally focus on visualizing raw user

clicks [147], click event sequences [252] or click transitions [235]. Instead, we build a tool

(Section 4.2) to visualize the clickstream behavioral clusters produced by our system, provid-

ing hints for understanding key user behavior patterns.
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Conclusion

In this chapter, we summarize the key research results of this dissertation and discuss future

directions. As exemplified in previous chapters, the main goals of my work are to identity the

incorrect assumptions and vulnerabilities in existing online services by collecting and analyz-

ing real-world data, and leverage theses insights to design and deploy new security solutions.

In the following, I will first discuss data-driven security based on my own experiences with

focus on its impact and open challenges. Then I will briefly discuss my future research plans

along this path.

6.1 Data-driven Security.

Impact of Measurements. The biggest impact of data-driven research is to identify key

mistakes or even failures in real-world systems which will ultimately drive the development

of new and more effective systems. In this dissertation, we have demonstrated multiple suc-

cessful examples. In Chapter 2, our measurements reveal how graph structures within Quora

system helps to foster relevant and high-quality content (and why other services fail to do so);

Our analysis of Whisper network shows the anonymity features do introduce more abusive
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content (e.g., sexting), and the location fuzzing techniques are far from sufficient to protect

user location privacy; Similarly, our measurement on Waze identities a scalable approach to

create a large army of Sybil devices, which leads to new vulnerabilities for manipulating real-

time traffic and massively tracking user movements. Practical solutions to this problem still

remains to be found at this stage. A final example is Chapter 3 where we systematically quan-

tify the organization and end-to-end impact of crowdturfing campaigns. The key takeaway is

that human-based attackers are posing a significant threat to online communities, as most de-

fenses systems (e.g., CAPTCHA, rate-limit or template-based spam filters) assume attackers

are automated software, and thus are vulnerable to malicious human users. All these successful

examples confirm the need to use data-driven analysis as the basic tool in developing the next

generation of security mechanisms on the Internent.

Novel Security Systems. Based on insights from large data analytics, we then develop new

security systems to address the security and privacy issues in online communities. In Chap-

ter 4, we use a large-scale ground truth dataset to develop machine learning models to detect

malicious crowdsourcing workers. The best ML models can effectively detect regular workers

(95% accuracy) or “professionals” (99% accuracy). More importantly, we use crowdturfing

defense as context to explore the robustness of ML algorithms against adversarial attacks. We

note a consistent tradeoff where more accurate fits (especially to a smaller, more homogeneous

population) result in higher vulnerability to adversarial attacks. The exception appears to be

Random Forests, which often achieves both high accuracy and robustness to adversaries, pos-

sibly due to its natural support for multiple populations.

Finally, we develop clickstream user behavior models as a clickstream “similarity graph”

which captures clusters of users with similar activities. On top of the model, we build a prac-

tical Sybil detector that requires minimal ground-truth data to bootstrap and have success-

fully identified previously unknown attacks in real-world social networks such as Renren and

Linkedin. In addition, we extend the model to capture more fine-grained user behavior groups
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by constructing a hierarchical structure for clusters, and automatically extracting key features

to interprete the meaning of captured clusters. Other than the successful applications in online

social networks, our on-going works have produced successful results in other domains such as

profiling investors in the stock market, enhancing wireless measurements with crowdsourcing

efforts, and trace-driven user mobility models.

Challenges and Open Questions. Data-driven security analysis as a useful tool also has

practical challenges. First, data collection. Although more and more Interent data become

publicly available, certain data such as per-user browsing traces and internal service logs are

still largely not available to researchers due to strong privacy implications. We are fortunate to

get access to some of the non-public data via our collaborations with companies (e.g., Whisper,

Renren), which usually takes years to establish the trust for a workable relationship. Another

related challenge is the research results based on non-public data is difficult to be repeated or

reproduced by other researchers. This is a common problem for research papers published by

companies such as Facebook and Google whose data is often not available for sharing within

research communities.

A second challenge is to obtain ground-truth. Among all the available datasets such as

social graphs, user interaction traces, most of them are not “labelled”, especially those that are

related to security events. Some researchers rely on public blacklists provided by companies

such as Google to verify malicious URLs or websites, while others deploy “honeypot” to pas-

sively wait for attackers to hit their pre-set targets. In our own projects, we have also proactively

interacted with attackers to collect ground-truth. For example, we have used crowdturfing ser-

vices to run benign campaigns to understand end-to-end impact of online spam. Often cases,

it is very difficult to assess whether the ground-truth data is sufficiently large and representa-

tive, whether it is biased or suffers from data noise. To theses ends, we usually need multiple,

independently collected ground-truth datasets.

A third challenge is to assess the impact of errors. In security contexts (e.g., attack detec-
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tion), false positive and fale negative are commonly used to quantify the level of errors of a

system. However, those numbers can have different practical meanings in different scenarios.

For example, for Sybil detection systems, incorrectly blocking or banning a real, innocent user

from the service (false postive) is usually a more serious error than missing a Sybil account

(false negative). The real challenge is how to quantify the intuitive differences regarding the

impact of the errors and incorporate that into the system design. This is not a easy task for

either security system designers nor the end-users who are using the system.

A final challenge is the lack of longitudinal data to study the dynamic changes of attacker

behaviors in online communities. For instance, many existing works (some of mine included)

use datasets that are only in the length of weeks or months, which poses limits to the under-

standing of the problem. In the future, with an increasing attention on big data analytics and

more advanced data mining tools, both research communities and industries are likely to col-

lect more longitudinal data such as network traces, security incidents, etc. More research effort

is needed for developing systematically tools to process and analyze streamed and longitudinal

data.

6.2 Future Directions

Looking forward, I plan to continue to work on data-driven techniques to understand and

address security issues in Internet systems. My plan is to extend large-scale data analytics to

broader security contexts. Specific projects include ubiquitous crowdsourcing system design,

and big data analytics for human centric security.

Ubiquitous crowdsourcing & security. Crowdsourcing has expanded beyond the Inter-

net and become ubiquitous in the physical world, e.g., house cleaning (TaskRabbit), package

delivery (Postmates), taxi services (Uber) and shared parking (Rover). Future crowdsourcing

systems would involve both complex online user activities and offline interactions with ubiq-
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uitous physical facilities such as mobile devices, vehicles and buildings. To establish trust in

the system and prevent malicious attacks, I plan to work on robust reputation systems that in-

corporate both online and offline data, and security mechanisms to continuously monitor the

behavior of crowdsourcing participants and detect malicious actions in real-time.

Another direction of interest is to explore fundamental design choices for crowdsourcing

systems to reduce malicious behavior. The initial step is to understand the tradeoffs of com-

petition and cooperation among crowdsourcing participants. Existing systems (e.g., Amazon

Turk) implement strong competitions by default, which however makes it extremely difficult

for newcomers to survive and inevitably foster malicious behavior. Future research will ex-

plore novel designs to reduce malicious competition and improve the overall efficiency with

structured cooperation.

Big data in human-centric security. In the long term, as computations are increasingly

human-centric, future security systems will be having more direct and intimate interactions

with users. A successful security system should be usable in the hand of large-scale online

users. I believe big data analytics can make a difference in the design and deployment of us-

able security systems. On one hand, by collecting and analyzing large-scale data on security

system usage, I seek a deep understanding on user-level misuse and misconfigurations of se-

curity systems, and explore key design flaws. On the other hand, I plan to collaborate with

system and HCI researchers to build novel data-driven security mechanisms that offer high-

level transparency and usability. This includes intelligent underlying algorithms to identify

security threats from continuous data analytics, and advanced data visualization techniques to

help users fully understand the emerging threats to make informed security decisions.
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