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Abstract
Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be 
overcome via an integrative modeling approach that relies on information from all available sources, including all avail-
able experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software 
that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the 
coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR 
spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be 
archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are 
validated as part of their publication and deposition. A number of research groups have already developed software to imple-
ment integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid 
Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used 
for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This 
IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by 
time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev 
(https​://pdb-dev.wwpdb​.org) has also been created to archive integrative structural models, together with a Python library 
to facilitate handling of integrative models in PDBx/mmCIF format.

Keywords  Integrative modeling · Hybrid modeling · PDB · mmCIF dictionary · Deposition · Model validation

Overview of integrative structure modeling

Interactions among molecules lead to the emergence of bio-
logical phenomena—most evidently in the forms of mac-
romolecular machines and dynamic liaisons that transmit 
information and control behaviors. Thus, the structures of 
proteins and their complexes are generally helpful in under-
standing their function, modulating their activities, and 
mapping their evolution. Experimental determination of the 
structures of biomolecular systems is often rather difficult, 
as no single experimental method is universally applicable. 
For example, crystals suitable for X-ray crystallography can-
not always be produced, especially for large assemblies of 
multiple components (Blundell and Johnson 1976; Holcomb 
et al. 2017). Although cryo-electron microscopy (cryo-EM) 
can be used to study large assemblies, the resolution can be 
limited (Chiu et al. 2005; Lucic et al. 2008; Stahlberg and 
Walz 2008). Finally, molecular biology, biochemistry, and 
proteomics techniques, such as yeast two-hybrid (Parrish 
et al. 2006), affinity purification (Fernandez-Martinez et al. 
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2012), and mass spectrometry (Gingras et al. 2007), can 
yield information about the interactions between proteins, 
but not the positions of these proteins within the assembly 
or the structures of the proteins themselves.

Limitations in the applicability, accuracy, and precision 
of individual structure characterization methods can some-
times be overcome via an integrative modeling approach 
that relies on information from all available sources, includ-
ing all available experimental data and prior models (Sali 
et al. 2003; Ward et al. 2013; Joseph et al. 2017; Kim et al. 
2018; Rout and Sali 2019) Integrative modeling is cast as a 
computational optimization problem in which information 
can be used in the following five ways, guided by maximiz-
ing the accuracy and precision of the model while remain-
ing computationally feasible: (i) representing components 
of a model with some variables (e.g., atomic coordinates, 
coarse-grained representations), (ii) scoring alternative mod-
els for their consistency with input information, (iii) search-
ing for good-scoring models, (iv) filtering models based on 
input information, and (v) validation of models. Much of 
the input information about the modeled system is encoded 
into data-based restraints comprising a scoring function 
((ii) above) used to evaluate candidate models produced by 
structural sampling ((iii) above). In this regard, integrative 
modeling is similar to protein structure determination by 
nuclear magnetic resonance (NMR) spectroscopic methods 
in which spatial restraints implied by the NMR data, such as 
nuclear overhauser effects (NOE) and J-coupling constants, 
must be satisfied. By simultaneously considering all avail-
able information, the integrative approach maximizes the 
accuracy, precision, completeness, and efficiency of struc-
ture determination.

Numerous static structures of large complexes have 
already been solved using integrative methods; for example, 
the 26S proteasome (Lasker et al. 2012), the type III secre-
tion system needle (Loquet et al. 2012), chromatin compris-
ing the alpha-globin gene neighborhood (Bau et al. 2011), 
the yeast core spindle pole body (Viswanath et al. 2017a), 
and the yeast nuclear pore complex (NPC) (Kim et al. 2018). 
Moreover, the integrative approach can be extended from 
modeling a single static structure to computing models of 
multiple structural states in a heterogeneous sample (e.g., the 
two states in the functional cycle of PhoQ kinase (Molnar 
et al. 2014)), spatiotemporal models of dynamic processes 
(e.g., macromolecular transport through the NPC (Raveh 
et al. 2016; Timney et al. 2016)), and models of molecular 
networks (e.g., metabolic pathway for gulonate synthesis 
(Calhoun et al. 2018)).

Modeling with IMP

There are multiple software packages that can be useful for 
integrative modeling. The open-source Integrative Modeling 

Platform (IMP) software (https​://integ​rativ​emode​ling.org) 
(Alber et al. 2007a, b; Russel et al. 2009, 2012; Lasker et al. 
2010a; Webb et al. 2018) is our attempt to implement all 
computational aspects of integrative modeling. The mod-
eling process proceeds through four stages (Fig. 1) (Alber 
et al. 2007a, 2008a; Russel et al. 2012).

In the first stage, all information that describes the sys-
tem of interest is collected. This information can include 
data from various experiments, structural propensities such 
as atomic statistical potentials (Sippl 1990; Shen and Sali 
2006), physical principles such as those encoded in molecu-
lar mechanics force fields (Brooks et al. 2009), and other 
models, such as atomic structures of the subunits in a mod-
eled complex.

In the second stage, a suitable representation of the sys-
tem is chosen depending on the quantity and resolution of 
the available information. Different parts of a model may be 
represented at different resolutions, and a given part of the 
model may be represented in several different ways simulta-
neously. Next, information is translated into a set of spatial 
restraints on the components of the system. For example, 
in early characterizations of the molecular architecture of 
the NPC (Alber et al. 2007a, b), atomic structures of the 
protein subunits were not available, but the approximate 
size and shape of each protein was known, so each protein 
was represented as a ‘string’ of connected spheres whose 
volumes were consistent with the protein size and shape. A 
simple distance between two proteins can be restrained by a 
harmonic function of the distance, while the fit of a model 
into a three-dimensional Electron Microscopy (3DEM) den-
sity map can be scored by means of the cross-correlation 
between the model and experimental densities. Next, the 
spatial restraints are combined into a single scoring function 
that ranks alternative models based on their agreement with 
input information.

In the third stage, alternative models are sampled, using 
a method such as conjugate gradients, molecular dynamics, 
Brownian dynamics (Chen and Kim 2004), Monte Carlo 
(Metropolis and Ulam 1949), and divide-and-conquer mes-
sage passing (Lasker et al. 2009). This sampling generally 
generates not a single structure, but an ensemble of models 
that are as consistent with the input information as possible. 
There may be many different models that score well if the 
data are incomplete, or none if the uncertainty of the data is 
underestimated or the representation does not include appro-
priate degrees of freedom (e.g., too coarse a representation is 
used, a flexible subunit is modeled as rigid, or a single-state 
model is used instead of a multiple-state model). Models 
produced by sampling can be optionally filtered by some 
information that cannot be feasibly evaluated many times 
during sampling (e.g., a match between a model and a two-
dimensional Electron Microscopy (2DEM) class average 
(Velazquez-Muriel et al. 2012)).

https://integrativemodeling.org
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In the fourth stage, input information and output struc-
tures need to be analyzed to estimate structure precision and 
accuracy, detect inconsistent and missing information, and 
to suggest most informative future experiments. Assessment 
begins with structural clustering of the modeled structures 

produced by sampling, followed by assessment of the thor-
oughness of structural sampling, estimating structure preci-
sion based on variability in the ensemble of good-scoring 
structures, quantification of the structure fit to the input 
information, structure assessment by cross-validation, and 

Fig. 1   The four-step modeling workflow as implemented in the Inte-
grative Modeling Platform. The workflow is illustrated by its appli-
cation to structure determination of the Nup84 heptamer (Shi et  al. 
2014). In this application, crystallographic structures and compara-
tive models are used to represent the seven components of the Nup84 
complex. The scoring function incorporates data extracted from 
CX-MS experiments and 2DEM class average images. The sampling 
explores both the conformations of the components and their con-
figuration, searching for those assembly structures that satisfy the 
spatial restraints as accurately as possible. In this case, the result is 

an ensemble of many good-scoring models that satisfy the input data 
within acceptable thresholds. The sampling is then assessed for con-
vergence, models are clustered, and evaluated by the degree to which 
they satisfy the data used to construct them as well as omitted data. 
The protocol can iterate through the four stages, until the models are 
judged to be satisfactory, most often based on their precision and the 
degree to which they satisfy the data. The resulting models are depos-
ited in PDB-Dev (Burley et al. 2017; Vallat et al. 2018) with acces-
sion number PDBDEV_ 00000001
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structure assessment by data not used to compute it (Viswa-
nath et al. 2017b).

Integrative modeling can iterate through these four stages 
until a satisfactory model is built. Many iterations of the 
cycle may be required, given the need to gather more data 
as well as to resolve errors and inconsistent data.

Integrative modeling problems vary in size and scope. 
Thus, IMP offers a great deal of flexibility and several 
abstraction levels as part of a multi-tiered platform. At the 
lowest level, IMP is designed as a toolkit or set of “building 
blocks,” providing components and tools to allow method 
developers to convert data from new experimental methods 
into spatial restraints, to implement sampling and analysis 
techniques, and to implement an integrative modeling proce-
dure from scratch, using the C ++ and Python programming 
languages. IMP is freely available as open source software 
under the terms of the GNU Lesser General Public License. 
To allow a community of developers to easily add sources of 
information, sampling schemes and analysis methods, IMP 
is structured as a collection of self-contained modules that 
can be developed and distributed independently.

In IMP, models are encoded as collections of particles, 
each representing a piece of the system. Depending on the 
data available, particles can be used to create atomic, coarse-
grained, and/or hierarchical representations. It is straight-
forward to represent a protein at any resolution, from fully 
flexible atomic models (one particle per atom), to rigid bod-
ies, to coarse-grained models consisting of only one or a few 
particles for the whole protein. Different parts of the model 
can be represented differently, as dictated by the available 
information. Each particle has associated attributes, such as 
coordinates, radius, residue information, and mass. Like-
wise, an IMP model can consist of one or more states of 
the same system (e.g., PhoQ kinase in two functional states 
(Molnar et al. 2014)) and/or multiple similar systems related 
via an alignment (Echeverria and Sali 2018).

Candidate IMP models are evaluated by a scoring func-
tion composed of terms called spatial restraints, each of 
which measures how well a model agrees with the infor-
mation from which the restraint was derived. A restraint 
encodes what is known about structures in general (e.g., a 
molecular mechanics force field) or what is known about 
this particular structure (e.g., a distance restraint from NMR 
measurement). Thus, a candidate model that scores well is 
generally consistent with all used information. The precision 
and accuracy of the resulting model ensemble increases with 
the amount and quality of information that is encoded in 
the representation, restraints, sampling, and filtering after 
sampling. IMP’s growing set of restraints supports small 
angle X-ray (SAXS) profiles (Schneidman-Duhovny et al. 
2011), various proteomics data such as data from affinity co-
purifications and yeast two-hybrid experiments (Alber et al. 
2008b), EM single particle images, 2DEM class averages 

(Schneidman-Duhovny et al. 2012; Velazquez-Muriel et al. 
2012), and 3DEM density maps (Lasker et al. 2010a, b), 
most of the NMR spectroscopy-derived restraints (Simon 
et al. 2010), the CHARMM force-field (Brooks et al. 2009), 
restraints implied by an alignment with related structures 
(Sali and Blundell 1993), chemical crosslinking (Erzberger 
et  al. 2014), hydrogen–deuterium exchange (Saltzberg 
et al. 2017), chromosome conformation capture (Bau et al. 
2011), Förster resonance energy transfer (FRET) (Bonomi 
et al. 2014), a variety of statistical potentials (Shen and Sali 
2006), and others. A common and powerful application 
of IMP involves the combination of information on local 
inter-particle distances and angles, such as that derived 
from NMR or crosslinking experiments, with overall shape 
information, such as that provided from 3DEM density maps 
(Zeng-Elmore et al. 2014; Luo et al. 2015; Robinson et al. 
2015; Kim et al. 2018).

For most applications, the full flexibility of defining a 
system from the bottom up as sets of particles is unneces-
sary. IMP provides a higher-level interface called Python 
Modeling Interface (PMI) that allows for a top-down repre-
sentation of the system, using biological names for protein 
subunits (Saltzberg et al. 2019). It provides simple mecha-
nisms to set up higher order structure, such as multiple cop-
ies of subunits or symmetry-related subsets of the system, at 
multiple resolutions. It also allows easy setup of the myriad 
advanced restraints available in IMP. Finally, it provides 
ready-built protocols and other utilities, for example to gen-
erate publication-ready plots. Using PMI, the entire mod-
eling protocol can be described with a set of Python scripts, 
which are typically deposited, together with the input data 
and output models, in a publicly available repository, such 
as GitHub and the Worldwide Protein Data Bank (wwPDB) 
prototype archive for integrative structures called PDB-Dev 
(Burley et al. 2017; Vallat et al. 2018); for examples, see 
references (Algret et al. 2014; Erzberger et al. 2014; Shi 
et al. 2014; Luo et al. 2015; Robinson et al. 2015; Shi et al. 
2015; Chen et al. 2016; Fernandez-Martinez et al. 2016; 
Wang et al. 2017b). Finally, at the highest abstraction lev-
els, for users with limited programming experience, IMP 
provides less flexible but more user-friendly applications 
to handle specific tasks, such as fitting of proteins into a 
density map of their assembly (Lasker et al. 2009), scor-
ing protein–ligand interactions (Fan et al. 2011), combin-
ing multiple SAXS profiles (Spill et al. 2014), comparing 
a structure with the corresponding SAXS profile (Schnei-
dman-Duhovny et al. 2010, 2013, 2016), or enriching pair-
wise docking using SAXS data (Schneidman-Duhovny et al. 
2016); these functionalities can be accessed through web 
interfaces, from Chimera (Pettersen et al. 2004), or from 
the command line.

IMP has been used to produce structural models of 
more than 30 varied biomolecular systems; for example, a 
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eukaryotic ribosome (Taylor et al. 2009), aryanodine recep-
tor channel (Serysheva et al. 2008), the yeast Mediator com-
plex (Robinson et al. 2015), the Hsp90 chaperonin (Kruke-
nberg et al. 2008), a yeast exosome in multiple states (Shi 
et al. 2015), the actin-scruin complex (Cong et al. 2008), 
deoxyribose nucleic acid (DNA) transcription factor II H 
(TFIIH) (Luo et al. 2015), chromatin (Bau et al. 2011; Tjong 
et al. 2016), and the NPC and its subcomplexes (Alber et al. 
2007b; Fernandez-Martinez et al. 2012, 2016; Kim et al. 
2014, 2018; Shi et al. 2014; Upla et al. 2017).

Requirements for archiving integrative models

To maximize the impact of integrative structures, the coor-
dinates should be made publicly available, at least upon 
publication, as is already the case for structures based on 
X-ray crystallography, NMR spectroscopy, and 3DEM maps. 
Moreover, the associated experimental data and modeling 
protocols should also be archived, such that both the authors 
and others can easily reproduce the original results. Finally, 
it is essential that the integrative structures are validated as 
part of their publication and deposition, as is already the 
case for other structures currently archived in the Protein 
Data Bank (PDB) (Gore et al. 2017; Young et al. 2017).

In recognition of the challenges involved in archiving 
integrative models, the wwPDB convened an Integrative/
Hybrid Methods Task Force workshop in 2014. The IHM 
Task Force made several recommendations to facilitate the 
archiving of integrative structural models (Sali et al. 2015). 
A fundamental requirement is the development of a flexible 
model representation that allows us to represent ensembles 
of multi-scale, multi-state, and ordered collections of struc-
tural models. The representation should also provide support 
for spatial restraints derived from diverse types of experi-
mental data obtained from different samples, used as input in 
the modeling. Another requirement is creating the software 
infrastructure required for deposition, curation, validation, 
archiving, and dissemination of integrative structures. The 
development of a flexible data representation and a prototype 
system for archiving integrative structural models are dis-
cussed in sects. “Standards for archiving integrative models” 
and “The IHM-dictionary”.

Another recommendation from the Task Force was to 
build a Federation of structural model and experimental 
data repositories that interoperate with one another. This 
requires development of well-aligned data standards and 
data exchange protocols that enable efficient and automated 
interoperation. Lastly, the Task Force recommended the 
creation of methods for evaluating and validating integra-
tive structures so that they can be appropriately used for 
downstream applications. A reasonable starting point for 
structure validation is the model assessment process out-
lined in sect. “Modeling with IMP”. However, much more 

research effort on the part of the entire community is needed 
to define the necessary validation criteria and implement 
them in robust software, eventually leading to a validation 
pipeline that can be part of the archiving process. Work is 
currently in progress to build an interoperating network of 
repositories as well as to develop the validation pipeline for 
integrative models.

Multi‑method structures in the Protein Data Bank

The PDB is the sole international repository for experimen-
tally-determined 3D atomic structures of biological macro-
molecules (Berman et al. 2000, 2003). When the resource 
was first established in 1971, X-ray crystallography was the 
principal method for determining the structures of these 
molecules and therefore the PDB archived structures deter-
mined from diffraction experiments, initially using X-ray 
and later from neutron radiation. Over time, the structural 
biology field grew and newer methods of structure determi-
nation using NMR spectroscopy and 3DEM were developed. 
Simultaneously, the PDB expanded itself to serve the needs 
of the structural biology community and started archiving 
structures determined using NMR spectroscopy (Borah et al. 
1985) and 3DEM (Henderson et al. 1990). In 2008, the PDB 
began to require the deposition of structure factors for X-ray 
structures and the deposition of NMR chemical shifts for 
NMR structures (wwPDB consortium 2007). BioMagRes-
Bank (BMRB (Ulrich et al. 2008)) and Electron Micros-
copy Data Bank (EMDB (Tagari et al. 2002; Lawson et al. 
2016; Patwardhan and Lawson 2016)) have been created 
independently to archive NMR data and 3DEM maps. The 
availability of the underlying experimental data made it pos-
sible to create better validation standards for the structural 
models archived in the PDB. The wwPDB consortium (Ber-
man et al. 2007) that manages the PDB archive has recently 
developed the OneDep system (Young et al. 2017) to pro-
vide a unified portal for the deposition of structural models 
determined using X-ray crystallography, NMR spectroscopy, 
and 3DEM along with associated experimental data that aids 
structure validation.

In recent times, structural biologists have started to com-
bine data from two or more experimental methods to build 
structural models of macromolecules. The PDB archives 
structures determined using multiple methods, where the 
experiments are carried out on samples of similar composi-
tion. Usually, methods capable of resolving atomistic fea-
tures, such as X-ray crystallography, neutron crystallogra-
phy, NMR spectroscopy, and 3DEM, can be combined with 
each other or used in combination with methods that provide 
coarse-grained information, such as small angle solution 
scattering (SAS) methods, solid-state NMR spectroscopy, 
and electron paramagnetic resonance (EPR) spectroscopy. 
The multi-method experimental structures are distinct from 
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the integrative models where complex computational algo-
rithms combine data obtained from an unrestricted set of 
experimental observations on a potentially diverse set of 
experimental samples, although the distinction is more of 
a degree than kind. Figure 2 shows the historical growth of 
multi-methods structures in the PDB, which highlights the 
increase in the deposition of multi-method structures over 
the last 10 years. Table 1 shows the breakdown of method 
combinations in multi-methods structures currently released 
by the PDB. Not surprisingly, multi-method structures in the 
PDB frequently use X-ray crystallography in combination 
with neutron diffraction and solution NMR in combination 
with SAS. To support the facile deposition of structures that 
use solution NMR in combination with SAS, the wwPDB 
OneDep team recently extended the deposition infrastruc-
ture to handle SAS data. This work has been carried out in 
collaboration with the SASBDB repository, which archives 
SAS data (Valentini et al. 2015).

As more structures were determined by combining data 
from multiple methods, integrative modelers began explor-
ing the application of additional biophysical techniques such 
as chemical crosslinking mass spectrometry (CX-MS), SAS, 
EPR spectroscopy, FRET, hydrogen/deuterium exchange 
mass spectrometry (HDX-MS), and others, to derive spa-
tial restraints that can be combined to determine structures 
of complex macromolecular assemblies (Sali et al. 2003; 
Alber et al. 2007a, b) (Ward et al. 2013; Sali et al. 2015; 
Rout and Sali 2019). These integrative modeling methods 
became especially useful to model structures of macromo-
lecular assemblies that are elusive to the traditional methods 
of structure determination. To adapt to the growing needs of 
the structural biology community, the PDB, in collaboration 
with the integrative modeling community, began developing 
the infrastructure required to archive, validate, visualize, and 
disseminate integrative structural models.

Standards for archiving integrative models

A primary requirement for archiving data is the creation 
of a standard representation of the data to be archived. 
These data standards provide the foundation for building an 
archive. Under the auspices of the IUCr, the mmCIF data 
representation (Fitzgerald et al. 2005) was developed for 
structures of macromolecules determined using X-ray crys-
tallography. That data dictionary is based on a robust frame-
work that supports the representation of macromolecular 
structure data and associated metadata. The framework also 

Fig. 2   Number of multi-method 
structures archived in the 
PDB over the years (data as of 
December 6, 2018)
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Table 1   Combination of methods used to determine multi-method 
structures currently archived in the PDB and the number of PDB 
entries with these method combinations (data as of December 6, 
2018)

Existing experimental method combinations Entries 
released in 
PDB

X-ray crystallography + solution NMR 1
X-ray crystallography + neutron diffraction 81
X-ray crystallography + solution scattering 2
X-ray crystallography + EPR 7
Solution NMR + solid-state NMR 4
Solution NMR + EM 1
Solution NMR + solid-state NMR + EM 1
Solution NMR + neutron diffraction 1
Solution NMR + solution scattering 17
Solution NMR + EPR 1
Solution NMR + theoretical model 7
EM + solid-state NMR 6
EM + solution scattering 2
EM + solution scattering + solid-state NMR 1
Fiber diffraction + solid-state NMR 1
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provides mechanisms to include metadata used for assess-
ing and maintaining data consistency, such as definitions of 
data types, boundary conditions, controlled vocabularies, 
and parent–child relationships with other data items.

Extensions of the mmCIF data representation have been 
created to represent different kinds of experimental data and 
structural restraints derived from them. These extensions are 
now embodied in the PDBx/mmCIF dictionary that is the 
standard for data archiving by the PDB (Westbrook 2013). 
For example, the NMR community has extended the PDBx/
mmCIF dictionary to represent NMR restraints in the NMR 
Exchange Format (NEF) dictionary (Gutmanas et al. 2015) 
and the SAS community has created the sasCIF extension 
dictionary (Malfois and Svergun 2000; Kachala et al. 2016), 
which is used by the SASBDB repository (Valentini et al. 
2015) to archive SAS data. We have extended the existing 
PDBx/mmCIF data representation to address the require-
ments for archiving integrative structural models. This 
extended data representation, called the IHM-dictionary 
(Vallat et al. 2018), is developed as a collaborative project 
that is distributed freely through a public GitHub reposi-
tory (https​://githu​b.com/ihmwg​/IHM-dicti​onary​). Building 
an extension dictionary based on the PDBx/mmCIF repre-
sentation allows us to use a single robust framework to cre-
ate new definitions while retaining the existing definitions 
in the main dictionary where applicable. This design helps 
avoiding duplication while allowing us to focus on the new 
definitions that address the current requirements.

The IHM‑dictionary

The IHM-dictionary is an extension of the PDBx/mmCIF 
dictionary and therefore only defines those terms required 
for representing integrative structural models that are not 
already included in the PDBx/mmCIF dictionary. For 
instance, the nomenclature and chemistry of small mol-
ecules, polymeric macromolecules, and molecular com-
plexes consisting of small molecules and macromolecules 
are already defined in the PDBx/mmCIF dictionary. Simi-
larly, the definitions of the molecular structure in terms of 
atomic coordinates are also clearly represented in the PDBx/
mmCIF dictionary. Although these definitions provide the 
foundation for representing the chemistry and structure of 
a molecular system, they are not sufficient for representing 
the complexities of integrative models.

Therefore, the IHM-dictionary extends the definitions in 
the PDBx/mmCIF dictionary in five significant aspects that 
address the requirements for archiving integrative models 
(Vallat et al. 2018).

1.	 It allows for a flexible model representation with atomic 
and coarse-grained objects consisting of single and 

multi-residue spherical beads and three-dimensional 
Gaussian objects.

2.	 It supports constitutionally diverse structural assemblies 
and conformationally diverse ensembles, thereby provid-
ing representations for multi-state structural models and 
models related by time or other order.

3.	 It captures the spatial restraints derived from differ-
ent kinds of biophysical techniques, such as CX-MS, 
SAS methods, EPR spectroscopy, DNA footprint-
ing, mutagenesis, and others. Experimental restraints 
already captured in the PDBx/mmCIF dictionary and 
other related extensions are retained and reused where 
applicable. Several kinds of experimental data provide 
spatial restraints in the form of distances between atoms 
or residues (e.g., distances from NMR NOE, FRET, 
and CX-MS experiments). To address the broad range 
of experimentally derived distance restraints, the IHM-
dictionary includes a general representation of distance 
restraints between different kinds of features (e.g., 
atoms, single and multiple residues, contiguous residue 
ranges) and the corresponding uncertainties associated 
with these distance measurements. The specifications 
for different types of spatial restraints are encoded in dif-
ferent data categories within the dictionary. An mmCIF 
file corresponding to an integrative model derived using 
restraints from multiple experimental sources will con-
tain several data tables that capture the relevant restraint 
information. Representation of the spatial restraints in 
the dictionary enables the visualization of the restraints 
along with the structural models as well as the valida-
tion of integrative models based on the experimental 
restraints.

4.	 It provides a generic representation for referencing 
related data from external resources via stable identi-
fiers, such as accession codes or persistent digital object 
identifiers (DOIs). This is useful for referencing related 
data that either lives in an external repository (via stable 
accession codes) or does not yet have a primary reposi-
tory (via standard DOIs).

5.	 It promotes reproducibility by incorporating simplified 
definitions for the modeling workflow and providing 
mechanisms to link modeling scripts and software pro-
gram files.

The IHM-dictionary thus provides a comprehensive set 
of standardized definitions for representing multi-scale, 
multi-state, and ordered ensembles of complex macromo-
lecular assemblies. The dictionary has been developed using 
diverse sets of examples and requirements gathered from 
the integrative modeling community. Collaborative tools 
provided by the GitHub platform have been used effectively 
to gather feedback from the scientific community regarding 

https://github.com/ihmwg/IHM-dictionary
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the definitions in the IHM-dictionary and incorporate their 
recommendations.

Representation of NMR restraints

The contents of the PDBx/mmCIF dictionary (Fitzgerald 
et al. 2005; Westbrook 2013) grew from a core set of mmCIF 
definitions describing macromolecular structure and the 
X-ray diffraction experiment to its current scope through an 
incremental process of building compatible content exten-
sions (e.g., NMR and 3DEM) in collaboration with commu-
nity specialists. The development of the IHM-dictionary has 
followed a similar path by integrating existing definitions 
in the PDBx/mmCIF dictionary and compatible community 
extension dictionaries. For example, the IHM-dictionary 
takes advantage of an existing data dictionary developed to 
facilitate the programmatic exchange of NMR restraint data, 
the NEF dictionary (Gutmanas et al. 2015). The IHM-dic-
tionary does not include new definitions for NMR restraints. 
Rather, definitions from the NEF dictionary are reused to 
describe NMR restraints used in integrative models.

Creating a consensus representation of NMR restraint 
data with broad adoption by NMR application developers 
has proved to be challenging. In part owing to the complex-
ity and diversity of NMR restraint data, neither the NMR-
STAR (Markley et al. 2003) representation used by the NMR 
experimental archive, BioMagResBank (BMRB (Ulrich 
et al. 2008)), nor the representation adopted by Collabora-
tive Computational Project for NMR (CCPN (Vranken et al. 
2005)) gained wide adoption among developers of NMR 
structure determination and refinement software.

In 2013, a group of NMR experts assembled by the 
wwPDB, the wwPDB NMR Validation Task Force (VTF), 
published a set of recommendations for the validation of 
NMR structure and experimental data archived by the PDB 
(Montelione et al. 2013). This report included recommen-
dations for restraint-based model-versus-data validation 
comparing each member of the ensemble of NMR models 
to the available NMR restraints. Lacking a community con-
sensus representation and format, the wwPDB has histori-
cally collected and archived NMR restraint data in native 
programmatic format. While there have been efforts to ret-
rospectively standardize these native restraint data files using 
NMR-STAR (Doreleijers et al. 2009), these approaches were 
not fully automatable and proved difficult to sustain. A 
Working Group of the wwPDB NMR VTF, including devel-
opers of the principal NMR structure determination pack-
ages, was subsequently created to revisit the challenges of 
representing and exchanging NMR restraints and supporting 
experimental data. In 2015, this Working Group published 
the first set of recommendations for the NEF dictionary 
(Gutmanas et al. 2015). In addition to the NMR distance, 
dihedral, and residual dipolar coupling (RDC) restraint 

data, the NEF dictionary also includes definitions describ-
ing chemical shift and observed spectral peaks. While these 
data definitions have long been represented in the BMRB 
NMR-STAR reference dictionary, they are reorganized in the 
NEF dictionary to simplify their production and exchange 
by NMR software.

The representation of NMR-specific distance restraints 
in the NEF dictionary has also informed the development 
of the representation of generic derived distance restraints 
for experiment types such CX-MS and FRET in the IHM-
dictionary. Work is in progress to build software tools that 
support the NEF dictionary for the IHM data pipeline.

The PDB‑Dev prototype archiving system

Based on the data standards provided by the IHM-dictionary, 
we have built a prototype archiving system called PDB-Dev 
(https​://pdb-dev.wwpdb​.org) to archive integrative structural 
models (Burley et al. 2017; Vallat et al. 2018). The integra-
tive structures archived in PDB-Dev conform to the defini-
tions in the IHM-dictionary (Vallat et al. 2018). In order to 
deposit structures to PDB-Dev, users are required create an 
account on the PDB-Dev website and upload an mmCIF 
file that is compliant with the IHM-dictionary. Optionally, 
supporting files such as images can be included with the 
deposition. After a structure is deposited, compliance to 
the IHM-dictionary is checked using software tools built 
for the PDBx/mmCIF dictionary. If the deposited file is not 
compliant, communication is initiated with the authors to 
obtain any missing or incomplete information regarding the 
deposition. Once a compliant mmCIF file is obtained, the 
structure is either released immediately or kept on hold until 
publication. At present, we do not carry out any automated 
or manual curation of the data or validation of the structural 
models. The development of a comprehensive deposition, 
data harvesting, curation and model validation pipeline is 
the focus of ongoing research.

PDB-Dev currently archives twenty-two integrative 
structures that have been released along with five additional 
structures that have been processed and placed on hold for 
publication. A snapshot of the structures archived in PDB-
Dev is shown in Fig. 3. These structures include several 
macromolecular assemblies, such as the nuclear pore com-
plex (Kim et al. 2018), the mediator complex (Robinson 
et al. 2015), the exosome complex (Shi et al. 2015), the 
mitochondrial cysteine desulfurase complex (van Zundert 
et al. 2015), and others. The integrative structures in PDB-
Dev have been obtained by satisfying spatial restraints from 
different experimental techniques, such as CX-MS, SAS, 
2DEM, 3DEM, NMR, EPR, FRET, DNA footprinting, 
mutagenesis, hydroxyl radical footprinting and predicted 
contacts from coevolution data (Fig. 4a). Evidently, CX-MS 
is emerging as a dominant experimental technique to define 

https://pdb-dev.wwpdb.org
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Fig. 3   A snapshot of integrative structural models deposited in PDB-
Dev. a Nup84 sub-complex (PDBDEV_ 00000001 (Shi et al. 2014)), 
b Nup133 sub-complex (PDBDEV_ 00000016 (Kim et al. 2014)), c 
Nup82 sub-complex (PDBDEV_ 00000020 (Fernandez-Martinez 
et  al. 2016)), d Pom152 sub-complex (PDBDEV_ 00000017 (Upla 
et  al. 2017)), e, f, g Nuclear pore complex 1-spoke, 3-spokes & 
8-spokes (PDBDEV_ 00000010, PDBDEV_ 00000011, PDBDEV_ 
00000012 (Kim et  al. 2018)), h Mediator complex (PDBDEV_ 
00000003 (Robinson et  al. 2015)), i Exosome complex (PDBDEV_ 
00000002 (Shi et al. 2015)), j 16 s RNA—Methyl transferase A com-
plex (PDBDEV_ 00000014 (van Zundert et  al. 2015)), k Human 
complement system C3(H2O) (PDBDEV_ 00000021 (Chen et  al. 

2016)), l Fruit fly chromosome 2L segment (PDBDEV_ 00000008 
(Trussart et al. 2015)), m Ecm29 protein with 26S proteasome com-
plex (PDBDEV_00000026 (Wang et  al. 2017a)), n Pol II(G) com-
plex (PDBDEV_00000025 (Jishage et  al. 2018)), o Mitochondrial 
cysteine desulfurase complex (PDBDEV_ 00000015 (Cai et  al. 
2018)), p Diubiquitin (PDBDEV_ 00000004 (Liu et al. 2018)), q, r, 
s Human serum albumin domains A, B & C (PDBDEV_ 00000005, 
PDBDEV_ 00000006, PDBDEV_ 00000007 (Belsom et  al. 2016)), 
t Human Rev7 dimer (PDBDEV_ 00000009 (Rizzo et  al. 2018)), u 
E6AP-E6-p53 enzyme–substrate complex (PDBDEV_00000023 
(Sailer et al. 2018))
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Fig. 4   Statistics of current structures in PDB-Dev (including struc-
tures released and structures on-hold for publication as of December 
6, 2018). a Plot of number of entries in PDB-Dev as a function of the 

type of input experimental restraints. b Plot of number of entries in 
PDB-Dev as a function of the integrative modeling software applica-
tion used
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distance restraints on pairs of cross-linked residues used 
in integrative modeling, often in combination with 3DEM 
density maps. Furthermore, the CX-MS field is rapidly 
evolving to identify novel crosslinking agents and develop 
better methods for deriving the spatial restraints. Figure 4b 
shows that the structures archived in PDB-Dev have been 
modeled using a variety of integrative modeling software 
tools, including IMP (Russel et al. 2012), Rosetta (Leaver-
Fay et al. 2011), Haddock (Dominguez et al. 2003), TADbit 
(Trussart et al. 2015; Serra et al. 2017), FPS (Kalinin et al. 
2012), XPLOR-NIH (Schwieters et al. 2018), PatchDock 
(Schneidman-Duhovny et al. 2005), and iSPOT (Hsieh et al. 
2017). The diversity of software applications that produced 
the PDB-Dev structures shows that the data standards cap-
tured in the IHM-dictionary are generic enough to work 
with different integrative modeling methods. The model of 
mitochondrial cysteine desulfurase complex (Fig. 3) built 
by Haddock (Dominguez et al. 2003) using spatial restraints 
derived from NMR chemical shift perturbations, SAS, and 
CX-MS is currently the only example in PDB-Dev that uses 
NMR data. However, as the integrative modeling methods 
evolve and the PDB-Dev archive grows, we expect more 
structures that use restraints derived from NMR experi-
ments to be deposited in PDB-Dev, especially since NMR 
restraints are inherently amenable to being used in integra-
tive modeling.

The integrative models archived in PDB-Dev can be 
visualized using the ChimeraX software (Goddard et al. 
2018). ChimeraX supports the visualization of multi-scale 
structural models as well as different types of experimental 
restraints used in the modeling such as crosslinking dis-
tances, 3DEM maps and 2DEM class averages. The images 
in Fig. 3 have been generated using ChimeraX.

The IHM-dictionary and the PDB-Dev system are under 
continuous development to address the emerging needs of 
the integrative modeling community along with a growing 
range of experimental data types and software applications 
used to model integrative structures. This effort is carried 
out in collaboration with the modelers, who provide us with 
up-to-date examples of integrative models and the associated 
spatial restraints. We have used these examples as build-
ing blocks to develop the IHM-dictionary and the PDB-Dev 
system. We are also working with the integrative modeling 
community to build support for the IHM-dictionary within 
their modeling software, so that these software can easily 
read and write data files compliant with the IHM-dictionary, 
thereby streamlining the deposition process of integrative 
models into PDB-Dev as well as using multiple software 
programs in one application. The project highlights a con-
certed community endeavor to create the data standards, 
develop supporting software tools, and build a prototype 
system for deposition and archiving integrative structural 
models.

Python‑ihm library

We have developed the python-ihm software library (https​://
githu​b.com/ihmwg​/pytho​n-ihm) to support reading, writing, 
and managing data files that comply with the IHM-diction-
ary (Vallat et al. 2018). The python-ihm library implements 
software support for the IHM-dictionary as a set of Python 
classes. This implementation allows an integrative model to 
be represented as a hierarchy of Python objects, and supports 
reading and writing these hierarchies as IHM-dictionary-
compliant mmCIF data files, as well as binary representa-
tions such as BinaryCIF (Sehnal 2016). It is available under 
a permissive open source license, and is designed to be used 
either standalone or as part of an integrative modeling pack-
age. By providing a software implementation of the diction-
ary, developers of integrative modeling software are relieved 
of the burden of developing their own support for IHM-
dictionary; this service should lower the barrier to entry to 
PDB-Dev (Burley et al. 2017; Vallat et al. 2018). For exam-
ple, both IMP (Russel et al. 2012) and Haddock (Dominguez 
et al. 2003) already use python-ihm to output their models 
in a format compliant with the IHM-dictionary for deposi-
tion in PDB-Dev. Furthermore, the ChimeraX visualization 
software (Goddard et al. 2018) uses the python-ihm library 
to support visualization of integrative models archived in 
PDB-Dev.

Challenges and future perspectives

In the last 4 years, there has been substantial progress in 
creating the framework for archiving integrative structure 
models. The creation of an extensible dictionary has made 
this archival possible as has the development of the PDB-
Dev test platform that allows for prototyping an archiving 
system. There are considerable challenges ahead. The first 
is the creation of standards for all the experimental methods 
that contribute restraints to the modeling. Achieving this 
goal will require that each experimental community reach 
consensus on their own standards. The second is to find a 
mechanism to exchange these data among all the relevant 
communities and with the PDB archive. The last and most 
difficult challenge is to come up with methods to validate 
each model so that it will be possible for users of these 
models to understand their limits. Meeting these challenges 
will require further scientific research, technology develop-
ment and implementation, and most of all a spirit of col-
laboration and cooperation among the very heterogeneous 
communities.
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