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The hairpin ribozyme is a small catalytic RNA comprising two

helix–loop–helix domains linked by a four-way helical junction

(4WJ). In its most basic form, each domain can be formed

independently and reconstituted without a 4WJ to yield an

active enzyme. The production of such minimal junctionless

hairpin ribozymes is achievable by chemical synthesis, which

has allowed structures to be determined for numerous

nucleotide variants. However, abasic and other destabilizing

core modifications hinder crystallization. This investigation

describes the use of a dangling 50-U to form an intermolecular

U�U mismatch, as well as the use of synthetic linkers to tether

the loop A and B domains, including (i) a three-carbon propyl

linker (C3L) and (ii) a nine-atom triethylene glycol linker

(S9L). Both linker constructs demonstrated similar enzymatic

activity, but S9L constructs yielded crystals that diffracted to

2.65 Å resolution or better. In contrast, C3L variants

diffracted to 3.35 Å and exhibited a 15 Å expansion of the c

axis. Crystal packing of the C3L construct showed a paucity of

61 contacts, which comprise numerous backbone to 20-OH

hydrogen bonds in junctionless and S9L complexes. Signifi-

cantly, the crystal packing in minimal structures mimics

stabilizing features observed in the 4WJ hairpin ribozyme

structure. The results demonstrate how knowledge-based

design can be used to improve diffraction and overcome

otherwise destabilizing defects.
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PDB References: hairpin

ribozyme, 2npy, r2npysf;
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1. Introduction

The hairpin ribozyme is a small self-cleaving RNA derived

from the negative strand of the 359 nt tobacco ringspot virus

satellite RNA. In vivo, this ribozyme generates unit-length

circular transcripts from concatenated replication inter-

mediates produced by rolling-circle genome replication

(Hampel & Tritz, 1989). As with other naturally occurring

small ribozymes such as the hammerhead, hepatitis �-virus,

Varkud satellite and metabolite-sensing varieties, hairpin-

ribozyme cleavage generates a free 50-hydroxyl and a cyclic

20,30-phosphate as cleavage products. The reaction occurs

without the need for a metal hydroxide and leads to site-

specific phosphodiester-bond cleavage of the order of 0.1–

0.3 min�1 using minimal hinged constructs that lack a natural

four-way helical (4WJ) junction (reviewed in Walter & Burke,

1998). The active site of the hairpin ribozyme forms at the

confluence of two helix–loop–helix domains, called A and B,

that dock together through interactions between the respec-

tive internal loops. Docking is stabilized by a cross-strand

Watson–Crick base pair between G+1 and C25, as well as a

‘ribose-zipper’ motif (Rupert & Ferré-D’Amaré, 2001;

Chowrira et al., 1993). In the wild-type sequence, the A and B

domains are joined distally through a single adenine residue



and this connection is bolstered further by a 4WJ (reviewed in

Hohng et al., 2004). Although dispensable for the catalytic

activity, the 4WJ enhances folding relative to minimally hinged

constructs (Hampel & Tritz, 1989; Tan et al., 2003).

The global fold and active-site architecture of the hairpin

ribozyme were initially revealed as a 2.4 Å resolution crystal

structure (Fig. 1a; Rupert & Ferré-D’Amaré, 2001). With the

exception of the substrate strand, this 113-nucleotide (nt)

construct was generated by in vitro transcription and included

both the 4WJ motif that flanks helices 2 and 3, as well as a

stem-loop sequence located at the end of helix 4. The latter

stem-loop was enlarged and adapted to bind a well char-

acterized RNA-recognition motif (RRM) derived from the

U1A splicing factor (Oubridge et al., 1994). This protein

oligomerizes while bound to specific RNA sequences, thus

creating a self-assembling crystallization platform (Ferré-

D’Amaré et al., 1998). In an alternative minimalist approach,

an all-RNA construct of the hairpin ribozyme was produced

by solid-phase chemical synthesis. The ease of manipulation of

such minimal constructs offered two advantages. Firstly, this

approach enabled well controlled high-throughput structural

investigations designed to elucidate the roles of specific

functional groups located in the enzyme active site (Alam et

al., 2005; Salter et al., 2006). Secondly, a posteriori engineering

of constructs enabled incremental improvements in X-ray

diffraction resolution (Alam et al., 2005; Salter et al., 2006).

Initial efforts were based on the observation that minimal

constructs, which included the A14 hinge residue but lacked

the surrounding 4WJ motif, had a tendency to misfold via

coaxial stacking of helix 3 on helix 2 (Esteban et al., 1998). This

problem could be overcome by reconstituting the fold from

independent loop A and B domains in trans (i.e. a junctionless

hairpin ribozyme; Butcher et al., 1995) and led to the crys-

tallization of a 64-mer construct that diffracted to 3.17 Å

resolution (Grum-Tokars et al., 2003). Empirical observations

based on the 64-mer lattice led to the design of a 61 nt junc-

tionless construct that diffracted to 2.05 Å resolution (Alam et

al., 2005; Salter et al., 2006). This variant eliminated the A14

residue at the interdomain junction to yield a 50-dangling U on

the opposite strand. This residue was designed to engage in an

intermolecular U�U mismatch and thereby promote pseudo-

continuous helical stacking (Alam et al., 2005; Salter et al.,

2006).

Junctionless ribozymes demonstrate a 104-fold increase in

the apparent Km compared with hinged variants that include

A14. The reduced association of these domains has been

attributed to an increase in the entropic penalty of docking as

well as an enhanced dependence of domain association on the

rate of diffusion (Butcher et al., 1995). These qualities repre-

sent potential caveats in the crystallization of junctionless

ribozymes that incorporate transition-state mimics or abasic

residues, since these modifications have the potential to

further reduce interdomain docking and substrate affinity

because they require either (i) the introduction of breaks into
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Figure 1
Schematic depictions of the global hairpin-ribozyme fold and the RNA sequences used in this investigation. (a) Ribbon diagram of the four-way helical
junction (4WJ) hairpin ribozyme (PDB code 1m5k). The junction region, which is not present in minimal constructs, is shown in salmon. RNA and
protein residues included for the purposes of forming the U1A crystallization platform are colored gray. Other strands are colored as described for (b).
(b) Secondary structure of the minimal hinged hairpin ribozyme adapted from RNAview (Yang et al., 2003). The substrate strand is depicted in green, the
S-turn strand in red and the 29-mer strand in blue. The linker position is colored orange. The helix–loop–helix domains are labeled loop A and loop B;
helices are labeled H1–H4. The inset displays two alternate synthetic linkages: C3L and S9L. The site of enzymatic cleavage is highlighted by a star. The
A�1 residue is a 20-deoxy A in the C3L structure and a 20-deoxy-20-amino U in the S9L structure. Conserved residues are boxed; blue backgrounds
indicate residues of the ribose zipper, yellow boxes indicate E-loop residues and gray circled residues belong to the S-turn. Hydrogen-bond pairings:
open-square, Hoogsteen; open triangle, trans-sugar; open circle, Watson–Crick face; closed circle, wobble pair. Double and single lines indicate Watson–
Crick pairs; black dashed lines indicate single hydrogen bonds. (c) Ribbon diagram of the minimal hinged hairpin ribozyme solved in this investigation.



the RNA backbone (Torelli et al., 2007; Rupert et al., 2002) or

(ii) the potential to form cavities within the ribozyme core

(Kuzmin et al., 2005). In this study, we describe strategies to

improve the interdomain-docking properties of minimal all-

RNA hairpin-ribozyme crystallization constructs. Our goal is

to produce variants that are more resilient to the destabilizing

modifications that are central to our structure–function

studies. Strategies include the use of 50-U�U overhanging

mismatches and incorporation of flexible interdomain linkers

(Fig. 1b), the effects of which on crystal packing cannot be

readily established with solution-activity assays. To assess the

outcome of this approach, four hairpin-ribozyme crystal

structures were compared, including the 4WJ structure (PDB

code 1m5k), the refined junctionless hairpin ribozyme (PDB

code 2oue) and two new structures harbouring a linker at

position 14 that included an S9 linker (Fig. 1c; PDB code 2npy)

or a shorter C3 linker (PDB code 2npz). The results provide a

set of knowledge-based principles that can be applied gener-

ally to RNA constructs to optimize X-ray diffraction for

structure–function studies.

2. Materials and methods

2.1. Minimal junctioned all-RNA hairpin-ribozyme construct

The 61 nt minimal junctionless (JL) all-RNA hairpin-

ribozyme construct has been described previously (Alam et al.,

2005). The sequence of the ribozyme used in the current study

(Fig. 1b) included the gain-of-function

mutation U39C to prevent conforma-

tional heterogeneity in the S-turn.

Position A14 was substituted with either

of two commercially available synthetic

linkers (Fig. 1b) that permitted the

preservation of the standard phospho-

diester bond. In the C3L residue, a

three-carbon propyl linker was included

as a flexible mimic of the ribose back-

bone. The S9L residue contained three

ethylene glycol subunits (nine atoms),

which added five more atoms to the

backbone compared with a standard

nucleotide. Cleavage activity during

crystallization was inhibited by modifi-

cation of the 20-OH nucleophile of A�1

in the substrate strand: a 20-deoxy A

residue was utilized in the C3L struc-

ture, whereas a 20-deoxy-20-amino U

(U2N) group was incorporated into the

S9L structure. The stem-loop sequence

present at the end of helix 4 in the

natural sequence was removed to

promote blunt-ended crystal packing as

in other minimal hairpin-ribozyme

constructs. Strand sequences outside the

conserved core (Fig. 1b) were optimized

to prevent self-complementarity and the

GC content of helical ends was enriched to minimize helical

end fraying. All strands were synthesized by Dharmacon Inc.

(Lafayette, CO, USA) with subsequent deprotection and

HPLC purification performed at home as described by

Wedekind & McKay (2000). The three strands comprising the

substrate and ribozyme were mixed together in 10 mM sodium

cacodylate pH 6.0; these included a 13-mer substrate, a 19-mer

strand comprising the S-turn and a 29-mer harboring either

the C3L or S9L linker. The final ribozyme concentration was

0.3 mM. Docking was promoted by addition of Co(NH3)6Cl3

from a 100 mM stock solution, which was slowly added to the

RNA with mixing until reaching a final metal concentration of

1 mM.

2.2. Crystallization and X-ray diffraction experiments

Crystals grew as hexagonal rods in hanging-drop vapor-

diffusion experiments conducted at 293 K containing the

following components for the S9L and C3L constructs,

respectively: 20%(w/w) PEG 2K MME, 0.1 M sodium caco-

dylate pH 6.4 or 6.2, 0.25 M Li2SO4, 2 mM spermidine–HCl

and 1 mM Co(NH3)6Cl3. All crystals were cryoprotected by

3 min serial transfers through four synthetic mother liquors

containing 5–18%(v/v) glycerol. Crystals were captured in thin

nylon loops (Hampton Research) and flash-cooled in a 100 K

stream of nitrogen gas (X-stream, Rigaku/MSC). Diffraction

data for the C3L structure were recorded at home on an

R-AXIS IV image-plate system equipped with confocal optics
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Table 1
Intensity and refinement statistics.

Values in parentheses are for the highest resolution shell.

Construct
61-mer junctionless
(JL)†

61-mer position 14
C3 linker‡

61-mer position 14
S9 linker§

Intensity statistics
Resolution range (Å) 2.05–30.0 (2.05–2.12) 3.35–34.7 (3.35–3.47) 2.65–38.9 (2.65–2.74)
Space group P6122 P6122 P6122
Unit-cell parameters (Å) a = 93.3, c = 131.3 a = 91.1, c = 145.0 a = 94.3, c = 131.1
Solvent content (%) 80 81 80
No. of measurements 178418 61410 158609
No. of unique reflections 21669 (2142) 5453 (522) 10389 (1006)
Average redundancy 8.2 (4.6) 11.1 (12.2) 15.0 (16.1)
Completeness (%) 99.3 (99.1) 98.6 (99.1) 98.6 (99.6)
Rsym} (%) 3.0 (43.2) 10.6 (51.0) 5.9 (45.7)
I/�(I) 24.0 (3.3) 16.2 (4.7) 25.5 (6.0)

Refinement statistics
No. of RNA atoms 1295 1304 1308
No. of water atoms 87 3 14
No. of ions 2 Co(NH3)6

3+, 1 SO4
2� 1 Co(NH3)6

3+ 1 Co(NH3)6
3+

Rcryst/Rwork/Rfree†† (%) 24.8/25.2/26.8 26.1/26.6/27.3 19.9/19.5/22.2
R.m.s. deviations from ideality

Bond lengths (Å) 0.006 0.008 0.005
Bond angles (�) 1.4 1.4 1.3

Temperature factors
B factor, RNA (Å2) 69.5 95.6 78.5
B factor, water (Å2) 74.0 78.4 77.0

† From PDB entry 2oue. ‡ From PDB entry 2npz. § From PDB entry 2npy. } Rsym = ½
P
jIðhÞj � hIðhÞij=

P
IðhÞj�

� 100, where I(h)j is the observed intensity of the jth measurement of reflection h and hI(h)i is the mean intensity of
reflection h. †† R = ½

P�
�jFoj � kjFcj

�
�=
P
jFoj� � 100, where Fo and Fc are the observed and calculated structure-factor

amplitudes and k is a scale factor. Rcryst is calculated using the residual target in CNS with all reflections in the resolution
range of refinement. Rwork is calculated using all reflections except those randomly removed for the test set (5–7%); Rfree

is calculated using the test set of reflections.



(Osmic). Cu K� X-rays were generated using a Rigaku

RUH2R rotating-anode generator operated at 4.5 kW and

equipped with a 0.3 mm focal cup. 220 images were collected

at a crystal-to-detector distance of 12.5 cm with an exposure

time of 25 min per 0.5� oscillation. Diffraction data were

collected from the S9L crystal at 100 K on a Quantum210

CCD (ADSC) at the A1 station of the Cornell High Energy

Synchrotron Source (CHESS) using X-rays of wavelength

0.977 Å. A total of 300 images were collected at a crystal-to-

detector-distance of 24 cm using an exposure of 30 s per 0.5�.

All data were reduced and scaled using CrystalClear (Pflu-

grath, 1999). Intensity and data-reduction statistics are

provided in Table 1.

2.3. Structure determination and refinement

Each hairpin-ribozyme construct in this study crystallized in

space group P6122 with a single 61-mer per asymmetric unit.

Phases were derived through difference Fourier analysis

starting from the highest resolution JL structure available, i.e.

PDB entry 1zfr. Refinement employed conventional methods

for RNA as implemented in CNS and O (Brünger et al., 1998;

Jones et al., 1991). Rigid-body refinement was first performed

on the entire structure and subsequently on the individual

loop A and B domains, followed by simulated annealing,

positional minimization and individual B-factor refinement

(Alam et al., 2005). B factors were set to refine between values

of 1 and 400 Å2, as described for other refined RNA structures

(Salter et al., 2006). The anisotropic bulk-solvent correction

was applied during both refinements; however, in the C3L

structure solvent density (k) and B factors (B) were manually

adjusted as necessary. Model building employed reduced-bias

�A coefficients throughout the refinement process (Pannu &

Read, 1996). Parameter and topology files for the C3 linker

were adapted from existing ribonucleotide files available in

CNS v.1.0. The S9L files were developed with XPLO2D

(Kleywegt, 1995) based on a compilation of atomic resolution

phosphate and ethylene glycol molecules obtained from the

Cambridge Structural Database (Kleywegt, 1995; Kraut, 1961;

Britton & Chantooni, 2001). Waters were assigned to struc-

tures based on the following criteria: >1� electron density in

2mFo � DFc maps, reasonable geometry, hydrogen-bond

distances between donor and acceptor groups of 2.6–3.7 Å and

refined temperature factors comparable to surrounding RNA

atoms. One Co(NH3)6 molecule, located near G21 and A40 of

the S-turn, has been consistently observed in all minimal

hairpin-ribozyme crystal structures; a second previously

characterized site within the major groove of H2 has been

modeled here as a water in the C3L and S9L structures owing

to low occupancy. Sugar-pucker restraints were derived from

the 2.05 Å resolution 1zfr structure where appropriate.

Refinement statistics are provided in Table 1. To verify the

orientation of U�5 and linker residues, simulated-annealing

omit maps with coefficients (mFo � DFc) were generated in

CNS (Figs. 2c, 2d, 4a and 4b). Superpositions were generated

from conserved residues using LSQKAB as implemented in
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Figure 2
Ball-and-stick and electron-density maps of the engineered U�U mismatch at the top of helix 2 (H2). (a) The U�5�A14 base pair as observed in one of
two molecules in the asymmetric unit of the 4WJ structure (PDB code 1m5k). O atoms are colored red and N atoms are blue. Dashed gray lines indicate
putative hydrogen bonds with corresponding distances. (b) The minimal junctionless ribozyme 64-mer structure (PDB code 1x9k) with an orientation
equivalent to that in (a). Two symmetry-related U�5 residues are separated by a 3 Å translation and are not base-paired. (c) The original syn–anti base-
pairing conformation of U�5 modeled for the 2.05 Å resolution junctionless ribozyme (PDB code 1zfr). Alternate conformations were modeled with
equal occupancy and are colored green or cyan. A single set of hydrogen bonds is indicated; the symmetry-related hydrogen bonds and labels were
omitted for clarity. A �A-weighted simulated-annealing omit electron-density map calculated for the U�5 residue and nearby solvent molecules is shown
contoured at 3.5� with coefficients mFo � DFc. (d) The revised 2.05 Å resolution minimal hairpin-ribozyme structure of this study depicting the new
anti–anti or ‘Calcutta’ model for U�5 fitted into an omit map as described in (c).



CCP4 (Kabsch, 1976; Collaborative Computational Project,

Number 4, 1994). Solvent-accessible surface areas were

calculated using GRASP (Nicholls et al., 1991). Helical para-

meters were analyzed using CURVES and are based on the

best curvilinear fit of the helical axis (Lavery & Sklenar, 1989).

All figures were generated in PyMOL, supplemented by

Nuccyl in Fig. 1 (DeLano, 2004; Jovine, 2003; Yang et al., 2003).

Coordinates were deposited in the PBD under accession codes

2npy (S9L), 2npz (C3L) and 2oue (the redeposited 2.05 Å 1zfr

JL structure).

2.4. Activity assays

Cleavage reactions for the hairpin ribozyme were con-

ducted at 298 K under single-turnover conditions in order to

compare the relative activities of the various minimal crys-

tallization constructs of this study. The respective loop A and

B strands of the JL ribozyme or the three strands of the hinged

S9L or C3L constructs (Fig. 1b) were combined in a reaction

buffer comprising 0.10 M Tris–HCl pH 7.5 and 0.20 M NaCl.

To assist with pre-reaction folding, the respective loop A and

B domains of the JL construct were heated to 343 K for 3 min

and cooled to 298 K over 15 min. The JL hairpin-ribozyme

reaction was initiated upon addition of 50 mM MgCl2

(Butcher et al., 1995); the hinged-ribozyme reactions were

initiated by addition of 12 mM MgCl2 (Hampel & Tritz, 1989;

Chowrira et al., 1993). The starting concentration of ribozyme

strand for each assay was 200 mM for all constructs, whereas

the concentration of substrate in each reaction was 2.0 mM.

10 ml aliquots were removed from each reaction at time points

spanning 4 h and were quenched by the addition of two

volume equivalents of denaturing sample buffer comprising

7 M urea at pH 8.0 without tracking dye. Time points were

measured in duplicate from independent assays and the

variance between duplicates was <10%. The cleavage products

were heated to 370 K for 1 min and then cooled rapidly on ice

before separation on 15% polyacrylamide gels containing 7 M

urea (Sambrook et al., 1989). The 13-mer substrate strand was

pre-labeled with Cy5 at the 50-end and handled under light-

restricted conditions. Substrate and product (8-mer) were

detected directly within the gel by use of a Storm 860 imaging

system (GE Healthcare Inc.) operated in red fluorescent mode

(662 nm). The fraction of substrate cleaved relative to input

substrate was quantified using ImageQuant software (Mole-

cular Dynamics). Experimental data from time-dependent

cleavage assays were fitted to a double-exponential equation

(described by Esteban et al., 1997, 1998; Rueda et al., 2004),

FðtÞ ¼ A0 þ A1½1� expð�k1tÞ� þ A2½1� expð�k2tÞ�;

where A1 and A2 represent amplitudes of the biphasic time

course, k1 and k2 are the corresponding first-order rate

constants of the fast and slow phases, respectively, and t is

time. A0 represents the initial amount cleaved, which was

about 3%. Amplitudes and rate constants were estimated by

the Marquardt–Levenberg nonlinear least-squares regression

routine (SigmaPlot 9.0). The standard error for fitted para-

meters was <15%.

3. Results and discussion

3.1. Significance of and modeling a U�U mismatch

A common strategy to improve the X-ray diffraction

properties of an RNA crystal is to alter the construct itself,

rather than subject it to numerous screening conditions

(Anderson et al., 1996). The initial minimal JL hairpin-

ribozyme 64-mer was designed without the benefit of a known

structure and included residue A14 at the end of helix H2

(Fig. 1b). This seemed sensible even after the 4WJ hairpin-

ribozyme structure had been solved since an A14�U�5

Watson–Crick pair was apparent in this structure (Fig. 2a).

Nonetheless, the diffraction of 64-mer crystals was limited to a

nominal 3.17 Å resolution (Alam et al., 2005) and, upon

solving the structure (PDB code 1x9k), it was apparent that

the lattice packing environment necessitated the extrusion of

A14 from helix H2 in deference to a symmetry-related U�5

(Fig. 2b). It was therefore hypothesized that the two U�5

residues, vertically separated by 3 Å along the c axis, might

base-pair across a strict crystallographic dyad if A14 were

removed, thereby promoting pseudo-continuous helical

packing.

A thermodynamic consideration of the U�U pairing possi-

bility directed us to the work of Turner and colleagues. Their

results revealed that while a dangling 30-U in the context of a

helix improved stability by�4 kJ mol�1, the 50-variant that we

used (Fig. 1b) would contribute a negligible 0.4 kJ mol�1

(Sugimoto et al., 1987). This result suggests that any observed

advantages in crystallization would not be the result of

increased stability of the folded ribozyme in solution. In

contrast, the 50-overhang optimizes the free energy gained

through formation of a pseudo-continuous helix. The base-

stacking interaction at the helix–helix interface of a sticky-

ended coaxial stack has been reported to contribute

�4 kJ mol�1 more favorability to the free energy than if all

nucleotides were connected by a phosphodiester linkage

(Walter et al., 1994; Walter & Turner, 1994). The rationale for

this observation is that a missing linkage in an overhanging

base stack allows the nucleotides more freedom to maximize

intermolecular interactions and reduce charge repulsion. This

provides one explanation why pseudo-continuous helices

predominate in the crystal packing of nucleic acids, particu-

larly since such interfaces involve two missing backbone

linkages. Lastly, the sequence context of the 50-U�U mismatch

(i.e. flanked by 50-G and 30-C; Fig. 1b) offered the greatest

favorable free energy of internal loop formation among those

sequences characterized by Kierzek et al. (1999). The latter

study also suggested that the U�U mismatch is more favorable

in regions where there are fewer helical constraints on its

shape, as demonstrated by observed increases in stability

when placed near a helix end (Kierzek et al., 1999).

Pairings of U�U mismatches have been reported in several

conformations that must be considered for modeling into

electron-density maps. U�U mismatches are most commonly

positioned such that the Watson–Crick faces orient towards

each other to engage in a single imino-to-keto hydrogen bond,

according to a survey of structures reported in the Non-
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canonical Base-Pair Database (Nagaswamy et al., 2002). This

configuration could readily be fitted into our electron-density

maps with two stipulations. Firstly, the requirement for strict

twofold symmetry for this interaction assumed static

conformational disorder, as supported by the broadened

electron-density features (Fig. 2c). Secondly, an alternate syn

conformation modeled for U�5 was necessary to achieve

opposing Watson–Crick faces and maximization of hydrogen

bonding, although this configuration is rarely observed

(Burkard et al., 1999). Nonetheless, a similar syn–anti orien-

tation was reported in the 30S Thermus thermophilus

ribosomal subunit (Selmer et al., 2006). Care was taken to

avoid an O2 to O50 clash when modelling the syn conforma-

tion and the resulting model exhibited both reasonable

stereochemistry and a good fit to the electron density (Fig. 2c).

The syn–anti conformer model for U�5 required that

uridine simultaneously occupy both syn and anti conforma-

tions with equal occupancy (q = 0.5) owing to its location near

a crystallographic twofold axis of symmetry, which compli-

cated the interpretation of electron-density maps (Fig. 2c).

However, NMR studies and molecular-dynamics simulations

each suggested that uridine seldom assumes the syn orienta-

tion (Neumann et al., 1980; Foloppe & Nilsson, 2005), leading

us to re-evaluate our original published model (PDB code

1zfr). As such, we explored an alternative model in which both

bases adopt the anti orientation, as proposed in two structures

of superior resolution with PDB codes 1osu and 413d (Wahl et

al., 1996; Tanaka et al., 1999). This conformation, termed the

‘Calcutta’ base-pair by Sundaralingam, exhibited one

hydrogen bond between N3 and O4 and one between O4 and

C5 that presumably involved the hydrogen of the latter. This

model provided a slightly improved fit to the electron density

of the current study, although a 4.2 Å distance between O4

and C5 ruled out a second hydrogen bond in the JL structure

(Fig. 2d). Parallel refinements of both possible U�U pairs were

conducted (Figs. 2c and 2d) in which R values were compared

after identical rounds of positional and individual B-factor

minimization (holding weighting factors constant in CNS).

The Calcutta conformation yielded Rcryst and Rfree values that

were 0.13% and 0.08% lower than the syn–anti combination,

respectively. This observation and the paucity of known syn–

anti conformers suggested that the Calcutta conformation is

likely to be a more accurate representation of the data. As

such, new coordinates of the JL hairpin ribozyme at 2.05 Å

resolution (Table 1) were redeposited in the PDB with code

2oue and the hinged structures of this study were also refined

with the Calcutta conformation. This result emphasizes that

crystallographic contacts and alternative conformations must

be modeled carefully and provides an important precedent for

the use of databases to assist in the assignment of unusual

base-pairing conformations during RNA model building.

3.2. Design and crystallization of synthetically hinged hairpin
ribozymes

The limitations of our JL hairpin-ribozyme construct

became apparent during attempts to crystallize the hairpin

ribozyme with transition-state analogues or abasic substitu-

tions in the active site. In attempts to capture vanadium oxide

as a transition-state mimic between A�1 and G+1 (Fig. 1b), it

was necessary to introduce a break into the cleavage site of the

substrate strand (Torelli et al., 2007). As such, the four-

stranded JL construct became five strands plus a vanadium

ligand. This six-component complex failed to crystallize,

presumably owing to improper folding and interdomain

docking. Thus, reconnecting the loop A and B domains was a

logical step towards reducing the number of RNA strands.

This effort proceeded with the stipulation that constructs

incorporating the interdomain connection should remain

small enough for efficient solid-phase chemical synthesis and

be amenable to crystallization (and high-quality X-ray

diffraction) in the lattice obtained previously.

The native A14 hinge residue found in the 4WJ structure is

base-paired to U�5 and further stabilized by the surrounding

4WJ (Rupert & Ferré-D’Amaré, 2001). However, the inter-

molecular U�U mismatch formed in the JL crystal-packing

scheme precludes re-introducing a base at the hinge position.

Additionally, natural nucleotide linkers adjoining H3 and H2

were observed to produce coaxial helical stacks in other

minimal constructs (Esteban et al., 1998). Taken together with

the observation that lattice formation by RNA favors pseudo-

continuous helical packing (Brünger et al., 1998), the presence

of a natural nucleotide linker during crystallization was

deemed likely to exacerbate improper docking between the

loop A and loop B domains. It was therefore hypothesized

that tethering the loop A and B domains with flexible

synthetic linkers (or spacers) would introduce sufficient

conformational freedom at the helical interface to dissuade

unfavorable H2-to-H3 end-to-end stacking with minimal

disruption to the existing crystal lattice. Similar modifications

using non-nucleotide linkers were employed in single-
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Figure 3
Kinetic analysis of hairpin-ribozyme constructs used in this study.
Substrate-cleavage reactions were carried out under single-turnover
conditions. For each construct (circles, S9-linked; diamonds, C3-linked;
triangles, junctionless, JL) time courses were fitted to a double-
exponential kinetic equation (see x2.4). Inset: representative gel images
of the cleavage time course for the S9 and JL constructs; similar results
were observed for the C3 construct (data not shown). Bands represent
50-Cy5-labeled 13-mer substrate and 8-mer product strands.



molecule fluorescence resonance energy transfer (FRET)

studies. Specifically, when a C3L spacer (Fig. 1b) was incor-

porated between A14 and A15 of a minimal hinged hairpin

ribozyme, a 35-fold improvement in the interdomain docking

rate constant was observed relative to the wild-type sequence

(Rueda et al., 2004). The apparent favorability of this substi-

tution was tempered by increased docking heterogeneity and a

25-fold slower bond-breaking step (i.e. kcleave). However, this

construct still exhibited overall cleavage rates that were nearly

double that of the A14 linkage alone. In light of these data, we

chose to substitute A14 with the S9L spacer (Fig. 1b), yielding

a ribozyme with the same number of backbone atoms as that

used in the FRET investigation but with no adenine base

present to interfere with the U�U mismatch. Similarly, we

mimicked the native linkage with the C3L spacer, a substitu-

tion that preserved the native backbone in atom number and

type but offered increased flexibility since it lacked the

furanose ring.

Cleavage assays were conducted on the respective crystal-

lization constructs to compare relative activities for our S9L,

C3L and JL constructs prior to crystallization. The hinged

constructs exhibited similar cleavage profiles (Fig. 3) that

fitted best to a biphasic double-exponential equation (Esteban

et al., 1997, 1998; Rueda et al., 2004). S9- and C3-linked

constructs exhibited total amplitudes (A1 + A2) of 81% (46.1 +

34.6%) and 78% (39.3 + 38.7%) for cleavage of a 13-mer

substrate and showed similar first-order rate constants for the

fast phase, where k1 = 0.390 � 0.055 min�1 and k1 = 0.325 �

0.080 min�1, respectively. The slow phase, described by k2,

displayed rates of 0.041 � 0.007 and 0.024 � 0.005 min�1,

respectively. For the purposes of this study, we believe these

values are indiscernible. Likewise, the JL construct showed a

fast-phase first-order rate constant, k1, of 0.429 � 0.150 min�1

and a slow phase with k2 = 0.014� 0.001 min�1. The t1/2 for the

fast phase of each construct was �2 min, whereas the slow

phases displayed t1/2 values of 17 min (S9L), 29 min (C3L) and

50 min (JL), respectively. Furthermore, the JL construct

cleaved only 54% (A1, 11.4% + A2, 42.3%) of the input

substrate. The results suggested that each ribozyme construct

could adopt a catalytically competent fold, as demonstrated by

the comparable rate constants in the fast phase. However,

greater populations of hinged hairpin ribozymes docked

productively relative to the JL construct based on the total

fraction that was cleaved (A1 + A2). Significantly, the confor-

mation needed for solution activity appeared to be equally

accessible by both the C3L and S9L variants, which has

implications for their use in the development of hinged

constructs for crystallization.

Despite the kinetic similarities between the hinged ribo-

zymes, constructs harboring the S9L spacer exhibited superior

crystal growth relative to C3L constructs. The latter crystals

displayed multiple morphologies, with the best samples exhi-

biting a hexagonal habit that reached dimensions of 0.2 � 0.2

� 0.15 mm. These crystals were harvested after three weeks

and diffracted X-rays to a maximum resolution of 3.35 Å.

Their diffraction was not significantly improved by synchro-

tron radiation. S9L crystals grew much more consistently in a

hexagonal habit that reached dimensions of up to 0.4 � 0.3 �

0.6 mm within 2–3 weeks. The initial S9L crystal used for this

investigation diffracted to 2.65 Å resolution, although

comparable examples have since been refined to resolutions as

high as 2.05 Å (Torelli et al., 2007). Both S9L and C3L

constructs crystallized in space group P6122, although the C3L

unit cell was longer by 15 Å along the c axis, which translates

into a difference of 2.5 Å per asymmetric unit. Crystals of the

minimal JL 61-mer hairpin ribozyme have been described

elsewhere (Alam et al., 2005; Salter et al., 2006). In general,

these crystals require higher concentrations of RNA for

growth and reach maximum dimensions of 0.25 � 0.25 �

0.35 mm in 1–3 months.

3.3. Structural comparison of C3L and S9L hinged hairpin
ribozymes

3.3.1. Overall model quality. The quality of the models is

indicated by the observation that both linker structures fit well

to electron-density maps and refined with reasonable

geometric parameters (Table 1; Figs. 4a and 4b). The electron

density of each structure was continuous throughout the

molecule and there were no breaks in the RNA backbone.

However, the C3L structure was inferior in several respects.

Most notably, the resolution of X-ray diffraction and the

agreement of reflections measured in multiplicity were poorer

than for the JL and S9L structures (Table 1). The 3.35 Å

resolution C3L structure (PDB code 2npz) refined to an Rcryst

of 26% and an Rfree of 27%, compared with the 2.65 Å reso-

lution S9L structure (PDB code 2npy), which refined to an

Rcryst of 20% and an Rfree of 22%, or the newly refined 2.05 Å

resolution JL structure (PDB code 2oue), which produced an

Rcryst of 24.8% and an Rfree of 26.8%. Coordinate errors

estimated from cross-validated �A-weighting were 0.67 and

0.49 Å for the C3L and S9L structures, respectively. Electron-

density maps were contiguous for all regions of each structure,

with the exception of the C3L residue itself in which the

central C atom could not be observed above the 3� contour

level in an mFo� DFc omit electron-density map (Figs. 4a and

4b). Taking this into account, the conformation of the C3

linker was based largely on the positions of the flanking P

atoms and bond-angle geometries. The average B factor for

the C3L structure (95.6 Å2) was higher than that for the S9L

structure (78.5 Å2), although both of these values were lower

than those observed for the initial 3.19 Å resolution 1x9k

structure (161 Å2). Tertiarily folded RNA structures

commonly exhibit higher average B factors compared with

comparably sized proteins. As an example, the average value

reported for the 2.4 Å resolution 4WJ structure, PDB code

1m5k, was 87 Å2; however, the average B factor for the RNA

atoms in this structure was 99 Å2, whereas the average for the

protein atoms was only 50 Å2.

Helix H1 was the region of each hinged structure with the

poorest quality electron density. This trend has also been

documented in all crystal structures of the minimal JL hairpin

ribozyme (Alam et al., 2005; Salter et al., 2006) and thus is not

a consequence of the linkers. Increasing the GC content in this
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region minimized the helical fraying

observed in the initial 1x9k 64-mer struc-

ture, but the temperature factors for this

region remained high. The most likely

reason for this is the scarcity of crystal-

packing contacts in this region. This is

evident by an examination of helix H1 of the

4WJ structure, which does not exhibit the

same difficulties. Although it is engaged in a

similar end-to-end base-stacking crystal

contact as the minimal construct, helix H1 of

the 4WJ structure is stabilized further by a

modest number of packing interactions

along the exposed length of the helix

(Rupert et al., 2002).

An all-atom superposition of the C3L and

S9L hinged structures revealed an overall

r.m.s.d. of 0.77 Å. The A and B domains

exhibited similar molecular dimensions and

their active-site residues overlaid well. Both

structures displayed nearly the same ‘pre-

catalytic’ active-site conformation described

previously for the minimal JL 61-mer (Salter

et al., 2006). Deviations between the two

structures were more pronounced at the

helical ends, which are areas where the

minimal hairpin ribozyme engages in few

tertiary contacts, thus rendering them more

susceptible to crystal-packing forces. The H2

stem of the S9L structure forms an inter-

molecular U�U mismatch (Figs. 1b and 2d)

that is stabilized by a 2.7 Å hydrogen bond

between N3 and O2 and a 3.3 Å hydrogen

bond between O4 and C5 as reported in

similar U�U pairs (Wahl et al., 1996; Tanaka

et al., 1999). The equivalent distances for the

C3L model are longer (3.3 and 3.7 Å), but

are subject to greater coordinate error

(Table 1). In light of the 4.2 Å distance

exhibited by the JL structure for the second

hydrogen bond (discussed above), it seems

plausible that steric effects attributable to

the linker favorably influence the spatial

proximity of the symmetry-related U�5,

leading to the improved hydrogen-bonding

distances observed here.

3.3.2. Contrasting features of two
different interdomain hinges. A compar-

ison of the distance between the O30 atoms

of G13 and G15, which flank the inter-

domain junction, reveals significant differ-

ences between the two constructs. As

anticipated, this distance was longer for the

S9 linker (12.7 Å) relative to the C3 linker

(10.6 Å; Figs. 4a and 4b) owing to the

lengths of the respective linkers. An all-

atom superposition of these hinged ribo-
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Figure 4
Comparison of the local structural effects of the synthetic C3L and S9L residues observed in
the hinge region between the loop A and B domains. (a) �A-Weighted simulated-annealing
mFo � DFc omit electron-density map calculated for the C3L residue and flanking G15
phosphate. Blue density is contoured at 3� and green density at 9�. The distance between atom
O30 of residues 13 and 15 is shown as a dashed line. (b) Omit map for the S9L residue as
described in (a); blue density is contoured at 3.5� and green density at 15�. (c) Linker and
neighboring ribose positions as observed in the superposition of four alternatively hinged
hairpin-ribozyme structures. Note the trend in the ribose positions of residue 13 compared with
16. The C3L structure (blue) most closely mimics the natural A14 linkage of the 4WJ structure
(salmon), whereas the S9L structure (magenta) most closely mimics the junctionless structure
(green). Bases are omitted for clarity, with the exception of A14. (d) Structural influence of the
C3L structure on the terminus of H3. The C3L structure is depicted by blue sticks and the S9L
structure by magenta lines. The lateral shift of the H3 terminal base pair is represented by the
2.8 Å distance between the O30 atoms of residue C49 in the respective C3L and S9L structures.
The 21 pseudo-helical base-stacking interaction with H40 is shown to demonstrate the more
flush base-stacking interaction exhibited by the C3L structure compared with S9L. The 2.9 Å
distance between the O40 and O30 atoms of ribose moieties engaged in crystal packing in the
C3L structure is compared with the equivalent distances of 3.5 and 4.0 Å displayed for the S9L
structure in (e). (e) The equivalent region in the S9L structure, as described in (d). S9L residues
are shown as magenta sticks and C3L residues as blue lines. Equivalent O40–O30 distances
between the H3 and H40 helices are longer in the S9L structure, which is representative of a
more staggered base-stacking interaction. (f) A superposition of the terminal H4 base pair of
the C3L and S9L structures demonstrates the influence of the shortened linker on pseudo-
helical base stacking. The more flush base stack in the C3L structure is necessarily
accompanied by a 1.5 Å upward shift of U310 to avoid a steric clash with the symmetry-related
C49 residue. Note that even after this movement U310 and C49 are still closer in the C3L
structure (d and e).



zymes suggested that structural differences arising from vari-

able linker lengths were not distributed equally along the

lengths of the newly tethered helices (H2 and H3; Fig. 4c, note

the ribose superposition of residue 13 versus residue 16).

Rather, structural disparities localized mostly to the top of H3,

as observed by the 2.8 Å displacement between the G15–C49

base pairs of each hinged structure (Figs. 4d and 4e). The basis

of this localized change can be explained by the observation

that the terminal base pairs of H2 and H3 are oriented nearly

perpendicular to each other (Fig. 1c). G13 is buried further

into the core of the loop B domain, whereas G15 is more

solvent-exposed. Thus, G15 is better suited to adapt to the

structural influences of the linker. The 2.8 Å movement of the

terminal H3 base pair in the C3L structure toward the center

of mass of the hairpin ribozyme increased the local twist of H3

to 38� compared with 32� for the S9L structure, effectively

narrowing the end of the C3L variant. This twist was alleviated

gradually as H3 progressed toward the internal loop of the B

domain.

Contraction of the C3L H3 helical end affects H40 of the

symmetry-related molecule owing to pseudo-continuous

helical crystal-packing interactions (Fig. 4d). The terminal
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Figure 5
Schematic surface and ball-and-stick diagrams illustrating the 61 packing interactions of hinged hairpin-ribozyme constructs. (a) Comparison of C3L
(blue) and S9L (magenta) unit cells. The perspective represents the interaction of molecules about the 61 screw axis. (For twofold and 21 operations, refer
to Fig. 6a.) Superposition of C3L onto S9L initiates at the third molecule from the bottom (i.e. the ‘reference’ molecule), represented in bold magenta
and blue overlay. Symmetry operations used to generate the remaining molecules demonstrate the degeneration of the superposition as a result of the
15 Å elongated unit cell of the C3L structure. C3L molecules are shown in blue and green, with S9L structures shown in pink. The dashed box denotes
the inset for (b) and (c). (b) Expanded view of the 61 packing scheme for the S9L structure. Atoms engaged in potential hydrogen bonds are depicted as
white spheres. Helices are labeled as in Fig. 1(c) and primes (0) denote symmetry-related molecules. An additional H30 0 helix that is packed in a blunt-
ended base stack with H4 has been omitted for clarity. The asymmetric unit (H4) is colored magenta, with symmetry molecules in red (H30) or light pink
(H40). (c) The C3L 61 packing scheme as described in (b), but the asymmetric unit is colored blue and symmetry mates are coloured teal (H30) or green
(H40). White spheres identify equivalent atoms in the C3L structure that are engaged in hydrogen bonding in the S9L structure. (d)–(g) Detailed view of
hydrogen-bond interactions with each of four H4 residues. The A31 and U31 residues are base-paired; A31 ends the linker strand, while U31 begins the
S-turn strand. (h)–(k) Equivalent distances in the C3L structure demonstrate the loss of 61-fold packing interactions.



base pair of H40 (A310–U310) experiences a modest lateral

movement similar to, but less than, that observed for H3. This

is illustrated in a comparison of the distances between the C30

of C49 and the O40 of U310 (4 Å in S9L versus 2.9 Å in C3L;

Figs. 4d and 4e). Because the lateral shift exhibited by the

A310–U310 base pair in the C3L structure is not fully

commensurate with that of H3, it is necessarily accompanied

by a 1.5 Å upward shift of U310 (Fig. 4f). This upward move-

ment circumvents an otherwise inescapable steric clash

between the ribose moieties of U310 and C49. The net result is
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Figure 6
Schematic surface and ball-and-stick diagrams illustrating a pseudo-four-way helical junction generated by crystal-packing interactions of minimal
hairpin ribozymes. (a) Unit-cell perspective of the twofold and 21-fold symmetry contacts within the asymmetric units of both C3L and S9L structures.
Superposed C3L (blue) and S9L (magenta) molecules are shown overlaid in the center of the diagram (i.e. reference molecule). The minimal difference
in the lengths of the a and b axes of the C3L and S9L unit cells (3.2 Å) allows greater conservation in the superposition as it is extended from the
reference molecule’s asymmetric unit; therefore, symmetry-related S9L molecules (pink surface representations) are largely hidden behind the C3L
molecules (blue and green cartoon and stick depiction). Helix H1 is labeled to demonstrate its high degree of solvent exposure. The 21 screw axis depicts
the relationship between H3 and H40. The boxed region is expanded in (b)–(d). (b)–(d) Individual panels of the junction region of the C3L, S9L and 4WJ
structures. Residues are colored according to strand conventions in Fig. 1(b) and numbered according to hairpin-ribozyme conventions (Chowrira &
Burke, 1991). Surface representations for the C3L molecules are coloured as observed in (a) and rotated 90� anticlockwise from that perspective. O
atoms engaged in putative hydrogen bonds are designated as red spheres connected by dashed lines.



a more flush base stack between H3 and H40 in the C3L

structure compared with the more staggered interaction

observed in the S9L (Figs. 4d and 4e) and JL structures (not

shown). From an engineering and design perspective, there are

two opposing factors that appear to influence this end-to-end

stacking interaction. The first is the local influence of the

shortened C3 linker, which draws the G15–C49 base pair

closer to the center of mass of the RNA, effectively improving

the crystallographic base-stacking interactions. The second

factor originates from crystal contacts observed in both the

S9L and JL hairpin-ribozyme structures. In these two struc-

tures the terminal residues of both H30 and H4 are engaged in

backbone and minor-groove hydrogen bonds that confer

stability along the 61-fold screw axis (for perspective, see

Figs. 5a and 5b). These interactions support the more stag-

gered helical packing, but are notably absent from the C3L

structure (Fig. 5c, cleft), which is relevant to understanding the

principles of RNA interaction that influence high-resolution

X-ray diffraction.

3.3.3. Variations in crystal-packing interactions within the
minimal constructs. All termini of the three minimal hairpin-

ribozyme structures discussed here (Table 1) engage in end-to-

end helical base stacking. These interactions sustain the

twofold and 21 axes present in space group P6122. The base

stacks observed for H1, H3 and H4 are blunt-ended, whereas

the U�U mismatch of H2 is sticky. Each pseudo-helical packing

interaction buries approximately 400 Å2 of hydrophobic

surface. The terminus of H1 and H2 each stacks self-to-self on

dyad axes; the self-to-self (i.e. H1–H10) nature of this inter-

action offers little support to the mostly solvent-exposed

length of H1 and may contribute to the disorder observed in

this helix. In contrast, H3 and H40 stack onto each other in

support of the 21 symmetry axis. In this manner, linker influ-

ences originating in H3 are propagated into H40 of the

symmetry-related molecule.

Minor-groove and backbone interactions contribute to the

formation of the 61 screw axis (Fig. 5). The backbone of H4 of

a ‘reference’ molecule (Fig. 5a, dark molecule) bridges the

blunt stack formed by helices H30 and H40, which are related

by a crystallographic 21 symmetry axis (Figs. 5b and 5c).

According to the symmetry operators of

space group P6122, H4 of the reference

molecule forms a blunt-end stack to

symmetry-related molecule H300, which is

comparable to the H30 interaction with H40

(Figs. 5b or 5c). If all helices were included

at this junction, the rudimentary shape

would be a Greek cross or ‘+’. (Note: H30 0

was omitted for clarity, thus resulting in the

letter ‘T’ in Figs. 5b and 5c.) The cross is

formed by two base-stacked smaller helices

that form a single pseudo-continuous helix.

These longer helices contribute the respec-

tive horizontal or vertical cross components.

The intersection of these components

comprises minor-groove and backbone

contributions of varied extent that depend

upon the choice of linker (Figs. 5b and 5c). At the intersection

of these helices, H4 buries 1200 Å2 of surface through inter-

actions with three of the six ribozymes that contact the

asymmetric unit. The minor-groove/backbone component of

this interaction within the S9L structure buries 800 Å2, within

which there are 11 hydrogen bonds (Figs. 5d–5g). In contrast,

the comparable interaction of H4 in the C3L structure buried

a total of only 700 Å2. While the 21 base stacks were equiva-

lent in the two structures (400 Å2), the minor-groove contacts

were largely absent in the C3L structure, giving rise to a large

cleft (Fig. 5c). Significantly, no stabilizing hydrogen bonds

were identified within the 300 Å2 of buried surface that

constituted the minor-groove symmetry contact in the C3L

structure (Figs. 5h–5k). The bridged lattice-packing inter-

action observed in the S9L structure was also lacking in the

C3L ribozyme, such that H4 made contact with only H30,

rather than with both H30 and H40 as in the S9L structure

(Figs. 5b and 5c). The packing deficits in the C3L structure

undoubtedly contribute to its poor diffraction properties

relative to the S9L variant.

The paucity of crystallographic packing interactions along

the 61 axis of the C3L structure appears directly attributable to

the choice of interdomain linker. The shift of H3 toward the

RNA center of mass of the asymmetric unit moves it away

from the minor-groove interaction with symmetry-related

helices H30 and H40 (Fig. 5b versus 5b). The ensuing loss of

hydrogen-bond interactions and changes in shape comple-

mentarity between intermolecular surfaces appear to

destabilize the 61-fold packing scheme (Figs. 5h–5k), thus

contributing to the elongated c axis (Fig. 5a). These observa-

tions suggest that base-stacking interactions promote

formation of the crystal lattice, but the 20-OH-mediated

intermolecular hydrogen-bond contacts dictate lattice

stability. Thus, the C3L lattice exhibits sufficient flexibility to

maintain pseudo-continuous helical packing at all four

termini, but the 61-fold minor-groove interactions are neces-

sarily sacrificed. Although a number of small-molecule

compounds from the crystallization medium, such as

spermidine or glycerol, could theoretically span the gap

between H4 and H40 of C3L, no such ligands from the
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Figure 7
A stereoview stick diagram of a superposition of the 4WJ, C3L and S9L hairpin-ribozyme
structures. The orientation of the stereoview is rotated 180� around the vertical axis compared
with Fig. 6 and was chosen to emphasize the agreement between residues of the intramolecular
four-way junction with those of the intermolecular packing environment observed in the C3L
and S9L structures. The 4WJ structure is shown in salmon, C3L in blue and S9L in magenta.
Residues are numbered according to hairpin-ribozyme conventions and are labeled only where
the sequence is conserved in all three structures except position 56 of the natural 4WJ..



crystallization/cryoprotection medium were observed in

2Fo � Fc or Fo � Fc electron-density maps, which has impli-

cations for the use of such additives to stabilize an RNA

lattice.

3.4. Comparison of four hairpin-ribozyme structures with
different interdomain linkages

3.4.1. Local comparison. Four alternatively hinged ribo-

zyme structures are now available, offering the first opportu-

nity to examine the impact of the hinge region on the overall

RNA fold. The S9L and C3L structures of this investigation

are the first to link the A and B domains without the addition

of the remaining two helices of the four-way helical junction.

As such, they provide a means of understanding the structural

influence of the hairpin-ribozyme interdomain linkage (hinge)

outside the context of the four-way helical junction. This

comparison also has implications for the use of synthetic

linkers to produce crystal contacts in RNA constructs, as well

as the inclusion of crystal contacts in searches aimed at

identifying potentially biologically relevant motifs that

promote tertiary or quaternary RNA folding.

A superposition of all four hairpin-ribozyme variants

demonstrated excellent agreement between residues at the

active site. The pairwise r.m.s.d. values between the 4WJ

structure and the C3L and S9L structures were 1.5 and 1.6 Å,

respectively. A closer inspection of the local differences indi-

cated that the C3 linker most closely resembled the 4WJ A14

linkage (Fig. 4c). This result seems reasonable since each of

these linkages possesses three C atoms between the phosphate

groups at positions 14 and 15. The G13 O30 to G15 O30

distances clustered accordingly (Figs. 4a and 4b and described

above); this distance was measured as 11.1 Å in the 4WJ

structure (10.6 Å for C3L) and the JL distance was 12.7 Å

(also 12.7 Å for S9L). Local twist values for G15 at the top of

H3 showed the same trend: i.e. the C3L and 4WJ structures

exhibited increased twist (38� and 48�), whereas the S9L and

JL structures were more relaxed (31.9� and 31.6�); for refer-

ence, standard A-form RNA exhibits a twist of 32.7� (Saenger,

1984). While H3 of the C3L and 4WJ structures is likely to be

overwound in response to the shortened linker, the mildly

underwound twist values observed for the S9L and JL struc-

tures may reflect crystal packing. Twist exhibits a linear

dependence on minor-groove width, as calculated by

CURVES (Boutonnet et al., 1993). The 61-fold packing scheme

of the S9L and JL structures is mediated largely by backbone

and ribose contacts along the outside of the minor grooves of

H3 and H4, with two genuine minor-groove hydrogen bonds to

the guanine base of residue 16 (Fig. 5d). These contacts may

contribute to the widened minor-groove values calculated for

the penultimate base pair using CURVES, reported as 10.2 Å

(JL) and 10.4 Å (S9L) compared with 9.4 Å (C3L) and 9.3 Å

(4WJ); notably, the 15–49 base pair interaction was not

amenable to measurement by CURVES owing to its terminal

location. Standard A-form RNA exhibits a minor-groove

width of 11 Å (Saenger, 1984) and the discrepancy from this

value may be accounted for by the higher than normal local

twist, where these deviations appear to be confined. In

contrast, variation in the minor-groove width for H4, which

contacts H3 in the crystal lattice, exhibited a much smaller

range of values (�0.2 Å), with a mean of 9.5 Å. The twist

values for this helix also exhibited a smaller range (�0.4�),

with an average of 33�. Most importantly, the distortion here is

mitigated as one approaches the active site of the hairpin

ribozyme. This observation has evolutionary implications for

RNA enzymes and suggests that the folds of globular RNAs

may be somewhat self-correcting and tolerant of flanking

structural perturbations, even though they lack the true

hydrophobic core that confers proteins with the substantial

plasticity and stability required to accommodate insertions

(Vetter et al., 1996).

3.4.2. Implications for molecular mimicry through
engineered RNA crystal packing. A novel feature of the

minimal ribozyme lattice was observed during the comparison

of minimally hinged and 4WJ structures. The prevalence of

pseudo-continuous helical packing within the lattice of

minimal constructs (Fig. 6a) enabled the formation of a rudi-

mentary 4WJ motif. H40 of one symmetry mate stacked bluntly

onto H3, while H20 of another symmetry mate stacked onto

H2 in a staggered fashion through the U�U interaction (e.g.

Fig. 6b); additionally, the 20-OH of a symmetry-related U�5

molecule was positioned appropriately to engage in an �3 Å

hydrogen bond with a nonbridging phosphoryl O atom of

either linker (Figs. 6b and 6c). Overall, the stacking inter-

actions at this helical intersection bury 490 and 540 Å2 of

surface area within the C3L and S9L structures, respectively,

and exhibit an uncanny resemblance to the 4WJ motif

(Fig. 6d). A similar series of interactions were described above

as stabilizing forces for the interdomain linker residue, A14,

which is present in the 4WJ structure. In the latter molecule,

the base pair between U�5 and A14 at the top of H2 was

flanked by a coaxial interaction to form an energetically

favorable flush stack; the end of H3 was supported similarly

(Fig. 6d; Rupert et al., 2002). The strand of RNA in the 4WJ

structure that comprised these two coaxial stacks was

single-stranded as it crossed over A14, further contributing to

the �710 Å2 of surface area buried in the interface of this

biologically relevant motif. Although the natural 4WJ is

an intramolecular interaction, in contrast to the inter-

molecular contacts of the minimal constructs, a superposition

of these three structures further emphasizes the excellent

agreement between the modes of stacking at this interface

(Fig. 7).

As demonstrated here, base-stacking of pseudo-continuous

helices is a powerful packing restraint commonly observed in

natural RNA structures and should be considered as a key

driving force when engineering blunt or overhanging duplex

sequences for crystallization. The inclusion of synthetic linkers

between helices and the generation of junctions through

symmetry contacts represent rational approaches to tailor

RNA crystallization constructs to the needs of specific struc-

tural studies. This approach requires a posteriori structural

knowledge, but the outcome demonstrates that significant

advances in crystallization and diffraction can be attained by
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modifying a crystallization construct in a manner that uses

variations of the naturally occurring RNA architecture.

4. Summary and conclusions

This investigation represents the first crystallographic char-

acterization of the hairpin ribozyme incorporating synthetic

linkages between the loop A and B domains. As such, it is

relevant on two fronts. From a crystallographic point of view, it

represents a novel method for connecting RNA strands.

Synthetic linkers appear to be less prone to nonproductive

coaxial stacking compared with natural nucleotide linkages,

which have limited flexibility as well as greater hydrophobicity

and steric bulk. The structures of this study also highlight the

potential for deliberately promoting 4WJ mimicry in RNA

crystal-packing interactions, with an obvious rationale for

screening multiple linkers. Moreover, the use of crystallo-

graphic screening and X-ray diffraction analyses on multiple

constructs is still worthwhile, despite the apparent similarities

of constructs in solution enzymatic assays.

From a functional perspective, comparison of the four

structures discussed here (JL, C3L, S9L and 4WJ) provides the

first opportunity to analyze the influences of the hinge region

on the global fold of the ribozyme. Significantly, this investi-

gation was conducted in the context of multiple lattice packing

schemes. As such, the comparisons have facilitated a dissec-

tion of characteristics relevant in a biological setting from

those generated solely from crystal lattice contacts, which can

be especially problematic to parse in nucleic acid structures

(Yajima et al., 2007; Wedekind & McKay, 2003). Overall, these

results suggest a rationale for the production of minimal RNA

constructs based on natural 4WJ motifs that have led to well

diffracting hinged hairpin-ribozyme constructs amenable to

incorporation of synthetic abasic residues and transition-state

analogues for use in structure–function studies.
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