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ABSTRACT
�is paper reports on the performance of a preconditioned con-

jugate gradient based iterative eigensolver using an unconstrained
energy functional minimization scheme. In contrast to standard im-
plementations, this scheme avoids an explicit reorthogonalization
of the trial eigenvectors and becomes an a�ractive alternative for
the solution of very large problems. �e unconstrained formulation
is implemented in the �rst-principles materials and chemistry CP2K
code, which performs electronic structure calculations based on
a density functional theory approximation to the solution of the
many-body Schrödinger equation. We study the convergence of
the unconstrained formulation, as well as its parallel scaling, on
a Cray XC40 at the National Energy Research Scienti�c Comput-
ing Center (NERSC). �e systems we use in our studies are bulk
liquid water, a supramolecular catalyst gold(III)-complex, a bilayer
of MoS2-WSe2 and a divacancy point defect in silicon, with the
number of atoms ranging from 2,247 to 12,288. We show that the
unconstrained formulation with an appropriate preconditioner has
good convergence properties and scales well to 230k cores, roughly
38% of the full machine.
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1 INTRODUCTION
Many scienti�c applications require the solution of eigenvalue

problems. For applications where some small percentage of the
eigenpairs is required rather than the full spectrum, iterative eigen-
solvers are typically used. �is is because the computational cost
of a direct solver scales as the cube of the matrix dimension, while
iterative solvers scale as the square of the number of required eigen-
pairs times the matrix dimension. �e prefactor for the scaling of
the iterative solver is much larger than for the direct solver. �e
crossover point for which method is the fastest varies with the class
of system under study but is typically in the regime of about 10%.
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Electronic structure calculations in materials science and chem-
istry codes based on some approximate solution to the Schrödinger
equation is an example of this class of problems, where typically
a small percentage of the lowest eigenpairs is required. Iterative
methods such as Conjugate Gradient (CG) and Davidson are o�en
used for this class of problem. �ey can scale well on large paral-
lel computers for large problems because most of the operations
in the algorithms are large matrix multiplies, where at least one
dimension of the matrices has the dimension of the full matrix
being diagonalized. �ese types of operation can be implemented
e�ciently with parallel BLAS routines. �e commonly used itera-
tive solvers for materials and chemistry codes are o�en referred to
as constrained energy functional approaches, as the constraint of
orthogonality on the eigenvectors requires some form of reorthog-
onalization of the trial vectors. �e function being minimized with
this constraint is related to the energy of the physical system being
modeled. �e reorthogonalization step involves operations on the
so-called small subspace matrix, which has the dimension of the
number of required eigenpairs. In some applications this number
may be as low as a few percent of the full matrix. �is can result in
the reorthogonalization step having poor parallel scaling compared
to the other steps in the iterative solver, limiting the overall parallel
scaling of the method. �e use of unconstrained energy functionals
avoids the explicit reorthogonalization step; therefore, it has the
potential for be�er parallel scaling than both direct eigensolvers
and constrained energy functional iterative solvers. In this paper,
we present a study of unconstrained energy functional iterative
eigensolvers in the context of the commonly used density func-
tional theory (DFT) approach to solving the Schrödinger equation
for materials and chemistry codes.

2 FORMALISM
For electronic structure calculations in materials science and

chemistry, �rst-principles methods based on Density Functional
�eory (DFT) in the Kohn-Sham (KS) formalism [1] are the most
widely used approaches due to their computational e�ciency and
favorable scaling with system size. It is now possible to routinely
model systems of thousands of atoms on existing high performance
computers. �e KS single particle eigenfunction equations are
usually wri�en in atomic units as

Ĥψi(r) =
[
−1
2
∇2 + V

]
ψi(r) = εiψi(r) (1)

whereψi (r) are the wavefunctions for each electron in the system
and εi is the energy of the electron. �e probability of �nding the
i’th electron at position r is given byψi (r)ψ ∗i (r), where ∗ denotes
the complex conjugate. �e �rst term in the Hamiltonian operator
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Ĥ is the kinetic energy operator, and V is the potential. In the
most commonly used local density approximation (LDA) using
pseudopotentials to replace the nuclei and core electrons, V is given
by

V =
∑
RI

vion (r − RI) +
∫

ρ(r′)
|r − r′ | d

3r′ + µxc(ρ(r)) (2)

where vion (r − RI) is the ionic pseudopotential of ion I , RI is the
position of ion I , ρ(r) = ∑

iψi(r)ψ ∗i (r) is the total charge density,
and µxc (ρ(r)) is the LDA exchange-correlation potential. In our
studies, we have used the generalized gradient approximation PBE
functional [2], which is a commonly used extension to the LDA ap-
proximation giving more accurate results for many systems. �ese
equations represent the electronic interactions in a system such
as a periodic crystal, molecule or nanostruture. �e �rst term in
the potential is the interaction between the valence (bonding) elec-
trons and the ions. �e second term is the Hartree potential for the
electron-electron interaction, the exchange-correlation potential
comes from the reduction of the many body Schrödinger equation
to the single body form. In the formalism of quantum mechanics the
solution of these equations gives the wavefunction of each electron
and then all observables of the system are represented by Hermitian
operators, which act on the wavefunctions. �e eigenvalues of the
operator are the values the observables take so, for example, the
Hamiltonian Ĥ is the energy operator.

Since the potential V in Eq. 2 depends on the total charge density,
which in turn depends on the wavefunctions, this eigenvalue prob-
lem is o�en referred to as being non-linear. �e most commonly
used approach in electronic structure calculations for solving this
non-linear problem is the self-consistent �eld (SCF) method, where
the problem is linearized in an inner loop by �xing the charge
density, which is then updated at each step in the loop until con-
vergence of the charge density and potential �eld. �is procedure
is illustrated in Fig. 1. One starts from an initial guess for the wave-
functions (o�en atomic orbitals or random) in the �rst step, from
which a total charge density and Hamiltonian can be calculated.

In order to solve Eq. 1 in the SCF loop the wavefunctionsψi (r)
are usually expanded in some basis set or discretized on a real space
grid. �e most commonly used basis sets are plane waves (Fourier
expansion) and atom centered Gaussian functions but other basis

Figure 1: Schematic of the self consistent �eld (SCF) proce-
dure as usually implemented in electronic structure codes.

such as numerical orbitals and wavelets are also used. Introducing
a set of basis functions {ϕα (r)} of size Nb for the wavefunctions
ψi (r) in Eq. 1 we can now write the wavefunctions in terms of
coe�cients of each basis function,

ψi (r) =
∑
α

Cα iϕα (r), (3)

and the Hamiltonian as an Nb × Nb matrix by calculating integrals
of the form Hα β =

∫
ϕα (r)Hϕβ (r)dr. Here and in what follows

we use the following convention: i, j,k indices identify eigenvec-
tors, α , β,γ indices identify basis functions, and No represents the
number of the lowest eigenvectors of interest, corresponding to the
occupied electronic states necessary to build the total electronic
charge density ρ(r). In the most general case, such as Gaussian
basis as used in CP2K, the basis functions {ϕα } are non-orthogonal,
and the overlap matrix for the basis set Sα β =

∫
ϕα (r)ϕβ (r)dr is

di�erent from the identity (S = I for an orthogonal basis such as
plane waves). �is requires, in matrix form, for the inner part of
the SCF loop (see Fig. 1), the solution of the associated generalized
eigenvalue problem

HC = SCE (4)
where C is the matrix of generalized eigenvectors {Ci }i=1...No

(coe�cients of the basis functions) obeying the orthogonality con-
dition CT SC = I. E is the diagonal matrix of eigenvalues. Again,
for an orthonormal basis S = I and Eq. 4 reduces to a standard
eigenvalue problem. For the ground state, the solution of the sys-
tem only requires the lowest eigenvalues and eigenvectors of H
corresponding to the wavefunction of each electron in the system,
which are also used to construct the charge density in the SCF loop.

In the case of a Gaussian basis, historically the diagonalization
of the Hamiltonian (solution of the eigenvalue problem) in the SCF
loop in Fig. 1 was performed with direct, dense eigenvalue solvers
as implemented e.g. in ScaLAPACK [3]. Typically, direct eigen-
value solvers involve the reduction of a dense matrix to tridiagonal
form, whose eigenvalues and eigenvectors are easier to compute,
followed by a backtransformation of the eigenvectors. On modern
large scale parallel computers, those operations can lead to parallel
scalability limitations, which have been addressed by ingenious
redesigns of the reduction and backtransformation phases [4, 5].
E�cient implementations are available in the EigenExa [6, 7] and
ELPA [8] packages. As previously mentioned, for electronic struc-
ture problems with larger basis set sizes, the percentage of required
eigenpairs is relatively low. For example, in the case of the com-
monly used plane wave basis, only a few percent of the eigenpairs
is required and historically iterative solvers have been used for this
basis.

Iterative solvers based on Lanczos or Arnoldi algorithms have
been used in some electronic structure applications [9–11]. How-
ever, their use has been limited since iterative solvers such as CG
and Davidson can take be�er advantage of good initial guesses for
the eigenvectors. In the SCF formulation of the problem we always,
at each SCF step, have a good initial guess for the eigenvectors
from the previous SCF step. A block version of Lanczos (or Arnoldi)
would be required to take advantage of these guesses, but with
additional overheads (e.g. for maintaining the orthogonality of the
Lanczos vectors). In a CG formulation, the eigenvalue problem
is usually cast in terms of a minimization problem subject to the
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orthogonality constraint,

min Tr
[
CTHC

]
, CTSC = I. (5)

C is now the matrix of trial generalized eigenvectors with dimen-
sion Nb × No , where Nb is the size of the basis set and No is the
number of electronic wavefunctions, which are o�en referred to as
bands, states or orbitals. At the solution of the minimization of this
function, we obtain the total electronic energy of the system

∑
i εi

(see Eq. 1). �is approach is therefore referred to as minimization of
the energy functional in the electronic structure community, and it
is used in various packages intended for the computation of materi-
als and chemical properties [12, 13]. See [10] for a (non-exhaustive)
list of minimization algorithms used in electronic structure pack-
ages. In general, an important feature of iterative solvers is that
they only require the action of an operator over a vector, i.e. matrix
vector multiplications, where e�cient storage and computational
strategies for sparse matrices can also be employed [14, 15]. In par-
ticular, the techniques discussed in [14] are used in the CP2K code
[16]. For e�ciency reasons and to increase parallelism, iterative
solvers are usually implemented in block form: the solvers iterate
on the set of trial vectors {Ci} at the same time, allowing for the
computation of a set of eigenpairs simultaneously (in contrast to a
one vector at a time, o�en called band-by-band formulation) [17].
�e trial vectors can be kept orthogonal through the diagonaliza-
tion of the subspace Nb × Nb eigenvector overlap matrix CTSC for
non-orthogonal basis and CTC for orthogonal basis, which can be
done with ScaLAPACK. �is can alternatively be achieved through
Gram-Schimdt, Cholesky or QR methods [18, 19]. In some cases,
these methods have improved parallel scaling over the use of direct
diagonalization. However, they are all limited in their scaling to
large core counts because of global communication costs on opera-
tions on a relatively small sub-space matrix, compared to operations
on the full Hamiltonian matrix.

Various other techniques have been proposed to deal with the
orthogonality of the trial vectors. In [20], for example, the authors
discuss a strategy based on Pulay’s DIIS [21], an extrapolation
technique that in principle does not require reorthogonalizations.
However, those authors observe that reorthogonalizations is re-
quired for good convergence and stability of the strategy. Spectrum
slicing and polynomial �lters have been proposed in [22, 23] to
reduce the costs of reorthogonalization. Although promising, spec-
trum slicing may still su�er from scaling issues depending on the
number of eigenvalues that lie in a given slice. In turn, polynomial
�lters can be expensive as they may require an additional and large
number of matrix-vector products.

�e unconstrained energy functional approach for electronic
structure calculations o�ers the possibility of eliminating explicit
diagonalization and operations on the small overlap matrix. In this
paper, we are studying this method in the context of electronic
structure problems, but we note that it can be applied to the de-
termination of a desired number of the lowest eigenvalues and
corresponding eigenvectors of any symmetric or Hermitian matrix.
�e unconstrained approach used for electronic structure calcula-
tions [24] is based on the relaxation of the orthogonality constraint
in Eq. 5 by means of a set of vectors X that spans the same subspace
as C but is not required to be orthogonal. �is transformation is

given by
C = XS−

1
2 , S = XTX. (6)

Note that we are using S for the overlap matrix (size Nb × Nb ) of
the basis functions and S for the overlap matrix (size No × No )
of the trial vectors X, where No is much smaller than Nb . �e
minimization problem of Eq. 5 can now be rewri�en as

E[X] = min Tr
[
S−1XTHX

]
, (7)

relaxing the orthogonality constraint and introducing the so-called
unconstrained energy functional E [X]. Near the solution, S−1 is
close to the identity matrix I, and most implementations use the
�rst order expansion (2I − S) to approximate it, avoiding the ma-
trix inversion of S. Approximations to higher order have also been
studied [25] for a plane wave basis code, although no major bene�t
has been observed over the �rst order approximation. [26] intro-
duces the orbital minimization method (OMM), an unconstrained
approach that uses a basis of numerical atomic orbitals, which leads
to sparse operators. �is method has been implemented in the
SIESTA package [27]. �erefore, the unconstrained approaches
based on expansions of S−1 never involve operations solely on the
small S matrix, like in the constrained approaches. �is is a key
ingredient in unconstrained methods to improved parallel scaling
for large systems by avoiding the inversion of a small matrix. A
caveat to this is that the removal of the constraint, and a di�erent
functional to minimize, changes the convergence properties. One
of the main focuses of our studies was therefore to look at the con-
vergence properties of the unconstrained functional and develop
new preconditioners to improve the convergence.

While our studies have focused on the use of the unconstrained
approach applied to the standard cubic scaling DFT method, the
approach has been mostly used for the so-called O(N ) linear scal-
ing electronic structure methods, where N is the number of atoms
in the system. �ese methods typically involve some constraint
of spatial locality for the wavefunctions or charge density. �e
unconstrained approach is favorable for O(N ) methods because
its so� orthogonality constraint allows the spatial locality to be
maintained during the iteration procedure. An explicit orthogo-
nalization would lose the locality, as the true eigenvectors of the
Hamiltonian have exponentially vanishing tails even in the most
localized cases. A review of O(N ) methods including the use of un-
constrained functionals can be found in reference [28]. �e SIESTA
package [27] also provides an unconstrained O(N ) implementation
with spatially localized wavefunctions expanded in atomic orbitals.

We note that a set of the aforementioned algorithms have been
incorporated into ELSI [29], a so�ware infrastructure that provides
an interface to multiple strategies for solving eigenvalue problems
that arise in electronic structure calculations.

In the next section of this paper we discuss the methods and algo-
rithms as implemented for our studies in the CP2K �rst-principles
code [16]. To our knowledge, this is the �rst time the unconstrained
approach has been implemented in a Gaussian basis electronic struc-
ture code. In particular, we focus on the new preconditioners devel-
oped for the unconstrained CG eigensolver. Section 4 presents the
computational details of our performance runs. Section 5 presents
convergence and parallel scaling results on a Cray XC40. One of the
main goals of this work is to revisit these unconstrained functional
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approaches in the context of very large scale electronic structure
calculations on modern large scale parallel many-core computers,
to study their parallel scaling properties in comparison to other
commonly used approaches such as direct solvers. �e �nal section
in the paper presents conclusions based on our work.

3 METHOD AND ALGORITHMS
CP2K [16] is a massively parallel computer program for �rst-

principles quantum chemistry and materials simulations using a
DFT approach. DFT is implemented in the framework of the Gauss-
ian and plane wave (GPW) approach [30, 31]. �e GPW method
makes use of a dual basis representation for the charge density and
wavefunctions, i.e. delocalized plane waves and localized atomic
centered Gaussian functions. �is allows for an e�cient construc-
tion of the Hamiltonian matrix in linear scaling time with respect to
system size. For this reason, the diagonalization of the Hamiltonian
within the SCF procedure becomes the calculation bo�leneck.

In this work, the unconstrained functional we have implemented
in the CP2K code corresponds to Eq. 7. �e inverse trial vector
overlap matrixS−1 is then expanded to �rst order about the identity
matrix, i.e. S−1 = (2I − S), which becomes, writing it in terms of
the basis function overlap matrix S where S = XTSX,

E[X] = Tr
[(

2I − XT SX
)
XTHX

]
. (8)

It has been shown [32–35] that the minimization of this functional
with respect to X: a) converges to the same energy as that of the
correct functional of Eq. 7, the sum of the �rst No eigenvalues of
Eq. 4, b) at convergence the subspace spanned by X is the same
as that spanned by the true generalized eigenvectors C, and c) by
minimization X self-orthogonalizes, i.e. at the minimum XT SX = I.
�e only condition to ensure convergence is that all No eigenvalues
calculated are all negative. �is is realized by a rigid shi� of the
eigenspectrum of H by a proper scalar quantity η employing the
transformation H→ H − η · S. �e gradient of the unconstrained
functional of Eq. 8 reads :

G = 4HX − 2SXH − 2HXS (9)

where H = XTHX is of the same dimensions as S, i.e. No × No .
�is gradient can be used directly to carry out the unconstrained
functional minimization. In this work, we use a preconditioned
conjugate gradient (PCG) procedure to minimize the function. By
using an appropriate preconditioner (discussed later in this section)
one obtains the search direction D by employing one of the many
possible formulae (Polak-Ribiére in our case). �e improved trial
vectors to be used in the next PCG iteration are then obtained as
XNew = X+αD, with α optimally chosen by a line search procedure
to give the maximum functional energy minimization. One of the
advantages of the unconstrained functional of Eq. 8 is that, due
to its quadratic form, the optimal α can be calculated analytically
by solving a 4th order polynomial [26], which requires only a li�le
extra computation to get the polynomial coe�cients.

�e approach described here so far requires only matrix multipli-
cation operations that, combined with the development of reduced-
communication / communication avoiding-parallel algorithms and
a possible hybrid GPU-CPU implementation, give a promising av-
enue in terms or computational e�ciency. A summary of the basic

Figure 2: Matrixmultiplications (in parallel) involved in the
unconstrained functional minimization scheme. �e scal-
ing of the computational cost (�oating point operations) and
communication volume (real or complex numbers commu-
nicated) per processor p, are reported assuming dense linear
algebra and Cannon’s algorithm [36]. In the table, Nb is the
basis set size and No is the number of required eigenpairs.

parallel matrix multiplication operations necessary to implement
the unconstrained functional minimization method is given in Fig.
2. It is shown that the asymptotic scaling of the method with system
size is cubic, since both No and Nb grow linearly with system size.
�e main point here is that all the matrix multiplications involve
matrices where at least one of the matrices has the large dimension
Nb of the basis set size, therefore amenable to large scale paral-
lelization. �is is in contrast to constrained methods that always
contain operations on the small No × No matrices, which limits
parallel scaling. �e caveat here is the convergence of the method.
It has already been shown that the absence of a good precondi-
tioner, for localized basis atomic orbitals, makes the unconstrained
approach converge very slowly if not even diverge [26]. We address
the preconditioning of the method in the next section.

It should be noted, from our studies of the unconstrained ap-
proach, that without the development of a tailored preconditioner,
truncating the Taylor expansion of S beyond the �rst order brings
li�le or no bene�t in terms of time to solution compared to tradi-
tional methods. For this reason, we have focused on developing
an e�ective preconditioner, leaving the exploration of higher order
expansions to later studies.

Pioneering work on preconditioning the conjugate gradient pro-
cedure for solving the generalized eigenvalue problem within elec-
tronic structure calculations with localized basis function have
introduced preconditioners based on the overlap matrix (over ba-
sis functions) scaled by the kinetic energy matrix [37, 38]. Such
approaches, o�en used for preconditioning applications based on
plane wave basis functions, aim to suppress the high energy com-
ponents of the eigenspectrum, i.e. suppress eigenstates ϵi with
i >> No , which show predominantly a kinetic energy component.
Such approaches have also been tested for the unconstrained func-
tional method and more recently for atomic orbital basis functions
[26].

�e approach we follow here is to obtain a be�er preconditioner
by using information from the Hessian A of the unconstrained
functional approach. A is formally a square matrix of size (NoNb )×
(NoNb ) obtained as the second derivative of the functional of Eq. 8



Unconstrained Functionals for Eigensolvers ICPP 2019, August 5–8, 2019, Kyoto, Japan

with respect to the trial vector coe�cients Xα i . In particular, given
E[X] from Eq. 8 or the gradient G from Eq. 9, an element Aα i,β j of
A is given by

Aα i,β j =
∂2E[X]
∂Xα i∂Xβ j

=
∂Gβ j

∂Xα i
=

2Hα β
[
2δi j − Si j

]
− 2Sα βHi j − 2 [SX ]β i [HX ]α j

− 2 [HX ]β i [SX ]α j − 2δi j
[
HXXT S + SXXTH

]
α β
,

(10)

accounting for the fact that in our case H and S are real and symmet-
ric (note that H = XTHX and S = XT SX). One can thus use the
Hessian for preconditioning the unconstrained functional conju-
gate gradient procedure, similarly to the case of a Newton or quasi-
Newton step. In this case, starting from the gradient G, one should
calculate the preconditioned gradient P as Pjb =

∑
ia A
−1
jb,iaGia ,

implying the inversion of A, which is clearly intractable with a
direct solver due the size of the Hessian.

Instead, one can use an iterative procedure to obtain P as a
solution of the associated linear system of equations, that is solving∑

ia
Ajb,iaPia = G jb (11)

with respect to the Pia . Note that in this case it is not necessary
to calculate explicitly the full Hessian matrix, since it is possible
to directly compute the matrix-vector product Q (with elements
Q jb =

∑
ia Ajb,iaPia ), according to:

Q = 2HP [2I − S] − 2SPH − 2 [SX] PT [HX]

− 2 [HX] PT [SX] − 2
[
HXXT S + SXXTH

]
P. (12)

�us, within the PCG unconstrained functional minimization one
can �nd the preconditioned gradient P by solving the linear system
of Eq. 11 iteratively using an inner PCG procedure. We label this
approach as FullHess-KIter, where K denotes the number of
iterations employed in the inner PCG to solve Eq. 11. Again, all the
operations needed to implement this case are matrix multiplications
of the kind listed in Fig. 2. �ere still remains the problem of
preconditioning the inner PCG, which we address in the following.

We name the preconditioner for the inner PCG the inner-precon-
ditioner, the simplest of which considered here is given by the in-
verse of the overlap matrix de�ned over basis functions, that is S−1.
We name this inner-preconditioner InvOvl, so when used to solve
the inner PCG the overall label reads FullHess-KIter-InvOvl,
meaning solving the inner PCG for the Hessian by using the S−1

as inner-preconditioner and K iterations. Despite the simplicity of
S−1, this preconditioner is robust and cheap to compute. In fact,
since S is positive de�nite, one can use Cholesky factorization for
computing and applying the preconditioner, additionally one needs
to compute the S−1 only once at the beginning of the SCF loop.

�e second inner-preconditioner considered here is obtained
as an approximated form of the Hessian given in Eqs. 10 and 12.
In particular, we assume that when approaching convergence, the
P matrix elements approach zero, being related to the gradient,
decreasing at each iteration. In this way the mixing terms, 3rd and
4th in Eq. 12, are likely becoming less relevant than the others. In
addition to this, when approaching convergence [2I − S] becomes

Hessian Solver
Inner None PCG with K Iterations

Preconditioner
S−1 InvOvl FullHess-KIter-InvOvl

Ã−1 AprxHess FullHess-KIter-AprxHess

Table 1: �e di�erent preconditioners used in this paper.
PCG is the preconditioned conjugate gradient procedure
to solve Eq. 11, with K iterations. None means that the
inner-preconditioner is used for preconditioning the uncon-
strained functional minimization.

closer to the identity matrix due to self-orthogonalization of the
trial vectors, such that the �rst term in Eq. 12 tends to HP. Finally to
decouple the dependence onH in the second term of Eq. 12, that is
SPH, we assume a rigid shi� λ of the eigenspectrum [39, 40] given
from an estimation of the highest eigenvalue calculated (λ ≈ −ϵo ).
�ese assumptions lead to an approximate Hessian,

Ã = 2H − 2λS − 2
[
HXXT S + SXXTH

]
, (13)

representing a square matrix of size Nb × Nb , which can be ap-
plied as inner-preconditioner in the same way as S−1. We name
this inner-preconditioner AprxHess and, similarly to the previous
case, the notation FullHess-KIter-AprxHess indicates solving
the inner PCG by using the Ã−1 as inner-preconditioner and K
iterations. Finally, we also consider the case for which the inner
PCG is not solved, but rather the InvOvl or AprxHess are used for
preconditioning the unconstrained functional minimization pro-
cedure (see Table 1 for a summary of the naming convention for
the various preconditioners). More technical details on how the
various iterative levels for the full SCF procedure work together is
given in what follows.

As mentioned in the previous sections, the major computational
steps of the unconstrained functional minimization (calculation
of the energy functional, gradient, line search, etc.) can be im-
plemented as matrix multiplication operations. Within CP2K, in
addition to the PBLAS [3] library for parallel dense basic linear alge-
bra, the parallel matrix multiplications are carried out by using the
distributed block-compressed sparse row, DBCSR, library [14, 41].
DBCSR is a library designed to e�ciently perform sparse matrix ma-
trix multiplication, it is MPI and OpenMP parallel, and can exploit
accelerators (such as GPU). �e reason for using sparse linear alge-
bra is that, due to the localized basis set, the H and S matrices are
sparse, and this can be exploited to reduce the computational cost.
In particular, for the HX and SX matrix multiplications, which are
the most computationally demanding (see Fig. 2), one can take great
advantage of sparsity even if X is dense, reducing the cost from
cubic to quadratic. For this reason, even if overall our implementa-
tion is cubic scaling, we use sparse linear algebra matrix operations
by employing the DBCSR library to reduce time to solution.

�e unconstrained functional minimization is invoked within the
SCF loop (see Fig. 1) to solve the eigenvalue problem at each step,
providing a new set of wavefunctions which will then be used to
update the electronic density. �e construction of the new density
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(a) (b) (c) (d)

Figure 3: Systems used in the numerical experiments. (a) 1024 molecules of bulk liquid water (Water-1024 in the text), (b)
supramolecular catalyst gold(III)-complex (Complex in the text), (c) bilayer of MoS2-WSe2 (BiLayer in the text), and (d) diva-
cancy point defect in silicon (SiDivac in the text). �e systems are in increasing order of “complexity” for convergence.

System Label Atoms Basis H Size (Nb ) Eigenvec. (No ) No/Nb Gap(AU)
Bulk Liquid Water (Fig. 3a) Water-1024 3,072 TZVP 29,696 4,096 0.14 0.128

Water-2048 6,144 TZVP 59,392 8,192 0.14
Water-4096 12,288 TZVP 118,784 16,384 0.14

Solvated Catalyst Complex (Fig. 3b) Complex 2,590 TZVP 26,339 3,605 0.14 0.052
MoS2-WSe2 Bilayer (Fig. 3c) BiLayer 2,247 TZVP 51,681 9,737 0.19 0.035
Divacancy Defect in Silicon (Fig. 4b) SiDivac 2,742 TZVP 46,614 5,484 0.12 0.013

SiDivac-SZV 2,742 SZV 10,968 5,484 0.50
SiDivac-DZVP 2,742 DZVP 35,646 5,484 0.15
SiDivac-TZV2P 2,742 TZV2P 79,518 5,484 0.07

Table 2: Basic physical and computational parameters of the systems employed in the numerical experiments. H Size is the
dimension of the Hamiltonian matrix that needs to be diagonalized at each SCF step (basis set size), Eigenvec. (No ) is the
number of eigenvectors to be computed (number of wavefunctions needed to build the electronic density), and Gap is the
energy di�erence between eigenvalues No + 1 and No in atomic units (AU), which is the unit employed to express H .

is usually performed employing some mixing scheme which allows
for accelerating convergence by using, for example, an extrapola-
tion (such as DIIS [21]). Due to the density mixing and extrapolation
schemes, it is not necessary to achieve full convergence in the solu-
tion of the inner diagonalization. Instead, it is important to provide
an improved solution compared to the previous iteration, which
will then be included in the extrapolation scheme. �is implies
that the PCG procedure carrying out the unconstrained functional
minimization at each SCF step does not need to be fully converged,
but just reduce the residual of the gradient by a reasonable amount.
In general, only a small number of iterations (4-8) are performed
and the PCG is considered converged and interrupted if the residual
of the gradient is reduced by at least 0.1-10% from its initial value
depending on the system type. �ese parameters may seem rather
loose in terms of convergence tolerance but it has been shown, from
a long history of experience in the �eld, to be the most e�ective
approach to achieve faster overall SCF convergence in terms of time
to solution. �e reason is that, due to the non-linear nature of the
SCF procedure, rather than having fully converged eigenvectors
at each SCF step it is much more e�cient to achieve an improved
approximation to the subspace spanned by the �nal converged

SCF eigenvectors. A more detailed discussion on the convergence
criterion is given in Section 4.

As described earlier in this section, two di�erent ways have
been considered for preconditioning the unconstrained iterations.
�e �rst employed a preconditioner obtained from an Nb × Nb
matrix, InvOvl and AprxHess. �ese preconditioners are calculated
and applied to the trial vectors by using Cholesky factorization
and inversion. �e second, FullHess, �nds the preconditioned
gradient by solving for the Hessian of the unconstrained functional
by employing the PCG method, invoked withK iterations and using
as inner-preconditioner one of those introduced before (see earlier
in this section for more details and Table 1 for a summary of the
notation). Since the FullHess and AprxHess type preconditioners
are built from the initial trial solution X, special care needs to
be taken. In fact, if the SCF procedure starts with a poor initial
guess (such as those based on atomic orbitals) the immediate use
of FullHess or AprxHess may lead to bad preconditioning, slow
convergence and even divergence. To avoid such a condition, in our
our implementation we allow for the �rst few steps of the SCF to use
the InvOvl preconditioner (robust and independent of trial vectors).
When a given convergence is achieved on the density the FullHess
or AprxHess is used instead. Note that the AprxHess is not built
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at each SCF step, but every n steps (usually 10-20) to minimize the
cost of the Cholesky factorization and inversion. Regarding the
FullHess, a similar convergence criterion for the inner PCG is used
as in the case of the unconstrained functional minimization, that is
the PCG is considered converged if the residual of the gradient is
reduced by at least 0.1-10% with a maximum of K iterations.

4 COMPUTATIONAL DETAILS
All calculations have been performed on the Cori computer, at

the National Energy Research Scienti�c Computing Center (NERSC)
[42] of the U.S. Department of Energy. Cori is a Cray XC40 system
with two partitions, the one we used consists of over 9600 nodes,
each node has one Intel Xeon-Phi 7250 processor, code named
Knights Landing (KNL), connected with an Aries interconnect. KNL
belongs to the many-core architecture family, each chip having 68
cores layed out in a 2D mesh (with 2 cores per “tile” sharing an L2
cache). For the calculations reported in this manuscript we used
64 cores for computation and reserved 4 for specialized tasks (sys-
tem interrupts, etc.). �e cores employed for specialization are not
included in our performance measurement results (strong scaling
plots, etc.). Our implementation is a hybrid MPI+OpenMP, optimal
for many-core architectures such as Cori. �e CP2K so�ware pack-
age was compiled with the Intel compiler (vesion 18.0.5) and linked
to the following libraries: MKL (Intel Math Kernel Library, version
2018.5.274), ELPA [8] (version 2017.05.002), and LIBXSMM [43] (a
library optimized for small matrix-matrix multiplications used by
DBCSR, version master-1.10-971).

To assess the performance of the unconstrained functional min-
imization in the solution of the generalized eigenvalue problem
within the SCF framework for electronic structure calculations we
have selected four benchmark systems. �e system sizes range
from 2,247 to 12,288 atoms, and are shown in Fig. 3. In more de-
tail, we have considered various sizes of bulk liquid water (Fig. 3a),
a solvated supramolecular complex of gold(III) used in homoge-
neous catalysis (Fig. 3b), a bilayer of transition metal dichalcogenide
(MoS2-WSe2) , a substrate employed for quantum information appli-
cations (Fig. 3c), and a divacancy point defect in silicon, a prototype
of a solid state qbit (Fig. 3d). �e associated calculation parameters
are given in Table 2. �e water systems are used mainly to assess
performance for strong scaling as this system can easily be scaled
up in size, compared to the other three systems, by adding more
water molecules. �e other three systems have been considered to
study convergence of the methods in various environments, from
more homogeneous (like SiDivac) to highly heterogeneous (such
as the Bilayer). �ese systems are increasingly more “complex” in
terms of convergence, due to a reduced gap between the No and
No + 1 states (see Table 2). Additionally, a wide range of No/Nb ,
up to almost 20% has been considered, for a reasonable comparison
with direct solvers, which become more competitive for larger ra-
tios. Unless otherwise stated, the employed basis set is the TZVP
of the MOLOPT family [44], representing a family of compact and
accurate contracted atom-centered Gaussian basis speci�cally de-
signed to produce a well conditioned overlap matrix S, avoiding
linear dependency problems and leading to stable calculations.

�e initial guess for the SCF is given as a superposition of atomic
orbitals which is in general not optimal. �erefore, as explained

in the previous section, the initial preconditioner is in all cases of
InvOvl type, then switched a�er a given number of SCF iterations
(≈ 20 for all systems) to a preconditioner based on the Hessian
matrix, if required. �e number of PCG iterations for the uncon-
strained minimization is set to a minimum of 2 and a maximum
of 8; the PCG is considered converged if the initial gradient is re-
duced by 0.1%. �e inner PCG solver for the inverse Hessian, if
used, employs between 4-6 inner iterations and it is considered con-
verged if the initial gradient is reduced by 0.01%. It may appear that
these convergence parameters are rather loose, but (as explained
in Section 3) for each SCF iteration it is only necessary to have an
improved solution since the �nal goal is to converge the outer SCF
loop, rather than each individual linearized eigenvalue problem at
each SCF step. In general, if not otherwise stated, all calculations
have been performed using 80 KNL nodes, with a con�guration
of 1280 MPI task × 4 OpenMP threads. Tests of running the four
systems with di�erent numbers of threads showed that a choice of
four OpenMP threads gave overall best performance for the systems
studied here (see next section).

5 RESULTS
We start by assessing the convergence properties of the uncon-

strained functional method both for a single diagonalization, i.e. the
solution to full accuracy of a single generalized eigenvalue problem
(one step in the SCF loop for the linearized eigenvalue problem),
and the convergence of the whole SCF procedure for the full non-
linear eigenvalue problem as used in electronic structure problems.
In particular, Fig. 4 shows the convergence for the diagonalization
of two systems, Complex (Fig. 4a) and SiDivac (Fig. 4b) systems.
Results for the Water and Bilayer systems were extremely simi-
lar to the Complex and SiDivac systems, respectively, and due to
space limitations we focus here on the results for the Complex and
SiDivac systems. We compare the various preconditioners (Table
1) and report the convergence with respect to the unconstrained
functional energy. Here we use an initial guess based on partially
optimized wavefunctions corresponding to what we would use
from a previous SCF step in the full SCF loop. As expected, the
preconditioner based on InvOvl shows an improved convergence
rate when it is used to solve the inner-PCG for the inverse Hes-
sian; additionally, be�er convergence is systematically achieved
by using more inner iterations (from 4 to 6). AprxHess gives a
be�er preconditioning and leads to faster convergence: using it as
is (without solving the inner-PCG), leads to similar convergence
as using FullHess-6Iter-InvOvl. In terms of convergence rate,
as expected, FullHess-4Iter-AprxHess is the best in all cases,
giving convergence by one decimal place at each iteration for the
Complex system (blue stars in Fig. 4a). �e main di�erence be-
tween the two systems is the gap in the eigenvalue spectrum (see
Table 2), so that SiDivac is a more challenging calculation due
to the smaller gap. In fact, it is clear from the two plots that the
convergence rate is faster for Complex compared to SiDivac. In
the plots of Fig. 4 the number in parenthesis shows the average
time associated with a single iteration of the unconstrained-PCG
procedure. InvOvl and AproxHess have the same time per iter-
ation because the S−1 and H̃−1 matrices have the same size and
are computed with the same technique (Cholesky factorization
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(a)

(b)

Figure 4: Convergence of the energy (unconstrained objec-
tive function) for a single unconstrained functional diago-
nalization (unconstrained subspace minimization) for the
(a) Complex (Fig. 3b) and (b) SiDivac (Fig. 3d) systems. Five
setups have been tested. �e time for a single unconstrained-
PCG iteration is reported in parenthesis.

and inversion). �e FullHess based preconditioner, even if hav-
ing be�er convergence properties, is more expensive due to the
solution of the inner-PCG. Interestingly FullHess-4Iter-InvOvl
and FullHess-6Iter-InvOvl have similar time per unconstrained-
PCG step, while FullHess-4Iter-AprxHess is almost two times
faster. �e reason for such a di�erence is due to the implementation

(a)

(b)

(c)

Figure 5: Convergence of the SCF procedure for the (a)
Complex, (b) BiLayer and (c) SiDivac systems. �e �gures
show the convergence of the energy (unconstrained objec-
tive function) at the last iteration of the unconstrained-PCG
procedure at each SCF step. Four setups have been tested,
and the average time for a single SCF step is reported in
parenthesis.
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(a) (b)

(c) (d)

Figure 6: Time to solution for full SCF convergence using the unconstrained minimization method and setups, compared to
direct solvers (ScaLAPACK and ELPA). (a) Water-1024, (b) Complex, (c) BiLayer and (d) SiDivac. �e actual times are given in
parenthesis. For SiDivac, B∗ and D∗ are times obtained with a larger basis (≈ 1.7× larger than in B and D, with 160 KNL nodes).

of the inner-PCG, for which the convergence is assessed as a per-
centage reduction of the initial gradients. �is implies that using
the be�er AprxHess preconditioner gives faster convergence (fewer
iterations) per step, additionally using more steps with InvOvl gen-
erates a be�er sequence of trial vectors when approaching full
convergence.

Next, we discuss the convergence for the full SCF procedure
for the di�erent systems considered depending on the various pre-
conditioners and input setups. �e results are reported in Fig. 5,
in particular for Complex (Fig. 5a), Bilayer (Fig. 5b), and SiDivac
(Fig. 5c). Here again we don’t show the results for the water system
because it does not bring any additional information compared
to Complex as results were very similar for both systems. In the
plots the convergence is reported in terms of the energy (the uncon-
strained objective function of Eq. 4) as obtained at the last iteration
of the unconstrained-PCG procedure at the end of each SCF step.
Here we use an SCF initial guess for the electronic density based
on atomic orbitals. �is choice is in general not optimal, but it
represents the most general case (one instead can use an initial
density obtained for example from a previous molecular dynamics
or geometry optimization step). For this reason (as discussed in Sec-
tion 3), preconditioners based on the Hessian of the unconstrained
functional, which depends themselves on the trial vectors X, cannot
be used for the initial steps of the SCF, X being too far from conver-
gence. To avoid slow convergence or even divergence when using
a Hessian based preconditioner in combination with atomic initial

guess, we start all SCF calculations reported here by employing the
InvOvl preconditioner. A�er a given number of SCF iterations, a
fairly good convergence for the trial vectors end electronic density
is reached, the preconditioner is switched to the desired Hessian
based preconditioner (if required). �is is clearly shown in the
plots of Fig. 5; in fact, for all approaches considered the initial SCF
steps show the same convergence due to the usage of the same
InvOvl preconditioner. �e various curves then show di�erent
pro�les when a di�erent preconditioning treatment is turned on
(around ≈ 20 SCF steps). In general, similar convergence rates are
observed for the Hessian based preconditioners, in all cases faster
(less iterations) than the overlap based InvOvl. Additionally, for
Hessian based approaches, the solution of the inner-PCG for the
Hessian gives slightly faster convergence than the plain AprxHess.

�e situation is di�erent when comparing the time to solution
since the time per iteration is di�erent for each preconditioner. In
the plots of Fig. 5 the number in parenthesis gives the average time
required for a single SCF step. As shown in the plot, the iterative
solution of the inner-PCG gives a systematically higher computa-
tional cost compare to non-iterative approaches (i.e. InvOvl and
AprxHess). As noted in the previous case, the di�erence in timing
within iterative approaches comes from the di�erent convergence
rate of the inner-PCG, being faster for AprxHess than for InvOvl.
We note that for the SCF procedure, the calculation complexity
associated with the convergence of the density matrix, results in
the inhomogeneous Bilayer being the most challenging system.
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�e time to solution for the four di�erent systems for di�er-
ent precondtioners are reported in the histograms of Fig. 6. �e
results are also compared to the same calculations performed by
using direct solvers, ScaLAPACK (MKL implementation) and ELPA.
For all systems the best time to solution is achieved by using the
AprxHess preconditioner, which outperforms all other approaches
including the direct solvers. We note that the spread between the di-
rect solvers and unconstrained minimization becomes larger when
increasing the basis set size (see Fig. 6d). �e reason is due to the
O(N 3

b ) scaling of the diagonalization for the direct solver at each
SCF cycle, whereas the only step scaling cubically with respect to
Nb for the unconstrained approach is associated with the calcula-
tion of the preconditioner (either InvOvl or AprxHess) performed
only once (for InvOvl) or very few (1-2 for AprxHess) for the whole
SCF procedure. �erefore, as a lower percentage of the eigenpairs
are required as the basis set size is increased the direct solvers
become less competitive with respect to the iterative solvers.

Finally, we measure the performance of the unconstrained func-
tional method in terms of scaling with number of threads Fig. 7 and
parallel scalability (strong scaling), shown in Fig. 8. Fig. 7 shows
the performance of the threaded implementation by keeping a con-
stant number of MPI tasks and increasing the number of OpenMP
threads per MPI task. �e advantage of having a good threaded
implementation is that when running at scale one can greatly re-
duce communication without loss of computational e�ciency by
increasing the ratio of OpenMP threads vs MPI tasks. For the strong
scaling (Fig. 8), we consider three bulk water systems of increasing
size and test the results over a large range of nodes, up to 3,600
KNL nodes on the Cray XC40, corresponding to around 38% of the
full system. Overall good performance is obtained in all cases over
a large range of nodes. �e drop o� in performance for large node
counts is caused by the increased communication/computation ra-
tios, particularly for the sparse linear algebra operations. In this
respect, the recent progress in the use of one-sided MPI and a
2.5D algorithm to reduce communication in the DBCSR [45] are
promising avenues to improve parallel scalability. Weak scaling
performance for these types of electronic structure methods is more
di�cult to quantify. Although the overall scaling as we go to larger
systems becomes cubic in the number of atoms, there are parts of
the algorithm that scale with lower powers of the number of atoms.
For example, the construction of the Hamiltonian, exploiting the
sparsity of the basis set, scales linearly with system size and can
take a signi�cant percentage of the run time for small systems. �is
means we cannot simply scale the overall computational cost of the
algorithm up by the cube of the system size to obtain weak scaling
plots.

6 CONCLUSIONS
In this paper, we presented the performance of a preconditioned

conjugate gradient based iterative eigensolver implemented in the
CP2K code using an unconstrained energy functional minimization
scheme that avoids explicit reorthogonalization of the trial eigenvec-
tors. Four benchmark systems of up to 12,288 atoms were chosen to
have a large spread of physics and eigenvalue spectrum properties
to test our new approach. We studied the convergence properties
with a range of di�erent new preconditioners. In particular, we

Figure 7: Strong scaling in terms of number of OpenMP
threads per MPI task for a �xed number of MPI tasks (2560).
�e considered system is the bulk liquid water with 1024
molecules, corresponding to method D in Fig. 6a.

Figure 8: Strong scaling in terms of time to solution for
bulk liquid water with 1024, 2048 and 4096 molecules, cor-
responding to method D in Fig. 6a.

found that the convergence of the unconstrained approach can be
very slow without the choice of a good preconditioner, although the
best preconditioners can be costly to calculate. �ere is therefore a
trade-o� between the best preconditioner for fastest convergence
such as the full Hessian and lower cost preconditioners that give the
best time to solution. We found our approximate Hessian method
AprxHess gave the best time to solution for all four systems studied.
�e di�culty of �nding a good preconditioner is closely related to
the use of a Gaussian basis where, unlike for a plane wave basis,
the Hamiltonian matrix is not diagonally dominant. In the case of a
plane wave basis the same simple preconditioner (basically the in-
verse squared of the wave number and variants of that) can be used
for both the constrained and unconstrained functionals [25], which
is not the case for a Gaussian basis. Finally, we showed for large
systems our method has very good parallel scaling to 230k cores
on the Cray XC40 computer and outperforms traditionally used
direct solvers. �is is mainly due to the fact that the unconstrained
approach has no operations on any small subspace type matrices
(i.e. matrices with dimension of the desired number of eigenvalues).
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In future work we plan to do more direct comparisons between
our unconstrained functional approach and other constrained func-
tional approaches which are starting to be used more in electronic
structure codes using a Gaussian basis set. It should also be noted
that, although we presented the unconstrained approach in the
context of Gaussian basis electronic structure methods, it can be
applied to any matrix. However, the gains in terms of performance
and parallel scaling will be the greatest over traditional methods
where the problem size is very large and a small percentage of the
lowest eigenvalues and eigenvectors is required. In future work we
also plan to study the unconstrained approach for matrices from
other scienti�c application areas.
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