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Universality and mX cut effects in B → Xsℓ
+

ℓ
−
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1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

The most precise comparison between theory and experiment for the B → Xsℓ
+ℓ− rate is in the

q2 < 6GeV2 region. The hadronic uncertainties associated with an experimentally required cut on
mX potentially spoil the extraction of short distance flavor-changing neutral current couplings. We
compute the mX cut dependence of dΓ(B → Xsℓ

+ℓ−)/dq2 using the B → Xsγ shape function, and
show that the effect is universal for all short distance contributions in the limit m2

X ≪ m2
B. This

universality is not spoiled by realistic values of the mX cut, nor by αs corrections. Alternatively,
normalizing the B → Xsℓ

+ℓ− rate to B → Xuℓν̄ with the same cuts removes the main uncertainties.
We find that the forward-backward asymmetry vanishes near q2

0 = 3GeV2.

I. INTRODUCTION

In the standard model (SM) the flavor-changing neu-
tral current process B → Xsℓ

+ℓ− does not occur at tree
level, and is a sensitive probe of new physics. Predicting
its rate involves integrating out the W , Z, and t at a scale
of order mW by matching on to the Hamiltonian [1, 2]

HW = −GF√
2
VtbV

∗
ts

[ 6
∑

i=1

CiOi +
1

4π2

10
∑

i=7

CiOi

]

, (1)

evolving to µ = mb, and computing matrix elements of
HW . Here O1 −O6 are four-quark operators and

O7 = mb s̄σµνeF
µνPRb, O8 = mb s̄σµνgG

µνPRb,

O9 = e2(s̄γµPLb)(ℓ̄γ
µℓ), O10 = e2(s̄γµPLb)(ℓ̄γ

µγ5ℓ),

(2)
where PL,R = (1 ∓ γ5)/2. The dilepton invariant mass
spectrum, q2 = (pℓ++pℓ−)2, can be calculated in an oper-
ator product expansion (OPE), and the leading nonper-
turbative corrections are suppressed by Λ2

QCD/m
2
b [3, 4].

The matching and anomalous dimension calculations for
Ci are known at next-to-next-to-leading log (NNLL) or-
der [5, 6, 7], as are the largest perturbative QCD correc-
tions to the matrix elements of Oi [7].

An important complication in B → Xsℓ
+ℓ− compared

to B → Xsγ is that the long distance contributions,
B → J/ψXs and ψ′Xs followed by J/ψ, ψ′ → ℓ+ℓ−,
are an order of magnitude larger than the short distance
prediction, a fact which is not well-understood. There-
fore, either theory and data are both interpolated, or the
short distance calculation is compared with the data for
q2 < m2

J/ψ or q2 > m2
ψ′ . The low q2 region, q2 < 6 GeV2,

allows the most precise comparison with the SM, but
requires a cut on the invariant mass of the hadronic
final state, mX < mcut

X . In the latest Belle analysis
mcut
X = 2 GeV [8], while Babar uses mcut

X = 1.8 GeV [9].
These cuts are to remove backgrounds, and will likely be
required for quite some time [10]. The high q2 region
is unaffected by the mX cut, but the rate is lower, and

calculating it involves an expansion in ΛQCD/(mb−
√

q2).
In this letter we investigate the effects of the mX cut

on predictions for B → Xsℓ
+ℓ− decay in the low q2 re-

gion. This was previously studied in the Fermi-motion
model in Ref. [11]. For (mcut

X )2 = O(ΛQCDmb), the local
OPE breaks down, and is replaced by an OPE involving
nonlocal operators, whose matrix elements are b quark
distribution functions in the B meson. We define

Γcut
ij =

∫ q22

q2
1

dq2
∫ mcut

X

0

dmX Re(cic
∗
j )

d2Γij
dq2dmX

(3)

= ηij
(

mcut
X , q21 , q

2
2

) Γ0

m5
B

∫ q22

q2
1

dq2 Re(cic
∗
j )

(m2
b − q2)2

m3
b

Gij ,

where ij = {77, 99, 00, 79} label contributions of time-

ordered products T {O†
j , Oi}. The ηij ’s contain the ef-

fects of the mX cut, and the short distance coefficients
c7,9,0 track the C7,9,10 dependence in Eq. (1). Here
c7 = Cmix

7 (q2), c9 = Cmix
9 (q2), and c0 = C10 can be ob-

tained from local OPE calculations [12] at each order, as
discussed in Ref. [13]. The functions G99,00 = (2q2+m2

b),
G77 = 4m2

B(1+2m2
b/q

2), and G79 = 12mBmb arise from
kinematics, where mb is a short distance mass, such as
m1S
b [14], here and below. Finally,

Γ0 =
G2
Fm

5
B

192π3

α2
em

4π2
|VtbV ∗

ts|2 . (4)

We also study η′ij(p
+cut
X , q21 , q

2
2), which are defined by re-

placing mX in Eq. (3) with p+
X = EX − |~pX |. The total

rate for B → Xsℓ
+ℓ− with cuts is Γcut =

∑

ij Γcut
ij .

At leading order in ΛQCD/mb and αs, ηij = 1 for
mcut
X = mB, and therefore ηij give the fraction of events

with mX < mcut
X . This is altered at subleading order by

perturbative corrections, but ηij still determine the rate.
In principle, ηij depend in a nontrivial way on ij (and q21
and q22) due to different dependence on kinematic vari-
ables, αs corrections, etc. Working to leading order in
ΛQCD/mb, we demonstrate that ηij are independent of
the choice of ij, which we call “universality”. We first
show this formally at leading order in p+

X/mB ≪ 1 for

the p+
X cut, η′, and then numerically for the experimen-

tally relevant mcut
X , η, including the αs corrections and

all phase space effects. Since the same shape function oc-
curs in B → Xsℓ

+ℓ−, Xuℓν̄, and Xsγ, the mcut
X or p+cut

X
dependence in one can be determined from the others.
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FIG. 1: Phase space cuts. A substantial part of the rate for
q2
1 < q2 < q2

2 falls in the rectangle bounded by p+

X < p+cut

X .

II. mX CUT EFFECTS AT LEADING ORDER

For simplicity, consider the kinematics in the B me-
son’s rest frame. Since q = pB − pX ,

2mBEX = m2
B +m2

X − q2. (5)

If m2
X ≪ m2

B and q2 is not near m2
B, then EX = O(mB).

Since E2
X ≫ m2

X , pX is near the light-cone, with p+
X =

EX − |~pX| = O(ΛQCD) and p−X = EX + |~pX| = O(mB).

Of the variables symmetric in pℓ+ and pℓ− (p±X , EX , q2,
m2
X), only two are independent, and we work with q2 and

p+
X or mX . The phase space cuts are shown in Fig. 1.

For the p+
X ≪ p−X region, factorization of the form

dΓ = HJ ⊗ f̂ (0) has been proven for semileptonic and
radiative B decays [15], where H contains perturbative

physics at µb ∼ mb, J at µi ∼
√

ΛQCDmb, and f̂ (0)(ω) is
a universal nonperturbative shape function. This factor-
ization also applies for B → Xsℓ

+ℓ− with the same uni-

versal f̂ (0), as long as q2 is not parametrically small [13].
In the q2 < 6 GeV2 region, |Cmix

9 (µ0 = 4.8 GeV)| =
4.52 to better than 1%, and can be taken to be constant.
We neglect αs corrections in this section and find

dΓ

dp+
Xdq2

= f̂ (0)(p+
X)

Γ0

m5
B

[(mB − p+
X)2 − q2]2

(mB − p+
X)3

×
{

(|Cmix
9 |2 + C2

10)
[

2q2 + (mB − p+
X)2

]

+ 4m2
B |Cmix

7 |2
[

1 +
2(mB − p+

X)2

q2

]

+ 12mB Re
[

Cmix
7 Cmix

9
∗
]

(mB − p+
X)

}

, (6)

where f̂ (0)(ω) has support in ω ∈ [0,∞). As a function
of p+

X , the kinematic terms in Eq. (6) vary only on a

scalemB, while f̂ (0)(p+
X) varies on a scale ΛQCD. Writing

mB = mb+Λ̄ and expanding in (p+
X − Λ̄)/mB, decouples

the p+
X and q2 dependences in Eq. (6), and gives the

local OPE prefactors, (m2
b − q2)2Gij(q

2), in Eq. (3). For
η′ij(p

+cut
X , q21 , q

2
2) the p+

X integration is over a rectangle in

Fig. 1, whose boundaries do not couple p+
X and q2. Thus,

η′ =
∫

dp+
X f̂

(0)(p+
X), independent of ij and q21,2. While

the mX cut retains more events than the p+
X cut, the

1.4 1.6 1.8 2.0 2.2
0

0.2

0.4

0.6

0.8

1

mX
cut

η ij

ij  99,00=
79=
77=

FIG. 2: ηij(m
cut
X , 1GeV2, 6GeV2) as functions of mcut

X . The
dashed curves show the local OPE result, the solid curves in-
clude the leading shape function effects. The up-most curves
are η00 = η99, the middle ones are η79, the lowest ones are η77.

latter may give theoretically cleaner constraints on short
distance physics when statistical errors become small.

The effect of the mX cut is q2 dependent, because
the upper limit of the p+

X integration is q2 dependent,

as shown in Fig. 1. Including the full p+
X dependence

in Eq. (6), the universality of ηij(m
cut
X , q21 , q

2
2) is main-

tained to better than 3% for 1 GeV2 ≤ q21 ≤ 2 GeV2,
5 GeV2 ≤ q22 ≤ 7 GeV2, and mcut

X ≥ 1.7 GeV, be-
cause the region where the p+

X and q2 integration lim-
its are coupled has a small effect on the ij dependence.
This is exhibited in Fig. 2, where the solid curves show
ηij(m

cut
X , 1 GeV2, 6 GeV2) with the shape function set to

model-1 of [16] with m1S
b = 4.68 GeV and λ1 from [17].

(Taking q21 = 1 GeV2 instead of 4m2
ℓ increases the sensi-

tivity to C9,10, but one may be concerned by local dual-

ity / resonances near q2 = 1 GeV2. To estimate this un-
certainty, assume the φ is just below the cut and B(B →
Xsφ) ≈ 10×B(B → K(∗)φ). Then B → Xsφ→ Xsℓ

+ℓ−

is ∼2% of the Xsℓ
+ℓ− rate.)

The local OPE results for ηij(m
cut
X , q21 , q

2
2) are obtained

by replacing f̂ (0)(p+
X) by δ(Λ̄−p+

X) in Eq. (6). Performing

the p+
X integral sets (mB − p+

X) = mb and implies m2
X >

Λ̄(mB − q2/mb). This makes the lower limit on q2 equal
max{q21 , mb[mB − (mcut

X )2/Λ̄]}, and so the ηij ’s depend
on the shape of dΓij . In Fig. 2 the local OPE results are
shown by dashed lines, and clearly η77 6= η99. However,
the local OPE is not applicable for p+

X ∼ ΛQCD.
The universality of ηij can be broken by αs corrections

in the hard and jet functions, or by renormalization group
evolution, since these effects couple p+

X and q2 and have
been neglected so far. We consider these next.

III. CALCULATION AND RESULTS AT O(αs)

A complication in calculating B → Xsℓ
+ℓ− compared

to B → Xuℓν̄ is that, in the evolution of the effective
Hamiltonian down to mb, C9(µ) receives a ln(m2

W /m
2
b)
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enhanced contribution from the mixing of O2. Thus, for-
mally, C9 ∼ O(1/αs), and conventionally one expands
the amplitude in αs, treating αs ln(m2

W /m
2
b) = O(1) [12].

In the local OPE this is reasonable, since the nonpertur-
bative corrections are small, and at next-to-leading log
(NLL) all dominant terms in the rate are included. How-
ever, in the shape function region nonperturbative effects
are O(1) and only the rate is calculable. With the tradi-
tional counting the C2

9 contribution to the rate would be
needed to O(α2

s) before the C2
10 terms could be included.

This would be a bad way to organize the perturbative
corrections (numerically |C9(mb)| ≈ |C10|). It can be cir-
cumvented by using a “split matching” procedure to de-
couple the perturbation series above and below the scale
mb [13]. This allows us to consider the short distance
coefficients Cmix

7 , Cmix
9 , and C10 as O(1) numbers when

organizing the perturbation theory at m2
b and mbΛQCD.

The rate and the forward-backward asymmetry are

d2Γ

dq2dp+
X

=
Γ0

m2
B

H(q2, p+
X)F (0)(p+

X , p
−) ,

d2AFB

dq2dp+
X

=
Γ0

m2
B

K(q2, p+
X)F (0)(p+

X , p
−) , (7)

where p− = mb − q2/(mB − p+
X). The hard functions H

and K were computed in Ref. [13] using SCET [18, 19]
and split matching, which factorizes the dependence on
scales above and below mb as H1(µ0)H2(µb). Here, to
the order one is working at, H1 is µ0 independent, the
µb dependence in H2 and F (0) cancels, and F (0) is µi
independent. The shape function model is specified at
µΛ. The convolution of jet and shape functions at NLL
including O(αs) corrections is

F (0)(p+
X , p

−) = UH(p−, µi, µb)

(

f̂ (0)
(

p+
X , µi

)

+
αs(µi)CF

4π

{

[

2 ln2 p
+
Xp

−

µ2
i

− 3 ln
p+
Xp

−

µ2
i

+ 7 − π2
]

f̂ (0)
(

p+
X , µi

)

+

∫ 1

0

dz

z

[

4 ln
zp+
Xp

−

µ2
i

− 3
][

f̂ (0)
(

p+
X(1 − z), µi

)

− f̂ (0)
(

p+
X , µi

)

]

})

,

f̂ (0)(ω, µi) =
eVS(µi,µΛ)

Γ(1 + η)

(

ω

µΛ

)η ∫ 1

0

dt f̂ (0)
[

ω(1 − t1/η), µΛ

]

, (8)

where UH was computed in Ref. [18], the one-loop jet function in Ref. [20, 21], and the shape function evolution up
to µi in Refs. [18, 21] (for earlier calculations, see Refs. [15, 22]). The H and K are

H(q2, p+
X) =

[(1 − p̂+
X)2 − q̂2]2

(1 − p̂+
X)3

{

[

|Cmix
9 (s, µ0)|2 + C2

10

]

[

2q̂2 Ω2
A(s, µb) + (1 − p̂+

X)2 Ω2
B(s, p̂+

X , µb)
]

+ 4|Cmix
7 (µ0)|2

[

Ω2
C(s, µb) +

2(1 − p̂+
X)2

q̂2
Ω2
D(s, µb)

]

+ 12Re
[

Cmix
7 (µ0)C

mix
9 (s, µ0)

∗
]

(1 − p̂+
X)ΩE(s, µb)

}

K(q2, p+
X) = −3q̂2[(1 − p̂+

X)2 − q̂2]2

(1 − p̂+
X)3

ΩA(s, µb)Re
{

C∗
10

[

Cmix
9 (s, µ0)ΩA(s, µb) +

2(1 − p̂+
X)

q̂2
Cmix

7 (µ0)ΩD(s, µb)
]}

, (9)

where s = q2/m2
b , q̂

2 = q2/m2
B, p̂+

X = p+
X/mB, and

ΩA = 1 +
αs
π
ωVa (s, µb), ΩC = 1 +

αs
π
ωTa (s, µb),

ΩB = 1 +
αs
π

[

ωVa (s, µb) +
(1 − p̂+

X)2 − q̂2

2(1 − p̂+
X)2

ωVb (s) + ωVc (s)
]

,

ΩD = 1 +
αs
π

[

ωTa (s, µb) − ωTc (s)
]

,

ΩE =
(

2ΩAΩD + ΩBΩC
)

/3. (10)

Here αs = αs(µb) and ωV,Ti are defined in Ref. [13].

In Fig. 3 we plot η00(m
cut
X , 1 GeV2, 6 GeV2), including

the αs corrections. For each f̂ (0), the deviations of the
ηij ’s from being universal is still below 3%. We use five
different models for the shape function, constructed to
obey the known constraints on its moments [21]. The

orange, green and purple (medium, light, dark) curves
correspond to m1S

b = 4.68 GeV, 4.63 GeV, and 4.73 GeV,
respectively, using the central values µ0 = µb = 4.8 GeV
and µi = 2.5 GeV. For mcut

X = 2 GeV, varying µb in
the range 3.5 GeV < µb < 7.5 GeV changes η00 by ±6%.
We find a ±5% variation for 2 GeV < µi < 3 GeV. The
curves with slightly lower [higher] values of η00 at large
mcut
X correspond to µΛ = 1.5 GeV [2 GeV].
The µ0 dependence of the rate is similar to that in the

local OPE, and will be reduced by including the known
NNLL corrections [5, 6, 7]. We did not study it here.

Using the ci’s at NLL, for 1 GeV2 < q2 < 6 GeV2 and
mcut
X = 1.8 and 2.0 GeV, we obtain Γcut τB = (1.20 ±

0.15)× 10−6 and (1.48 ± 0.14)× 10−6, respectively.
The largest uncertainty in the rate and the largest

source of universality breaking in the ηij ’s are due to sub-
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FIG. 3: η00(m
cut
X , 1GeV2, 6GeV2) as a function of mcut

X . The
orange, green and purple (medium, light, dark) curves show
m1S

b = 4.68 GeV, 4.63 GeV, and 4.73 GeV, respectively.

leading shape functions, which affect the rate by ∼ 5% for
mcut
X = 2 GeV and by ∼ 10% for mcut

X = 1.8 GeV [23].
If the mcut

X dependence were not universal, it would
modify the zero of the forward-backward asymmetry,
AFB(q20) = 0. For mcut

X = 2 GeV we find at NLL

∆q20 ≈ −0.04 GeV2, much below the higher order un-
certainties [7]. However, we obtain q20 = 2.8 GeV2, lower
than earlier results [6]. In the local OPE limit we get
q20 = 2mb[mb(µ)Ceff

7 (µ)]/Re[Ceff
9 (q20)]. Here mb can be

taken to be mpole
b or expanded about m1S

b , but to en-
sure that the µ dependence cancels at the order we are

working, we cannot reexpand mb(µ) in terms of mpole
b .

In conclusion, we pointed out that the experimentally
used upper cut on mX makes the observed B → Xsℓ

+ℓ−

rate in the low q2 region sensitive to the shape function.
In this region there is an OPE only for the decay rate
and not for the amplitude, necessitating a reorganization
of the usual perturbation expansion. Since one can use
the shape function measured in other processes, the sen-
sitivity to new physics is not reduced. We found that the
η’s for the different operators’ contributions are universal
to a good approximation. The theoretical uncertainties
are reduced by raising the mcut

X . Another possibility is
to keep mcut

X < mD and measure with the same cuts

R = Γcut(B → Xsℓ
+ℓ−)

/

Γcut(B → Xuℓν̄), (11)

since the effect of mcut
X , as well as the mb dependence,

are drastically reduced in this ratio. These results also
apply for B → Xdℓ

+ℓ−, which may be studied at a higher
luminosity B factory. Subleading ΛQCD/mb as well as
NNLL corrections to the rate and the forward-backward
asymmetry will be studied in a separate publication [23].
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