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OPT ICS

Unidirectional imaging using deep learning–designed
materials
Jingxi Li1,2,3, Tianyi Gan1,3, Yifan Zhao1,3, Bijie Bai1,2,3, Che-Yung Shen1,2,3, Songyu Sun1,
Mona Jarrahi1,3, Aydogan Ozcan1,2,3*

A unidirectional imager would only permit image formation along one direction, from an input field-of-view
(FOV) A to an output FOV B, and in the reverse path, B → A, the image formation would be blocked. We
report the first demonstration of unidirectional imagers, presenting polarization-insensitive and broadband uni-
directional imaging based on successive diffractive layers that are linear and isotropic. After their deep learning–
based training, the resulting diffractive layers are fabricated to form a unidirectional imager. Although trained
using monochromatic illumination, the diffractive unidirectional imager maintains its functionality over a large
spectral band and works under broadband illumination. We experimentally validated this unidirectional imager
using terahertz radiation, well matching our numerical results. We also created a wavelength-selective unidirec-
tional imager, where two unidirectional imaging operations, in reverse directions, are multiplexed through dif-
ferent illumination wavelengths. Diffractive unidirectional imaging using structured materials will have
numerous applications in, e.g., security, defense, telecommunications, and privacy protection.
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INTRODUCTION
Optical imaging applications have permeated every corner of
modern industry and daily life. A myriad of optical imaging
methods have flourished along with the progress of physics and in-
formation technologies, resulting in imaging systems such as super-
resolution microscopes (1, 2), space telescopes (3–5), and ultrafast
cameras (6, 7) that cover various spatial and temporal scales at dif-
ferent bands of the electromagnetic spectrum. With the recent rise
of machine learning technologies, researchers have also started
using deep learning algorithms to design optical imaging devices
based on massive image data and graphics processing units, achiev-
ing optical imaging designs that, in some cases, surpass what can be
obtained through physical intuition and engineering experience
(8–14).

Standard optical imaging systems composed of linear and time-
invariant components are reciprocal, and the image formation
process is maintained after swapping the positions of the input
and output fields of view (FOVs). If one could introduce a unidirec-
tional imager, then the imaging black box would project an image of
an input object FOV (A) onto an output FOV (B) through the
forward path (A → B), whereas the backward path (B → A)
would inhibit the image formation process by scattering the
optical fields outside the output FOV (see Fig. 1A).

To design a unidirectional imager, one general approach would
be to break electromagnetic reciprocity: One can use, e.g., magneto-
optic effect (the Faraday effect) (15–17), temporal modulation of the
electromagnetic medium (18, 19), or other nonlinear optical effects
(20–27). However, realizing such nonreciprocal systems for unidi-
rectional imaging over a sample FOV with many pixels poses chal-
lenges due to high fabrication costs, bulky and complicated setups/
materials, and/or high-power illumination light sources. Alternative

approaches have also been used to achieve unidirectional optical
transmission from one point to another without using optical iso-
lators. One of the most common practices is using a quarter-wave
plate and a polarization beam splitter; this approach for point-to-
point transmission is polarization sensitive and results in an
output with only circular polarization. Other approaches include
using asymmetric isotropic dielectric gratings (28–31) and
double-layered metamaterials (32) to create different spatial mode
transmission properties along the two directions. However, these
methods are designed for relatively simple input modes and face
challenges in off-axis directions, thus making them difficult to
form imaging systems even with relatively low numerical apertures.

Despite all the advances in materials science and engineering
and optical system design, there is no unidirectional imaging
system reported to date, where the forward imaging process
(A → B) is permitted and the reverse imaging path (B → A) is all
optically blocked.

Here, we report the first demonstration of unidirectional imagers
and design polarization-insensitive and broadband unidirectional
imaging systems based on isotropic structured linear materials
(see Fig. 1, B and C). Without using any lenses commonly used
in imaging, here, we optimize a set of successive dielectric diffractive
layers consisting of hundreds of thousands of diffractive features
with learnable thickness (phase) values that collectively modulate
the incoming optical fields from an input FOV. After being
trained using deep learning (33–46), the resulting diffractive
layers are physically fabricated to form a unidirectional imager,
which performs polarization-insensitive imaging of the input
FOV with high structural fidelity and power efficiency in the
forward direction (A → B), while blocking the image transmission
in the backward direction, not only penalizing the diffraction effi-
ciency from B→A but also losing the structural similarity or resem-
blance to the input images. Despite being trained using only
Modified National Institute of Standards and Technology
(MNIST) handwritten digits, these diffractive unidirectional
imagers are able to generalize to more complicated input images
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from other datasets, demonstrating their external generalization ca-
pability and serving as a general-purpose unidirectional imager
from A → B. Although these diffractive unidirectional imagers
were trained using monochromatic illumination at a wavelength
of λ, they maintain unidirectional imaging functionality under
broadband illumination, over a large spectral band that uniformly
covers, e.g., 0.85 × λ to 1.15 × λ.

We experimentally confirmed the success of this unidirectional
imaging concept using terahertz waves and a three-dimensional
(3D) printed diffractive imager and revealed a very good agreement
with our numerical results by providing clear and intense images of
the input objects in the forward direction and blocking the image
formation process in the backward direction. Using the same deep
learning–based training strategy, we also designed a wavelength-se-
lective unidirectional imager that performs unidirectional imaging

along one direction (A → B) at a predetermined wavelength and
along the opposite direction (B → A) at another predetermined
wavelength. With this wavelength-multiplexed unidirectional
imaging design, the operation direction of the diffractive unidirec-
tional imager can be switched (back and forth) based on the illumi-
nation wavelength, improving the versatility and flexibility of the
imaging system.

The optical designs of these diffractive unidirectional imagers
have a compact size, axially spanning ~80 to 100λ. Such a thin foot-
print would allow these unidirectional imagers to be integrated into
existing optical systems that operate at various scales and wave-
lengths. While we considered here spatially coherent illumination,
the same design framework and diffractive feature optimization
method can also be applied to spatially incoherent scenes. Polariza-
tion-insensitive and broadband unidirectional imaging using linear

Fig. 1. Schematic of a diffractive unidirectional imager. (A) Concept of unidirectional imaging, where the imaging operation can be performed as the light passes
along a certain specified direction (A→ B), while the image formation is blocked along the opposite direction (B→ A). (B and C) Illustration of our diffractive unidirectional
imager, which performs imaging of the input FOVwith high fidelity in its forward (B) direction and blocks the image formation in its backward (C) direction. This diffractive
unidirectional imager is a reciprocal device that is linear and time invariant and provides asymmetric optical mode processing in the forward and backward directions. Its
design is insensitive to light polarization and leaves the input polarization state unchanged at its output. Furthermore, it maintains its unidirectional imaging functionality
over a large spectral band and works under broadband illumination.
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and isotropic structured materials will find various applications in
security, defense, privacy protection, and telecommunications
among others.

RESULTS
Diffractive unidirectional imager using reciprocal
structured materials
Figure 1A depicts the general concept of unidirectional imaging. To
create a unidirectional imager using reciprocal structured materials
that are linear and isotropic, we optimized the structure of phase-
only diffractive layers (i.e., L1, L2, …, L5), as illustrated in Fig. 1 (B
and C). In our design, all the diffractive layers share the same
number of diffractive phase features (200 by 200), where each di-
electric feature has a lateral size of ~λ/2 and a trainable/learnable
thickness providing a phase modulation range of 0 to 2π. The dif-
fractive layers are connected to each other and the input/output
FOVs through free space (air), resulting in a compact system with
a total length of 80λ (see Fig. 2A). The thickness profiles of these
diffractive layers were iteratively updated in a data-driven fashion
using 55,000 distinct images of the MNIST handwritten digits
(see Materials and Methods). A custom loss function is used to si-
multaneously achieve the following three objectives: (i) minimize
the structural differences between the forward output images
(A → B) and the ground truth images based on the normalized
mean square error (MSE), (ii) maximize the output diffraction effi-
ciency (overall transmission) in the forward path, A → B, and (iii)
minimize the output diffraction efficiency in the backward path,
B → A. More information about the architecture of the diffractive
unidirectional imager, loss functions, and other training-related im-
plementation details can be found in Materials and Methods. After
the completion of the training, the phase modulation coefficients of
the resulting diffractive layers are shown in Fig. 2C. Upon closer in-
spection, it can be found that the phase patterns of these diffractive
layers have stronger modulation in their central regions, while the
edge regions appear relatively smooth, with weaker phase modula-
tion. This behavior can be attributed to the size difference between
the smaller input/output FOVs and the relatively larger diffractive
layers, which causes the edge regions of the diffractive layers to
receive weaker waves from the input, as a result of which their op-
timization remains suboptimal.

This diffractive unidirectional imager design was numerically
tested using the MNIST test dataset, which consists of 10,000 hand-
written digit images that were never seen by the diffractive model
during the training process. We report some of these blind testing
results in Fig. 2D for both the forward and backward directions,
clearly illustrating the internal generalization of the resulting dif-
fractive imager to previously unseen input images from the same
dataset. We also quantified the performance of this diffractive uni-
directional imager for both the forward and backward directions
based on the following metrics: (i) the normalized MSE and (ii)
the Pearson correlation coefficients (PCCs) between the input
and output images (denoted as “output MSE” and “output PCC”)
and (iii) the output diffraction efficiencies; these metrics were cal-
culated using the same set of MNIST test images, never seen before.
As shown in Fig. 3 (A and B), the forward (A → B) and backward
(B → A) paths of the diffractive unidirectional imager shown in
Fig. 2C provide output MSE values of (5.68 ± 1.56) × 10−5 and
(0.919 ± 0.048) × 10−3, respectively, and their output PCC values

are calculated as 0.9740 ± 0.0065 and 0.3839 ± 0.0685, respectively.
A similar asymmetric behavior between the forward and backward
imaging directions is also observed for the output diffraction effi-
ciency metric as shown in Fig. 3C: The output diffraction efficiency
of A → B is found as 93.50 ± 1.56%, whereas it is reduced to
1.57 ± 0.44% for B → A, which constitutes an average image
power suppression ratio of ~60-fold in the reverse direction com-
pared to the forward imaging direction. Equally important as this
poor diffraction efficiency for B → A is the fact that the weak
optical field in the reverse direction does not have spatial resem-
blance to the input objects as revealed by a poor average PCC
value of ~0.38 for B → A. These results demonstrate and quantify
the internal generalization success of our diffractive unidirectional
imager: The input images can be successfully imaged with high
structural fidelity and power efficiency along the forward direction
of the diffractive imager, while the backward imaging operation
B → A is inhibited by substantially reducing the output diffraction
efficiency and distorting the structural resemblance between the
input and output images.

To better understand the working principles of this diffractive
unidirectional imager, next, we consider the 3D space formed by
all the diffractive layers and the input/output planes as a diffractive
volume and categorize/group the optical fields propagating within
this volume as part of different spatial modes: (i) the optical modes
that lastly arrive at the target output FOV, i.e., at FOV B for A → B
and at FOV A for B → A; (ii) the optical modes arriving at the
output plane but outside the target output FOV; and (iii) the un-
bounded optical modes that do not reach the output planes; since
the diffractive layers are axially separated by >10λ, there are no ev-
anescent waves being considered here. We calculated the power dis-
tribution percentages of each one of these types of optical modes for
both A → B and B → A for each test image and reported their
average values across the 10,000 test images in Fig. 3D (seeMaterials
and Methods for details). The results summarized in Fig. 3D clearly
reveal that, in the forward path (A → B) of the diffractive unidirec-
tional imager, the majority of the input power (>93.5%) is coupled
to the imaging modes that arrive at the output FOV B, forming
high-quality images of the input objects with a mean PCC of
0.974, while the optical modes that fall outside the FOV B and the
unbound modes are minimal, accounting for only ~2.95
and ~3.54% of the input total power, respectively. In contrast, the
backward imaging path (B → A) of the same diffractive unidirec-
tional imager steers most of the input power into the nonimaging
modes that fall outside the FOV A or escape out of the diffractive
volume through the unbounded modes, which correspond to
power percentages of ~34.8 and ~63.6%, respectively. For B → A,
the optical modes that arrive at the FOV A only constitute, on
average, ~1.57% of the input total power; however, these optical
modes are not only weak but also substantially aberrated by the dif-
fractive unidirectional imager, resulting in very poor output images,
with a mean PCC value of ~0.38.

The underlying reason for these contrasting power distributions
in the two imaging directions stems from the different order of the
diffractive layers as the light passes through them. This can be
further confirmed through the analyses reported in fig. S1, where
we provided a visualization of the variation of the optical fields
propagating within the same diffractive design. As shown in fig.
S1C, in the forward operation, A→ B, the diffractive layers arranged
in the order of L1 to L5 manage to maintain most of the light waves
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at the central regions throughout the wave propagation such that the
input image is efficiently focused within output FOV B to form
high-quality output images. In contrast, in the backward operation,
B → A, as shown in fig. S1D, the same set of diffractive layers ar-
ranged in the reversed order (i.e., L5 to L1) scatter the transmitted
input optical fields and couple them into nonimaging modes (i.e.,
unboundmodes that leave the diffractive imager volume andmodes
that end up outside the output image FOV); both of these set of

modes never arrive at the output image FOV A. In addition to
this, for the backward operation, B → A, the diffractive layers
ordered in the reverse direction (L5 to L1) scramble the distributions
of the optical fields that arrive at FOVA, suppressing their structural
resemblance to the input images.

Note that, since the presented diffractive unidirectional imager is
composed of linear, time-invariant and isotropic materials, it forms
a reciprocal system that is polarization insensitive. In experimental

Fig. 2. Design schematic and blind testing results of the diffractive unidirectional imager. (A and B) Layout of the diffractive unidirectional imager when it operates
in the forward (A) and backward (B) directions. (C) The resulting diffractive layers of a diffractive unidirectional imager. (D) Exemplary blind testing input images taken
from Modified National Institute of Standards and Technology (MNIST) handwritten digits that were never seen by the diffractive imager model during its training, along
with their corresponding diffractive output images in the forward and backward directions. a.u., arbitrary units. (E) Same as (D), except that the testing images are taken
from the Extended MNIST (EMNIST) and Fashion-MNIST datasets, demonstrating external generalization to more complicated image datasets.
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implementations (reported below) due to absorption-related losses,
a diffractive unidirectional imager also exhibits time-reversal
asymmetry.

To further highlight the capabilities of our diffractive unidirec-
tional imager (which was trained using handwritten digits), we also
tested its external generalization using other datasets: The Extended
MNIST (EMNIST) dataset that contains images of handwritten
English letters and the Fashion-MNIST dataset that contains
images of various fashion products. The blind testing results on
these two additional datasets using the diffractive unidirectional
imager of Fig. 2C are exemplified in Fig. 2E, which once again
confirm its success. As another demonstration of the external gen-
eralization of our diffractive unidirectional imager, we reversed the
contrast of the images in these test datasets, where the light trans-
mitting and blocking regions of the input images were swapped,
further deviating from our training image set. The results of this
analysis are presented in fig. S2, demonstrating successful unidirec-
tional imaging using our diffractive design, irrespective of the test
image dataset and the contrast of the input image features.

In addition to these, we quantified the imaging resolution per-
formance of this diffractive unidirectional imager using gratings as
resolution test targets, which were also never used in the training
phase (see Fig. 4). Our results reveal that the diffractive unidirec-
tional imager can resolve a minimum linewidth of ~4λ in the
forward path, A→ B, while successfully inhibiting the image forma-
tion in the reverse path, B → A, as expected. These results once

again prove that the training of the diffractive unidirectional
imager is successful in approximating a general-purpose imaging
operation in the forward path, although we only used handwritten
digits during its training.

Spectral response of the diffractive unidirectional imager
Next, we explored the spectral response of the diffractive unidirec-
tional imager reported in Fig. 2 under different illumination wave-
lengths that deviate from the training illumination wavelength
(λtrain = λ). The results of this analysis are reported in Fig. 5 (A
and B), where the output image PCC and diffraction efficiency
values of the diffractive unidirectional imager of Fig. 2 were tested
as a function of the illumination wavelength. Although this diffrac-
tive unidirectional imager was only trained at a single illumination
wavelength (λ), it also works well over a large spectral range as
shown in Fig. 5 (A and B). Our results reveal that the imaging per-
formance in the forward path (A → B) remains very good with an
output image PCC value of≥0.85 and an output diffraction efficien-
cy of ≥85.5% within the entire spectral range [λL : λR], where
λL = 0.92 × λ and λR = 1.11 × λ (see Fig. 5, A and B). Within the
same spectral range defined by [λL : λR], the power suppression ratio
between the forward and backward imaging paths always remains
≥17.4×, and the output diffraction efficiency of the reverse path
(B → A) remains ≤5.49% (see Fig. 5B), indicating the success of
the diffractive unidirectional imager over a large spectral band,
despite the fact that it was only trained with monochromatic illumi-
nation at λ. Figure 5D further reports examples of test objects (never
seen during the training) that are simultaneously illuminated by a
continuum of wavelengths, covering two different broadband illu-
mination cases: (i) [0.92 × λ : 1.11 × λ] and (ii) [0.85 × λ : 1.15 × λ].
The forward and backward imaging results for these two broadband
illumination cases shown in Fig. 5D clearly illustrate the success of
the diffractive unidirectional imager under broadband illumination.

We should emphasize that these broadband unidirectional
imaging results can be further enhanced by training the diffractive
layers using a set of wavelengths sampled from a desired spectral
band, as an alternative to using a single training wavelength. The
validity of this approach is confirmed by an additional analysis re-
ported in fig. S7 (A and B), which compares the spectral response of
the model shown in Fig. 2 to that of another diffractive model
trained using the same configuration and hyperparameters, but
with the operational wavelength selected randomly within the spec-
tral range of [λL : λR] during the training process, where λL = 0.92 × λ
and λR = 1.11 × λ. As shown in fig. S7C, this training approach with
a wide continuum of wavelengths substantially improves the output
PCC values in the forward direction at illumination wavelengths far
away from the center wavelength λ. These advantages of the broad-
band design also come at the expense of relatively reduced peak
PCC values of the forward output images at λ and a small reduction
in the forward diffraction efficiency.

Experimental validation of the diffractive unidirectional
imager design
We experimentally validated our diffractive unidirectional imager
using a monochromatic continuous-wave terahertz illumination
at λ = 0.75 mm, as shown in Fig. 6A. A schematic diagram of the
terahertz setup is shown in Fig. 6B, and its implementation details
are reported in Materials and Methods. For this experimental vali-
dation, we designed a diffractive unidirectional imager composed of

Fig. 3. Performance analysis of the diffractive unidirectional imager shown in
Fig. 2. (Aand B) Normalized mean square error (MSE) (A) and Pearson correlation
coefficient (PCC) (B) values calculated between the input images and their corre-
sponding diffractive outputs in the forward and backward directions. (C) The
output diffraction efficiencies of the diffractive unidirectional imager calculated
in the forward and backward directions. In (A) to (C), the metrics are benchmarked
across the entire MNIST test dataset and reported here with their mean values and
SDs added as error bars. (D) Left: The power of the different spatial modes prop-
agating in the diffractive volume during the forward and backward operations,
shown as percentages of the total input power. Right: Schematic of the different
spatial modes propagating in the diffractive volume. FOV, field of view.
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three diffractive layers, where each layer contains 100 by 100 learn-
able diffractive features, each with a lateral size of 0.64λ (dictated by
the resolution of our 3D printer). The axial spacing between any two
adjacent layers (including the diffractive layers and the input/output
planes) is chosen as ~26.7λ. Different from earlier designs, here, we
also took into account the material absorption using the complex-
valued refractive index of the diffractive material in our optical
model, such that the optical fields absorbed by the diffractive
layers are also considered in our design (which will be referred to
as the “absorbed modes” in the following discussion). Moreover,
to overcome the undesired performance degradation that may be
caused by the misalignment errors in an imperfect physical assem-
bly of the diffractive layers, we also adopted a “vaccination” strategy
in our design by introducing random displacements applied to the
diffractive layers during the training process, which enabled the
final converged diffractive unidirectional imager to become more
resilient to potential misalignment errors (see Materials
and Methods).

After the training was complete, we conducted numerical per-
formance analysis for this converged diffractive design using
blind testing objects, with the results shown in fig. S3. Upon com-
parison to the earlier model presented in Fig. 2, which had a high
output diffraction efficiency of >90% in its forward direction, we
found that this experimental design exhibits a relatively lower dif-
fraction efficiency of ~21.33% in the forward imaging direction,
A → B. This power efficiency reduction can be attributed to two

main factors: (i) The existence of absorption by the diffractive
layers caused ~27% of the input power to be lost through the ab-
sorbed modes; and (ii) our experimental design choice of using
fewer diffractive layers (i.e., three layers) resulted in a reduced
number of trainable diffractive features, leading to a larger
portion of the input power (~46%) converted to the unbound
modes. Nevertheless, this experimental design still maintains a sub-
stantially higher forward diffraction efficiency when compared to
the backward direction, where ~1.8% of the input energy enters
the output FOV (FOVA) in the reverse direction, B → A.Moreover,
the forward and backward PCC values for this experimental design
stand at 0.9618 ± 0.0100 and 0.4859 ± 0.0710, respectively, indicat-
ing the success of the unidirectional imager design.

After the training, the resulting diffractive layers were fabricated
using a 3D printer (Fig. 6, C and D). In our experiments, we tested
the performance of this 3D fabricated diffractive unidirectional
imager along the forward and backward directions, as illustrated
in Fig. 7 (A and B). Ten different handwritten digit samples from
the blind testing set (never used in the training) were used as the
input test objects, also 3D printed. These experimental imaging
results for A → B and B → A are shown in Fig. 7C, which present
a good agreement with their numerical simulated counterparts, very
well matching the input images. As expected, 3D printed diffractive
unidirectional imager faithfully imaged the input objects in its
forward direction and successfully blocked the image formation

Fig. 4. Spatial resolution analysis for the diffractive unidirectional imager shown in Fig. 2. Resolution test target images composed of grating patterns with different
periods and orientations and their corresponding diffractive output images are shown for both the forward and backward imaging directions. The red lines indicate the
one-dimensional (1D) cross-sectional profiles calculated by integrating the intensity of the grating patterns in the diffractive output images along the direction perpen-
dicular to the grating.
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Fig. 5. Spectral response of the diffractive unidirectional imager design shown in Fig. 2. (A and B) Output image PCC (A) and diffraction efficiency (B) of the diffr-
active unidirectional imager in the forward and backward directions as a function of the illumination wavelength used during the blind testing. The values of the power
suppression ratio are also reported in (B), which refers to the ratio between the output diffraction efficiency of the forward operation and the backward operation. The
shaded areas indicate the SD values calculated based on all the 10,000 images in the testing dataset. (C) Examples of the output images in the forward and backward
directions when using different illumination wavelengths during the testing, along with the corresponding input test images (never used during the training). (D) Broad-
band illumination results for several test objects are shown for the forward and backward imaging directions. Two different broadband illumination cases are shown,
uniformly covering (i) 0.92 × λ to 1.11 × λ and (ii) 0.85 × λ to 1.15 × λ, where λ is the training illumination wavelength, λtrain = λ.
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in the backward direction; these results constitute the first demon-
stration of unidirectional imaging.

Wavelength-multiplexed unidirectional diffractive imagers
Next, we consider a more challenging task: combining two diffrac-
tive unidirectional imagers that operate in opposite directions,
where the direction of imaging is controlled by the illumination
wavelength. The resulting diffractive system forms a wavelength-
multiplexed unidirectional imager, where the image formation
from A → B and B → A is maintained at λ1 and λ2 illumination
wavelengths, respectively, whereas the image formation from
B → A and A → B is blocked at λ1 and λ2, respectively (see Figs.
8 and 9). To implement this wavelength-multiplexed unidirectional
imaging concept, we designed another diffractive imager that oper-
ates at λ1 and λ2 = 1.13 × λ1 wavelengths and used an additional
penalty term in the training loss function to improve the perfor-
mance of the image blocking operations in each direction, A → B
and B → A. More details about the numerical modeling and the
training loss function for this wavelength-multiplexed diffractive
design can be found in Materials and Methods.

We trained this wavelength-multiplexed unidirectional diffrac-
tive imager using handwritten digit images as before; the resulting,
optimized diffractive layers are reported in fig. S4. Following its

training, the diffractive imager was blindly tested using 10,000
MNIST test images that were never used during the training
process, with some representative testing results presented in
Fig. 9C. These results indicate that the wavelength-multiplexed dif-
fractive unidirectional imager successfully performs two separate
unidirectional imaging operations, in reverse directions, the behav-
ior of which is controlled by the illumination wavelength; at λ1,
A → B image formation is permitted and B → A is blocked,
whereas at λ2, B → A image formation is permitted and A → B
is blocked.

We also analyzed the imaging performance of this wavelength-
multiplexed unidirectional diffractive imager as shown in Fig. 10 (A
to C). At the first wavelength channel λ1, the output PCC values for
the forward (A → B) and backward (B → A) directions are calculat-
ed as 0.9428 ± 0.0154 and 0.1228 ± 0.0985, respectively, revealing an
excellent image quality contrast between the two directions (see
Fig. 10B). Similarly, the output diffraction efficiencies for the
forward and backward directions at λ1 are quantified as
65.82 ± 3.57 and 3.62 ± 0.72%, respectively (Fig. 10C). In contrast,
the second wavelength channel λ2 of this diffractive model performs
unidirectional imaging along the direction opposite to that of the
first wavelength, providing output PCC values of 0.9378 ± 0.0187
(B → A) and 0.0840 ± 0.0739 (A → B) (see Fig. 10B). Similarly,

Fig. 6. Experimental setup for the diffractive unidirectional imager. (A) Photograph of the experimental setup, including the fabricated diffractive unidirectional
imager. (B) Schematic diagram of the continuous-wave terahertz (THz) imaging setup. RF, radiofrequency. (C) The learned phase profiles of the diffractive layers (L1, L2, and
L3). (D) Photographs of the 3D printed diffractive layers.
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the output diffraction efficiencies at λ2 were quantified as
51.81 ± 3.77 (B → A) and 2.57 ± 0.36% (A → B). These findings
can be further understood by investigating the power distribution
within this wavelength-multiplexed unidirectional diffractive
imager, which is reported in Fig. 10D. This power distribution anal-
ysis within the diffractive volume clearly shows how two different
wavelengths (λ1 and λ2) along the same spatial direction (e.g.,
A → B) can result in very different distributions of spatial modes,
performing unidirectional imaging in opposite directions, follow-
ing the same physical behavior reported in Fig. 3D, except that
this time it is wavelength multiplexed, controlling the direction of
imaging. Such an exotic wavelength-multiplexed unidirectional
imaging system cannot be achieved using simple spectral filters
such as absorption or thin-film filters, since the use of a spectral
filter at one wavelength channel (for example, to block A → B at
λ2) would immediately also block the reverse direction (B → A at
λ2), violating the desired goal.

We should also note that, since this wavelength-multiplexed uni-
directional imager was trained at two distinct wavelengths that
control the opposite directions of imaging, the spectral response
of the resulting diffractive imager, after its optimization, is vastly
different from the broadband response of the earlier designs,

reported in, e.g., Fig. 5. Figure S5 reveals that the wavelength-mul-
tiplexed unidirectional imager (as desired and expected) switches its
spectral behavior in the range between λ1 and λ2, since its training
aimed unidirectional imaging at opposite directions at these two
predetermined wavelengths. Therefore, this spectral response that
is summarized in fig. S5 is in line with the training goals of this
wavelength-multiplexed unidirectional imager. However, it still
maintains its unidirectional imaging capability over a range of
wavelengths in both directions. For example, fig. S5 reveals that
the output image PCC values for A → B remain ≥0.85 within the
entire spectral range covered by 0.975 × λ1 to 1.022 × λ1 without any
considerable increase in the diffraction efficiency for the reverse
path, B → A. Similarly, the output image PCC values for B → A
remain ≥0.85 within the entire spectral range covered by
0.968 × λ2 to 1.029 × λ2 without any noticeable increase in the dif-
fraction efficiency for the reverse path, A→ B, within the same spec-
tral band. These results highlighted in fig. S5 indicate that the
wavelength-multiplexed unidirectional imager can also operate
over a continuum of wavelengths around λ1 (A → B) and λ2
(B → A), although the width of these bands are narrower compared
to the broadband imaging results reported in Fig. 5.

Fig. 7. Experimental results. (A and B) Layout of the diffractive unidirectional imager that was fabricated for experimental validation when it operates in the forward (A)
and backward (B) directions. (C) Experimental results of the unidirectional imager using the fabricated diffractive layers.
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Last, we also tested the external generalization capability of this
wavelength-multiplexed unidirectional imager on different datasets:
handwritten letter images and fashion products as well as the con-
trast-reversed versions of these datasets. The corresponding
imaging results are shown in Fig. 9D and fig. S6, once again con-
firming that our diffractive model successfully converged to a
data-independent, generic imager where unidirectional imaging
of various input objects can be achieved along either the forward
or backward directions that can be switched/controlled by the illu-
mination wavelength.

DISCUSSION
Our results constitute the first demonstration of unidirectional
imaging. This framework uses structured materials formed by
phase-only diffractive layers optimized through deep learning and
does not rely on nonreciprocal components, nonlinear materials, or
an external magnetic field bias. Because of the use of isotropic dif-
fractive materials, the operation of our unidirectional imager is in-
sensitive to the polarization of the input light, also preserving the
input polarization state at the output. As we reported earlier in
Results (Fig. 5), the presented diffractive unidirectional imagers
maintain unidirectional imaging functionality under broadband il-
lumination, over a large spectral band that covers, e.g., 0.85 × λ to
1.15 × λ, despite the fact that they were only trained using mono-
chromatic illumination at λ. This broadband imaging performance
was further enhanced, covering even larger input bandwidths, by
training the diffractive layers of the unidirectional imager using a
set of illumination wavelengths randomly sampled from the
desired spectral band of operation as illustrated in fig. S7.

By examining the diffractive unidirectional imager design and
the analyses shown in Fig. 2 and fig. S1, one can gain more insights
into its operation principles from the perspective of the spatial dis-
tribution of the propagating optical fields within the diffractive
imager volume. The diffractive layers L1 to L3 shown in Fig. 2C
exhibit densely packed phase islands, similar to microlens arrays
that communicate between successive layers. Conversely, the dif-
fractive layers L4 and L5 have rapid phase modulation patterns, re-
sulting in high spatial frequency modulation and scattering of light.
Consequently, the propagation of light through these diffractive
layers in different sequences leads to the modulation of light in an
asymmetric manner (A → B versus B → A). To gain more insights
into this, we calculated the spatial distributions of the optical fields
within the diffractive imager volume in fig. S1 (C and D) for a
sample object. We observe that, in the forward direction (A → B),
the diffractive layers arranged with the order of L1 to L5 ensured that
these optical fields propagated forward through the focusing by the
microlens-like phase islands located in the diffractive layers L1 to L3,
and as a result, the majority of the input power was maintained
within the diffractive volume, creating a power efficient image of
the input object at the output FOV. However, for the backward op-
eration (B → A) where the diffractive layers are arranged in the re-
versed order (L5 to L1), the optical fields in the diffractive volume
are initially modulated by the high spatial frequency phase patterns
of the diffractive layers (i.e., L5 and L4), and during the early stages
of the propagation within the diffractive volume, this leads to a large
amount of radiation being channeled to the outer space aside the
diffractive volume, in the form of unbound modes (see the green
shaded areas in fig. S1, A and B). For the remaining spatial modes
that managed to stay within the diffractive volume (propagating

Fig. 8. Illustration of thewavelength-multiplexed unidirectional diffractive imager. In this diffractive design, the image formation operation is performed along the
forward direction at wavelength λ1 and the backward direction at λ2, while the image blocking operation is performed along the backward direction at λ1 and the forward
direction at λ2. This diffractive imager works as a unidirectional imaging system at two different wavelengths, each with a reverse imaging direction with respect to the
other. λ2 = 1.13 × λ1.
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Fig. 9. Design schematic and blind testing results of the wavelength-multiplexed unidirectional diffractive imager. (A and B) Layout of the wavelength-multi-
plexed unidirectional diffractive imager when it operates in the forward (A) and backward (B) directions. (C) Exemplary blind testing input images taken from MNIST
handwritten digits that were never seen by the diffractive imager model during its training, along with their corresponding diffractive output images at different wave-
lengths in the forward and backward directions. (D) Same as (C) except that the testing images are taken from the EMNIST and Fashion-MNIST datasets, demonstrating
external generalization.
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from B to A), they were guided by the subsequent diffractive layers
(i.e., L3 to L1) to remain outside the output FOV (i.e., ending up
within the orange shaded areas in fig. S1B).

One should note that the intensity distributions formed by these
modes that lie outside the output FOV can be potentially measured
by using, for example, side cameras that capture some of these
scrambled modes. Such side cameras, however, cannot directly
lead to meaningful, interpretable images of the input objects, as
also illustrated in fig. S1. With the precise knowledge of the diffrac-
tive layers and their phase profiles and positions, one could poten-
tially train a reconstruction digital neural network to make use of
such side-scattered fields to recover the images of the input
objects in the reverse direction of the unidirectional imaging
system. This “attack” to digitally recover the lost image of the
input object through side cameras and learning-based digital
image reconstruction methods would not only require precise
knowledge of the fabricated diffractive imager but can also be mit-
igated by surrounding the diffractive layers and the regions that lie
outside the image FOV (orange regions in fig. 1, A and B) with ab-
sorbing layers/coatings that would protect the unidirectional imager
against “hackers,” blocking the measurement of the scattered fields,
except the output image aperture. Such absorbing layers also break
the time-reversal symmetry of the imaging system, which help mit-
igate the risk of deciphering and decoding the original input in the
backward direction.

Throughout this manuscript, we presented diffractive unidirec-
tional imagers with input and output FOVs that have 28 by 28
pixels, and these designs were based on transmissive diffractive
layers, each containing ≤200 by 200 trainable phase-only features.
To further enhance the unidirectional imaging performance of
these diffractive designs, one strategy would be to create deeper ar-
chitectures with more diffractive layers, also increasing the total
number (N) of trainable features. In general, deeper diffractive ar-
chitectures present advantages in terms of their learning speed,
output power efficiency, transformation accuracy, and spectral mul-
tiplexing capability (39, 44, 47, 48). Suppose an increase in the
space-bandwidth product (SBP) of the input FOV A (SBPA) and
the output FOV B (SBPB) of the unidirectional imager is desired,
for example, due to a larger input FOV and/or an improved resolu-
tion demand; in that case, this will necessitate an increase in N pro-
portional to SBPA × SBPB, demanding larger degrees of freedom in
the diffractive unidirectional imager to maintain the asymmetric
optical mode processing over a larger number of input and
output pixels. Similarly, the inclusion of additional diffractive
layers and features to be jointly optimized would also be beneficial
for processing more complex input spectra through diffractive uni-
directional imagers. In addition to the wavelength-multiplexed uni-
directional imager reported in Figs. 8 to 10, an enhanced spectral
processing capability through a deeper diffractive architecture
may permit unidirectional imaging with, e.g., a continuum of wave-
lengths or a set of discrete wavelength across a desired spectral band.

Fig. 10. Performance analysis of thewavelength-multiplexed unidirectional diffractive imager shown in Fig. 9 and fig. S2. (A and B) Normalized MSE (A) and PCC
(B) values calculated between the input images and their corresponding diffractive outputs at different wavelengths in the forward and backward operations. (C) The
output diffraction efficiencies of the diffractive imager calculated in the forward and backward operations. In (A) to (C), the metrics are benchmarked across the entire
MNIST test dataset and shown with their mean values and SDs added as error bars. (D) Left: The power of the different spatial modes at the twowavelengths propagating
in the diffractive volume during the forward and backward operations, shown as percentages of the total input power. Right: Schematic of the different spatial modes
propagating in the diffractive volume.
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Furthermore, by properly adjusting the diffractive layers and the
learnable phase features on each layer, our designs can be adapted
to input and output FOVs that have different numbers and/or sizes
of pixels, enabling the design of unidirectional imagers with a
desired magnification or demagnification factor.

Although the presented diffractive unidirectional imagers are
based on spatially coherent illumination, they can also be extended
to spatially incoherent input fields by following the same design
principles and deep learning–based optimization methods present-
ed in this work. Spatially incoherent input radiation can be pro-
cessed using phase-only diffractive layers optimized through the
same loss functions that we used to design unidirectional imagers
reported in our Results. For example, each point of the wavefront of
an incoherent field can be decomposed, point by point, into a
spherical secondary wave, which coherently propagates through
the diffractive phase-only layers; the output intensity pattern will
be the superposition of the individual intensity patterns generated
by all the secondary waves originating from the input plane,
forming the incoherent output image. However, the simulation of
the propagation of each incoherent field through the diffractive
layers requires a considerably increased number of wave propaga-
tion steps compared to the spatially coherent input fields, and as
a result, the training of spatially incoherent diffractive imagers
would take longer.

MATERIALS AND METHODS
Numerical forward model of a diffractive
unidirectional imager
In the forward model of our diffractive unidirectional imager
design, the input plane, diffractive layers, and output plane are po-
sitioned sequentially along the optical axis, where the axial spacing
between any two of these layers (including the input and output
planes) is set as d. For the numerical and the experimental
models used here, the value of d is empirically chosen as 10 and
20 mm, respectively, corresponding to 13.33λ and 26.67λ, where λ
= 0.75 mm. In our numerical simulations, the diffractive layers are
assumed to be thin optical modulation elements, where the mth
neuron on the kth layer at a spatial location (xm, ym, zm) represents
a wavelength-dependent complex-valued transmission coefficient,
tk, given by

tkðxm; ym; zm; λÞ ¼ exp �
2πκðλÞhkm

λ

" #

exp j½nðλÞ � nair�
2πhkm
λ

( )

ð1Þ

where n(λ) and κ(λ) are the refractive index and the extinction co-
efficient of the diffractive layer material, respectively; these corre-
spond to the real and imaginary parts of the complex-valued
refractive index ~nðλÞ, i.e., ~nðλÞ ¼ nðλÞ þ jκðλÞ(34). For the diffrac-
tive unidirectional imager validated experimentally at λ = 0.75 mm,
the values of ~nðλÞ are measured using a terahertz spectroscopy
system to reveal n(λ) = 1.700 and κ(λ) = 0.017 for the 3D printing
material that we used. The same refractive index value n(λ) = 1.700
is also used in all the diffractive imager models used in our numer-
ical analyses with κ = 0. hkm denotes the thickness value of each

diffractive feature on a layer, which can be written as

h ¼ hlearnable þ hbase ð2Þ

where hlearnable refers to the learnable thickness value of each diffrac-
tive feature and is confined between 0 and hmax. The additional base
thickness, hbase, is a constant that serves as the substrate (mechani-
cal) support for the diffractive layers. To constrain the range of
hlearnable, an associated latent trainable variable hv was defined
using the following analytical form

hlearnable ¼ SigmoidðhvÞ � hmax ð3Þ

where Sigmoid(hv) is defined as

SigmoidðhvÞ ¼
1

1þ e� hv
ð4Þ

Note that before the training starts, hv values of all the diffractive
features were initialized as 0. In our implementation, hmax is chosen
as 1.07 mm for the diffractive models that use λ = 0.75 mm so that
the phase modulation of the diffractive features covers 0 to 2π. For
the diffractive imager model that performs wavelength-multiplexed
unidirectional imaging, hmax was empirically selected as 1.6 mm,
still covering 0 to 2π phase range for both wavelengths (λ1 = 0.75
mm and λ2 = 0.85 mm). The substrate thickness, hbase, was
assumed to be 0 in the numerical diffractive models and was
chosen as 0.5 mm in the diffractive model used for the experimental
validation.

The diffractive layers of a unidirectional imager are connected to
each other by free space propagation, which is modeled through the
Rayleigh-Sommerfeld diffraction equation (33, 49)

f kmðx; y; zÞ ¼
z � zi
r2

1
2πr
þ

1
jλ

� �

exp
j2πr
λ

� �

ð5Þ

where f kmðx; y; z; λÞ is the complex-valued field on the mth pixel of
the kth layer at (x, y, z), which can be viewed as a secondary wave
generated from the source at (xm, ym, zm),

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xmÞ2 þ ðy � ymÞ
2
þ ðz � zmÞ2

q

, and j ¼
ffiffiffiffiffiffiffi
� 1
p

. For the
kth layer (k ≥ 1, assuming that the input plane is the 0th layer),
the modulated optical field Ek at location (xm, ym, zm) is given by

Ekðxm; ym; zm; λÞ ¼ tkðxm; ym; zmÞ �
X

n[S
Ek� 1ðxn; yn; zn; λÞ

� f k� 1m ðxm; ym; zmÞ ð6Þ

where S denotes all the diffractive features located on the previous
diffractive layer. In our implementation, we used the angular spec-
trum approach (33) to compute Eq. 6, which can be written as

Ekðxm; ym; zm; λÞ ¼ F � 1fF ½Ek� 1ðxn; yn; zn; λÞ� �Hðf x; f x; zm
� zn; λÞg ð7Þ

where F and F−1 denote the 2D Fourier transform and the inverse
Fourier transform operations, respectively, both implemented using
a fast Fourier transform.H(xn, yn, zm − zn, λ) is the transfer function
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of free space

Hðf x; f x;zm � zn;λÞ¼
exp j2πðzm � znÞλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðλf xÞ2 � ðλf yÞ2
qn o

; f 2xþ f 2x , 1
λ2

0; f 2xþ f 2x � 1
λ2

8
<

:

ð8Þ

where fx and fy represent the spatial frequencies along the x and y
directions, respectively.

Training loss functions and image quantification metrics
We first consider a generic form of a diffractive unidirectional
imager, where the image formation is permitted in one direction
(e.g., A → B), and it is inhibited in the opposite direction (e.g.,
B → A) at a single training wavelength, λ. The training loss function
for such a diffractive unidirectional imager was defined as

L½OImgðλÞ;OBlkðλÞ; IðλÞ� ¼ LImgMSE½OImgðλÞ; IðλÞ�
þ αImgBlkLImgBlk½OBlkðλÞ; IðλÞ�

þ αEffBstLEffBst½OImgðλÞ; IðλÞ� þ αEffSqzLEffSqz½OBlkðλÞ; IðλÞ�
ð9Þ

where I(λ) stands for the input image illuminated at a wavelength of
λ and OImg(λ) and OBlk(λ) denote the output images in the forward
and backward directions, respectively. All the input and output
images have the perspective of the illumination beam direction, flip-
ping them left to right as one switches the illumination direction,
A → B or B → A. LImgMSE penalizes the normalized MSE
between the OImg(λ) and its ground truth, which can be written as

LImgMSE½OImgðλÞ; IðλÞ� ¼
1

NxNy
P
ðx;yÞ[V jIðx; y; λÞj

2

X

ðx;yÞ[V

jIðx; y; λÞ � σOImgðx; y; λÞj2
ð10Þ

where *(x, y, λ) indexes the individual pixels at spatial coordinates
(x, y) and wavelength λ and V denotes the defined FOV that has
Nx ×Ny pixels at the input or output plane. σ is a normalization
constant used to normalize the energy of the diffractive output,
thereby ensuring that the computed MSE value is not influenced
by the errors arising from the output diffraction efficiency (50),
and it is given by the following expression

σ ¼
P
ðx;yÞ[V OImgðx; y; λÞIðx; yÞ
P
ðx;yÞ[V jOImgðx; yÞj2

ð11Þ

LEffBst is used to improve the output diffraction efficiency along
the imaging direction (e.g., A → B), which is defined as

LEffBst½OImgðλÞ; IðλÞ� ¼ expf� βEffBstη½OImgðλÞ; IðλÞ�g ð12Þ

where η(·) is the output diffraction efficiency of the diffractive uni-
directional imager and βEffBst is an empirical weight coefficient,
which was set as 1.0 during the training of all the diffractive
models. η was defined as

ηðO; IÞ ¼
P
ðx;yÞ[V jOðx; yÞj

2

P
ðx;yÞ[V jIðx; yÞj

2 ð13Þ

LImgBlk is defined to penalize the structural resemblance between
the input image and the diffractive imager output along the image

blocking direction (e.g., B → A)

LImgBlk½OBlkðλÞ; IðλÞ� ¼ jPCC½OBlkðλÞ; IðλÞ�j ð14Þ

where PCC stands for the Pearson correlation coefficient, defined as

PCCðA;BÞ ¼
P
ðA � AÞðB � BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðA � AÞ2

P
ðB � BÞ2

q ð15Þ

LEffSqz in Eq. 9 is used to penalize the output diffraction efficien-
cy in the backward direction

LEffSqz½OBlkðλÞ; IðλÞ� ¼ η½OBlkðλÞ; IðλÞ� ð16Þ

αImgBlk, αEffBst, and αEffSqz in Eq. 9 are the empirical weight coef-
ficients associated with LImgBlk, LEffBst, and LEffSqz, respectively.

We denote the diffractive unidirectional imager output images
for A → B and B → A as OA→B(λ) and OB→A(λ), respectively. For
the diffractive unidirectional imaging models that were trained
using a single illumination wavelength (e.g., in Figs. 2 and 7), the
image formation is set to be maintained in the forward direction
(A → B) and inhibited in the backward direction (B → A), i.e.,
OImg(λ) =OA→B(λ) andOBlk(λ) =OB→A(λ). Therefore, the loss func-
tion for training these models can be formulated as

L½OImgðλÞ ¼ OA!BðλÞ;OBlkðλÞ ¼ OB!AðλÞ; IðλÞ� ð17Þ

where L(·) refers to the same loss function defined in Eq. 9. During
the training of the unidirectional imager models with five diffractive
layers and a single training wavelength channel, the empirical
weight coefficients αImgBlk, αEffBst, and αEffSqz were set as 0, 0.001,
and 0.001, respectively; during the training of the other model
with three diffractive layers used for the experimental validation,
the same weight coefficients were set as 0, 0.01, and 0.003,
respectively.

For the wavelength-multiplexed unidirectional diffractive
imager model shown in Fig. 9, at λ1, the image formation is permit-
ted in the direction A → B and inhibited in the direction B → A,
whereas at λ2, the image formation is permitted in the direction
B → A and inhibited in the direction A → B, respectively; i.e.,
OImg(λ1) = OA→B(λ1), OBlk(λ1) = OB→A(λ1), OImg(λ2) = OB→A(λ2),
andOBlk(λ2) =OA→B(λ2). Accordingly, we formulated the loss func-
tion used for training this model as

L½OImgðλ1Þ ¼ OA!Bðλ1Þ;OBlkðλ1Þ ¼ OB!Aðλ1Þ; Iðλ1Þ�
þ L½OImgðλ2Þ ¼ OB!Aðλ2Þ;OBlkðλ2Þ ¼ OA!Bðλ2Þ; Iðλ2Þ�

ð18Þ

where L(·) refers to the loss function defined in Eq. 9. During the
training of this model, the weight coefficients αImgBlk, αEffBst, and
αEffSqz were empirically set as 0.0001, 0.001, and 0.001, respectively.

For quantifying the imaging performance of the presented dif-
fractive imager designs, the reported values of the output MSE,
output PCC, and output diffraction efficiency were directly taken
from the calculated results of LImgMSE, PCC, and η, respectively, re-
vealing the averaged values across the blind testing image dataset.
When calculating the power distributions of different optical
modes within the diffractive volume, the power percentage of the
output FOV modes takes the same value as η, and the power per-
centage outside the output FOV is computed by subtracting the
total power integrated within the output image FOV from the
total power integrated across the entire output plane. The power
in the absorbed modes is calculated by summing up the power
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loss before and after the optical field modulation by each diffractive
layer. After excluding the power of the above modes from the total
input power, the remaining part is calculated as the power of the
unbound modes.

Training details of the diffractive unidirectional imagers
For the numerical models used here, the smallest sampling period
for simulating the complex optical fields is set to be identical to the
lateral size of the diffractive features, i.e., ~0.53λ for λ = 0.75 mm.
The input/output FOVs of these models (i.e., FOV A and B) share
the same size of 44.8 by 44.8 mm2 (i.e., ~59.7λ × 59.7λ) and are dis-
cretized into 28 by 28 pixels, where an individual pixel corresponds
to a size of 1.6 mm (i.e., ~2.13λ), indicating a four-by-four binning
performed on the simulated optical fields.

For the diffractive model used for the experimental validation of
unidirectional imaging, the sampling period of the optical fields and
the lateral size of the diffractive features are chosen as 0.24 and 0.48
mm, respectively (i.e., 0.32λ and 0.64λ). This also results in a two-
by-two binning in the sampling space where an individual feature
on the diffractive layers corresponds to four sampling space pixels
that share the same dielectric material thickness value. The input
and output FOVs of this model (i.e., FOV A and B) share the
same size of 36 by 36 mm2 (i.e., 48λ × 48λ) and are sampled into
arrays of 15 by 15 pixels, where an individual pixel has a size of
2.4 mm (i.e., 3.2λ), indicating that a 10-by-10 binning is performed
at the input/output fields in the numerical simulation.

During the training process of our diffractive models, an image
augmentation strategy was also adopted to enhance their generali-
zation capabilities. We implemented random translation, random
up-to-down, and random left-to-right flipping of the input
images using the transforms.RandomAffine function built-in
PyTorch. The translation amount was uniformly sampled within
a range of [−10, 10] and [−5, 5] pixels in the diffractive unidirec-
tional imager models used for numerical analysis and the model
used for the experimental validation, respectively. The flipping op-
eration is set to be performed at a probability of 0.5.

All the diffractive imager models used in this work were trained
using PyTorch (v1.11.0, Meta Platforms Inc.). We selected AdamW
optimizer (51, 52), and its parameters were taken as the default
values and kept identical in each model. The batch size was set as
32. The learning rate, starting from an initial value of 0.03, was set to
decay at a rate of 0.5 every 10 epochs, respectively. The training of
the diffractive models was performed with 50 epochs. For the train-
ing of our diffractive models, we used a workstation with a GeForce
GTX 1080Ti graphical processing unit (Nvidia Inc.) and Core i7-
8700 central processing unit (Intel Inc.) and 64 GB of RAM,
running Windows 10 operating system (Microsoft Inc.). The
typical time required for training a diffractive unidirectional
imager is ~3 hours.

Vaccination of the diffractive unidirectional imager against
experimental misalignments
During the training of the diffractive unidirectional imager design
for experimental validation, possible inaccuracies imposed by the
fabrication and/or mechanical assembly processes were taken into
account in our numerical model by treating them as random 3D
displacements (D) applied to the diffractive layers (53). D can be

written as

D ¼ ðDx;Dy;DzÞ ð19Þ

whereDx andDy represent the random lateral displacement of a dif-
fractive layer along the x and y directions, respectively, and Dz rep-
resents the random perturbation added to the axial spacing between
any two adjacent layers (including diffractive layers, input FOV A,
and output FOV B). Dx, Dy, and Dz of each diffractive layer were
independently sampled based on the following uniform (U )
random distributions

Dx ≏ Uð� Δx;tr;Δx;trÞ ð20Þ

Dy ≏ Uð� Δy;tr;Δy;trÞ ð21Þ

Dz ≏ Uð� Δz;tr;Δz;trÞ ð22Þ

where Δ*,tr denotes the maximum amount of shift allowed along the
corresponding axis, which was set as Δx,tr = Δy,tr = 0.48 mm (i.e.,
0.64λ) and Δz,tr = 1.5 mm (i.e., 2λ) during the training process. Fol-
lowing the training under this vaccination strategy, the resulting dif-
fractive unidirectional imager shows resilience against possible
misalignments in the fabrication and assembly of the diffrac-
tive layers.

Note that, in addition to the 3D displacements of the diffractive
layers, there may also exist other types of alignment errors in our
experimental setup, such as 3D rotational misalignments of the dif-
fractive layers. However, since the holders used to fix the diffractive
layers are, in general, manufactured with high structural precision
and surface flatness, we did not incorporate these types of misalign-
ments into our forward model considering their negligible impact
in our case. In the event that such rotational misalignments of the
diffractive layer become an important factor in the experimental
results, the undesired in-plane rotations of the diffractive layers
can be readily modeled through applying a 2D coordinate transfor-
mation based on unitary rotation matrices, while the out-of-plane
rotation of the diffractive layers can be addressed by modifications
to the formulation of the wave propagation between tilted diffractive
planes (53–55).

Experimental terahertz imaging setup
We fabricated the diffractive layers using a 3D printer (PR110,
CADworks3D). The test objects were also 3D printed (Objet30
Pro, Stratasys) and coated with aluminum foil to define the light-
blocking areas, with the remaining openings defining the transmis-
sion areas. We used a holder that was also 3D printed (Objet30 Pro,
Stratasys) to assemble the printed diffractive layers along with input
objects, following the relative positions of these components in our
numerical design.

A terahertz continuous-wave scanning system was used for
testing our diffractive unidirectional imager design. According to
the experimental setup illustrated in Fig. 6B, we used a terahertz
source in form of a WR2.2 modular amplifier/multiplier chain
(AMC), followed by a compatible diagonal horn antenna (Virginia
Diodes Inc.). A 10-dBm radiofrequency (RF) input signal at 11.1111
GHz ( fRF1) at the input of AMC is multiplied 36 times to generate
the output radiation at 400 GHz, corresponding to a wavelength of λ
= 0.75 mm. The AMC output was also modulated with a 1-kHz
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square wave for lock-in detection. The assembled diffractive unidi-
rectional imager is placed ∼600 mm away from the exit aperture of
the horn antenna, which results in an approximately uniform plane
wave impinging on its input FOV (A) with a size of 36 by 36 mm2

(i.e., 48λ × 48λ). The intensity distribution within the output FOV
(B) of the diffractive unidirectional imager was scanned at a step size
of 1 mm by a single-pixel mixer/AMC (Virginia Diodes Inc.) detec-
tor on an xy positioning stage that was built by combining two
linear motorized stages (Thorlabs NRT100). The detector also re-
ceives a 10-dBm sinusoidal signal at 11.083 GHz ( fRF2) as a local
oscillator for mixing to down-convert the output signal to 1 GHz.
The signal is then fed into a low-noise amplifier (Mini-Circuits
ZRL-1150-LN+) with a gain of 80 dBm, followed by a band-pass
filter at 1 GHz (± 10 MHz) (KL Electronics 3C40-1000/T10-O/
O), so that the noise components coming from unwanted frequency
bands can bemitigated. Then, after passing through a tunable atten-
uator (HP 8495B) used for linear calibration, the final signal is sent
to a low-noise power detector (Mini-Circuits ZX47-60). The detec-
tor output voltage is measured by a lock-in amplifier (Stanford Re-
search SR830) with the 1-kHz square wave used as the reference
signal. Last, the lock-in amplifier readings were calibrated into a
linear scale. In our postprocessing, linear interpolation was
applied to each measurement of the intensity field to match the
pixel size of the output FOV (B) used in the design phase, resulting
in the output measurement images shown in Fig. 7C.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
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