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TOMOGRAPHIC IMAGE RECONSTRUCTION BY EIGENVECTOR 
DECOMPOSITION: ITS LIMITATIONS AND AREAS OF APPLICABILITY* 

Jorge Llacer 
Lawrence Berkeley Laboratory 
. University of California 

Berkeley, California 94720, U.S.A. 

Abstract 

LBL-13573 

This paper analyzes in detail the process of tomographic image reconstruc­

tion by pseudo-inversion of the blurring matrix of a PET imaging system. 

Eigenvector and eigenvalue decomposition is used as a method to evaluate the 

physical reasons for the ill-conditioned nature of the problem. It is shown 

that finding an accurate pseudo-inverse for even a modest PET array of 8 x 8 

pixels is a difficult task for a computer with 48-bit mantissa. The problem 

is caused by the strong ambiguity with which the detector system measures the 

activity at each pixel. 

For a problem in which imaging with a complete detector ring is not pos­

sible, and in which invariance of the point response function cannot be main-

tained, the pseudo-inverse method of reconstruction is, however, shown to be 

very useful. Advantage is taken of the fact that the activity to be measured 

is localized in a single plane, without over or underlying activity. A planar 

camera configuration yields very well conditioned matrices that are separable 

for a large number of useful cases. It is even possible to define pixel sizes 

which are considerably smaller than the detector size and solve the problem 

without a substantial increase in the noise magnification factor. 

Recognizing that the above application is equivalent to a case of very 

well defined time-of-flight (TOF) 111easurement, the simple initial PET study is 

*This paper was prepared under the auspices of the U.S. Dept. of Energy Contract 
W-7405~ENG~48 and a grant from the National Institute of Health No. CA27024-02. 

The figures were printed from originals provided by the author. 
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reevaluated by inclusion of TOF information. It is shown that even with TOF 

uncertainty of the order of several pixels in size, the condition of the 

problem improves greatly, with decrease of one order of magnitude in noise 

propagation. 

Introduction 

Tomographic image reconstruction by the filtered backprojection technique 

has become the almost universal image reconstruction method both in computer­

ized X-ray tomography (CAT) and in single photon or positron emission tomo­

graphy (SPET, PET). In all cases, data from a complete set of views is re­

quired and the assumption that the point response function of the imaging 

system is space invariant must hold to a considerable extent. In contra­

position, the idea of solving the imaging problem by inversion (or pseudo­

inversion) of the matrix defining the imaging system has frequently been 

rejected in the literature due to the apparent need to invert or find the 
2 2 . eigenvalues and eigenvectors of a matrix of dimensions n x n for an image 

plane of dimensions n x n. For medical tomographic imaging, such matrices are 

badly behaved and the method seems to offer no hope. 

At the lawrence Berkeley laboratory, we are examining an imaging problem 

in PET in which the existence of a complete ring of detectors is physically 

impossible and the limiting of the radiation acceptance cone in order to pre-

serve space invariance is not acceptable because of the reduction in sensitiv-

ity that it entails. The problem arises in the process of injecting a beam of 

accelerated positron emitting nuclei into a-patient and measuring the end point 

of the beam trajectory by imaging the annihilation gamma-rays emitted by the 

nuclei when they come to rest. 1 By that process, cancer radiation therapy 
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of small tumors localized in inoperable areas of the body can be aided by 

determining with great accuracy where the therapy heavy ions will deposit most 

of their cell killing energy, sparing healthy, sensitive structures in the 

patient. 

The injection of a beam of positron emitting accelerated heavy ions would 

result in a heavy radiation dose to the patient if millicures of positron 

emitting activity were to result from the injection. For probing purposes, a 

dose of a few rads is the maximum that appears acceptable and, with heavy ions, 

the resulting injected activity is of the order of 0.1 or 0.2 microcuries, a 

very small amount. On the other hand, we have the advantage that we want to 

image a line or a plane of radioactivity without any other substantial under-

lying or overlying activity during the imaging time of a few seconds. 

The above requirements have directed us to reexamine image reconstruction 

methods based on linear matrix analysis as a basis on which to build appro-

priate imaging i·nstruments. A simple theoretical development for imaging along 

a line, with a description of the physical meaning of the system matrix, its 

eigenvalues and eigenvectors was published earlier2, as an aid to designing 

a one-dimensional imaging instrument. 3 Although in a different context, 

that theoretical material is similar to the pseudo-inverse method of image 

analysis used quite frequently in fields other than medical tomography. 

Reference 4 provides a very complete and lucid exposition of imaging theory 

based on matrix analysis. 

This paper shows the outcome of an investigation into the 11 pseudo-inversen 

method of image reconstruction for arrays of increasing number of pixels in a 

plane. In particular, using as an example a single plane PET imaging problem 

of the simplest kind, the paper describes the generation of ••backprojectionn 

system matrices and the corresponding two-dimensional 11 blurring 11 matrices. A 
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physical interpretation of the eigenvectors and eigenvalues follows, as well 

as a discussion of the errors and difficulties that occur as the size of the 

pixel array increases beyond the very modest size of 8 x 8. The reasons for 

the very unfavorable "condition number" of the blurring matrices are explored, 

leading the way towards a more favorable configuration of detectors for the 

beam injection problem at hand. It is shown that a planar configuration for 

the imaging instrument, i.e., two multicrystal flat arrays of detectors, equi-

distant from the plane of positron beam injection, results in blurring matrices 

of favorable condition numbers which allow not only an image reconstruction 

without maintaining space invariance of the point response function, but also 

allows the "deconvolving" of the effects of detector response overlap when the 

pixels are nearly a factor of two smaller in size than the size of the de-

teeters. Furthermore, it is shown that for the planar camera the resulting 

blurring matrices with regular arrays of detectors are exactly separable into 

Dirac products of two n x n matrices, making the eigenanalysis, "pseudo-

inverse" determination and filtering processes much easier than in cases where 

n2 x n2 matrices have to be handled. 

Finally, after realizing that the advantage of the proposed geometry for 

the application on hand is derived from the implied knowledge of the plane of 

emission of the gamma rays, the effect of time-of-flight (TOF) information on 

the matrix characteristics of the simple PET geometry is analyzed and the 

beneficial noise-reducing effects of TOF information is demonstrated. 

The System Matrix 

Reference 2 discusses the system matrix A for general imaging systems and 

the solution of the image reconstruction problem in terms of the eigenvectors 
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and eigenvalues of the symmetric matrix resulting from the product ATA, where 

AT indicates the transpose of A. In this paper a specific simple PET imaging 

problem will be used in order to provide a familiar basis for a physical de­

scription of the mathematical results. In particular an imaging system con­

sisting of two rows of perfect detectors that can rotate by an angle e about 

the center of an n x n array of pixels will be considered, as shown in Fig. 1. 

The linear dimension d of the pixels and of the detectors will be taken to be 

equal, the pixels will be taken to be of uniform activity and, for a given 

angle e, the response of detectors a and b in coincidence will be proportional 

to the area of p intersected by the field of view of the two detectors (shaded 

zone in p). Coincidences will only be allowed between detectors which are 

facing each other directly so that there can be Nc coincidences at each 

posit ion e. 

The system matrix A is obtained by assuming that a unit activity is placed 

in pixel No. 1, the detectors are made to step in N
9 

angles from e ~ 0 < 180° 

and the resulting coincidence rates (a total of Nc x N
9

) are recorded as 

the first column of matrix A. The unit activity is then placed in pixels Nos. 

2, 3, ••• to n2, each time obtaining one column of A. The resulting matrix 

has Nc x N
9 

rows and n2 columns. 

In principle, the imaging problem consists i.n solving the equation: 

A -;_ = k (1) 

+ 2 
where x is an unknown vector of length n , corresponding to some activity 

. + 
distribution in the pixels and k is a vector of length Nc x N

9 
which is 

the result of a measurement. Thus, the A matrix contains all the information 

about the pixel-detector system necessary to solve the imaging problem. 
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The Blurring Matrix 

The solution to Eq. (1) is equivalent to solving: 

ATA; = AT k 
where AT is the transpose of A. We can then define A' = ATA andk 1 =Ark 

and rewrite Eq. (2) as: 

,..... ....., 
A X = k 

I 2 2 -+ -+ 2 
where A is of dimension n x n , and x and k1 are also of dimension n , 

(2) 

(3) 

the number of pixels. Matrix A1 is symmetric and positive. The ith row (or 

column) contains as elements the activity that the detector system would sense 

as existing in th~ ith pixel when a source of unit strength is moved in suc­

cession from the first to the last pixel. 4 A contains, therefore, informa-

tion of the 11 blurring 11 function for each pixel caused by the camera configura-

tion. Figure 2 shows the blurring matrix obtained for the detector system of 

Fig. 1 for an 8 x 8 pixel array. The A' matrix is of dimension 64 x 64. 

Plotting each one of the columns of A' in a n x n array gives an im~ge of the 

blur-ring suffered by each pixel when viewed by the detector system. This has 

been done for the first column of A1 in the n = 8 case and it is shown in 

Fig. 3. For large n, the blurring function approaches the well known 1/r 

blurring function for a point source5, for pixels not too close to the image 

array edges. 
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The Deblurring Matrix 

The solution to Eq. (3) would be quite straightforward if the inverse of 

A
1 would be obtained for a practical imaging system. 

then: 

-+ -+ 
X = B k1 

1'-1 If we let B = A , 

(4) 

For this inverse to be obtainable successfully it is necessary that A1 be well 

behaved. -+ Further, for x to be a reasonable approximation to the correct 

activity distribution in the presence 'of statistical fluctuations, it is ne­

cessary that the condition .number (CN = largest eigenvalue/smallest eigenvalue) 
I of A be relatively low. These two conditions are very closely related. Ref-

erence 2 shows in a rather intuitive approach that: 

-+ [a;-+ 
X = --X· ). . 1 

. . 1 
1 

(5) 

where >. 1 are the eigenvalues of A~ x1 are the eigenvectors, and a 1 = <Xi' k1 
>, 

dot products of the indicated vectors. If some A;'s are much smaller than 

the rest, any statistical fluctuation reflected in the a
1 

value will result 

in large errors in the contribution to the final solution of the corresponding 
• -+ e1genvectors X;· 

One way of obtaining a "pseudo-inverse" for A1 consists in replacing a. 
1 

-+ 
and k1 Eq. (5) by their definitions, arriving at the expression 

X~ X~ 
1 1 

k a.---
P PJ >. • 1 

X = q 
i=l j=l P=l 

where x~ is the jth element of the ith eigenvector, a . are elements 
1 PJ 

{6) 
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of the rectangular system matrix A, and kp are elements of the vector of 

coincidence rates obtained in a measurement. 

If we consider first the summation over p, in Eq. · (6), letting 

Nc x N9 

h.= ~ 
J L 

P=l 

(7) 

· we. rea 1 i ze that h is obtai ned by taking dot products of the vector obtai ned 

experimentally with columns of the system matrix A. This is a backprojection 

process of the experimental results using the prescription contained in A. 

Thus, the system matrix A is also a backprojection matrix and it will be des-

ignated with either name henceforth. 
+ +1. 

We note that h = k 1n. Eqs. (3) and (4). 
+ 

In terms of the backprojected image h, the final result is, therefore 

n2 
xq = L ~ bjq 

{8) 

j=l 
where bjq is defined as 

n2 xj. xq. 
b jq = L 1 1 

A. 
i=l 1 

( 9) 

Equation (8) performs a "deblurring" operation on the backprojected exper­

imental result and one would expect that the bjq are the elements of the 

matrix B which is some approximation to A'-1. Indeed, a more rigorous treat-

ment of the problem (Ref. 4, Sec. 8.1) shows that the filter of Eq. (9) is the 

"pseudo-inverse" filter that yields the minimum least squares solution of mini­

mum norm for the general image recovery problem with space variant response 

function. 
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Pseudo-inverses have been obtained for the simple PET system of Fig. 1 

with n = 5, 8 .and 13. For n = 5, the eigenvalue and eigenvector analysis was 

carried out with 23 and 55-bit mantissa floating point numbers using the older 

Jacobi method6, with 27-bit mantissa by reduction to tridiagonal form by 

Householder•s method and the QL algorithm7, and with 48-bit mantissa by a 

similar method8• The results of the 55-bit Jacobi method and the two calcu­

lations by the QL algorithm yielded identical results up to the 6th or 7th 

decimal digit. The 23-bit mantissa Jacobi method had errors that resulted in 

noticeable discrepancies in simple image reconstruction tests. The condition 

number of the 25 x 25 A 1 matrix is shown in Tab 1 e I. The numoer of ang 1 es 

N
9 

was increased until the CN stablized at its lowest value. 

For the n = 8 case, simple image reconstruction test from the 11 pseudo-

inverse 11 obtained from eigenanalysis with the QL algorithm using 27-bit 

mantissa showed some slight but noticeable errors, shown below, which decreased 

somewhat when a 48-bit mantissa was used. The CN•s obtained are shown in 

Table I. 

For n = 13, the eigenanalysis with the QL algorithm using 27-bit mantissa 

yields a CN which is lower than that of the n = 8 case. A simple image 

reconstruction with the resulting pseudo-inverse shows substantial errors, 

indicating the unreliability of the obtained analysis. An attempt to use a 

48-bit mantissa and QL algorithm results in serious convergence problems in 

the determination of the eigenvalues and for that reason the attempt was not 

continued. 

Figures 4 a) through c) show the three eigenvectors with highest eigen-

values, and Figs. 4 d) through f) show the ones with smallest eigenvalues, for 

then= 8 case. As seen from Eq. {5), the eigenvectors have the same dimen­

sions as the pixel array and a weighted sum of them forms the final image. 
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The high eigenvalue vectors approximate two-dimensional sine and cosine pro-

ducts, although this resemblance with a Fourier basis is lost at the low 

eigenvalue vectors~ 

The deblurring matrices obtained for the three values of n studied have 

very similar characteristics to the one shown in Fig. 5 a), for n = 8. 

Removing some of the summation terms of Eq. (9) in forming matrix B changes 

its appearance quite drastically, as seen in Fig. 5 b). Leaving out some of 

the summation t~rms is a method of reducing noise in image restoration at the 

expense of sharpness. The effect on tomographic reconstruction will be 

discussed below. 

Separability 

As discussed in detail in Ref. 4, the problem of image restoration can be 

simplified greatly if the blurring matrix can be separated into the Dirac pro-

duct of two blurring matrices X and Y~ each of dimension n x n. In that case, 

the n2 x n2 matrix can be subdivided in such a way that the following de-

scription holds: 

x11Y x12Y x1nv 
A =· 

xnly xn2Y xnny 

where xij are elements of the matrix X. If A can be subdivided in that 

way, filtering of the backprojected image can be carried out by 

where [x] and [k'] are the vectors; and k' represented as n x n matrices, 

and 

(10) 

(11} 

(12) 
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and similarly for [BY]. Matrix [xx] is the n x n matrix of eigenvectors 

for the X blurring matrix and [A;1J is a diagonal matrix containing the 

reciprocal of the corresponding eigenvalues~ 4 

With separability it is only necessary to obtain pseudo-inverses for n x n 

matrices, instead of n2 x n2 for the general case. Unfortunately, the PET 
! 

imaging problem of Fig. 1 is not separable. Separability would imply that 

blurring in the x-direction is only a function of x, and similarly for the 

y-direction. The blurring function 1/r = 1 IV i + y2 cannot be separated 

into a product f(x).g(y) except in ~ crude manner that leads to very poor image 

reconstructions. 

The saving simplification in the PET problem is in the assumption that the 

point response function becomes space invariant as n becomes large. In that 

case the eigenvectors of A form the Fourier basis and it allows for the suc­

cessful development of the very useful imaging technology available today. 

Nevertheless, the problem remains a very badly posed one, requiring excellent 

statistics and absence of flaws in the raw image data for a good image. 

Noise Magnification 

An examination of Eq. (5) indicates that CN of an ima.ging system is not 

sufficient to define the noise magnification in a reconstruction. A large 

number of Ai's may be involved in propagating statistical noise from indi­

vidual projections to the final image as there may be a number of eigenvectors 
-+ 
~ that contain high frequency variations. It appears that the noise mag-

nification factor would have to be calculated case by case for the non-Fourier 

based systems. 
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In order to gain some understanding of the noise magnification of the sim­

ple PET system described above for later comparison with an alternative system, 

tests have been carried out by generating an experimental result vector of 
+ 

coincidences k by computer and introducing statistical fluctuations. It has 

been assumed that a 11 pixels contain an equa 1 amount of activity and a number 

N has been defined as the number of coincidence counts emitted by each pixel 

into a pair of perfect opposing detectors, for e = 0. The total number of 

counts in one image is N x n2 x N
9

, with equal count density between the 

different tests. Fig. 6 a) shows the reconstructed 5 x 5 flat field for 

N = 105, N
9 

= 16 and Fig. 5 b) shows the results for the same N, for the 

8 x 8 case, N
9 

= 40. Strong effects due to the eigenvector of Fig. 4 f) are 

quite evident in the latter. When filtering is carried out by the noise 

reducing pseudo-inverse of Fig. 5 b) , a substantial reduction of noise is 

obtained, as shown in Fig. 6 c). 

Figure 7 shows the values of fractional RMS noise (nRMS) obtained with 

the 5 x 5 and 8 x 8 systems at different values of N. A least-squares fit 

established quite well the relationship 

(J (N) -1/2 
nRMS (13) 

as expected. The numerators of the expressions shown in Fig. 7 can be defined 

as the corresponding relative Noise Magnification Factors (NMF) for the defini-

tion of N given above in the present case with equal counts for pixel and equal 

density. If we consider that the NMF could be expected to be approximately 

proportional to (N
9
)-l/2, then the dependence on CN appears to be somewhat 

slower than (CN) 112 in the region of small n explored. 
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Simple Imaging Experiments 

In order to demonstrate the correctness of the pseudo-inverse obtained 

above, an imaging simulation has been carried out by generating the experi­

mental results vector k corresponding to an n x n pixel array in which a 

central square portion has been given a numb~r N, and one single pixel has 

2N. Figure 8 a) shows the reconstructed image for n = 8, N ~ = . Slight er­

rors (=.± 1%) occurs in three of the pixels adjacent to the 2N pixel. Errors 

in all the other pixels are less than : 0.1%. When a pseudo-inverse obtained 

with a 48-bit mantissa was used, the errors in the three worse pixels became 

approximately : 0.8%. 

Figure 8 b) is the result of introducing fluctuations corresponding to 
5 ~ 

N = 10 counts into vector k, and Fig. 8 c) corresponds to the same value of 

N, but using the noise reducing matrix of Fig. 5 b). Such matrix reduced the 

noise quite strongly, as seen in Fig. 6 c), but results in very inaccurate 

imaging. The errors could be described as a reduction in sharpness. 

Figure 8 d) shows an attempt to reconstruct an image similar to the 

previous ones with the "pseudo-inverse" obtained from the 27-bit mantissa QL 

algorithm, for n = 13. No statistical fluctuations were incorporated into 
~ 

vector k. As indicated above, the n = 13 case could not be solved correctly 

with, at least, a reasonable amount of effort. 

An Alternative Detector Configuration 

An observation of the blurring matrices for the PET configuration described 

and a consideration of the fact that matrices with high condition numbers arise 

when the detector configuration is such that individual pixels are defined 
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ambiguously2 leads to the realization that the problem of imaging a single 

plane activity, in the absence of activity in over or underlying planes, could 

best be carried out in a detector configuration which does not require the 

y-ray pairs from one pixel to traverse other pixels before reaching the 

detectors. This can best be done by planes of detectors which are coplanar 

with the pixel array, a geometrical configuration that has been in use since 

Anger described the use of two y-cameras for imaging positron emitting iso­

topes9 in 1966. Burnham and Brownell presented their multicrystal two-plane 

camera for the same purpose10 in 1972 and the concept of the planar camera 

configuration for three-dimensional volume reconstruction was presented by 

Chang et a1 11 in 1976. The analysis of the problem of imaging of a single 

plane of activity exploiting some of the advantages of the situation by eigen-

analysis has, however, not been reported in the literature and it will be the 

object of the following discussion. 

The problem to be analyzed here is described in Fig. 9. We consider two 

planes with NO perfect detectors separated by a distance Z. The detector 

sides have dimension d. Equidistant between the two planes is an n x n array 

of pixels of side dimension s, where s can be smaller than d, and n2 can be 

larger than NO. It will be first assumed that the centers of the pixel array 

and of the detector planes are colinear. 

For such an imaging system the backprojection matrix A can be obtained 

just as in the PET case by assuming a unity of activity placed in pixel No. 1, 

and forming a column vector of length ND2 containing rates of coincidences 

of every detector A with all detectors B for that pixel. The procedure is 

repeated for all n2 pixels. Matrix A will have ND2 rows and n2 columns. 
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No restriction has been placed on which coincidences are allowed between the A 

and B detectors, since we are interested in maximum sensitivity by not preserv­

ing space invariance of the point response function. 

· The blurring matrix A = ATA for these systems presents a very different 

appearance from those for the PET case. Four cases have been studied, all 

with ND = 64 {8 x 8 detector planes), d = 1, and an increasing number of pixels 

of decreasing size occupying ~ square of sides 6 units. Table I shows the 

characteristics of the pixel arrays and the condition number of the blurring 

matrices for the planar cameras. Fig 10 a) and b) shows the blurring matrices 

for the n = 8 and 12 systems. The case for n = 12 corresponds to the limit 

imposed by sampling and finite pixel size, in which the blurring matrix becomes 

quite ill-conditioned, with a high CN. Figures 11 a) and b) show the blurring 

functions of a pixel near the center of the array for the n = 8 and 12 cases. 

It is evident that blurring is considerably more localized in the planar case 

than in the PET camera even for· s = d/2. 

The blurring matrices obtained for the planar cameras. have been found to 

be exactly separable into Dirac products of X and Y blurring submatrices in 

the following cases tested: square detectors (as in Fig. 9), circular 

detectors inscribed in the squares of Fig. 9, pixel arrays which are equi-

distant from the two detector planes but with centers not colinear with the 

detector array centers, and pixels with their activity concentrated at their 

center. The blurring matrix is not separable in some cases tested in which 

the det~ctor arrays do not appear identical under 90° rotation about the axis 

joining the planes. Thus, although far from exhaustive, the tests seem to 

indicate that uniform arrangements of detectors with substantial symmetries 

will result in separable matrices, which for large arrays can make the solu-

tion of the imaging problem much easier. 
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For the small systems tested, finding the pseudo-inverse by the method of 

Eq. (9} has presented no problems. The pseudo-inverse for the n = 8 and 12 

cases are shown in Figs. 12 a} and b). The deblurring functions for the same 

two pixels of Figs. 11 a) and b) are shown in Figs. 13 a) and b). The case 

for n = 12, at the sampling theorem limit, requires the manipulation of the 

backprojected data for all the pixels in order to find the activity at on 

pixel, with relatively large coefficients. For s > d/2 the deblurring func­

tions behave more like the well known functions for tomography. 

The noise propagation of the planar camera with a single plane of activity 

has been investigated in a similar manner to the PET case. A number N has 

been defined as the number of counts emitted by one pixel into one pair of 

opposing perfect detectors. Pixels towards the center of the array contribute 

more counts to the image than pixels in the periphery. Figures 14 a} through 

c) shows the flat field images for n = 8, 10 and 12 with N = 1000. The cases 

for n = 8 and 10 are similar in behavior, but at the sampling theory limit, 

noise increases substantially. 

Figure 7 shows the fractional RMS noise of the planar camera for n = 6, 8 

10 and 12, obtained for the flat fields as a function of count density 

(Nd2ts2). Decreasing the pixel size from the dimension of the detector d 

to 0.6d would be expected to result in an increase in rms noi~e of 1.66 due to 

the decrease in counts for pixel. Since the ratio of nrms is found to be 

3.48, one can attribute a NMF of 2.08 to an increase in CN of 3.06. An ap­

proximate dependence of NMF a(CM) 112 seems to hold, at least before the 

limit imposed by the sampling theorem is reached. 

Simple imaging experiments are shown in Fig. 15. A square region of N 

counts per pixel per detector pair contains one pixel with 2N counts. Fig-

ure 15 a} shows an image for n = 8 comparable to the PET image of Fig. 8 b) 



-17-

but N reduced by a factor of 103, with a similar noise level, as expected 

from Fig. 7. Figures 15 b) and c) show similar images for n = 10, near the 

sampling limft, for N = 10,000 and 10. The total number of counts in the 

image for n = 10 is approximately 10,000. Finally, Fig. 15 d) shows the 

n = 12 image for N = 10 with considerable deterioration over the one of 

Fig. 15 c). 

Regarding the method of solution, it can be indicated that the well 

behaved matrices of the planar camera, except for the n = 12 case, correspond 

to problems which can be solved with quite satisfactory results by several 

methods: pseudo-inverse (Eqs. 8 and 9), separated X and Y pseudo-inverse 

(Eqs. 11 and 12), direct solution of Eq. (3) by inversion of A1
, and a linear 

least squares solution with non-negative constrain on the result. 12 There 

are some differences in the solutions with noisy data, but they are minor. 

The method of choice may depend on the specific application. 

Inclusion of TOF Information in PET 

The first part of this paper has demonstrated without much doubt that the 

problem of image reconstruction from a section using transverse tomography by 

an exact approach (as exact as the model used to describe the imaging system 

by the backprojection matrix) is not practical except for very small systems. 

This result is not new, as that approach has not had much appeal for workers 

in the tomographic imaging field. The detailed examination carried out, 

however, has given a good indication of the reason for the difficulty and 

pointed out that, at least in some specific cases, there may be alternatives 
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to a detector ring structure which have very desirable noise behavior and ease 

of solution, even with large arrays. 

A comparison between the calculations for the PET and planar structures 

shows that the very high CNs of the PET matrices are caused by the large 

amount of ambiguity about the origin of a y-ray pair when the rays have to 

cross many pixels before reaching the detectors. In single plane imaging with 

planar cameras the knowledge of the point of origin along the trajectory of 

the y-ray pair is implicitly included in the A matrix so that the deblurring 

process only has to contend with the effects of nearest neighbor pixels. 

An immediate corollary that comes out from the above discussion is that 

the newly emerging time-of-flight (TOF) technology for imaging positron 

emitters can contribute substantially to posing the PET imaging problem in 

improved terms by removing a very substantial part of the ambiguity in the 

matrices, although the time resolution of the TOF systems is not ideal. 

In order to demonstrate this point explicitly, the simple imaging system 

of Fig. 1 has been reanalyzed by assuming that the detectors have TOF capa­

bility with a Gaussian space resolving function of standard deviation 

(aTOF x d). Each column of the system matrix A corresponding to one pixel 

is now expanded to contain one entry for each TOF analyzer bin for each 

projection bin for each projection, i.e~, the length .of each column of A is 

(NTOF x Nc x N
9

), where NTOF is the number of TOF bins used in the 

analysis. The entries in A have been filled with the values Df a Gaussian 

function of mean equal to the mean TOF difference from the portion of pixel 

spanned by the corresponding detector pair and a given standard deviation 

crTOF" The area of the Gaussian has been made equal to the portion of pixel 

area spanned, i.e., the area of the Gaussian is equal to the single bin entry 
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without TOF information. This is a formal approach to representing the 

detection system, since each column entry is one possible outcome of the 

measurement and the entry values are probabilities of such outcome being true. 

The A-matrix thus obtained can then be used to obtain the blurring and 

deblurring matrices for the system, as described above. Results for an 8 x 8 

'pixel array, N
9 

= 32 and aTOF ranging between 0.75d to 4.5d have been obtained 

and are shown in Table II. The fractional RMS noise corresponds to a flat 

field with a number N of counts emitted by one pixel into one pair of opposing 

detectors equal to 1000. The strong improvement in CN of the blurring matrices 

with improving aTOF is very evident. The RMS noise is found to follow ap­

proximately the relationship 

nRMS 
(14) 

for aTOF = 4.5d and below. The RMS noise follows a nearly linear relation­

ship with aTOF for values of the latter between 3.0d and 0.75d. 

The effect of including TOF information on the character of the blurring 

matrices is quite evident from Fig. 16 a) through c) showing the blurring 

functions for the first pixel of the 8 x 8 array for the case of no TOF, and 

aTOF = 4.5d and l.Sd. Figures 17 a) through c) show the corresponding de­

blurring functions. The sharpening of the blurring functions with improved 

TOF information leads to a "cleaning up" of the deblurring functions which are 

seen to approach the customary filter functions of computed tomography in 

appearance. 



-20-

Conclusion 

The above matrix analysis of the transverse tomography problem has shown 

that considerable insight can be gained on the reasons for its ill-posed 

nature, which prevents an exact solution of practical medical cases. The 

inclusion of TOF information makes a very substantial difference on the 

conditions of the problem, even with time resolutions which corresponds to a 

determination of the point of y-ray emission with uncertainities of several 

times the pixel dimensions. The inclusion of the TOF information into the 

system matrix has been seen to lead to the determination of filter functions 

which- are specific to a particular detector system. Carrying the idea to the 

extreme of exact TOF knowledge by postulating that the positron emitting 

activity is all in one single plane and designing a planar camera to take 

advantage of that fact results in a detector system with excellent condition 

in which the solution can be pushed to cases with pixel size smaller than the 

detector size. 

The detector systems simulated in the present work have been assumed to be 

perfect. A physical system will have a number of imperfect features which 

will result in blurring matrices of somewhat worse characteristics than the 

ones shown here. Previous experience with a one-dimensional camera3 shows 

that the CN of a physical detector system can be larger by a factor of roughly 

two when compared to a calculated model. For the case of radioactive beam 

injection1, the design of a high sensitivity and high spatial accuracy two­

dimensional instrument for single plane imaging is proceeding following the 

above concepts of a planar camera. A computer camera simulation program, 

including neighboring detector interactions, is going to be used in the design 

process and to obtain the: filter functions for the actual instrument. 
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It is expected that true three-dimensional imaging (activity in a volume, 

rather than a plane) by the pseudo-inverse method demonstrated in this paper 

will run immediately into similar ambiguity problems as the PET problem. 

There is, however, a large number of ideas to be explored regarding detector 

configuration, separability of the matrices and TOF before a reasonably com­

plete understanding of the role of eigenanalysis techniques in three-dimensional 

image reconstruction is attained. This work will proceed a part of our radio­

active beam project at LBL. 
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Figure Captions 

1. Simple PET camera model for matrix analysis. An n x n array of square 

pixels p of dimension d is looked at by two banks (a and b) of perfect 

y-ray detectors, each with Nc detectors, which rotate over an angle e. 
Coincidences are only allowed between exactly opposing pairs of detectors. 

Their response to a pixel of uniform activity is proportional to the pixel 

area (shaded) spanned by the detector. 

2. Blurring matrix for an 8 x 8 pixel array. Matrix dimension is 64 x 64. 

Each column (or row) contains all the blurring information for one pixel. 

A very high condition number (CN} is shown for this matrix. 

3. Blurring function for a corner pixel of the 8 x 8 array. It corresponds 

to the first column of the matrix of Fig. 2, plotted on .an 8 x 8 array. 

The values of the function corresponds to the image that would be obtained 

from a single active pixel if only backprojection of the coincidence data 

were carried out (no filtering}. 

4. ·some eigenvectors of the blurring matrix of Fig. 2. 

a), b) and c): Lowest spatial frequency eigenvectors, corresponding to 

the largest eigenvalues. 

d), e) and f): Eigenvectors with smallest eigenvalues, which have· deviated 

from a resemblance to two-dimensional sinusoidal function 

products. 
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5. Pseudo-inverse matrix for the 64 x 64 matrix of Fig. 2. 

a) Unmodified, matrix is dominated by some large positive and negative 

elements, which obscure structure in all columns • 

. b) Modified by exclusion of terms corresponding to smallest eigenvalues • 

The elements with very large magnitude have disappeared. 

6. Response of the PET system to a flat field of activity. The number of 

counts N emitted by each pixel into an opposing pair of detectors for 

each angle measured is 100,000. 

a) 5 x 5 pixel array 

b) 8 x 8 pixel array 

c) 8 x 8 pixel array, using modified pseudo-inverse of Fig. 5 b) 

7. Fractional rms noise (rms noise activity/activity) as a function of count 

density for flat field PET images with n = 5 and 8. Also for planar 

camera with n = 6, 8, 10 and 12. Solid lines are fitted to computer 

simulation points showing nRMS a N-112 • 

8. Simple imaging simulation experiments for the 8 x 8 pixel PET system .• 

A 4 x 4 square of unit activity contained one pixel of two units 

activity. 

a) No statistical fluctuations in the data. Notice small errors 

adjacent to the two unit pixel caused by truncation errors in the 

pseudo-inverse. 

b) With statistical fluctuations corresponding to N = 100,000. 

c) N = 100,000, filtering done with noise-reducing matrix of Fig. 5 b). 

d) Similar experiment with 13 x 13 pixel PET system, no statistical 

fluctuations, showing considerable errors caused by faulty inverse. 
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9. Schematic drawing of planar camera for single plane image reconstruction 

from an accelerated radioactive ion beam injection. Two banks of square 

perfect detectors (A and B) of dimension d are equidistant from a plane 

of n x n square pixels of dimension s, where s d. Each pixel is 

assumed to contain a uniform activity. All possible coincidences are 

allowed between the two banks of detectors. 

10. Blurring matrices for planar camera with 8 x 8 detectors of dimension d. 

a) For 8 x 8 pixel array (n = 8) of dimension s = 0.75d. 

b) For 12 x 12 pixel array (n = 12) of dimension s = 0.5d (sampling 

limit). 

11. Blurring functions for a pixel near the center of the array (columns of 

the matrices of Fig. 10). 

a) n = 8 

b) n = 12 

12. Pseudo-inverses for the matrices of Fig. 10. 

a) n = 8 

b) n = 12 

13. Oeblurring functions for a pixel near the center of the array (columns of 

the matrices of Fig. 12). 

a) n = 8 

b) b = 12 
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14. Response of the planar detector system of Fig. 9 to a flat field of 

activity. The number of counts N emitted by each pixel into any 

opposing pair of detectors is 1000. Compared with Fig. 6 b) it is seen 

that similar noise levels are obtained in the planar camera with 100 

times fewer counts, with value of s up to very close to the sampling 

limit. 

a) For n = 8, s = 0.75d 

b) For n = 10, s = 0.6d 

c) For n = 12, s = 0.5d (sampling limit) 

15. Simple imaging experiments for the 8 x 8 planar detector system, similar 

to those of Fig. 8. 

a) n = 8, N = 100 

b) n = 10, N = 10,000 

c) n = 10, N = 10. Notice that image is still quite good, even at 

s = 0.6d and with few counts. 

d) n = 12, N = 10. Large errors occur at the sampling limit with poor 

statistics. 

16. Blurring functions for 8 x 8 system of Fig. 1 with inclusion of TOF 

information. System is almost identical (N
9 

= 32 instead of 40) to 

that of Fig. 3. 

a) No TOF information 

b) with oTOF = 4.5d 

c) with oTOF = 1.5d 
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17. Deblurring functions corresponding to the same system and pixel of 

Fig. 16. 

a) no TOF information 

b) with aTOF = 4.5d 

c) with aTOF = 1.5d 
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TABLE 1 

Condition Numbers of Blurring Matrices 

System Pixel Array A Matrix No. of Angles No. of Coinc./Angle 
n Dim Ne Nc 

PET Fig. 1 5 25 X 25 8· 9 

5 25 X 25 16 9 

5 25 X 25 32 9 

8 64 X 64 24 12 

8 64 X 64 40 12 

8 64 X 64 40 12 

Pixel Size No. of Caine. 
s 

- .. -·-

Planar Fig. 9 6 36 X 36 1.0 d 64 X 64 = 4096 

8 64 X 64 0.75 d 4096 

10 100 X 100 0.6 d 4096 

12 144 X 144 0.5 d 4096 
------ ---~----- ---~---- - --~-~-

t. ,f" 

CN 

14690 

2463 

2464 

277440 

272500 

271593 

9.7 

16.03 

29.7 

5508 

Method 

Jacobi 55-bit 

QL 27 and 

48-bit 

QL 27-bit 

QL 48-bit 

QL 27-bit 

I 
N 
~ 
I 
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TABLE II 

Effect of Including TOF Information On 

System Matrices 

PET System of Fig. 1, n = 8, n9 = 32, QL 27-bit Eigenvalues 

aroF CN Fractional RMS noise 
N = 1000 

No TOF 305255 :::: .3 

4.5 d 2498 .027 

3.0 d 1023 .022 

1.5d 189.5 .0117 

0.75 d 44 .0062 
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Figure 1 XBL 8111-12313 
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CN=272503 

XBL 8110-12309 
Figure 2 
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Figure 3 
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XBL 8110-12311 
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Figure 4 
XBL 8110-12321 
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UNMODIFIED 

a) 

NOISE REDUCING 
b) 

XBL 8111-12317 

Figure 5 
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Figure 6 

"RMs = 0.00725 

nRMS = 0.0448 

nRMS = 0.00301 

XBL 8111-12320 

; 
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a) 

b). ·-

XBL 8111-12318 
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Figure 11 
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a) 

b) 

XBL 8111-12315 
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n=S PLANAR 

a) 

n=l2 PLANAR 

b) 

Figure 12 
XBL 8111-12319 
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n=S 
a) 

n~l2 b) 

• Figure 13 XBL 8111-12316 
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Figure 14 XBL 8111-12323 
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Figure 16 
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a) 

b) 

c) 
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XBL 8111-12325 
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Figure 17 XBL 8111-12326 
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