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ABSTRACT 

Iterative maps on S0(3) with two stable fixed points are described. 

These generate bistable spectroscopic excitation sequences for isolated two 

level systems. From such sequences, tailored population inversion over 

specific ranges of parameters such as the resonance frequency or radiation 

amplitude can be obtained. The ideas developed here suggest ways of designing 

tailored excitation sequences useful in spatially selective NMR, spin­

decoupling, nk-quantum selective multiple quantum NMR, and isotope selective 

zero field NMR. 
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Excitation sequences have recently been developed for nuclear magnetic 

resonance (NMR) and optical spectroscopy which are effective over very 

broad 1- 8 or very narrow6•9 ranges of transition frequencies and radiation 

amplitudes. Of the methods conceived for deriving these sequences, an 

iterative approach based on the use of sequence-refining algorithms has proven 

particularly useful. Treating these algorithms as iterative maps 10- 12 , it has 

been shown that stable fixed points lead to sequences with broadband 

properties, while unstable fixed points produce sequences which exhibit 

narrowband properties8. This Letter reports the first example of iterative 

maps for pulse sequences with more .than one stable fixed point. From such 

maps, sequences for excitation over sharply defined, pre-selected ranges of 

parameters, e.g., frequencies or amplitudes, can be obtained. This provides 

the first ~xperimental approach to tailoring the bandwidth of some nonlinear 

spectroscopic response, a long-desired goal in the excitation of spin and 

' ' 
optical systems. The implementation of this passband response has potential 

use in a variety of applications in spectroscopy, including spatially 
. . 

selective NMR 13, selective n-quantum pumping of multiple quantum 

transitions 1 ~. heteronuclear zero field NMR 15 , and optical information 

storage 16 . 

The sequences demonstrated here selectively invert the equilibrium 

populations of uncoupled two-level systems (e.g., isolated spins-~/2) 

depending on the amplitude (commonly denoted w1) of the resonant 

radiofrequency (rf) radiation at the nuclear spin position. This general 

technique can, in fact, be used to select one or several discrete ranges of rf 

amplitudes for specific excitation. 

For the analysis of thes~ sequences, we employ a formalism drawn from 

v 
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the theory of iterative maps and their fixed points 10 . The effect of a pulse 

sequence on some system is represented by its time development operator, or 

propagator, U. Usually a specific propagator U is desired, for example, one 

which corresponds to an inversion of the equilibrium populations. Iterative 

schemes have been· proposed as a way to achieve this end. These ar.e 

e.ssentially algorithms which prescribe the transformation F that must be 

performed on a pulse sequence for its propagator U to converge to the 

specifically desired form u. This iterative procedure can be summarized by 

the equation: 

(1) 

Functions which can be applied iteratively in this manner are referred to as 

maps. The dynam•.cs of iterative maps are influenced by their fixed 

points 10- 12 , which are defined by the relation: 

( 2) 

The consequences of fixed points and their stability on the behaviour of 

iterative pulse sequence maps have already been discussed in detail 8. 

Briefly, it was shown that pulse sequence algorithms could be considered as 

maps on a quantum-mechanical propagator space, with fixed points corresponding 

to the desired propagators U. 

In the absence of couplings, any propagator U, including the effects of 

pulse sequences, is describable as a simple rotation of the spin density 

oper~tor 17 • 18 . It follows that only a subspace of the entire propagator space 

need be considered in the analysis, namely the space of pure.rotations, 
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commonly designated S0(3) 19, which can be visualized as a solid sphere of 

radius ~. All rotations are uniquely defined in this space by a unit vector 

drawn from the origin (corresponding to the axis of the rotation) and a radius 

(corresponding to the angle of the rotation). All ~rotations are doubly 

defined by antipodal points on the surface of the sphere. 

In general, the convergence of a map to its fixed points depends on the 

initial condition U0 and the stability of the fixed points in various 

directions. The initial condition U
0 

can itself be a function of several 

parameters, designated here as A1 , such ~s the resonance frequency or the rf 

amplitude w1 • In devising a broadband sequence, e.g., a broadband inverting 

sequence, the objective is to make a single fixed point stable for as wide a 

range of the parameter Ai as possi~ie. For narrowband sequences, the aim is 

to specify a single fixed point which is unstable over the parameter A1 . For 

the present cast of bistable passband sequences, however, two stable fixed 

points are required, so that for some values of Ai' U converges to one fixed 

' ' point u1 , while for other values of Ai' U converges to the other fixed point 

Pulse sequences which excite a passband population inversion in w1 can 

be obtained from maps which have the origin and the equator of S0(3) in the xy 

p~ane as stable fixed sets of points. These points correspond to the identity 

operator and the set of ~ rotations which take +z to -z, respectively. In 

addition, the fixed points should also be stable with respect to displacements 

in the xy plane. The significance of this bistability can be appreciated by 

referring to figure 1. This figure shows schematically that maps with the 

origin and the equator of S0(3) as fixed sets stable in the xy plane 

necessarily possess an unstable circle of points also in the xy plane. Points 

in S0(3) inside this circle move towards the origin upon iteration of the 
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algorithm, while points outside the circle move towards the equator. 

Two phase shift algorithms derived to satisfy these stability conditions 

are: 

(a) [0, 270, 120, 165, 120, 270, 0] 

(b) [ 0. 15. 180, 165, 270. 1 65, 180, 15, 0 J 

Following the notation of reference 8, these algorithms are comprised of two 

basic operations, a series of phase shifts, shown in the brackets, followed by 

concatenation of the phase shifted parts. Figure 2 depicts the basin images 8 

of the two algorithms. The basin image shows how many iterations are required ~ 

for points in S0(3) to be mapped into the two known stable fixed sets. The 

regions of SO( 3) that are convergent to the fixed sets are ,known collectively ~:~~!\ 

as the basin of the map, and appear as the light areas of the image. The 

images in this instance are cross-sections of S0(3) containing the z axis. 

Since algorithms comprised of simple phase shifts exhibit axial symmetry 

around the z axis, no information is lost in uisplaying a single cross­

section. 

The most conspicuous difference between the two images displayed is the 

size of their respective basins. The reason for this is that the nine shift 

algorithm (b) was designed so that the equator would be stable in all 

directions. The seven shift algorithm (a), however, is not stable at the 

equator for points off the xy plane. The basin for the nine shift algorithm 

is therefore larger and exhibits a much more intricate structure than does the 

seven shift sequence. A consequence of this additional stability is that the 

nine shift algorithm is broadband over resonance frequencies. 

,.·,~· 
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The implications of applying an algorithm described by a bistable map to 

a single nom1nal n pulse can be understood by referring to figure 3. This 

figure shows that such algorithms, in this case the 1 shift algorithm, produce 

sequences which display distinctive passband characteristics in the w1 domain. 

This implies that only spins that lie within specified bandwidths in w1 will 

be inverted by these sequences. Spins outside these bands remain in their 

initial equilibrium state. The result is a pulse sequence which is highly 

amplitude selective in inverting nuclear spins. Moreover, as the algorithm is 

iterated, the passband becomes sharper and more pronounced, indicating the 

refinement of the sequence by iteration. The experimental points on this 

curve demonstrate the practical feasibility of these algorithms for obtaining 

w1 selective inversion of the magnetization. Generaliz~d tailoring of the 

population inversion can be achieved across a range of w1 values with the 

appropriate choice of an initial sequenc~. Sequences.which favor certain 

basins in S0(3), or cross from one basin to another, create this kind of 

tailored response. 

The origin of the passband behaviour is the bistability of the map. The 

effect of iterating this algorithm on some rotation Rxy around an axis in the 

xy plane is to transform Rxy into either the identity operator or a z 

inverting rotation. Th~ only two responses to the radiation for a nuclear 

spin, then, are no response, or inversion. This binary response function 

manifests itself in the sharp passband behaviour of the 12 vs. w1 plots of 

figure 3. 

The fixed point analysis presented here has provided guidance in 

deriving sequences with unusual and useful spin excitation properties. The 

perspective and insight this method offers furnish mathematical tools for the 

handling of complex nonlinear problems. Extensions of this approach are 
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currently being undertaken for iterative mappings with multiple fixed points 

for general nonlinear excitation. 
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FIGURE CAPTIONS 

Figure 1: Cross-section of S0(3) through the xy plane indicating the movement 

of points in this plane as an algorithm designed to produce a bistable 

bandpass sequence is iterated. The origin and equator are stable fixed sets 

of this mapping. This entails the existence of an unstable fixed circle 

between the two stable fixed sets in the xy plane. The position of the 

unstable set defines the effective bandwidth of the excitation. Points 

initially in the xy plane remain in this plane even after iteration of the 

algorithm as a result of the symmetry of the sequence. 

Figure 2: Ba~in images for the maps generated by the algorithms 

[0, 270, 120, 165, 120, 270, 0] and [0, 15, 180, 165, 270, 165, 180, 15, 0] 

showing a cross-section of S0(3) containing the z axis. The number of 

iterations of the algorithm required to map a point in S0(3) to one of the two 
. ' 

known stable fixed points is given by the color key to the left of the image. 

A substantial portion of the space for the nine shift algorithm is convergent 

because of its stability in the z direction, in contrast with the basin image 

for the seven shift algorithm. 

Figure 3: Extent of nuclear spin population inversion as a function of 

normalized on-resonance rf field amplitude for a single n pulse (~urve 1), one 

iteration of the indicated algorithm (curve 2), and two iterations of the 

algorithm (curve 3). -1 on the y axis denotes the normalized equilibrium spin 

population (bulk magnetization aligned with the magnetic field), +1 denotes 

the normalized population inverted state (magnetization antiparallel to the 

magnetic field). The effect of iteration is seen to sharpen the passband of 
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the response function. Such a bistable response can be tailored to different 

regions of w1 . Experimental data were obtained from the proton resonance of a 

distilled water sample at a Larmer frequency of 180 Mhz. 
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