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ABSTRACT

Copy-number variants (CNVs) are a major form of
genetic variation and a risk factor for various hu-
man diseases, so it is crucial to accurately detect
and characterize them. It is conceivable that allele-
specific reads from high-throughput sequencing
data could be leveraged to both enhance CNV detec-
tion and produce allele-specific copy number (ASCN)
calls. Although statistical methods have been de-
veloped to detect CNVs using whole-genome se-
quence (WGS) and/or whole-exome sequence (WES)
data, information from allele-specific read counts
has not yet been adequately exploited. In this pa-
per, we develop an integrated method, called AS-
GENSENG, which incorporates allele-specific read
counts in CNV detection and estimates ASCN us-
ing either WGS or WES data. To evaluate the per-
formance of AS-GENSENG, we conducted extensive
simulations, generated empirical data using exist-
ing WGS and WES data sets and validated predicted
CNVs using an independent methodology. We con-
clude that AS-GENSENG not only predicts accurate
ASCN calls but also improves the accuracy of to-
tal copy number calls, owing to its unique ability
to exploit information from both total and allele-
specific read counts while accounting for various
experimental biases in sequence data. Our novel,
user-friendly and computationally efficient method
and a complete analytic protocol is freely available at
https://sourceforge.net/projects/asgenseng/.

INTRODUCTION

Copy-number variants (CNVs) are a major form of ge-
netic variation in mammals (1–4) and a risk factor for
various human diseases (5–11). Indeed, CNV assessment
is beginning to become a routine part of the diagnostic

workup for some medical conditions, including neurobe-
havioral disorders (12–15). CNV assessment is also im-
portant in functional genomic studies since failing to ac-
count for copy-number differences can result in misinter-
pretation of data from RNA-seq, chromatin immunopre-
cipitation (ChIP-seq), DNase-hypersensitive site mapping
(DNase-seq) or formaldehyde-assisted isolation of regula-
tory elements (FAIRE-seq) (16,17). For these reasons, ac-
curate detection of CNVs is of paramount importance; and
allele-specific copy number (ASCN) calls are highly desir-
able as it is also important to know how CNVs are allocated
in diploid organisms (18,19). For example, ASCN analy-
sis of breast tumors allowed the construction of a genome-
wide map of allelic skewness in breast cancer (20). Further-
more, many recessive Mendelian disorders, such as Cohen
syndrome (21), often result from the unmasking of a delete-
rious allele by a one copy deletion. Therefore, allele-specific
CNV calls provide crucial additional information for dis-
ease studies.

Using genome-wide single-nucleotide polymorphism
(SNP) arrays (22–25), allele-specific intensity signals for two
SNP alleles (denoted as alleles A and B) can be obtained
and integrated in CNV detection. ASCN calls can then be
generated (e.g. A, AAB, BBB, ABBB). ASCN calls provide
a more accurate characterization of the underlying DNA
sequence of each individual, thereby reducing the rate of
apparent Mendelian inconsistencies (26,27) and could im-
prove statistical power for tests of association with com-
plex diseases (28). Several methods have been developed for
CNV detection using allele-specific probe intensities from
SNP arrays (27,29,30). With Affymetrix array data, Bird-
suite uses a hidden Markov model (HMM) and defines
allele-specific properties of each probe through HMM emis-
sion probability (23). With Illumina array data, raw inten-
sity data are transformed into the total intensity from both
alleles (i.e. ‘log R Ratio’ or LRR) and the relative ratio of
the intensity between two alleles (i.e. B Allele Frequency or
BAF). HMM-based methods, such as PennCNV (29) and
GenoCN (30), jointly analyze LRR and BAF in the likeli-
hood. According to simulations and studies on individuals
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with known CNVs, integrating allele-specific information in
array-based CNV calling not only yields ASCN but also im-
proves the accuracy of total copy-number calls.

Recent advances in high-throughput sequencing (HTS)
(31–33) are promoting whole-genome sequencing (WGS)
or whole-exome sequencing (WES) as an all-in-one high-
throughput assay for characterizing SNPs and CNVs. HTS-
based CNV detection methods utilize a variety of signals to
make calls, including read-pair, split-read or read-depth in-
formation (3,34–36). Analogous to microarray-based meth-
ods, allele-specific information could also be leveraged for
HTS-based CNV detection. For cancer studies, specific
methods (Patchwork (37), SomatiCA (38), WaveCNV (39),
ADTEx (40)) have been developed to incorporate allele-
specific information in detecting copy number aberration
using tumor/normal sample pairs. Such methods typically
apply a two-step approach, where read-depth ratios of the
tumor/normal pairs and the minor allele frequency data are
analyzed separately. However, for detecting germline CNVs,
allele-specific information has not been extensively explored
in the literature. With WGS data, ERDS (41) is the only ex-
isting method that leverages allele-specific information but
it has a number of limitations. For example, deletions are
detected by simultaneous analysis of read-depth and the to-
tal number of heterozygous SNPs followed by refinement
of smaller segments (<10 kb) using read-pair information;
however, duplications are detected using read-depth only.
Further, ERDS estimates total copy-numbers but it is not
capable of estimating ASCN. For WES data, many effec-
tive methods have been developed to estimate rare or com-
mon CNVs (42–52); however, none of the existing methods
leverage allele-specific information in CNV detection or are
capable of estimating ASCN. To overcome these deficien-
cies, here we develop a novel method that uses allele-specific
information to aid the detection of both deletions and du-
plications and is capable of determining ASCN from both
WGS and WES data.

When analyzing HTS data, it is critical to correct for
various sources of experimental bias that distort the quan-
titative relationship between read-depth and true copy
number, hindering the ability for accurate CNV detection
(31,53,54). While cancer studies afford themselves the use
of tumor/normal pairs, numerous techniques have been de-
veloped for germline CNV studies to normalize read-depth
data (55–64). For WGS, most existing methods (56,57,60)
use a two-step approach, where read-depth data from a
single-genome are first adjusted to account for the effect
of known sources of bias (e.g. GC content) and then the
adjusted read-depth is segmented to predict CNVs. Re-
cently we developed GENSENG (54), a one-step approach
that simultaneously corrects for various sources of bias,
both known and unknown, and segment read-depth data.
Based on extensive evaluation, we have demonstrated that
this one-step approach improves CNV detection for read-
depth-based CNV detection (54). Exome sequencing intro-
duces additional sources of noise to the raw read-depth
data (42–52,65) and methods developed for WES data typ-
ically leverage the large-scale nature of exome sequencing
projects for noise-reduction/data-normalization. Based on
their noise-reduction techniques, most existing WES meth-
ods can be classified into two categories: either multivari-

ate methods including principle component analysis (PCA)
and singular value decomposition (SVD), or reference-set
methods (43,47,48,50–52,65). The PCA/SVD methods as-
sume that most variation observed in the sample-by-target
read-depth matrix is due to noise with little contribution
from CNVs and therefore remove several of the strongest
variance components for the purpose of noise reduction.
In this paradigm, XHMM (42) applies a PCA that is op-
timized for detecting rare CNVs (frequency <5%), whereas
common CNVs could not fit in this model. CoNIFER (49)
applies an SVD and removes the first 12–15 variance com-
ponents for detecting rare CNVs but five components for
common CNVs. However, as the frequencies of CNVs can-
not be known before they are detected, it is challenging to
determine how to choose the top-K variance components
in order to prevent the PCA/SVD methods from remov-
ing true CNV signals (65). Alternatively, the reference-set
methods create a baseline for each exon target from a ref-
erence group of copy-number 2, where the baseline from
the reference set captures technical variation but not vari-
ation due to CNVs. Then read-depth ratios of test samples
versus the baseline are computed for the purpose of noise
reduction (43,47,48,50–52). However, the power to detect
common CNVs is often limited, owing to the difficulty in
constructing the true reference set in the presence of com-
mon CNVs, especially when the CNV frequency is high and
unknown (48,50). Here we demonstrate that allele-specific
read count can be leveraged to identify the proper reference
group with copy-number 2 and this method subsequently
improves detection of common CNVs at any frequency.

The aim of this study was to develop an integrated
method, named AS-GENSENG, that can (1) detect CNVs
by jointly exploiting patterns in total- and allele-specific
read count, (2) estimate ASCN and (3) be applicable to both
WGS and WES data. For bias correction, we inherited the
one-step approach used by GENSENG (54) and leveraged
allele-specific information for normalizing WES data. We
evaluated AS-GENSENG using simulation and WGS or
WES data from the 1000 Genomes Project (1000GP) (3,34)
and compared our method to a number of state-of-the-art
CNV detection algorithms in the literature (41,42,48,49,56).
Furthermore, we validated a subset of CNV calls with
an independent and highly accurate technology (NanoS-
tring nCounter) (66–70). In summary, we conclude that
AS-GENSENG not only predicts accurate ASCN calls but
also improves the accuracy of total copy number calls. For
WGS data, AS-GENSENG has better overall performance
in detecting CNVs than several state-of-the-arts methods
for WGS data. For WES data, AS-GENSENG has better
sensitivity and comparable specificity for detecting common
CNVs. Our novel, user-friendly and computationally effi-
cient method is available at https://sourceforge.net/projects/
asgenseng/.

MATERIALS AND METHODS

Method summary

HTS captures multiple sources of information in one experi-
ment. Inspired by the successful integration of probe inten-
sity and SNP genotypes in array-based CNV calling, here
we develop an analogous method for HTS-based CNVs
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detection. Figure 1 provides an overview of our method.
First, AS-GENSENG jointly exploits patterns in both To-
tal Read Count (TReC) and Allele-Specific Read Count
(ASReC) signals. While TReC is analogous to the total in-
tensity from SNP arrays, ASReC is analogous to the al-
lelic intensity from SNP arrays with expected patterns for
each copy number state (Table 1). A CNV is indicated by
higher- or lower-than-expected TReC and deviated ASReC
values in comparison with copy-number 2 regions. Various
sources of experimental bias are simultaneously accounted
for in the CNV calling process (known biases accounted for
via a covariate method and unknown biases via the over-
dispersion parameter and the noise component of a mix-
ture model) (54). Figure 2 shows an example CNV of copy-
number 4 (enclosed by vertical lines) flanked by regions with
copy-number 2. After accounting for bias (Figure 2c), the
TReC in the enclosed region is approximately two times
higher than that of the flanking region (Figure 2a), sup-
porting a duplication of copy-number 4. The ASReC in
the enclosed region is 0.25 and deviates from 0.5 in the
flanking region, supporting copy-number 4 with an allelic
configuration of ABBB (Figure 2b). Additional examples
can be found in Supplementary Figures S3–S15 for CNVs
with various copy numbers. These observations suggest that
jointly exploiting patterns in both TReC and ASReC should
improve the ability to detect both deletions and duplica-
tions.

Furthermore, ASReC is useful for detecting common
CNVs (i.e. >5% frequency) from WES data because it ac-
curately identifies the reference copy-number 2 group with-
out prior assumption of CNV frequency. Figure 3 shows
an example of this phenomenon using 1000GP WES data
(3,34), where >40% samples have a deletion (copy-number
0 or 1) over an exon target and the observed TReC values
are compared to TReC expected for copy-number 2 refer-
ence. At least two approaches were developed to estimate
the expected TReC. The first approach (50) uses the me-
dian or trimmed mean of all samples to estimate the ex-
pected TReC (47,48,50). However, given the common CNV,
the median of all samples is far from the median of the copy-
number 2 group and this approach leads to incorrect infer-
ence of the underlying copy numbers (Figure 3a). The sec-
ond approach (48) constructs an optimized reference group
of copy-number 2 by ranking the correlations of TReC be-
tween the reference and the test exomes and assuming that
the CNV is not present in the reference. However, empiri-
cal results suggested that this approach had limited power
for detecting common CNVs, presumably because the no-
CNV assumption does not always hold in the selected refer-
ence exomes (48). In contrast, AS-GENSENG uses ASReC
to properly identify the reference group of copy-number 2
(Figure 3b), yielding accurate estimation of expected TReC,
and correct inference of the underlying copy numbers for
this target.

Data preparation

A brief description is provided below and detailed informa-
tion can be found in the Supplementary materials.

Input files. We used WGS and WES data from HapMap
individuals sequenced as a part of the 1000GP (3,34). The
WGS samples included two HapMap samples of European
ancestry (NA12891, NA12892), deeply sequenced (∼30×)
using Illumina Genome Analyzer platforms. The WES sam-
ples include 324 individuals from four different popula-
tions sequenced to an average depth of ∼100× using Nim-
blegen and Agilent capture kits followed by Illumina se-
quencing. A consensus target-region list is defined by first
intersecting the WES target design files with the NCBI
CCDS database and then adding 50 bp at either side of
each consensus target, resulting in 193 637 consensus exon
targets and ∼47 Mbps captured in each WES sample. We
obtained all alignment files from the 1000GP FTP sites
(see the Web Resources section) (aligned using BWA (71)
(v0.5.5) to hg19/NCBI37 (3,34)) and used hg19 coordinates
throughout this study. In addition to alignment files, AS-
GENSENG requires dense SNP genotypes in order to com-
pute ASReC, and covariate files (genomic GC content and
mappability) in order to account for their effects in CNV
calling. We first obtained SNP genotypes from the HapMap
project FTP sites (see the Web Resources section) (72) and
then carried out imputation to obtain phased and dense
SNP genotypes (>200 k for each sample). Given the SNP
genotypes, we used the extractAsReads function in R/asSeq
(see the Web Resources section) (73,74) to compute allele-
specific alignments (i.e. aligned reads that could be confi-
dently assigned to one particular SNP allele).

Total and allele-specific read counts. Following quality
control of the alignment files, we extracted confidently
aligned reads and computed TReC and AsReC given de-
fined counting units. For WGS data, we divided the genome
into sliding windows and computed TReC and AsReC in
each window. Window size is a tuning parameter because of
its influence on signal-to-noise-ratio of the read-depth data.
In this study we used 500-bp-sliding windows with a sliding
step of 100 bp, determined via both simulation and real-
data analysis (see the Supplementary Methods). For WES
data, we computed TReC and AsReC in each exon target.
Although each region has only one TReC value, the AS-
ReC in each region consists of two values: o(A) (i.e. the to-
tal number of A-allele reads) and o(as) = o(A) + o(B) (i.e. the
number of A-allele reads plus B-allele reads). Note that o(as)

is smaller than TReC because many reads do not overlap a
heterozygous SNP.

High-confidence CNV data. For sensitivity evaluation,
we used previously published high-confidence CNVs in
the same samples. For WGS samples, we used the high-
confidence deletions (2200 for NA12891 and 2055 for
NA12892) established by 1000GP (3,34,55) (see the Web
Resources section). This data set had been validated using
independent technologies as having high specificity (<4%
FDR (false discovery rate)) and considered as best avail-
able high-confidence CNVs for these samples (3,34,55). For
the 324 samples with WES data, WGS data were also avail-
able from the 1000GP (3,34), from which high-confidence
genome-wide deletions have been established (see the Web
Resources section). These genome-wide deletions were vali-
dated by independent technologies as having high specificity
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Figure 1. Method overview. Our method is a hidden Markov model-based algorithm. We compute the total read count (TReC) and allele-specific read
count (ASReC) from the alignments (.bam file) and the allele-specific alignments at each genomic region (i.e. a window or a target). To infer the underlying
copy number, we calculate the likelihood of the observed TReC and the ASReC from the estimated expected TReC for each possible underlying copy
number. We calculate the likelihoods of TReC and ASReC separately. For the TReC likelihood, the calculations for whole-genome sequencing (WGS) data
and whole-exome sequencing (WES) data are different. For WGS, we estimate the expected TReC using one sample; for WES, we estimate the expected
TReC by aggregating multiple samples. In addition to calculating the TReC likelihood, we also utilize the ASReC likelihood in order to improve CNV-
detection performance. We insert the product of the two likelihoods into the hidden Markov-model emission probability. After this training, we call CNV
by identifying the change of the most likely underlying copy number as the CNV breakpoint. We call allele-specific CNV by choosing the most likely allelic
configuration for each CNV.



PAGE 5 OF 18 Nucleic Acids Research, 2015, Vol. 43, No. 14 e90

Figure 2. Example of CNV predicted by AS-GENSENG through joint analysis of read-count, allele-specific information and bias correction. In each
panel, the X-axis indicates genomic position in chromosome one in base pairs. (a) Black dots on the Y-axis indicate read-count signal; red dashed lines are
boundaries from ASGENSENG prediction; green solid lines are ground-truth boundaries; and gray lines are the median read-count of the chromosome.
(b) Symbols on the Y-axis indicate the ratio of proportion of reads coming from allele A. A blue circle indicates that the number of allele-specific reads at the
corresponding genomic region is >10 (i.e. AS informative); an orange cross indicates that the number of allele-specific reads at the corresponding genomic
region is ≤10 (i.e. not AS informative); the yellow dotted line is the expected proportion of allele-specific reads coming from allele A. (c) GC content and
mappability of the region. These data predict a duplication with four-copies and an allelic configuration of ABBB. Although the TReCs at some regions are
highly affected by mappability and GC content, AS-GENSENG still makes the correct CNV call. This result illustrates the method’s favorable sensitivity
for detecting duplications from noisy regions, by employing simultaneous bias correction and jointly using both read-count and allele-specific information
in the inference.
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Figure 3. Example of a common deletion correctly identified by AS-GENSENG using WES data. The X-axis of each subfigure indicates the expected
read-count at the exome-capturing target and the Y-axis indicates the observed read-count. The genomic position of the target is shown in the top-left
corner and each dot in each subfigure indicates one sample. The color of the dots indicates copy-number information released by 1000GP: green denotes
samples having copy-number 2; blue denotes samples having a one copy deletion (i.e. HetDel); and red denotes samples having a two-copy deletion (i.e.
HomoDel). In addition, the size of dots indicates whether the sample should be estimated as copy-number 2 using the allele-specific information (i.e. AS
informative as copy-number 2). This figure shows an example of a target where a common deletion exits. (a) When estimated from all samples the expected
read-counts are not accurate because they are not the same as the observed read-counts for those diploid samples (the slope for the two-copy samples is
greater than 1). (b) When estimated from the entire group of samples that have the same allele-specific information as copy-number 2, as shown on the right,
the expected read-counts are accurate (the slope for the two copy samples in near 1). These results illustrate the accuracy of AS-GENSENG in detecting
CNV on WES data even when a common CNV exists.
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Table 1. Allelic configuration correspondences for each HMM state

 
Allelic Configurations (expected allelic imbalance ratio from allele A) correspondence 

for each HMM state1  

 0 1 2 3 4 5 6+ 

Interpretation 
Homozygo
us deletion 

Heterozyg
ous 

deletion 

Copy 
number 
neutral 

Duplications 

Allelic configurations 
(expected allelic 
imbalance ratio) 

- 
A (0.99) 2 
B (0.01) 

AB (0.5) 
ABB (0.33) 
AAB (0.67) 

ABBB 
(0.25) 
AABB  
(0.5) 

AAAB 
(0.75) 

ABBBB 
(0.2) 

AABBB 
(0.4) 

AAABB 
(0.6) 

AAAAB 
(0.8) 

ABBBBB 
(0.17) 

AABBBB 
(0.33) 

AAABBB 
(0.5) 

AAAABB 
(0.67) 

AAAAAB 
(0.83) 

Note: 1. In this study, we assume there is no complex CNV (i.e., that no two CNVs occur at the same genomic location). Thus, for example, for state 3, we
define 2 allelic configurations, ABB and AAB, as being possible only with duplication. We do not define AAA or BBB, because they require both deletion
and duplication to occur at the same location.
2. A very small amount of reads will be aligned to a genomic region even when that region has been deleted. Thus we assume that if allele A is kept and
allele B has been deleted, not all reads would show allele A, and vice versa. Thus the expected allelic-imbalance ratio from allele A of allelic configuration
A is 0.99, not 1.0, and the expected allelic imbalance ratio from allele A of allelic configuration B is 0.01.

(FDR < 10%) by 1000GP (3,34). Similar to (65), we in-
tersected these genome-wide deletions with the exon target
list (≥1-bp overlap) to obtain high-confidence deletions in
the target regions (i.e. exonic deletions). In total, there were
9192 exonic deletions for the 324 WES samples. As WGS is a
more powerful technology in identifying CNVs than WES,
these high-confidence exonic deletions provide both validity
and accuracy in evaluating the sensitivity of exonic-CNVs
identified by WES (65).

Hidden Markov model

We developed an HMM classifying each genomic region (a
window for WGS data or an exon target for WES data) to
a copy-number state based on maximum a posteriori prob-
ability. In comparison with other segmentation methods
such as circular binary segmentation (75), the use of HMM
allows the joint analysis of multiple sources of information
(TReC, ASReC, covariate values) as well as the modeling of
integer copy numbers. Our HMM consists of multiple com-
ponents (Supplementary Figure S16) with separate emis-
sion probability modules for WGS and WES data (Figure
1). A brief summary of the key HMM components is blow
and details are available in the Supplementary data.

HMM state. The total number of hidden states is an in-
put parameter and can be specified by users. For data sets
used in this study, we set seven hidden states that, respec-
tively, represent copy numbers of 0, 1, 2, 3, 4, 5 and 6 or
more. In this work, the duplications with 6 or more copies

were collapsed into one state because they were difficult to
differentiate. To model ASCN, we defined several possible
allelic configurations for each state (Table 1). For example,
we defined AAB and ABB as the two possible allelic config-
urations for copy-number 3.

Transition probability. We model the state transitions us-
ing a first-order time-homogeneous Markov process (i.e.
the state in one genomic region is affected only by the im-
mediately previous region). Under this setting, the transi-
tion probability describes the probability of having a copy
number change between two adjacent genomic regions. The
transition probability is characterized as a square matrix, of
which the dimension is the number of states and the (i, j) el-
ement is the probability of transition from state i to state
j. We set the transition probability matrix according to our
intuition that the copy number state is unlikely to change
for nearby genomic regions but is likely to change for ge-
nomic regions that are far apart. Thus the self-transition
probability (i.e. the diagonal values of the matrix) is much
larger than the transition probability of transiting to other
states. We assumed that most windows would have copy-
number 2. Thus, the self-transition probability for state 2
would be higher than that of other states. In addition, the
probability of transiting to state 2 would also be larger than
the probability of transiting to other states. To handle the
problem of varying distance between targets in WES data,
we further modified each element in the transition matrix
as suggested in Fromer et al. (42). The new element for the
(i, j) element a′(i, j ) would be a mixture of two original ele-
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ments at (i, j) and (2, j), as a′(i, j ) = e−d/D × a(i, j ) + (1 −
e−d/D) × a(2, j ), where d is the distance between two targets
and D is the average distance between all targets.

Emission probability for WGS data. Emission probability
specifies the likelihood of observing the TReC and ASReC
inputs given the underling copy number and covariate in-
formation at the region. Given the underlying state, TReC
and ASReC are independent and thus the likelihood can
be factorized. The first factor is the probability of observ-
ing the TReC given the covariates and underling states, and
the second factor is the probability of observing the ASReC
from allele A (o(A)), given the overall ASReC and underly-
ing states.

Following GENSENG (54), the likelihood of observing
TReC is modeled by a mixture model of negative binomial
distribution (NB) and uniform distribution. Known sources
of bias such as GC content and mappability are included as
the covariates of NB regression to account for their effect
in CNV calling. Unknown sources of bias are accounted
for by the NB overdispersion parameter and the uniform
distribution (54). The method aggregates TReCs from all
windows of one sample to estimate the expected TReC for
each copy number state, with the assumption that the TReC
would be proportional to the underlying copy number. The
overdispersion parameter is estimated from the data using
the Newton–Raphson method (detailed in the Supplemen-
tary Methods).

The likelihood of observing ASReC is modeled by a
beta binomial distribution (BetaB), which is an extension
of a binomial distribution to allow for possible overdisper-
sion (73). Specifically, let o(A) follow a binomial distribu-
tion with the number of trials o(as) and the probability of
success pS. If pS follows a beta distribution with param-
eters α and β, the resulting distribution of o(A) is a beta-
binomial distribution. This method adapts a commonly
used strategy to parametrize a beta-binomial distribution
by π = α/(α + β) and θ = 1/(α + β). Thus the likelihood
of a beta-binomial distribution becomes

�(o(A); o(as), π, θ ) =(
o(as)

o(A)

) ∏o(A)−1
k=0 (π+kθ)

∏o(as)−o(A)−1
k=0 (1−π+kθ)∏o(as)−1

k=1 (1+kθ)

,

where π is the expected proportion of AS reads from al-
lele A (e.g. π = 0.33 for allelic configuration ABB). θ is a
dispersion parameter. If there is no overdispersion, then θ
= 0 and o(A) follows a binomial distribution. In this work,
we empirically set θ = 0.1. An underlying copy number has
several possible allelic configurations (Table 1). We thus for-
mulate the likelihood as the likelihood of a mixture distribu-
tion across all possible allelic configurations (e.g. for copy-
number 3, the likelihood would be (�(o(A); o(as), 0.33, 0.1) +
�(o(A); o(as), 0.67, 0.1))/2).

Taken together, the emission probability becomes
e(i, j ) = c

R + (1 − c) Pr(oall
i |qi = j, xi ) Pr(o(A)

i |oas
i , qi = j ),

where e(i, j) is the emission probability of the ith genomic
region given the underlying copy number qi = j (0 > j > 6);
c is the proportion of random uniform component which is
constant for all states; R is the maximum read count; 1/R is
the uniform density; (oall

i , oas
i , o(A)

i ) is the input observations

tuple representing the TReC, total ASReC and ASReC
from allele A of the ith genomic region, respectively; and xi
is the input covariates for the ith genomic region. For data
sets used in this study, c was set at 0.01 and was determined
empirically by initializing the model with varying values of
c and identifying the maximizer of the data likelihood.

Emission probability for WES data. The quantitative rela-
tionship between underlying copy number and read-count
data is additionally distorted by target- and sample-specific
biases in exome capture, which requires data normalition
prior to computing emission probability. Our normalization
belongs to the reference-set category of methods but we de-
veloped a new procedure of using ASReC for accurate iden-
tification of the reference-set. This procedure consists of five
steps: (i) for each sample and each target, compute the ra-
tio between TReC of the given target and the sum of TReC
of all targets given the sample. This results in a target-by-
sample matrix of normalized TReC values; (ii) for each tar-
get but cross all samples, use R/MixTools to cluster samples
based on the normalized TReC. (iii) Use ASReC to com-
pute the probability of being copy-number 2 for each sam-
ple by dividing the BetaB likelihood of being copy-number 2
with the sum of Beta likelihoods of being each copy number
(0,1,2, . . . 6+). The BetaB likelihood is computed as before
(see Emission probability for WGS data: likelihood of AS-
ReC). (iv) For each cluster, compute the average probability
of being copy-number 2 of all samples belonging to the clus-
ter. Compare and choose the cluster with the largest prob-
ability of being copy-number 2 as the reference group. (v)
Compute the median of the reference group as the best esti-
mate of the expected TReC. At this end, we are ready to in-
corporate the expected TReC into the HMM framework as
before (see Emission probability for WGS data: likelihood
of TReC) and use of all available information in the data to
infer the underlying copy number.

HMM training and inference of total copy number. HMM
training provides the maximum-likelihood estimate of the
HMM parameters. To improve computational efficiency,
transition-probability parameters were specified using prior
knowledge and user preference (54), and emission probabil-
ity parameters were estimated using the Baum–Welch algo-
rithm (76). Using the estimated parameters, we compute the
posterior probability of each genomic region belonging to
a particular state and assign the most likely state for each
region. The confidence score is computed as the sum of the
posterior probabilities in regions spanned by a CNV.

Inference of ASCN. We assign the most likely ASCN
given the most likely copy number call. For example, if the
most likely copy number for a variant is 3, AS-GENSENG
chooses between ABB and AAB. It first selects windows
with ASReC larger than a threshold (10 in this study) in the
region and computes the average ASReC of selected win-
dows. If no window were selected, we would not infer ASCN
because the ASReC is not informative. Otherwise, we would
compute the likelihood of AAB and ABB using BetaB dis-
tribution and choose the one with the largest likelihood as
the inferred ASCN.
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Performance evaluation: WGS data

A short description is provided below and detailed proce-
dures can be found in the Supplementary materials.

Competing methods. We used both simulation and empir-
ical data to assess the performance of AS-GENSENG in
comparison with state-of-the-art WGS methods including
GENSENG (54), CNVnator (56) and ERDS (41). We used
the recommended parameters and QC filters for competing
methods. For example, with CNVnator (56) we used the q0
filter that filters out any predictions that have >50% reads
with zero-valued MAPQ (i.e. reads with multiple mapping
locations). With ERDS (41) we removed deletions that are
<10 kb and do not have supporting read-pairs. The method-
ological differences between all four WGS methods com-
pared here are detailed in Supplementary Table S4a. The
differences between AS-GENSENG and GENSENG are
highlighted in Supplementary Table S4b. AS-GENSENG
differs from existing methods mainly in its incorporation of
AS information, simultaneous bias correction and ability to
detect ASCN in addition to total copy number.

Simulation study. Two sets of simulation were conducted.
In the first simulation, we generated read-count data (i.e.
TReC and ASReC) in a single sample by using the chromo-
some 1 WGS data from NA12891 as the template and im-
planting 200 CNVs by modifying read-counts within CNVs.
Briefly, TReC was simulated using a negative binomial re-
gression model taken into account the effects of GC content
and mapability, and ASReC was simulated using a beta-
binomial distribution. In the second simulation, we gener-
ated paired-end reads from a pair of CNV-containing hy-
pothetical chromosomes, created by implanting 200 arti-
ficial CNVs into chromosome 1 of the human reference
genome (hg19). Artificial CNVs were created by modifying
the sequence within each variant according to its copy num-
ber. Based on the hypothetical chromosomes, we applied
SAMTools’s wgsim with default values to generate 100-
bp paired-end reads. In total, 50 millions read pairs were
generated and yielded ∼40× coverage. We simulated allele-
specific reads using heterozygous SNPs from NA12891. In
each simulated data set, the 200 implanted CNVs included
60% deletions with copy numbers 0–1 and 40% duplications
with copy numbers 3–6, median size 3000 bp.

Evaluation metrics. To evaluate sensitivity and (FDR), we
focused on autosomal CNVs and intersected the predicted
CNVs of different methods with the known CNVs. The
known CNVs (Supplementary Figure S17) are either the
simulated ground-truth CNVs for the simulated data or the
1000GP-released high-confidence deletions for the empir-
ical data. Sensitivity was calculated as the proportion of
known CNVs overlapped by predicted CNVs with the cor-
rect CNV type. Following 1000GP, we defined CNV type as
deletions (integer copy-number 0 or 1) or duplications (inte-
ger copy number ≥3). Sensitivity for detecting duplications
in the two HapMap individuals was not evaluated because
of the lack of high-confidence duplications (3,34). The FDR
for the simulation data was calculated as the proportion of
predicted CNVs not overlapped with the known CNVs. Be-
cause the true negatives for the two HapMap individuals

are not known, we used the total number of base pairs and
the total number of calls as a surrogate measure for speci-
ficity. A 50% reciprocal overlap was used as the overlapping
criterion in all WGS comparisons. To evaluate the AS in-
formation, we reported the ASCN set. In the simulation,
we had the ground-truth ASCN set (ASReC > 10). Thus
we reported the sensitivity and FDR based on the ground-
truth ASCN set and compared with the values on the entire
set. With the empirical data, we reported the number of de-
tected ASCNs.

Performance on low coverage data. CNV detection perfor-
mance depends on sequencing coverage, especially for read-
depth-based methods. In the comparative analyses con-
ducted in this study, both simulated (40×) and the 1000GP
data (>30×) had high coverage. Thus we carried out a com-
putational experiment in order to identify the lower bound
on sequencing coverage that AS-GENSENG can handle. In
this experiment, we first used Picard’s DownSampleSam.jar
tool to down-sample the high coverage data to varying
coverage of 30×, 20×, 10× and 5× and next applied AS-
GENSENG to each resulting data set and evaluated the
performance using the same metrics.

Performance evaluation: WES data

A short description is provided below and detailed proce-
dures can be found in the Supplementary materials.

Competing methods. We used both simulation and em-
pirical data to assess the performance of AS-GENSENG
in comparison with state-of-the-art WES methods includ-
ing Conifer (49), XHMM (42) and ExomeDepth (48). We
used the recommended parameters and QC filters for each
competing method. For example, with Conifer, we removed
five SVD components for detecting common CNVs (5, 10
and 20% frequency) and 10 components for detecting rare
CNVs (1% frequency) (49). With XHMM, we used the de-
fault value 30 for CNV quality threshold (42). Methodolog-
ical differences are detailed in Supplementary Table S5. The
primary novel aspect of AS-GENSENG is its use of allele
specific information in the modeling and its ability to detect
ASCN.

Simulation study. We used chr11 WES data of HapMap
sample HG00264 as the template and simulated read-
counts (i.e. TReC and ASReC) for 100 WES samples. This
simulated data set contained 1000 deletions and 1000 dupli-
cations with allele frequencies of 1 and 5% and 200 deletions
and 200 duplications with allele frequencies of 10 and 20%.
See Supplementary Figure S18 for detailed description of
the simulation pipeline.

Evaluation metrics. In addition to metrics used for WGS
data, here we further applied the SuperArray Validation
(SAV) (3,34) to evaluate the FDR for 1000GP WES data.
The SuperArray integrated available intensity data for
HapMap samples from three array platforms (Affymetrix
6.0, Illumina 1 M and a custom Nimblegen aCGH array
with 4 938 838 probes) into a high-density virtual array. A
non-parametric testing procedure is developed to calibrate
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predicted CNVs using SuperArray. The rule of thumb of the
procedure is that the intensity data of samples with lower
underlying copy number tend to be lower than samples with
higher underlying copy number.

CNV validation using NanoString technology

In order to validate randomly selected deletions and dupli-
cations, we utilized an independent methodology, NanoS-
tring nCounter, a proven and high-throughput method for
CNV verification (66–69). We focused on validating AS-
GENSENG’s ability to detect CNVs from WES data and
NA12272 was randomly chosen from the 324 HapMap
samples for which WES data were analyzed. Our first goal
was to compare AS-GENSENG calls in sample NA12272
with the relative copy number estimated by NanoString (fol-
lowing the analysis method in (70)). It is important to note
that, for each probe, NanoString requires samples known to
be copy-number 2, so we relied on the absolute copy num-
ber reported in Conrad et. al. (2) to calibrate the NanoS-
tring calls (i.e. indicate which samples have copy-number 2).
In addition, we would separate the calls with overlapping
SNPs from the calls without overlapping SNPs to study the
effect of using SNP information in CNV detection.

Our second goal was to compare AS-GENSENG calls in
sample NA12272 with two other members of the trio (pater-
nal: NA12272; maternal: NA12273; and child: NA10837) in
order to identify Mendelian inconsistencies. DNA for each
of these samples was acquired from the Coriell repository
(see the Web Resources section) and used as input for the
NanoString nCounter CNV assay, according to the manu-
facturer’s instructions. In short, 600 ng of genomic DNA
was fragmented to ∼500 bp by digestion with AluI and
subject to a multiplex hybridization reaction involving all
probes. We designed a custom NanoString probe set (us-
ing NanoString’s nDesign Gateway software) targeting 11
deletions and 14 duplications predicted by AS-GENSENG,
with each locus targeted by a single custom probe. The cus-
tom probes were 70–100 bp in length, each was placed in
the middle of a targeted CNV and all satisfied the inter-
nal design parameters used by NanoString, such as good
GC-content and not-overlapping segmental duplication or
repetitive elements. The probe set also included eight neg-
ative control probes that target artificial sequences, and 10
normalization probes that target autosomal loci that are in-
variant in copy number. Data analysis was conducted as in
(70).

RESULTS

CNV detection in whole-genome sequencing-simulation data

In order to assess the performance of our method for pre-
dicting CNVs from WGS data, we applied AS-GENSENG
to two sets of simulated data. We first conducted 100 simu-
lations of TReC and ASReC affected by implanted CNVs.
We expected both the TReC and ASReC within the CNV-
implanted windows to be affected. Since not every CNV re-
gion has enough allele-specific reads to provide informative
ASReC, in this work, we defined a CNV region informative
for ASCN (i.e. ASCNV) if the ASReC was >10. Supple-
mentary Figures S1 and S2 show examples of simulations,

including simulated copy number, TReC at each simulated
genomic region, simulated ASCNs and covariates (GC con-
tent and mappability). For each simulation, we implanted
200 CNVs (122 deletions and 78 duplications on average);
27 were ASCNVs (12 deletions and 15 duplications) on av-
erage. We estimated sensitivity and FDR by intersecting the
AS-GENSENG-predicted CNVs with the implanted CNVs
(using ≥50% reciprocal overlapping as the criterion; illus-
trations of sensitivity and FDR calculation are shown in
Supplementary Figure S17). Results are detailed in Supple-
mentary Table S6 and are summarized below.

On average, AS-GENSENG predicted 180 ground-truth
CNVs (90% sensitivity) from each simulated data set, in-
cluding 113 deletions (92% sensitivity) and 68 duplications
(86% sensitivity). Regarding ASCNVs, AS-GENSENG
predicted 25 ground-truth ASCNVs (93% sensitivity), in-
cluding 11 AS deletions (98% sensitivity) and 14 AS du-
plications (90% sensitivity). Therefore, we observe slightly
higher sensitivity for detecting AS events and, furthermore,
the FDR for ASCNVs is 0.3%, much lower than that for
standard CNVs (14.5%). This lower FDR results from the
fact that read-count signals alone are vague for differentiat-
ing between copy-number 2 and copy-numbers 3 or 1. With-
out ASReC, the algorithm could make false-positive calls.
However, the difference in allele-specific proportion is much
clearer between copy-number 2 and copy-numbers 3 or 1
(0.5 in copy-number 2 compared to 0.33 or 0.67 in copy-
number 3, and 0.99 or 0.01 in copy-number 1). As a result,
the FDR of ASCNVs is much lower.

We next simulated sequencing reads affected by im-
planted CNVs. We simulated 200 CNVs (119 deletions and
81 duplications), 62 were ASCNVs (15 deletions and 47 du-
plications), and estimated sensitivity and FDR using the
same criterion. We first compared AS-GENSENG’s per-
formance for standard CNVs versus ASCNVs and then
compared AS-GENSENG to CNVnator and ERDS for the
ability to detect standard CNVs. Results are detailed in Sup-
plementary Tables S7 and S8 and summarized below. For
standard CNVs, AS-GENSENG predicted 193 ground-
truth CNVs resulting in 97% sensitivity (117 deletions with
98% sensitivity and 76 duplications with 94% sensitivity).
For ASCNVs, AS-GENSENG predicted 61 ground-truth
AS-CNVs resulting in 98% sensitivity (15 AS deletions with
100% sensitivity and 46 AS duplications with 98% sensi-
tivity), slightly higher than that for standard CNVs. Fur-
ther, AS-GENSENG’s FDR for ASCNVs is 4%, lower than
that for standard CNVs (7%). Compared to other meth-
ods on the ability to detect standard CNVs, AS-GENSENG
had the highest sensitivity and lowest FDR (sensitivity 6%
higher than CNVnator and 1% higher than ERDS; FDR
8% lower than CNVnator and 23% lower than ERDS).

In summary, simulation results suggested that incorpo-
rating ASReC improves the sensitivity and specificity of
CNV detection.

CNV detection in whole-genome sequencing real data

To further evaluate the performance of our method for
WGS data, we analyzed 1000GP (3,34) data. We applied
AS-GENSENG, GENSENG (54), CNVnator (56) and
ERDS (41) to the high-coverage WGS data for samples
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NA12891 and NA12892 and compared the predicted CNVs
to a high-confidence, published data set available for these
samples (3,34,55) (2200 deletions in NA12891 and 2055
deletions in NA12892 but no high-confidence duplications
available). AS-GENSENG differs from existing methods
mainly in its incorporation of AS information for both dele-
tions and duplications (in comparison with GENSENG,
CNVnator and ERDS) and its simultaneous bias correction
(in comparison with CNVnator and ERDS). The method-
ological differences between these methods are detailed in
Supplementary Table S4.

First, we compared AS-GENSENG to GENSENG and
CNVnator, both relying only on TReC for CNV detection.
As shown in Table 2(a), the sensitivity for detecting dele-
tions by AS-GENSENG was 56% for NA12891 and 53%
for NA12892, which is higher than GENSENG (50% for
NA12891 and 49% for NA12892) and CNVnator (37% for
NA12891 and 34% for NA12892). We also found several
examples of high-confidence deletions that were missed by
GENSENG but were recovered by AS-GENSENG (Sup-
plementary Figures S3–S15). Due to the relatively high level
of noise in the TReC of these relatively small deletions
(<10 windows), the TReC signal by itself does not provide
enough evidence for GENSENG to call deletions. However,
the imbalance of ASReC signals in these examples strongly
implies underlying CNVs. Thus, by incorporating ASReC
with TReC, AS-GENSENG successfully recovered these
deletions.

We then compared the specificity of various methods.
Because the high-confidence CNV data set does not pro-
vide information on the true negatives for assessing speci-
ficity, we used the volume (i.e. the total number and to-
tal base pairs) of the predicted CNVs as a surrogate mea-
surement of specificity. As shown in Table 2(a), the vol-
ume of AS-GENSENG is much smaller than GENSENG
and CNVnator, suggesting improved specificity. Second, we
compared AS-GENSENG to another integrated method,
ERDS. ERDS incorporates the rate of heterozygous SNPs
in detecting deletions and further refine the smallest dele-
tion calls (<10 kb) using read-pair information; but ERDS
relies only on TReC in detecting duplications. Thus in our
sensitivity evaluation, we stratified the comparative analy-
sis by the size of the high-confidence deletions in three cat-
egories (<1 kb,1–10 kb and >10 kb). Finally, we applied
AS-GENSENG, CNVnator and ERDS to the WGS data
from a HapMap trio (NA12891, NA12892, NA12878) and
computed the rate of Mendelian inconsistencies as a mea-
sure of specificity. By intersecting CNV calls in the child
(NA12878) with CNV calls in the parents, we found that
AS-GENSENG had the lowest Mendelian error rate (25%)
among all CNVs predicted in the child (23% for deletions
and 28% for duplication), whereas CNVnator had 48%
Mendelian errors (47% for deletions and 52% for duplica-
tions) and ERDS had 55% Mendelian errors (48% for dele-
tions and 57% for duplications).

As shown in Table 2(b), in the >10-kb category when
both ERDS and AS-GENSENG incorporate SNP infor-
mation with TReC, AS-GENSENG achieved 26% higher
sensitivity in NA12891 (97 versus 71%) and 22% higher sen-
sitivity in NA12892 (98 versus 76%). In the 1–10-kb cat-
egory even after ERDS applied read-pair information for

call refinement, AS-GENSENG achieved 23% higher sen-
sitivity in NA12891 (93 versus 70%) and 22% higher sensi-
tivity in NA12892 (91 versus 69%). In the <1-kb category
AS-GENSENG had lower sensitivity than ERDS, which
can be attributed to two factors: (i) AS-GENSENG can
only detect CNVs of twice or more of the window size
(i.e. >600 bp), whereas ERDS does not have this limita-
tion; (ii) within the category of CNVs >600 bp and smaller
than 1 kb, ERDS has advantage by additionally using read-
pair information. We then examined the volume of CNV
calls as a surrogate measure of specificity. AS-GENSENG
predicted slightly higher number of deletions than ERDS
(2303 versus 1911 in NA12891 and 2347 versus 1712 in
NA12892), suggesting comparable specificity; but predicted
a much smaller number of duplications than ERDS (723
versus 3404 in NA12891 and 581 versus 3432 in NA12892),
suggesting improved specificity.

In summary, when applied to high-coverage WGS data,
AS-GENSENG outperforms existing methods for detect-
ing deletions that are >1 kb. It gives the best sensitivity
(∼5% higher than GENSENG, ∼20% higher than CNVna-
tor and more than 20% higher than ERDS) and among the
best specificity (only slight larger than ERDS in the deletion
calls). These results suggest that incorporating AS informa-
tion improves the accuracy of CNV detection. Further, in
regard to ASCNVs, AS-GENSENG is the only method that
can predict ASCN call from WGS data in germline DNA
samples. In this experiment, AS-GENSENG predicted 576
AS deletions and 205 AS duplications in NA12891, 664 AS
deletions and 173 AS duplications in NA12892.

As expected, we find that the higher the sequencing cov-
erage, the better the performance for AS-GENSENG to de-
tect CNVs. The lowest bound of sequencing coverage that
AS-GENSENG still achieves a reasonable sensitivity is 10×
(Supplementary Tables S9 and S10). At a low coverage of
5×, AS-GENSENG’s sensitivity is remarkably reduced (i.e.
29% reduction in detecting deletions and 15% reduction in
detecting duplications in simulation study, and 11% reduc-
tion in deletions for 1000GP WGS data).

CNV detection in whole-exome sequencing-simulation data

In order to calibrate the performance of our method for
WES data, we applied AS-GENSENG to simulated data
sets and evaluated the sensitivity and FDR by comparing
the predicted CNVs with the implanted ground-truth CNVs
(Supplementary Table S11). In particular, we evaluated AS-
GENSENG’s ability to detect CNVs at varying allele fre-
quencies. Following the criterion of rare CNVs (<5% in the
population (42)), we simulated both rare (1%) and common
CNVs (5, 10 and 20%). First, we calculated sensitivities (us-
ing ≥1-bp overlap) for the entire set of implanted CNVs or
ASCNVs. The sensitivities ranged from 81 to 91% for var-
ious CNV frequency settings and there was no remarkable
difference in sensitivity between the rare CNV and common
CNV sets. For example, the respective sensitivities are 0.89
for deletions and 0.91 for duplications on the 1% CNV fre-
quency set, and 0.85 for deletions and 0.90 for duplications
on the 20% CNV frequency set. Regarding ASCNVs, all
sensitivities were >90% and better than the corresponding
regular CNV values. For example, with a CNV frequency of
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Table 2. Performance assessment based on WGS data of two HapMap samples

(a) 
#Deletions4 

(total Mbps) 
#True Discovery Deletions/ #HC 

Deletions1 (Sensitivity2) 
Genome AS-GENSENG GENSENG CNVnator  AS-GENSENG GENSENG CNVnator  

NA12891 
2302 
(20.4) 

4765  
(88.1) 

2656  
(131.3)  

1222/2200 
(0.56) 

1091/2200  
(0.50) 

815/2200  
(0.37)  

NA12892 
2347 
(24.3) 

4295 
(45.0) 

2268 
(128.0)  

1079/2055 
(0.53) 

1006/2055 
(0.49) 

698/2055 
 (0.34)  

 

(b) 
# Deletions4 
(total Mbps) 

#True Discovery Deletions/ #High Confidence Deletions1 
(Sensitivity2) 

Genome 

AS-
GENS
ENG ERDS3 

AS-GENSENG ERDS 

<1k bps3 
1k-10k 

bps 
>10k 
bps total <1k bps3 

1k-10k 
bps 

>10k 
bps total 

NA12891 
2302 

(20.4) 
1911 
(19.6) 

223/1132 
(0.2) 

803/863 
(0.93) 

196/205 
(0.97) 

1222/2200 
(0.56) 

483/1132 
(0.43) 

608/863 
(0.70) 

145/205 
(0.71) 

1236/2200 
(0.56) 

NA12892 
2347 
(24.3) 

1712 
(17.5) 

217/1121 
(0.19) 

681/750 
(0.91) 

181/184 
(0.98) 

1079/2055 
(0.53) 

457/1121 
(0.41) 

521/750 
(0.69) 

140/184 
(0.76) 

1118/2055 
(0.54) 

Note: 1. High-confidence deletions used in this comparison are generated by 1000GP (3,34,55).
2. True discovery is defined as a released deletion that has ≥50% reciprocal overlapping with reported deletions. The sensitivity is calculated by the number
of true discoveries divided with the total number of released deletions.
3. ERDS applies an additional read-pair refinement for deletions <10 kb, whereas AS-GENSENG uses TReC and ASReC. The detection of the smallest
deletions (<1 kb) benefits most from the read-pair refinement. As the smallest deletions span only a few consecutive windows, it is harder to distinguish
between true CNV signals and random noise using read-depth alone.
4. For duplications, we only report the total number and length of the predicted CNVs due to the lack of high-confidence duplication data set in the literature.
AS-GENSENG predicted a total of 723 duplications (spanning 20.2 Mbps) in NA12891 and 581 duplications (spanning 15.6 Mbps) in NA12892. ERDS
predicted 3404 duplications (spanning 24.7 Mbps) in NA12891 and 3432 duplications (spanning 27.4 Mbps) in NA12892.

5%, we observed a 10% improvement for deletions and 2%
improvement for duplications. Second, we evaluated FDR
and found that AS-GENSENG had very low FDR for both
CNV and ASCNV (most <1%). These results suggest that,
when applied to WES data, AS-GENSENG can robustly
detect both rare and common CNVs at varying frequencies
and that incorporating ASReC improves the accuracy for
CNV detection.

Next, using the same simulated WES data sets, we com-
pared AS-GENSENG with three state-of-the-art methods,
XHMM (42), Conifer (49) and ExomeDepth (48) (see Sup-
plementary Table S5 for a detailed method comparison).
XHMM and Conifer use PCA/SVD-based normalization
(49). ExomeDepth uses a reference-based normalization
with an optimized reference-set (48). AS-GENSENG uses
a reference-based normalization and its novelty is its ex-
plicit use of ASReC to identify the correct reference group
of copy-number 2, which is critical for data normaliza-
tion and the detection of common CNVs of unknown
frequencies. The results of the comparative analysis are
summarized in Supplementary Table S12. We find that
the sensitivity of AS-GENSENG is higher than XHMM,
Conifer and ExomeDepth for all CNV frequencies, espe-
cially in detecting common CNV (AS-GENSENG sen-
sitivity is 89.6% for CNV frequency 1% while XHMM
is 87.7%, Conifer is 53.3% and ExomeDepth sensitiv-
ity is 82.4%; AS-GENENG sensitivities are higher than
80% for CNV frequency >5% while XHMM sensitivities
are less than 6%, Conifer sensitivities are less than 30%
and ExomeDepth sensitivities are less than 61%). While
AS-GENSENG demonstrated consistently good sensitiv-
ity across frequency categories, the sensitivities of XHMM,

Conifer and ExomeDepth decrease in common CNVs.
For the most common CNVs (frequency = 20%), AS-
GENSENG was >100× more sensitive than XHMM,
60X more sensitive than Conifer and 2.5× more sensitive
than ExomeDepth (AS-GENSENG sensitivity is 87.4%;
XHMM is 0.2%; Conifer is 1.3%; ExomeDepth is 34.2%).

Presumably, at higher CNV frequencies, CNV signals
may have stronger contributions to the very variance com-
ponents that are excluded by the SVD method with an ar-
bitrary threshold (65); and TReC may not identify the true
reference copy-number 2 set. We find that the FDR of AS-
GENSENG is <1% for all settings, the FDR of XHMM
is <2% for most settings, the FDR of Conifer is <2%
for most settings and the FDR of ExomeDepth is <1%
for all settings, suggesting similar, high specificity. In sum-
mary, these results suggest that reference-based normaliza-
tion combined with assumption-free identification of the
copy-number 2 reference, such as using ASReC as imple-
mented in AS-GENSENG, is critical for robust detection
of common CNVs at varying frequencies that cannot be
known a priori.

CNV detection in real whole-exome-sequencing data

To further evaluate the performance of CNV detection
in WES data, we applied AS-GENSENG, Conifer (49),
XHMM (42) and ExomeDepth (48) to the WES data of
324 HapMap samples (Table 3). The total numbers of
CNVs called from AS-GENSENG, Conifer and XHMM
are comparable. AS-GENSENG predicted 4839 deletions
and 2648 duplications in total from the 324 samples, while
Conifer predicted 2194 deletions and 3450 duplications,
XHMM predicted 3006 deletions and 3660 duplications.
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ExomeDepth predicted 74 463 deletions and 47 816 du-
plications, which is similar to literature results using Ex-
omeDepth or ∼300 CNVs per sample with around two
thirds of CNVs as deletions, ((48); the Web Resources sec-
tion). To evaluate sensitivity, we compared these call sets
with the high-confidence exonic deletions as described in
the Materials and Methods section and then repeated this
analysis separately for rare (<5% frequency) and common
(>5% frequency) high-confidence exonic deletions. Sensi-
tivity for duplications was not evaluated due to the lack of
high-confidence duplication call sets in the literature (3,34).
Key results of the sensitivity evaluation are summarized be-
low.

First, AS-GENSENG demonstrated the highest overall
sensitivity for detecting high-confidence exonic deletions
(7.6% higher than Conifer, 8.6% higher than XHMM and
9.4% higher than ExomeDepth). Second, the sensitivity
estimates of AS-GENSENG are consistent across CNV
frequency categories, whereas the sensitivity estimates of
the other three methods varied considerably between rare
and common deletions. Third, for rare deletions, XHMM
had the highest sensitivity; and for common deletions, AS-
GENSENG had the highest sensitivity. Fourth, we note
that the relatively low sensitivities of all methods observed
in our evaluation are not surprising; similar results have
been reported in recently published independent studies
(65,77). This may reflect technological differences between
WES (from which the CNV call sets were generated) and
WGS (from which the high-confidence exonic deletions
were obtained). Typically, WGS is more powerful in detect-
ing CNVs and does not suffer from the additional system-
atic biases introduced in the exome capturing step (65).

To evaluate FDR, we followed the SAV approach devel-
oped by 1000GP (3,34) (see ‘Evaluation metrics’). For dele-
tions, there were 334 predicted deletion regions (where at
least one sample has deletion call) in the AS-GENENG
calls set and 32 of these regions had P-value >0.5 based
on the Wilcoxon Rank Sum test, which yielded an FDR of
19.2%. Similarly, the FDR was 12.8% in Conifer calls set
(3 with P-value >0.5 among a total of 47 regions), 44.4%
in XHMM calls set (16 with P-value >0.5 among a total of
72 regions) and 95.5% in ExomeDepth calls set (747 with P-
value >0.5 among a total of 1564 regions). For duplications,
there were 169 predicted duplication regions (where at least
one sample has duplication call) in the AS-GENSENG calls
set and 20 regions had P-value >0.5, which yielded a 23.7%
FDR. Similarly, the FDR was 50.5% in Conifer calls set (27
with P-value >0.5 among a total of 107 regions), 14.9% in
XHMM calls set (14 with P-value >0.5 among a total of
188 regions) and 85.8% in ExomeDepth calls set (391 with
P-value >0.5 among a total of 911 regions). With SAV, the
FDR is not defined for CNVs in individual samples but
rather to CNV regions in the collection of all samples, and
therefore we did not evaluate FDR stratified by frequency
as we did in the sensitivity comparison.

In summary, on the 324 WES samples evaluated in this
study, AS-GENSENG demonstrated the best sensitivity for
detecting common deletions and comparable specificity to
other state-of-the-art methods. The performance of AS-
GENSENG was consistent across CNV frequency cate-
gories, which can be attributed to its ability to accurately

identify the reference copy-number 2 group two using AS-
ReC and free of assumptions (see Figure 3 and Supplemen-
tary Figures S19–S29 for examples). As expected, XHMM
had the best sensitivity for detecting rare deletions because
its PCA normalization and HMM parameters were op-
timized to detect rare variants, assuming that most vari-
ation in read-depth was due to noise. Finally, in regard
to ASCN, AS-GENSENG is the only method that could
predict ASCN from WES data. In this experiment, AS-
GENSENG detected 2091 ASCNV (525 AS deletions and
1566 AS duplications) from the 324 HapMap samples.

CNV validation using NanoString technology

We decided to use an independent methodology (NanoS-
tring) to validate randomly selected deletions and duplica-
tions predicted from WES data. First, we compared AS-
GENSENG calls in sample NA12272 with the relative copy
number estimated by NanoString (following the method in
(70)). It is important to note that, for each probe, NanoS-
tring requires samples known to be copy-number 2, so we
relied on the absolute copy number reported in Conrad et.
al. (2) to calibrate the NanoString calls (i.e. indicate which
samples have copy-number 2). A deletion was validated if
its NanoString count is at least 50% smaller than the me-
dian of NanoString counts of copy-number 2 samples (Fig-
ure 4a). Among the 11 randomly selected AS-GENSENG
deletions, NanoString identified 9 as true deletions, yield-
ing a validation rate of 82% (or 18% false discovery). A du-
plication was validated if its NanoString count is at least
50% larger than the median of NanoString counts of copy-
number 2 samples (Figure 4b). Among the 14 randomly se-
lected AS-GENSENG duplications, NanoString identified
12 as duplications, yielding a validation rate 86% (or 14%
false discovery). The results obtained from NanoString val-
idation are similar to the results based on our SAV described
above.

There are multiple possible explanations for the AS-
GENSENG calls that failed to validate. First, it is possi-
ble that AS-GENSENG produced false positive calls. Sec-
ond, it is also possible that false negatives exist in the Con-
rad et. al. data set (2) leading to improper calibration to
copy-number 2. Third, and perhaps most likely, the issue
could simply be a matter of probe placement, since we tested
just one probe per CNV region. We decided to test a lim-
ited number of probes per CNV in order to maximize the
number of CNVs tested, however, this also limits the ac-
curacy for each single region. The probe size (<100 bp) is
also much smaller than the tested region (>1000 bp). Fur-
thermore, due to the limitation of the probe design, the
probes are not always placed in the middle of the region,
so the issue may be due to CNV resolution. Second, in or-
der to evaluate the contribution of SNP information, we
repeated the analysis separately for CNV calls with and
without SNPs. SNPs were found in all 11 deletion calls.
In the 14 duplication calls, 10 had SNPs of which 9 were
validated (90% validated); whereas 4 did not have SNPs of
which 3 were validated (75% validated). The increased val-
idation rate in duplications with SNPs suggests that AS-
ReC improved detection accuracy. Finally, as a secondary
analysis, we also compared AS-GENSENG calls in sam-
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Figure 4. Examples of NanoString nCounter Technology Validated AS-GENSENG CNV Calls. There are two examples of a validated deletion call (a) and
a validated duplication call (b) made by AS-GENSENG in sample NA12272 shown in the figure. The height of bar represents the NanoString normalized
count. AS-GENSENG studied sample NA12272 is highlighted in bold in the X-axis. The error bar indicates data from two runs of the validation procedure.
(a) In the deletion call, AS-GENSENG made a copy-number 1 deletion in NA12272, and it is validated because the count measured from NA12272 is half
of the count from samples having copy-number 2. (b) In the duplication call, AS-GENSENG made four-copy number duplication in NA12272, and it is
validated because the count measured from NA12272 is twice of the count from samples having copy-number 2.
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Table 3. Performance assessment based on whole-exome sequencing data of 324 HapMap samples

in samples 
Method #Reported CNVs 

Estimated FDR 
for Deletions1

#True Discovery Deletions/#1000GP 
Released Deletions2

(Estimated Sensitivity3) 

#Deletions5 
Deletions by frequency4

>5% <5% All 
AS-

GENSENG 4839  19.2% 
90/506 
(17.8%) 

1503/8686 
(17.3%) 

 1593/9192  
(17.3%) 

Conifer 2194 12.8% 
160/506 
(31.6%) 

736/8686 
(8.5%) 

896/9192 
 (9.7%) 

XHMM 3006 44.4% 
244/506 
(48.2%) 

135/8686 
(1.6%) 

801/9192 
(8.7%) 

ExomeDepth 74463 95.5% 
77/506 
(15.2%) 

653/8686 
(7.5%) 

730/9192 
(7.9%) 

Note: 1. We followed 1000GP approach (3,34) to estimate the FDR (false discovery rate) using SAV approach (see the Materials and Methods section).
2. We obtained 1000GP-released genome-wide high-confidence deletions for the samples we studied. Similar to (65), we intersected these deletions with
the exon targets (1-bp overlapping) to obtain high-confidence exonic deletions to evaluate sensitivity. There were a total of 9192 high-confidence exonic
deletions.
3. True discovery is defined as a released deletion that has ≥1 bp overlapping with reported deletions. The sensitivity is calculated by the number of true
discoveries divided with the total number of released deletions.
4. The population size for calculating the frequency is 324 (all the studied WES samples).
5. For duplications, we only report the total number of predicted CNVs due to the lack of high-confidence duplication data set in the literature. AS-
GENSENG predicted a total of 2648 duplications, while Conifer predicted 3450 duplications, XHMM predicted 3660 duplications and ExomeDepth
predicted 47 816 duplications.

ple NA12272 with the NanoString estimated CNV calls in
the complete trio containing NA12272 (paternal: NA12272;
maternal: NA12273; and child: NA10837). For each CNV,
we looked for Mendelian inconsistencies in the NanoString
copy number estimates. We found that among the 11 AS-
GENSENG deletions, 10 were consistent. We found that
all 12 AS-GENSENG duplications were consistent in this
trio. If we assume that the NanoString copy number esti-
mates in the parents were accurate, this analysis suggested
9% Mendelian error for deletions and 0% Mendelian error
for duplications.

DISCUSSION

We have developed an integrated and novel method (AS-
GENSENG) that exploits the rich information in both to-
tal (TReC) and allele-specific read-depth (ASReC) to de-
tect CNVs and ASCNVs from both WGS and WES data.
We use HMM to infer the underlying integer copy numbers
and combine the joint analysis of TReC and ASReC with
simultaneous bias correction in data likelihood. The WGS
module of AS-GENSENG is applicable to a single genome,
while the WES model is applicable to large-scale exome
data. To our knowledge, AS-GENSENG is the first tool
capable of detecting ASCNVs from HTS data in germline
DNA samples.

Analogous to the previous success with array-based
CNV calling, we have demonstrated that joint analysis
of TReC and ASReC not only allows the estimation of
ASCN but also improves the estimation of total copy num-
ber (e.g. 1 copy deletion, 3 copy duplications). We show
through numerous examples, using both WGS and WES
data, that incorporating ASReC improves the performance
of CNV detection. In addition, one novel component of

AS-GENSENG is the use of beta-binomial distribution
to incorporate allele-specific information. This approach,
applied to model both deletions and duplications rather
than only deletions, does not restrict the analysis to inbred
genomes (59) and does not require human effort to call AS-
CNV (37). We have also shown that ASReC can be lever-
aged to accurately identify the copy-number-2 reference-
group from an exon target, crucial for accurate CNV calling
in WES data. Although previous studies (49) have applied
sophisticated analysis techniques to deal with the common
CNV problem, we have shown that using ASReC is a novel
and effective strategy to tackle this problem.

We are aware of several limitations with AS-GENSENG
and have recommend alternative strategies. First, we fo-
cused on the accurate detection of simple CNVs and com-
puted TReC using reads with unambiguous mapping in the
reference genome. This approach results in lower power
to detect complex CNVs within repeated sequences. For
detecting CNVs in repeat-rich region, we recommend the
use of specialized methods that are capable of consider-
ing all mapping positions and handling the uncertainty of
read mapping (60,64,78–81). Second, the WGS module of
our method used a sliding window approach to compute
TReC and ASReC. This approach results in lower power
to detect CNVs that are <1 kb. For detecting deletions <1
kb, we recommend ERDS (41) or Genome STRiP (55) as
these methods further utilize read-pair information for im-
proved detection. A similar refinement pipeline using read-
pair information will be implemented in a future release of
AS-GENSENG. Third, while our WES module is robust
against CNV frequency, its power for detecting rare exonic
CNVs is lower than methods that are optimized for this
class of variants. In this paradigm, XHMM appears to have
superior sensitivity for detecting rare CNVs from WES data
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and the quality score provided by XHMM could be infor-
mative in downstream analyses in order to improve speci-
ficity (42). Finally, INDELs (insertions and deletions <50
bp (3,34,35)) could not be detected by AS-GENSENG and
require specialized algorithms (35,82).

We aimed to conduct a comprehensive evaluation by
comparing the performance of AS-GENSENG to multi-
ple state-of-the-art methods. In order to provide an unbi-
ased evaluation, we applied each method using its recom-
mended parameters and quality control filters. Through in-
dependent evaluations conducted by the 1000GP, Genome
STRiP (55) was regarded as the best performing among ex-
isting methods for WGS data. Genome STRiP is a multi-
sample method and requires at least 20 or 30 samples (see
‘vii’ in the Web Resources section). In this study, we focused
on detecting CNVs from a single genome and therefore did
not compare AS-GENSENG with Genome STRiP.

We used multiple approaches (i.e. simulation, SAV, trio-
analysis, NanoString) to evaluate FDR as it is more chal-
lenging to estimate without the knowledge of true false neg-
ative CNVs in the genome. For AS-GENSENG, although
the absolute FDR observed in real data is higher than that
observed in simulation, the relative FDR is still lower than
other methods under comparison.

In this study, all analyses were performed in a high-
throughput cluster-computing environment where each
computing node had a shared memory of 48 GB. Se-
quencing data were split into individual chromosomes and
chromosome-wise data were then analyzed in parallel on
multiple computing nodes. Thus, the running time of a
method is determined by the most time-consuming chromo-
some. Given read-depth data from WGS, AS-GENSENG
can call CNVs for a sample with ∼30× coverage within 2 h,
while ERDS and CNVnator in <1 h. For normalized read-
depth data from WES, all three competing methods (AS-
GENSENG, XHMM and Conifer) can call CNVs within 1
h for 300 samples and 200K exon targets.

In sum, we have developed a novel method AS-
GENSENG with the following distinguishing features: (i)
joint analysis of both TReC and ASReC while accounting
for various experimental biases in sequence data, (ii) ability
to detect both CNVs and ASCNVs from both WGS data
and WES data and (iii) ability to leverage ASReC and large-
scale nature of WES projects for effective data normaliza-
tion and accurate detection of common CNVs with vari-
ous frequencies. Through rigorous assessment using simu-
lation, empirical data and independent technology, we have
demonstrated the superior performance of AS-GENSENG
in numerous examples. We conclude that AS-GENSENG
not only predicts accurate allele-specific CNV calls but also
improves the accuracy of total copy number calls.

AVAILABILITY

The AS-GENSENG software and source code are freely
available at https://sourceforge.net/projects/asgenseng.

WEB RESOURCES

(i) The 1000GP alignment files: ftp://ftp-trace.ncbi.nih.
gov/1000genomes/ftp/data/.

(ii) SNP genotypes from the HapMap project:
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/
2009--02 phaseIII/HapMap3 r2/CEU/TRIOS/.

(iii) The R/asSeq package: http://www.bios.unc.edu/∼
weisun/software/asSeq.htm.

(iv) The 1000GP released deletion set: ftp://ftp.
broadinstitute.org/pub/svtoolkit/misc/1kg/NGPaper/.

(v) The Coriell repository: http://ccr.coriell.org.
(vi) The R/ExomeDepth package: http://cran.r-

project.org/web/packages/ExomeDepth/vignettes/
ExomeDepth-vignette.pdf.

(vii) The Genome STRiP FAQ: http://gatkforums.
broadinstitute.org/discussion/1490/frequently-asked-
questions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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51. Love,M.I., Myšičková,A., Sun,R., Kalscheuer,V., Vingron,M. and
Haas,S.A. (2011) Modeling read counts for CNV detection in exome
sequencing data. Stat. Appl. Genet. Mol. Biol., 10,
doi:10.2202/1544-6115.1732.

52. Wu,J., Grzeda,K.R., Stewart,C., Grubert,F., Urban,A.E.,
Snyder,M.P. and Marth,G.T. (2012) Copy number variation detection
from 1000 genomes project exon capture sequencing data. BMC
Bioinformatics, 13, 305.

53. Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA and
next-generation sequencing: computational challenges and solutions.
Nat. Rev. Genet., 13, 36–46.

54. Szatkiewicz,J.P., Wang,W., Sullivan,P.F., Wang,W. and Sun,W. (2013)
Improving detection of copy-number variation by simultaneous bias
correction and read-depth segmentation. Nucleic Acids Res., 41,
1519–1532.

55. Handsaker,R.E., Korn,J.M., Nemesh,J. and McCarroll,S. a (2011)
Discovery and genotyping of genome structural polymorphism by
sequencing on a population scale. Nat. Genet., 43, 269–276.

56. Abyzov,A., Urban,A.E., Snyder,M. and Gerstein,M. (2011)
CNVnator: an approach to discover, genotype, and characterize
typical and atypical CNVs from family and population genome
sequencing. Genome Res., 21, 974–984.

57. Yoon,S., Xuan,Z., Makarov,V., Ye,K. and Sebat,J. (2009) Sensitive
and accurate detection of copy number variants using read depth of
coverage. Genome Res., 19, 1586–1592.

58. Medvedev,P., Fiume,M., Dzamba,M., Smith,T. and Brudno,M.
(2010) Detecting copy number variation with mated short reads.
Genome Res., 20, 1613–1622.

59. Simpson,J.T., McIntyre,R.E., Adams,D.J. and Durbin,R. (2009)
Copy number variant detection in inbred strains from short read
sequence data. Bioinformatics, 26, 565–567.

60. Sudmant,P.H., Kitzman,J.O., Antonacci,F., Alkan,C., Malig,M.,
Tsalenko,A., Sampas,N., Bruhn,L., Shendure,J. and Eichler,E.E.
(2010) Diversity of human copy number variation and multicopy
genes. Science, 330, 641–646.

61. Chiang,D.Y., Getz,G., Jaffe,D.B., O’Kelly,M.J.T., Zhao,X.,
Carter,S.L., Russ,C., Nusbaum,C., Meyerson,M. and Lander,E.S.
(2009) High-resolution mapping of copy-number alterations with
massively parallel sequencing. Nat. Methods, 6, 99–103.

62. Xi,R., Hadjipanayis,A.G., Luquette,L.J., Kim,T.-M., Lee,E.,
Zhang,J., Johnson,M.D., Muzny,D.M., Wheeler,D. a, Gibbs,R. a
et al. (2011) Copy number variation detection in whole-genome
sequencing data using the Bayesian information criterion. Proc. Natl.
Acad. Sci. U.S.A., 108, E1128–E1136.

63. Xie,C. and Tammi,M.T. (2009) CNV-seq, a new method to detect
copy number variation using high-throughput sequencing. BMC
Bioinformatics, 10, 80.

64. Wang,Z., Hormozdiari,F., Yang,W.-Y., Halperin,E. and Eskin,E.
(2013) CNVeM: copy number variation detection using uncertainty
of read mapping. J. Comput. Biol., 20, 224–236.

65. Tan,R., Wang,Y., Kleinstein,S.E., Liu,Y., Zhu,X., Guo,H., Jiang,Q.,
Allen,A.S. and Zhu,M. (2014) An evaluation of copy number
variation detection tools from whole-exome sequencing data. Hum.
Mutat., 35, 899–907.

66. Geiss,G.K., Bumgarner,R.E., Birditt,B., Dahl,T., Dowidar,N.,
Dunaway,D.L., Fell,H.P., Ferree,S., George,R.D., Grogan,T. et al.
(2008) Direct multiplexed measurement of gene expression with
color-coded probe pairs. Nat. Biotechnol., 26, 317–325.

67. Sailani,M.R., Makrythanasis,P., Valsesia,A., Santoni,F.A.,
Deutsch,S., Popadin,K., Borel,C., Migliavacca,E., Sharp,A.J.,
Duriaux Sail,G. et al. (2013) The complex SNP and CNV genetic
architecture of the increased risk of congenital heart defects in Down
syndrome. Genome Res., 23, 1410–1421.

68. Iskow,R.C., Gokcumen,O., Abyzov,A., Malukiewicz,J., Zhu,Q.,
Sukumar,A.T., Pai,A.A., Mills,R.E., Habegger,L., Cusanovich,D.A.
et al. (2012) Regulatory element copy number differences shape
primate expression profiles. Proc. Natl. Acad. Sci. U.S.A., 109,
12656–12661.

69. Ruderfer,D.M., Chambert,K., Moran,J., Talkowski,M., Chen,E.S.,
Gigek,C., Gusella,J.F., Blackwood,D.H., Corvin,A., Gurling,H.M.
et al. (2013) Mosaic copy number variation in schizophrenia. Eur. J.
Hum. Genet., 21, 1007–1011.

70. Brahmachary,M., Guilmatre,A., Quilez,J., Hasson,D., Borel,C.,
Warburton,P. and Sharp,A.J. (2014) Digital genotyping of
macrosatellites and multicopy genes reveals novel biological functions
associated with copy number variation of large tandem repeats. PLoS
Genet., 10, e1004418.

71. Li,H. and Durbin,R. (2009) Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

72. The International HapMap Project. (2003) Nature, 426, 789–796.
73. Sun,W. (2012) A statistical framework for eQTL mapping using

RNA-seq data. Biometrics, 68, 1–11.
74. Sun,W. and Hu,Y. (2013) eQTL Mapping Using RNA-seq Data. Stat.

Biosci., 5, 198–219.
75. Olshen,A.B., Venkatraman,E.S., Lucito,R. and Wigler,M. (2004)

Circular binary segmentation for the analysis of array-based DNA
copy number data. Biostatistics, 5, 557–572.

76. Weiss,N., Soules,G., Baum,L.E. and Petrie,T. (1970) A maximization
technique occurring in the statistical analysis of probabilistic
functions of Markov chains. Ann. Math. Stat., 41, 164–171.

77. Guo,Y., Sheng,Q., Samuels,D.C., Lehmann,B., Bauer,J.A.,
Pietenpol,J. and Shyr,Y. (2013) Comparative study of exome copy
number variation estimation tools using array comparative genomic
hybridization as control. Biomed. Res. Int., 2013, 915636.

78. He,D., Hormozdiari,F., Furlotte,N. and Eskin,E. (2011) Efficient
algorithms for tandem copy number variation reconstruction in
repeat-rich regions. Bioinformatics, 27, 1513–1520.

79. Alkan,C., Kidd,J.M., Marques-Bonet,T., Aksay,G., Antonacci,F.,
Hormozdiari,F., Kitzman,J.O., Baker,C., Malig,M., Mutlu,O. et al.
(2009) Personalized copy number and segmental duplication maps
using next-generation sequencing. Nat. Genet., 41, 1061–1067.

80. Hormozdiari,F., Alkan,C., Eichler,E.E. and Sahinalp,S.C. (2009)
Combinatorial algorithms for structural variation detection in
high-throughput sequenced genomes. Genome Res., 19, 1270–1278.

81. Hormozdiari,F., Hajirasouliha,I., Dao,P., Hach,F., Yorukoglu,D.,
Alkan,C., Eichler,E.E. and Sahinalp,S.C. (2010) Next-generation
VariationHunter: combinatorial algorithms for transposon insertion
discovery. Bioinformatics, 26, i350–i357.

82. Mills,R.E., Luttig,C.T., Larkins,C.E., Beauchamp,A., Tsui,C.,
Pittard,W.S. and Devine,S.E. (2006) An initial map of insertion and
deletion (INDEL) variation in the human genome. Genome Res., 16,
1182–1190.




