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Abstract

Collinear (small-angle) and large-angle, as well as soft and hard radiations are in-
vestigated in three-jet and Z + two-jet events collected in proton-proton collisions at
the LHC. The normalized production cross sections are measured as a function of the
ratio of transverse momenta of two jets and their angular separation. The measure-
ments in the three-jet and Z + two-jet events are based on data collected at a center-
of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.8 fb−1. The
Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson.
The three-jet measurement is extended to include

√
s = 13 TeV data corresponding

to an integrated luminosity of 2.3 fb−1. The results are compared to predictions from
event generators that include parton showers, multiple parton interactions, and had-
ronization. The collinear and soft regions are in general well described by parton
showers, whereas the regions of large angular separation are often best described by
calculations using higher-order matrix elements.
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1 Introduction
Collimated streams of particles, produced in interactions of quarks and gluons and recon-
structed as jets, are described by the theory of strong interactions, quantum chromodynamics
(QCD). Multijet events provide exemplary signatures in high-energy collider experiments, and
modeling their characteristics plays an important role in precision measurements, as well as in
searches for new physics. The understanding of the structure of multijet final states is therefore
crucial for analyses of those events.

Theoretical predictions for multijet events are based on a matrix element (ME) expansion to a
fixed perturbative order, supplemented by the parton shower (PS) approach to approximate
higher-order perturbative contributions. The ME expansion incorporates color correlations be-
tween quarks and gluons, including interference terms, as well as kinematic correlations be-
tween the partons, without any approximation at fixed perturbative order. Its application is,
however, currently limited to final states with just a few partons. The PS can simulate final
states containing many partons, but with probabilities calculated using the approximations of
soft and collinear kinematics and partial or averaged color structures. The best descriptions of
multijet final states are based on a combination of both approaches [1–4]. Other features im-
plemented in simulations, such as multiple parton interactions (MPI) and hadronization, also
play an important role, e.g., in describing angular correlations between jets [5–7].

In this paper, we investigate collinear (small-angle) and large-angle radiation in different re-
gions of jet transverse momentum (pT) by concentrating on two different topologies, one using
three-jet events and another with Z + two-jet events. We label the hardest jet, or Z boson as j1,
the next hardest as j2, and the softest as j3. We introduce two observables that are sensitive to
the dynamic properties of multijet final states. One observable is the pT ratio of j3 to j2, pT3/pT2.
The other observable is the angular distance between the jet centers of j2 and j3 in the rapidity-
azimuth (y-φ) phase space, ∆R23 =

√
(y3 − y2)

2 + (φ3 − φ2)
2. As indicated in Fig. 1, we classify

three-jet and Z + two-jet events into different categories using these two observables:

(i) soft (pT3/pT2 < 0.3) or hard (pT3/pT2 > 0.6) radiation, depending on the ratio pT3/pT2;

(ii) small-angle (∆R23 < 1.0) or large-angle (∆R23 > 1.0) radiation, depending on the angular
separation ∆R23.

According to these classifications, events in the soft and small-angle radiation region, as shown
in Fig. 1 (a), should be better described when including the PS approach, while events in the
hard and large-angle radiation region, as shown in Fig. 1 (d), would be better described when
including the ME calculations. The events in Figs. 1 (b) and (c) are also of interest, since they
should include effects from both the PS and ME.

We report on proton-proton (pp) collision data collected at the CMS experiment containing
three-jet events at center-of-mass energies of 8 and 13 TeV, and Z + two-jet events at a center-
of-mass energy of 8 TeV. The measurements are compared to calculations based on a leading-
order (LO) or next-to-leading-order (NLO) ME supplemented with effects from PS, MPI, and
hadronization. The measurements using three-jet final states are complementary to those with
Z + two-jet events in a sense that different kinematic regions and initial-state flavor compo-
sitions are being probed. The jets are also fully color connected, while the Z boson is color
neutral, so color coherence effects should not appear so strongly in Z + two-jet events.

The goal of the measurements is: (i) to untangle the different features of the radiation in the
collinear and large-angle events; (ii) to investigate how well the PS approach describes the hard
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and large-angle radiation patterns; and (iii) to determine how effectively the ME calculations
describe the soft and collinear events.

Soft radiation
(pT3/pT2 < 0.3)

Hard radiation
(pT3/pT2 > 0.6)

Collinear radiation
(small-angle, ∆R23 < 1.0)

Large-angle radiation
(∆R23 > 1.0)

(a) (b)

(c) (d)

j1 j2

j3

Figure 1: Four categories of parton radiation. (a) soft and small-angle radiation, (b) hard and
small-angle radiation, (c) soft and large-angle radiation, (d) hard and large-angle radiation.

2 The CMS detector
The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),
each composed of a barrel and two endcap sections, reside within the volume of the solenoid.
Charged-particle trajectories are measured in the tracker with full azimuthal acceptance within
pseudorapidities |η| < 2.5. The ECAL, which is equipped with a preshower detector in the
endcaps, and the HCAL cover the region |η| < 3.0. Forward calorimeters extend the pseudo-
rapidity coverage provided by the barrel and endcap detectors to the region 3.0 < |η| < 5.2.
Finally, muons are measured up to |η| < 2.4 in gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. Events of interest are selected using a two-tiered trigger
system [8]. The first level, composed of custom hardware processors, uses information from
the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed
latency of about 4 µs. The second level, known as the high-level trigger (HLT), consists of a
farm of processors running a version of the full event reconstruction software optimized for
fast processing, and reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system and the kinematic variables, is given in Ref. [9].

3 Event samples and selection
The data in this study were collected with the CMS detector at the LHC using pp collisions at
center-of-mass energies of 8 and 13 TeV. The

√
s = 8 TeV data, taken in 2012 during LHC Run

1, correspond to an integrated luminosity of 19.8 fb−1, and the
√

s = 13 TeV data, taken in 2015
during LHC Run 2, correspond to an integrated luminosity of 2.3 fb−1.

Particles are reconstructed and identified using a particle-flow (PF) algorithm [10], that uti-
lizes an optimized combination of information from the various elements of the CMS detector.
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Jets are reconstructed by clustering the four-vectors of the PF candidates with the infrared and
collinear-safe anti-kT clustering algorithm [11] using a distance parameter Rjet = 0.5 (0.4) at√

s = 8 (13)TeV. The clustering is performed with the FASTJET software package [12]. In addi-
tion, three-jet events use the charged-hadron subtraction (CHS) technique [10] to mitigate the
effect of extraneous pp collisions in the same bunch crossing (pileup, PU). The CHS technique
reduces the contribution to the reconstructed jets from PU by removing tracks identified as
originating from PU vertices.

Three-jet events are collected using single jet HLT requirements that are not pre-scaled. The√
s = 8 (13)TeV data use a 320 (450) GeV trigger pT threshold. In the offline analyses, the

pT threshold starts at 510 GeV for both sets of data. The Z + two-jet events with the Z boson
decaying into a pair of muons are collected at

√
s = 8 TeV with a single-muon HLT that requires

a muon pT > 24 GeV and |η| < 2.1.

In the three-jet systems, the leading jet is required to have a pT > 510 GeV, because of a decreas-
ing efficiency for single jet triggers below this value [8, 13, 14]. Events with at least three jets
of pT > 30 GeV are selected for further consideration. The leading and subleading jets must be
within a rapidity range of |y| < 2.5, and the third jet is therefore implicitly restricted to |y| < 4
by requiring ∆R23 < 1.5. A dijet topology with one of the jets radiating an additional jet is
selected by requiring the difference in azimuthal angle between the first and second jet to be
π− 1 < ∆φ12 < π. The missing transverse momentum vector ~pmiss

T is defined as the projection
onto the plane perpendicular to the beam axis of the negative vector sum of the momentum
of all reconstructed PF objects in an event. Its magnitude is referred to as pmiss

T . Events with a
pmiss

T divided by the scalar sum of all transverse momenta > 0.3 are rejected to remove the con-
tamination from W or Z boson decays. To avoid an overlap between j2 and j3, ∆R23 is required
to be larger than the distance parameter Rjet. We thus require ∆R23 to be larger than 0.6 (0.5)
for
√

s = 8 (13)TeV data. The maximum ∆R23 is set to 1.5 to ensure that j3 is closer to j2 than to
j1. We further require that 0.1 < pT3/pT2 < 0.9 to avoid pT3 threshold effects and to ensure pT
ordering for hard radiation.

In Z + two-jet events, the Z boson is reconstructed from a pair of oppositely charged muons
with pT > 25 (5)GeV and |y| < 2.1 (2.4) for the leading (subleading) muon. The dimuon
invariant mass is required to be 70 < mµ+µ− < 110 GeV with the dimuon momentum satisfying
pT1 > 80 GeV and |y1| < 2. At least two jets are required in the final state with the leading jet
(labeled j2) satisfying pT2 > 80 GeV and |y2| < 1 and the subleading jet (labeled j3) required to
have pT3 > 20 GeV with |y3| < 2.4. The Z + two-jet topology is further restricted by requiring
a difference in the azimuthal angle between the Z boson and j2 of ∆φ12 > 2.

Table 1 shows a summary of the event selection requirements for both samples.

4 Theoretical models
Reconstructed data are compared to predictions from Monte Carlo (MC) event genera-
tors, where the generated events are passed through a full detector simulation based on
GEANT4 [15] and the simulated events are reconstructed using standard CMS software.
Reconstruction-level predictions are obtained for three-jet events at

√
s = 8 TeV with the MAD-

GRAPH [16] software package matched to PYTHIA 6 [17] with the CTEQ6L1 [18] parton distri-
bution function (PDF) set and the Z2Star tune [19], as well as with standalone PYTHIA 8.1 [20]
with the CTEQ6L1 PDF set and the 4C [21] tune. At 13 TeV, MADGRAPH interfaced to
PYTHIA 8.2 [22] and standalone PYTHIA 8.2 are used with the NNPDF2.3LO [23, 24] PDF set and
the CUETP8M1 [25] tune. The SHERPA [26] event generator interfaced to CSSHOWER++ [27]
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Table 1: Phase space selection for the three-jet and Z + two-jet analyses.

Three-jet events
Transverse momentum of the leading jet (j1) pT1 > 510 GeV
Transverse momentum of each jet and rapidity of j1,2 pT > 30 GeV , |y1,2| < 2.5
Azimuthal angle difference between j1 and j2 π − 1 < ∆φ12 < π
Transverse momentum ratio between j2 and j3 0.1 < pT3/pT2 < 0.9
Angular distance between j2 and j3 Rjet + 0.1 < ∆R23 < 1.5
Number of selected events at

√
s = 8 (13)TeV 777,618 (613,254)

Z + two-jet events
Transverse momentum of the Z boson (j1) pT1 > 80 GeV, |y1| < 2
Transverse momentum and rapidity of j2 pT2 > 80 GeV , |y2| < 1
Transverse momentum and rapidity of j3 pT3 > 20 GeV, |y3| < 2.4
Azimuthal angle difference between Z and j2 2 < |∆φ12| < π
Dimuon mass 70 < mµ+µ− < 110 GeV
Angular distance between j3 and j2 0.5 < ∆R23 < 1.5
Number of selected events 15 466

with the CT10 [28] PDF set and the AMISIC++ [29] tune and MADGRAPH interfaced to
PYTHIA 6 with the CTEQ6L1 PDF set and the Z2Star tune provide Z + two-jet events at 8 TeV.
Table 2 summarizes the event generator versions, PDF sets and tunes.

Table 2: Event generator versions, PDF sets, and tunes used to produce MC samples at recon-
struction level.

Event generator PDF set Tune
Three-jet events at

√
s = 8 TeV

MADGRAPH 5.1.3.30 + PYTHIA 6.425 CTEQ6L1 Z2Star
PYTHIA 8.153 CTEQ6L1 4C

Three-jet events at
√

s = 13 TeV
MADGRAPH 5.2.3.3 + PYTHIA 8.219 NNPDF2.3LO CUETP8M1
PYTHIA 8.219 NNPDF2.3LO CUETP8M1

Z + two-jet events
SHERPA 1.4.0 + CSSHOWER++ CT10 AMISIC++
MADGRAPH 5.1.3.30 + PYTHIA 6.425 CTEQ6L1 Z2Star

Results corrected to stable-particle level are compared to predictions obtained with the models
presented below. An overview of these models is given in Table 3.

The PYTHIA 8 [22] event generator provides hard-scattering events using a ME calculated at LO
supplemented with PS. These event samples are labeled as “PYTHIA LO 2j+PS” for the three-
jet and as “PYTHIA LO Z+1j+PS” for Z + two-jet events. The PDF set NNPDF2.3LO and the
CUETP8M1 parameter set for the simulation of the UE are used with free parameters adjusted
to measurements in pp collisions at the LHC and proton-antiproton collisions at the Fermilab
Tevatron. The Lund string model [30] is applied for the hadronization process.

The MADGRAPH5 aMC@NLO event generator, labeled as “MADGRAPH” in the following, is
used to simulate hard processes with up to 4 final-state partons at LO accuracy. It is interfaced
to PYTHIA 8 with the CUETP8M1 tune and the NNPDF2.3LO PDF set for the simulation of PS,
hadronization, and MPI, for three-jet, and to PYTHIA 6 with the Z2Star tune and the CTEQ6L1
PDF set for Z + two-jet events. The three-jet sample is labeled as “MADGRAPH LO 4j+PS” and
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the Z + two-jet sample is labeled as “MADGRAPH LO Z+4j+PS”. The kT-MLM procedure [31]
is used to match jets from the ME and PS with a matching scale of 10 GeV.

Predictions are also included using the POWHEG BOX library [32–34], with the CT10 NLO [28]
PDFs and with the PYTHIA 8 CUETP8M1 tune applied to simulate PS, MPI, and hadronization.
The POWHEG generator is run in the dijet mode [35] providing an NLO 2 → 2 calculation,
labeled as “POWHEG NLO 2j+PS”. The matching between the POWHEG ME calculations and the
PYTHIA UE [25] simulation is performed using the shower-veto procedure (UserHook option
2 [22]).

The SHERPA software package is used to simulate Z + two-jet events. The hard process is
calculated at LO for a ME with up to four final-state partons and the CT10 PDF set is used.
This sample is labeled as “SHERPA LO Z+4j+PS”. The SHERPA generator has its own PS [27],
hadronization, and MPI tune [29].

Finally, the MADGRAPH5 aMC@NLO generator is also used in the MC@NLO mode, providing
a Z + one-jet ME at NLO accuracy. This event generator is interfaced to PYTHIA 8, using the
CUETP8M1 tune and the NNPDF3.0NLO [36] PDF set, to produce Z + two-jet events. The
sample is labeled as “aMC@NLO NLO Z+1j+PS”.

Table 3: MC event generators and version numbers, parton-level processes, PDF sets, and UE
tunes used for the comparison with measurements.

Event generator Parton-level process PDF set Tune

Three-jet events
PYTHIA 8.219 LO 2j+PS NNPDF2.3LO CUETP8M1
MADGRAPH 5.2.3.3 + PYTHIA 8.219 LO 4j+PS NNPDF2.3LO CUETP8M1
POWHEG 2 + PYTHIA 8.219 NLO 2j+PS CT10 NLO CUETP8M1

Z + two-jet events
PYTHIA 8.219 LO Z+1j+PS NNPDF2.3LO CUETP8M1
MADGRAPH 5.1.3.30 + PYTHIA 6.425 LO Z+4j+PS CTEQ6L1 Z2Star
SHERPA 1.4.0 + CSSHOWER++ LO Z+4j+PS CT10 AMISIC++
aMC@NLO + PYTHIA 8.223 NLO Z+1j+PS NNPDF30 nlo nf 5 pdfas CUETP8M1

5 Data correction and study of systematic and theoretical uncer-
tainties

To facilitate the comparison of data with theory, the data are unfolded from reconstruction to
stable-particle level, defined by a mean decay length larger than 1 cm, so that measurement
effects are removed and that the true distributions in the observables are determined. The un-
folding is performed using the D’Agostini algorithm [37] as implemented in the ROOUNFOLD

software package [38] for three-jet events, while the singular value decomposition method [39]
is used for Z + two-jet events. The response matrices are obtained from the full detector simu-
lation using MADGRAPH for three-jet events and SHERPA for Z + two-jet events.

The distributions are normalized to the integral of the spectra for three-jet events and to the
number of inclusive Z + one-jet events in the Z + two-jet analysis. The Z + two-jet analysis
normalization thus reflects the probability to have more than one jet in the event.

Systematic uncertainties associated to the jet energy scale (JES) calibration, the jet energy reso-
lution (JER), PU modeling, model dependence, as well as the unfolding method, are estimated.
Each uncertainty is quoted as the maximum change caused by the corresponding systematic
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effect.

The systematic uncertainty from the JES is 0.15 (0.24)% at
√

s = 8 (13)TeV for the three-jet case
and 5–10% for the Z + two-jet events. The JER observed in data differs from that obtained
from simulation and simulated jets are therefore smeared to obtain the same resolution as in
the data [40]. The systematic uncertainty from JER is estimated by varying the simulated JER
uncertainty up and down by one standard deviation, which results in a systematic uncertainty
of 0.16 (0.12)% at

√
s = 8 (13)TeV for three-jet and 2–3% for Z + two-jet events. When the

distributions of Z + two-jet events are normalized to the integrals of the histograms, instead of
the number of Z + one-jet events, the systematic uncertainties due to the JES and JER decrease
to 0.3–0.5%, except for the pT3/pT2 shape, which is still sensitive to the JES with changes of up
to 3%.

The distribution in the number of primary vertices is sensitive to PU and to differences in
the underlying event (UE) in data and simulation. To estimate the uncertainty due to the PU
modeling, the number of PU events in simulation is changed by shifting the total inelastic cross
section by ±5% [41]. The resulting PU uncertainties are 0.10 (0.17)% at

√
s = 8 (13)TeV for the

three-jet and 1% for the Z + two-jet events.

The dependence on the event generator used for the unfolding is estimated with MC event
samples from MADGRAPH and PYTHIA for three-jet, and SHERPA and MADGRAPH for the Z +
two-jet events. The means of both sets of unfolded data are used as the nominal values. This
uncertainty is ≈ 1.1 (0.25)% at

√
s = 8 (13)TeV for the three-jet and 1% for the Z + two-jet

events, which is half of the difference between the results obtained with the respective event
generators. The difference in uncertainties comes mainly from the difference in the number of
events in the corresponding simulated samples.

Table 4 summarizes the systematic uncertainties in the measurements.

Table 4: Systematic uncertainties in the measurements in %.

Source three-jet 8/13 TeV Z + two-jet 8 TeV
Jet energy scale 0.15/0.24 5–10
Jet energy resolution 0.16/0.12 2–3
Pileup 0.1/0.17 1
Unfolding and model dependence 1.1/0.25 1

The systematic uncertainties from various sources are similar for the three-jet samples at
√

s =
8 and 13 TeV, except for unfolding and model dependence at

√
s = 8 TeV. The systematic un-

certainties between the three-jet and Z + two-jet analysis cannot be compared directly because
each analysis uses a different normalization and also differs in statistical significance. The JES
uncertainty is especially sensitive to the jet pT range, and the Z + two-jet phase space has a
lower pT threshold than the one used in the three-jet events.

The figures of Sec. 6 show the total systematic uncertainty as a band in the panels displaying
the ratio of predictions over data.

The uncertainties in the PDF and in the renormalization and factorization scales are investi-
gated for the POWHEG and aMC@NLO models. Other theoretical predictions are expected to
have comparable uncertainties. The PDF uncertainties are estimated following the PDF4LHC
recipe [42], i.e., obtaining the variance in the predictions from changing the PDF at each point.
The renormalization and factorization scales are varied by a factor 2 up and down, excluding
the (2,1/2) and (1/2,2) cases. Finally, the theoretical uncertainties are obtained as the quadratic
sum of the PDF variance and the envelope of the scale variations, and displayed as a band
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around the theoretical predictions in the figures of Sec. 6.

6 Results
We compare the distributions in the ratio pT3/pT2 in data to predictions for events with small-
angle (∆R23 < 1.0) and large-angle radiation (∆R23 > 1.0). We also compare the ∆R23 distri-
butions in data to predictions with soft (pT3/pT2 < 0.3) and hard radiation (pT3/pT2 > 0.6).
The events with 0.3 < pT3/pT2 < 0.6 are not used in the comparisons because we focus on the
limits in soft and hard radiation. This classification is summarized in Fig. 1, within the phase
space defined in Table 1.

6.1 Three-jet selection

We show the
√

s = 8 TeV measurements of pT3/pT2 in Fig. 2 and of ∆R23 in Fig. 3, and compare
them to theoretical expectations. In Figs. 4 and 5 the distributions are given for

√
s = 13 TeV.

Figure 2 (left) shows the pT3/pT2 distribution for the small ∆R23 region. All predictions show
significant deviations from the measurements. Interestingly, the LO 4j+PS prediction shows
different behavior compared with LO 2j+PS and NLO 2j+PS. We see that the number of partons
in the ME calculation and the merging method with the PS in the present simulations lead
to different shapes of the predicted distributions. In Fig. 2 (right) the pT3/pT2 distribution is
shown for large ∆R23. This region of phase space is well described by the LO 4j+PS calculations,
while the LO 2j+PS and NLO 2j+PS predictions show large deviations from the measurements.
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Figure 2: Three-jet events at
√

s = 8 TeV compared to theory: (left) pT3/pT2 for small-angle
radiation (∆R23 < 1.0), (right) pT3/pT2 for large-angle radiation (∆R23 > 1.0).

In Fig. 3, the ∆R23 distribution is shown for two regions of pT3/pT2. Figure 3 (left) shows
pT3/pT2 < 0.3. The predictions from LO 2j+PS and NLO 2j+PS describe the measurement well,
while the prediction from LO 4j+PS shows a larger deviation from the data. In Fig. 3 (right)
the ∆R23 distribution is shown for pT3/pT2 > 0.6. In contrast to Fig. 3 (left), the predictions for
distributions from LO 2j+PS differ from the measurement, whereas the predictions from NLO
2j+PS and LO 4j+PS agree well with it. This indicates that in this region the contribution from
higher-order ME calculations supplemented with PS should be included. The same compar-
isons are performed for the

√
s = 13 TeV measurements as shown in Figs. 4 and 5. A similar

behavior is observed for
√

s = 8 TeV. In conclusion, none of the simulations simultaneously
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Figure 3: Three-jet events at
√

s = 8 TeV and comparison to theoretical predictions: (left) ∆R23
for soft radiation (pT3/pT2 < 0.3), (right) ∆R23 for hard radiation (pT3/pT2 > 0.6).

describes to simultaneously describe both the pT3/pT2 and the ∆R23 distributions in three-jet
events.
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Figure 4: Three-jet events at
√

s = 13 TeV compared to theory: (left) pT3/pT2 for small-angle
radiation (∆R23 < 1.0), (right) pT3/pT2 for large-angle radiation (∆R23 > 1.0).

6.2 Z + two-jet selection

The measurement of pT3/pT2 for Z + two-jet events is presented in Fig. 6 for data at
√

s = 8 TeV.
All distributions are normalized to the selected number of Z + one-jet events. All predictions
from PYTHIA, SHERPA, MADGRAPH, and aMC@NLO agree with data within the uncertainties
of the measurement except for the bins with hard radiation.

Figure 7 shows the measurement as a function of ∆R23. The aMC@NLO prediction deviates from
the data at high ∆R23 and small pT3/pT2, while PYTHIA, SHERPA, MADGRAPH, and aMC@NLO

describe the shape of the distribution in the high-pT3/pT2 range, but underestimate the data
due to a smaller contribution from production of j3. This feature is based on the normalization



6.2 Z + two-jet selection 9

0.5

1

1.5

2

2.5

3

3.5
2
3

R∆
d

d
N

 
N1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

23R∆

0.8

0.9

1

1.1

1.2

1.3

P
re

d
ic

ti
o

n
 /

 D
at

a
CMS

 (13 TeV)
1

   2.3 fb

Threejet

 < 0.3
T2

/p
T3

p

 > 510 GeV
T1

p

Data

PYTHIA LO 2jets+PS

MADGRAPH LO 4jets+PS

POWHEG NLO 2jets+PS

Syst. on data

for POWHEG
Scale + PDF uncert.

0.5

1

1.5

2

2.5

3

3.5
2
3

R∆
d

d
N

 
N1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

23R∆

0.8

0.9

1

1.1

1.2

1.3

P
re

d
ic

ti
o

n
 /

 D
at

a
Data

PYTHIA LO 2jets+PS

MADGRAPH LO 4jets+PS

POWHEG NLO 2jets+PS

Syst. on data

for POWHEG
Scale + PDF uncert.

CMS

 (13 TeV)
1

   2.3 fb

Threejet

 < 0.3
T2

/p
T3

p

 > 510 GeV
T1

p
0.5

1

1.5

2

2.5

3

3.5

2
3

R∆
d

d
N

 
N1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

23R∆

0.8

0.9

1

1.1

1.2

1.3

P
re

d
ic

ti
o

n
 /

 D
at

a

CMS

 (13 TeV)
1

   2.3 fb

Threejet

 > 0.6
T2

/p
T3

p

 > 510 GeV
T1

p

Data

PYTHIA LO 2jets+PS

MADGRAPH LO 4jets+PS

POWHEG NLO 2jets+PS

Syst. on data

for POWHEG
Scale + PDF uncert.

0.5

1

1.5

2

2.5

3

3.5

2
3

R∆
d

d
N

 
N1

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

23R∆

0.8

0.9

1

1.1

1.2

1.3

P
re

d
ic

ti
o

n
 /

 D
at

a

Data

PYTHIA LO 2jets+PS

MADGRAPH LO 4jets+PS

POWHEG NLO 2jets+PS

Syst. on data

for POWHEG
Scale + PDF uncert.

CMS

 (13 TeV)
1

   2.3 fb

Threejet

 > 0.6
T2

/p
T3

p

 > 510 GeV
T1

p

Figure 5: Three-jet events at
√

s = 13 TeV and comparison to theoretical predictions: (left) ∆R23
for soft radiation (pT3/pT2 < 0.3), (right) ∆R23 for hard radiation (pT3/pT2 > 0.6).
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Figure 6: Z + two-jet events at
√

s = 8 TeV compared to theory: (left) pT3/pT2 for small-angle
radiation (∆R23 < 1.0), (right) pT3/pT2 for large-angle radiation (∆R23 > 1.0).

of Z + two-jet distributions by the number of inclusive Z + one-jet events selected.

Figures 8 and 9 compare the event distributions with predictions from PYTHIA 8 with the final-
state PS and MPI switched off. The initial-state PS was kept, because one of the jets must
originate from PS when Z + two-jet events are selected. Multiple parton interactions play a
very minor role, while the final-state PS in PYTHIA 8 is very important. When the final-state PS
is switched off, events where both jets come from the initial-state PS are kept with a tendency
to be close to each other in ∆R23.

The results of the Z + two-jet events are, in general, described by all theoretical predictions,
except for the underestimation of j3 emission. However, the three-jet events display significant
differences; only in the region of large ∆R23 and large pT3/pT2 (hard and large-angle radiation)
do the theoretical predictions agree with the measurement. The accessible range in pT is rather
small in Z + two-jet events because of the limit in the pT of the Z bosons (pT1 > 80 GeV), while
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Figure 7: Z + two-jet events at
√

s = 8 TeV compared to theory: (left) ∆R23 for soft radiation
(pT3/pT2 < 0.3), (right) ∆R23 for hard radiation (pT3/pT2 > 0.6).

the three-jet selection, on the contrary, can have a rather large range (pT1 > 510 GeV). This
may explain why the region of small pT3/pT2 is better described by predictions that include
PS in the latter case. In addition, the large-angle radiation is best described by fixed-order ME
calculations.
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Figure 8: Z + two-jet events at
√

s = 8 TeV compared to theoretical predictions from PYTHIA 8
without initial-state parton showers (IPS), final-state parton showers (FPS), and MPI: (left)
pT3/pT2 for small-angle radiation (∆R23 < 1.0), (right) pT3/pT2 for large-angle radiation
(∆R23 > 1.0).

In conclusion, the Z + two-jet measurement has a different distribution in pT3/pT2, which orig-
inates from the different kinematic selection criteria relative to three-jet events, thus reducing
the sensitivity in the soft and collinear region. Within the available phase space, the measure-
ments are in reasonable agreement with both PS and ME calculations, apart from the emission
of j3 in the high-pT3/pT2 region.
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Figure 9: Z + two-jet events at
√

s = 8 TeV and comparison to theoretical predictions from
PYTHIA 8 without initial-state parton showers (IPS), final-state parton showers (FPS), and MPI:
(left) ∆R23 for soft radiation (pT3/pT2 < 0.3), (right) ∆R23 for hard radiation (pT3/pT2 > 0.6).

7 Summary
Two kinematic variables are introduced to quantify the radiation pattern in multijet events: (i)
the transverse momentum ratio (pT3/pT2) of two jets, and (ii) their angular separation (∆R23).
The variable pT3/pT2 is used to distinguish between soft and hard radiation, while ∆R23 classi-
fies events into small- and large-angle radiation types. Events with three or more energetic jets
as well as inclusive Z + two-jet events are selected for study using data collected at

√
s = 8 TeV

corresponding to an integrated luminosity of 19.8 fb−1. Three-jet events at
√

s = 13 TeV corre-
sponding to an integrated luminosity of 2.3 fb−1 are also analyzed. No significant dependence
on the center-of-mass energy is observed in the differential distributions of pT3/pT2 and ∆R23.

Overall, large-angle radiation (large ∆R23) and hard radiation (large pT3/pT2) are well de-
scribed by the matrix element (ME) calculations (using LO 4j+PS formulations), while the par-
ton shower (PS) approach (LO 2j+PS and NLO 2j+PS) fail to describe the regions of large-angle
and hard radiation. The collinear region (small ∆R23) is not well described; LO 2j+PS, NLO
2j+PS, and LO 4j+PS distributions show deviations from the measurements. In the soft region
(small pT3/pT2), the PS approach describes the measurement also in the large-angle region (full
range in ∆R23), while for large pT3/pT2 higher-order ME contributions are needed to describe
the three-jet measurements. The distributions in Z + two-jet events are reasonably described
by all tested generators. Nevertheless, we find an underestimation of third-jet emission at large
pT3/pT2 both in the collinear and large-angle regions, for all of the tested models. These results
illustrate how well the collinear/soft, and large-angle/hard regions are described by different
approaches. The different kinematic regions and initial-state flavor composition may be the
reason why the three-jet measurements are less consistent with the theoretical predictions rel-
ative to the Z + two-jet final states. These results clearly indicate that the methods of merging
ME with PS calculations are not yet optimal for describing the full region of phase space.
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N. Krammer, L. Lechner, D. Liko, T. Madlener, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck1,
R. Schöfbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish2, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello3, A. Lelek, M. Pieters,
H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette,
I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders
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A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina,
G. Kasieczka, R. Klanner, R. Kogler, V. Kutzner, J. Lange, T. Lange, A. Malara, C.E.N. Niemeyer,
A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, S. Schumann, J. Schwandt,
D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
S. Baur, J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm,
A. Droll, K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann20,
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S. Albergoa,b,42, S. Costaa,b,42, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b ,42, C. Tuvea ,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
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C. Aime‘a ,b, A. Braghieria, S. Calzaferria ,b, D. Fiorinaa ,b, P. Montagnaa ,b, S.P. Rattia,b, V. Rea,
M. Ressegottia,b, C. Riccardia ,b, P. Salvinia, I. Vaia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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Universität Zürich, Zurich, Switzerland
C. Amsler60, C. Botta, D. Brzhechko, M.F. Canelli, R. Del Burgo, J.K. Heikkilä, M. Huwiler,
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3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
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