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TOMOGRAPHIC IMAGE RECONSTRUCTION BY EIGENVECTOR .
DECOMPOSITION: ITS LIMITATIONS AND AREAS OF APPLICABILITY*

_ Jorge Llacer .
Lawrence Berkeley Laboratory

“University of California
" Berkeley, California 94720, U.S.A.

Abstract

This paper analyzes in detail the process of tomographic image reconstruc-
~tion by pseudo-inversion of the blurring matrix of a'PET'imaging system.
Eigenvector and eigenvalue decomposition is used as a method to evaluate the
physical reasons for the 111—conditioned nature of the problem. It is shown
that finding an accuraté pseudo—inverse for even a modest PET array of 8 x 8
pixels is a difficult task for a computer with 48-bit mantissa. The problem
is caused by the strong ambiguity with which the detector system measures the
activity at each pixel.

For a problem in which imaging with a complete detector ring is not pos-
sible, and in which invariance of the point response function cannot be main-
tained, the pseudo-inverse method of reconstruction is, howeVer, shown to be
very userl. AdVantage is taken of the fact that the activity to be measured
is localized in a single plane, without over or underlying activity. A planar
camera configuration yields very well cbnditioned matfices that are separable
~ for a large number of useful cases. It is eveh possible to define pixel sizes -
which are considerably smaller than the detector size and solve the problem
without a substantial increase in the noisé magnificatibn factor.

Recognizing that the above application is equivalent to a case of very

well defined time-df—f]ight (TOF),measurement, the simple initial PET study is

*This paper was prepared under the auspices of the U.S. Dept. of Energy Contract
W-7405-ENG-48 and a grant from the National Institute of Health No. CA27024-02.
The figures were printed from originals provided by the author. ,
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reevaluated by inclusion of TOF information. It is shown that even with TOF
uncertainty of the order of several pixé1s in size, the condition of the
problem improves greatly, with decrease of one order of magnitude in noise

propagation.

Introduction

Tomographic image reconstruction by the filtered backprojection technique
has become the almost universal image.reconstruction method both in computer-
ized X-ray tomography (CAT) and in sing]é photon or positron emission tomo-
graphy (SPET, PET). In all cases, data from a complete set of views is re-
quired and the assumption that the point response function of the imaging
system is space invariant mu§£ héid—fd‘a’éonéideféb1é exfent.- In contra-
position, the idea of solving the imaging problem by inversion (or pseudo-
iﬁversion) of the matrix defining the imaging system has frequently been
rejected in the literature due to the apparent need to invert or find the
eigenvalues and eigenvectors of a matrix of dimensions n2 X n2 for an image
plane of dimensions n x n. For medical tomographic imaging, such matrices are

-badly behaved and the method seems to offer no hdpe.

At the Lawrence Berkeley Laboratory, we are examining an imaging problem
in PET in which the existence of a'éomplete ring of detectors is physically
impossible and the limiting of the radiation acceptance cone in order to pre- -
serve space invariance is not acceptable because of the reduction in sensitiv-
ity that it entails. The problem arises in the process of injecting a beam of
accelerated positron emitting nuclei into a patient and measuring the end point
of the beam trajectqry by imaging the annihilation gamma-rays emitted by the

1

huc]ei when they come to rest. By that process, cancer radiation therapy
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Qf small tumors localized in inoperable areas of the body can be aided by
determining with great accuracy where the therapy heavy ions will deposit most
of their.cell killing energy, sparing healthy, sensitive structures in the
patient.

The injection of a beam of positron emitting acce]e}ated heaVy ions would
result in a heavy radiation dose to the patient if.mil1fcufes of positron
emitting activity were to result from the injectidn. For probing purposes, a
dose of a few rads is the maximum that appears acceptable and, with heavy ions,
the resulting injected activity is of the order of 0.1 or 0.2 microcuries, a
“very small amount. On the other‘hand; we have.ihe advantage that we want to
ijmage a line or a plane of radioactivity without any other substantial under-
1yihg or overlying activity during the imaging time of a few seconds.

The above requirements have directed us to reexamine image reconstruction
methods based on 11near‘matrix analysis as a basis on which to build appro- |
priate imaging instruments. A simple theoretigal developmént for imaging along
a line, with a description of the physical meaning of the system matrix, its
eigenvalues and eigenvectors wasvpubliéhed ear]ierz, as an aid to designing
a one-dimensional imaging instrument.3 Although in a different context,
that theoretical material is similar to the pseudo-inverse method of image
analysis used quite frequently in fields other than medical tomogfaphy.
Reference 4 provides a very comp]eté and lucid exposition of imaging theory
based on matrix analysis. |

This paper shows the outcome of an investigation ihto the "pseudo-inverse"
method of image reconstruction for arrays of increasing number of pixels in a
plane. In particular, using as an example a single plane PET fmaging problem
of the simplest kind, the paper describes the generation of "backpkojection"

system matrices and the corresponding two-dimensional "blurring” matrices. A
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physica\ interpretation of the eigenvectors and eigenvalues follows, as well
as a discussion of the errors and difficulties that occur as the size of the
pixel array increases beyond the very modest siie‘of 8 x 8. The reasons for
the very unfavorable "condition number" of the blurring matrices are explored,
leading the way towards a more favorable configuration of detectors for the
beam injection problem at hahd. It is shown that a planar configuration for
the imaging instrument, i.e., two multicrystal flat arrays of detectors, equi-
distant from the plane of positron beam injection, results in blurring matrices
of favofab]e condition numbers which allow not only an image reconstruction
without maintaining space invariance of the point'respdnse function, but also
allows the "deconvolving" of the effects of detectof response overlap when the
pixels are nearly a factor of two smaller in size than the size of the de-
tectors. Furthgrmore, it”is shown that for thé planar camera the resulting
blurring matrices with regular arrays of detectors are.éxact1; gééafabié inf6
Diréc products of two n x n matrices, making the eigenanalysis, "pseudo-
fnverse" determination and filtering processes much easier than in cases where
n2 X n2 matrices have to be handled. |

Fina]]y, after réa1izing that the advantage of the proposed geometry for
the application on hand is derived from the implied knowledge of the plane of
emission of the gamma rays, the effect of time-of-flight (TOF) information on
the matrix characteristics of the simp]evPET geometry is analyzed and the

beneficial noise-reducing effects of TOF information is demonstrated.

The Syétem Matrix

Reference 2 discusses the system matrix A for general imaging systems and

the solution of the image reconstruction problem in terms of the eigenvectors
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and eigenvalues of the symmetric matrix resu]ting from the pfoduct ATA, where
AT indicates the transpose of A. In this paper a specifi; simple PET 1maging
problem will be used in order to provide a familiar basis for a physical de-
scription of the mathematical results. In particular an imaging system con-
sisting of two rdws of perfect detectors that can rotate by an angle 9 about
the center of an n x n array of pixels will be considered, as shown in Fig. 1.
‘The linear dimension d of the pixels and of the detectors will be taken to be
equal, the pixels will be taken to be of uniform activity and, for a given
angle 6, the response of detectors a and b in coincidence will be proportional
to the area of p infersected by the field of view.of the two detectors (shaded
zone in p). Coincidences will only be allowed betweéh detectors which are
facing each other directly so that thefe can be Nc coincidences at each
position 0. |
| The system matrix A is obtained by assuming that a unit activity is placed
in pixel No. 1, the detéctor§ afe made to step in N9 angles from 6 < 0 < 180°
and the resu1ting coincidence rates (a total of NC X NQ) are recbrdéd as
the first column of mafrix A. The unit activity is then placed in'pixe1s Nos.
2, 3, ... to nz,_each'time obtaining one column of A. The‘resulting matrix
has NC X N9 rows and n2 columns.
In principle, the imagiﬁg pkob]em'consists'in solving the equation:

| CoAX = R | - (1)
wheré ; is an unknown vector ofllength n2, cbrrespohding to some activity
~distribution in the pixels and E is a vector of length Nc'x Ne which is
the result of a measurement. Thus, the A matrix contains all the information

about the pixel-detector system necessary to solve the imaging problem.
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The Blurring Matrix

The solution to Eq. (1) is équivalent to solving:

> >
ATax = AT | - (2)
T . . Y} T +/ T—)»
where A’ is the transpose of A. We can then define A = A'A and k" = A’k
and rewrite Eq. (2) as:
-> -+
Ax = k' (3)

’ . . . 2 2 > >, . . 2
where A" is of dimension n~ x n~, and x and k’ are also of dimension n—,
the number of pixels. Matrix A’ s symmetric and positive. The ith row (or
column) contains as elements the activity that the detector system would sense

as existing in the ith

pixel when a source of unjt s?rength is moved in suc-
cession from the first to the last pixe1.4— A contains, therefore, informa-
tion of the "blurring" function for each pixel caused by the camera configura-
tion. Figure 2 shows the blurring matrix obtained for the detector system of
Fig. 1 fof an 8 x 8 pixél array. The A’ matrix is of dimension 64 x 64.
Plotting each one of the co1umns-of A’ inanxn array gives an image of the
blurring suffered by each pixel when viewed by the detector system. This has
been done for the first column of A’ in the n = 8 case and it is shown in

Fig. 3. For large n, the'b1urring function approaches the well known 1/r

blurring function for a point sources, for pixels not too close to the image

array edges.
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The Deblurring Matrix

The solution to Eq. (3) would be quite straightforward if the inverse of
A’ would be obtained for a practical imaging system. If we let B = A('l,
then:

X = BK (4)

For this inverse to be obtainable successfully it is necessary that A/ be well
behaved. Further, for X to be a reasonable approximation to the correct
activity distribution in the presence of statistical fluctuations, it is né-
cessary that the condition number (CN = largest eigenvalue/smallest eigenvalue)

of A’ be relatively low. These two conditions are very closely related. Ref-

erence 2 shows in a rather intuitive approach that:

T +; S (5)-

¥

I
™
>
d><

. . > /
where Ai are the eigenvalues of Af Xi are the eigenvectors, and @i = <Xj» ? >,

dot products of the indicated vectors. If some xi's are much sma]]er than
the rest, any statistical fluctuation reflected in the @ value will result
in large errors in the contribution to the final solution of the corresponding
eigenvectors i;. |

One way of obtaining a "pseudo-inverse" for A’ consists in repiacing»ai
and EV Eq. (5) by their definitions, arriving at the expression

' n2 n2 NC X Ne x? X? (6)
xq=ZZZ' “ %5 1, |
j=1" p=1 v

1 _
J o .th .th .
where Xi is the j element of the i~ -eigenvector, apj are elements

T=
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of the rectangular system matrix A, and kp are elements of the vector of
coincidence rates obtained in a measurement.

If we consider first the summation over p, in Eq. (6), letting

Nc X Ne

;h' = Z kpapj, for lsi.-j.-_‘;nz, (7)
"we-realize that h is obtained by taking dot products of the vector obtained
experimentally with columns of the system matrix A. This is a backprojection
process of the experimental results using the preséﬁiption contained in A.
-Thus, the system matrix A is also a backprojection matrix and it will be des-
ignated with either name henceforth. We note that-; = .;'in.Eqs, (3) and (4).

-
In terms of the backprojected image h, the final result is, therefore

2
n
- (8)
Xq = N by
j=1
where qu is defined as
n2 j |
b xJ. x4 (9)
. = 1 1
Jq v
j=1 1

Equation (8) performs a "deblurring" operation on the backprojected exper-
imental result and one would expect that the qu are the elements of the

"1. Indeed, a more rigorous treat-

matrix B which is some approximation to A
ment of the problem (Ref. 4, Sec. 8.1) shows that the filter of Eq. (9) is the
“pseudo-inverse" filter that yields the minimum least squares solution of mini-
mum norm for the general image recovery problem with space variant resbonse

function.
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Pseudb-inverses have been obtained for the simple PET system of Fig. 1
with n = 5, 8 and 13. For n = 5, the eigenvalue and eigenvector analysis was
carried out with 23 and 55-bit mantissa floating point numbers using the older
Jacobi methods, with é7—bit mantissa by reduction to tridiagona] form by
Householder's method and the.QL a]gorithm7, and with 48-bit mantissa by a -
~ similar method8. The results of the 55-bit Jacobi method and the two calcu-

h or 7th

lations by the QL algorithm yielded identical results up to the 6
decimal diéit. The 23-bit mantissa Jacobi method had errors that resulted in
noticeable discrebancies in simple image reconstruction tests. The condition
number of the 25 x 25 A’ matrix is shown in Table I. The number of angles

Ny was increased until the CN stablized at its lowest value.

For the n = 8 case, simple image reconstruction test from the "pseudo-
inverse" obtained from eigenanalysis with the QL algorithm using 27-bit
mantissa showed some S1ight but noticeable errbrs, shown below, which decreased
somewhat when a 48-bit mantissa was used. The CN's obtained are shown in
Table I.

For n = 13, the eigenanalysis with the QL algorithm using 27-bit mantissa
yields a CN which 15 lower than that of the n = 8 case. A simple image
reconstrﬁction with the resuTting pseudoQinverse shows substantial errors,
indicating the unreliability of the obtained analysis. An attempt to use a

- 48-bit mantissa and QL algorithm results in serious convergence problems in
the determination of:the'eigenva1des and for that reaéon the attempt was not
continued. -

Figures 4 a) through c) shbw the three eigenvectors with highest eigen-

values, and Figs. 4 d) thrv'oug.h f) show the ones with smallest eigenvalues, for
the n = 8 case. As seen from Eq. (5), the eigenvectors have the same dimen-

sions as the pixel array and a weighted sum of them forms the final image.
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~ The high eigenvalue vectors approximate two-dimensional sine and cosine pro-
ducts, although this resemblance with a Fourier bas{s is lost at the Tow
eigénva]ue vectors.

The deblurring matrices obtained for the three values of n studied havé
very similar characteristics to the one shown in Fig. 5 a), for n = 8.
Removing some of the summation terms of}Eq.'(9) in forming matrix B changes
its appearance quite drastically, as seen in Fig. 5'b). Leaving out some of
the summation terms is a method of reducing noise in image restoration at the
expense of sharpness. The effect on tomographic reconstruction will be

discussed below.

Separability’

As discussed in detail in Ref. 4, the problem of image restoration can be
simplified gfeat1y if the blurring matrix can be separated into the Dirac pro-
duct of two blurring matrices X and Y, each of dimension n x n. In that case,
the n2 X n2 matrix can be subdivided in such a way that the following de-

scription hb]ds:

where xij are elements of the matrix X. If A can be subdivided in that

way, filtering of the backprojected image can be carried out by
_ I
[x] = [B,] [k"] [By] | (11)
where [x] and [k’] are the vectors X and X’ represented as n x n matrices,

and (8,1 = [x,] [x11 Ix ' (12)
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and similarly for [By]. Matrix [Xx] is the n x n matrix of eigenvectors
for the X blurring matrix and [1;1] is a diagonal matrix containing the
reciprocal of the corresponding eigenva]ues,4
With separability it is only neceSsary to obtain pseudo-inverses for n x n
matrices, instead of n2 X nz’for the general case. Unfortunately, the PET
imaging problem of Fig. 1 is not separable. Separability wou]d.imply that
blurring in the x-direction is only a function of x, and éimilar1y for the

X2 + y2 cannot be separated

y-direction. The blurring function 1/r = 1/
into a product f(x)«g(y) except in a crude manner that leads to very poor image
reconstructions.

The saving simplification iﬁ the PET problem is in the assumption that the
point response function becomes space invariant as n becomes large. In that
case the eigenvectors of A form the Fourier basis and it a11ows for the suc-
cessful deve]opment of the very useful imaging technology available today.

Nevertheless, the problem remains a very béd]y posed one, requiring excellent

statistics and absence of flaws in the raw image data for a good .image.

Noise Magnification

An examination of Eq. (5) indicates that CN of an. imaging system is not
sufficient to define the noise magnification in a reconstruction. A large
number‘of Ai'S may be involved in propagating statistical noise from indi-
vidual projections to the final image as there may be a number of eigenvectors
ii that contain high frequency variations. It appears thét;the_noise mag-
nification factor would have to be calculated case by case for the non;Fourier

based systems.
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In order to gain some understanding of the noise magnification of the sim-
ple PET system described above for later comparison with an alternative system,
tests have been carried out by generating an experimental result vector of |
coincidences ? by computer and introducing statistical fluctuations. It has
been assumed that all pixels contain: an equal ambunt of activity and a number
N. has been defined as the number of coincidence counts emitted by each pixe]_
into'a pair of perfect opposing detectors, for 06 = 0. The total number-of
counts in one image is N x n2 X Ne’ with equa1 count density between the
different tests. Fig. 6 a) shows the reconstructed 5 x Sbflat field for
N = 105, N9 = 16 and Fig. 5 b) shows the results for the same N, for the
8 x 8 case, Ne = 40. Strong effects due to the eigenvector of Fig. 4 f) are
quite evident in the latter. When fi]tering is carried out by the noise
reducing pseﬁdo—inverse of Fig. 5 b) , a substantial reduction of noise is
obtaihed, as shown . in Fig. 6 c).

Figure 7 shows the values of‘fractional RMS noise ("RMS) obtained with
the 5 x 5 and 8 x 8 systems at different.values of N. A 1east—squakes fit

~established quite well the relationship

Nows (n)~1/2 (13)

as -expected. The numerators of the expressions shown in Fig. 7 can be defined

as the corresponding relative Noise Magnification Factors (NMF) for fhe defini-
tion of N given above in the present case with equal counts for pixel and equal
density. If we consider that the NMF could be expected to be approximately

-1/2

proportional to (Ne) , then the dependence on CN appears to be somewhat

slower than (CN)1/2 jp the region of small n explored.



-13-

Simple Imaging Experiments

In order to demonstrate the correctness of the pseudo-inverse obtained
above, an imaging simulation has been carried out by generating tﬁe experi-
mental results vector I corresponding fo an n x n pixel array in which a
centrél square portion has been given a number N, and one single pixel has
2N. Figure 8 a) shows the reconstructed image for n = 8, N+ o . Slight er-
rors (=% 1%) occurs in three of the pixels adjacent tovthé_ZN pixel. Errors
in all the other pixels are less than # 0.1 %. When a péeudoQinverse obtained
with a 48—bif mantissa was used, the errors in the three worse pixels became
approximately #* 0.8%..
| Figure 8 b) is the result of introducing fluctuations corresponding to
N = 105 counts into vector-;, and Fig. 8 c) corresponds to the same value of
N, but using the noise reducing matrix of Fig. 5 b). Such matrix reduced the
noise quite strongly, as seen in Fig. 6 c), but results in very inaccurate
imagihg. The errors could be described as a reduction in sharpness.

Figure 8 d) showsvan attempt to reconstruct an image similar to the
previous ones with the "pseudo-inverse" obtained from the 27-bit méntissa QL
algorithm, for n = 13.. No statistical fluctuations were incorporated into
vector E. As indicated above, the n = 13 case could not be solved correctly

with, at least, a reasonable amount of effort.

An Alternative Detector Configuration

An observation of the b]Urring»matrices for the PET configuration described
and a consideration of the fact that matrices with high condition numbers arise

when the detector configuration is such that individual pixels are defined
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ambiguously2 leads to the realization that the problem of imaging a single
plane activity, in the absence of activitylin over or underlying planes, coujd
~best be carried out in a detectbr configuration which does not require the
y-ray pairs from one pixel to traverse other pixels before reaching the
detectors. This can best be done by planes of detectors which are coplanar
"with the pixel array, a geometrical configuration that has been in use since
Anger described the use of two y-cameras for imaging positron emitting iso-
topes9 in 1966. Burnham and Brownell presented their multicrystal two-plane
camera for the same purpose10 in 1972 and the concept of the planar camera
configuration for three-dimensional volume reconstruction was presented by .

Chang et a111

in 1976. The analysis of the problem of imaging of a single
plane of activity exploiting some of the advantages of the situation by eigen-
analysis has, however, not been reported in the literature and it wi]]vbe the
object of the following discussion.

The problem to be analyzed here is described in Fig. 9. We consider two
planes with ND perfect detectors separatedrby a distance Z. The detector
sides have dimension'd. Equidistant between the two planes is an n x n array
of pixels of Side dimension s, where s can be smallér than d, and n2 can be
larger than ND. It will be first assumed that the centers of the pixel array
and>of’the-detector planes are colinear.

For suchvan imaging system the backprojection matrix A can be obtained:
just as in the PET case by assuming a-unity of activity placed in pixel No. 1,

and forming a column vector of length ND2 containing rates of coincidences

of every detector A with all detectors B for that pixel. The procedure is

repeated for all n? pixels. Matrix A will have NDZ prows and n2 columns.
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No restriction has been placed on which coincidences‘are allowed between the A
and B detectors, since we are interested in maximum sensitivity by not preserv-
ing space invariance of the boint response function,

The blurring matrix A = ATA for these systems presents a very different
appearance from those for the PET case. Four cases have been studied, all
with ND = 64 (8 x 8 detector planes), d = 1, and an increasing number of pixels
of decreasing size occupying a square of sides 6 units. Table I shows the
characteristics of the pixel arrays and the condition number of the blurring}

matrices for the planar cameras. Fig 10 a) and b) shows the blurring matrices

for the n = 8 and 12 systems. The case for n = 12 corresponds to the limit
jmposed by sampling and finite pixe]-size, in which the blurring matrix becomes
quite ill-conditioned, with a high CN. Figures 11 a) and b) show the b]drring
functions of a pixel near the cehter of the array for the n = 8 and 12 cases.-
It is evident that blurring is considerably more localized in the planar case
than in the PET camera even for s = d/2.

The blurring matrices obtained for the planar cameras.have been found to .
be exactly separable ihto Dirac products of X and Y blurring submatrices in
the following cases tested: square detectors (as in Fig. 9), circular
detectors inscribed in the squares of Fig. 9, pixel‘arrays which are equi-
distant from the two detector planes but with centers not colinear with the
detector array cénters; and pixels with their activity concentrated at their
center. The blurring matrix is not separable in some cases tested in which
the detector arrays do not appear identical under 90° rotation about the axis
‘joining the planes. Thus, although far from exhaustive, the tests seem to
indicate that uniform arrangements of deteétors with substantial symmetries
will result in separable matrices, which for large arrays can make the solu-

tion of the imaging problem much easier. -
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For the sma11}systems fested,‘finding the pseudo-inverse by the method of
Eq. (9) has presented no problems. The pseudo-inverse for the n = 8 and 12
cases are shown in Figs. 12 a) and b). The deblurring functions for the same
two pixels of Figs. 11 a) and b) are shown in Figs. 13 a) and b). The case
for n = 12, at the sampling theorem 1imit, requires the manipulation of the
backprojected data for all the pixels in order to find the activity at on
pixel, with relatively large coefficients. For s > d/2 the deblurring func-
tions behave more like the wé11 known functions for tomography. |

The noise propagation of the planar camera with a single plane of activity
has been investigated in a similar manner to the PET case. A number N has
been defined as the number of counts emitted by one pixel into one pair of
opposing perfect detectors. Pixels towards the center of the array contribute
more counts to the image than pixels in the periphery.v Figures 14.a) through
c) shows the flat field images for.n = 8, 10 and 12 with N = 1000. The cases
for n = 8 and 10 are similar in behavior, but at the sampling theory limit,
noise 1ncrease$ substantially.

Figure 7 shows the fractional RMS_noise of the planar camera for n = 6, 8
10 and 12, obtained for the flat fields as a function of count density
(Ndzlsz). Decreasing the pixel size from the dimension of the detector d
to 0.6d would be expected to result in an increase in rms noise of 1.66 due to
the decrease in counts for pixel. Since the ratio of Nems is found tovbe-
3.48, one can attribute a NMF of 2.08 to an increase in CN of 3.06. An ép-

1/? seems to hold, at least before the

proximate dependence of NMF o(CM)
lTimit imposed'by the sampling theorem is reached. -

Simple imaging experiments are shown in Fig. 15. A squére region of N
counts per pixel per detector pair contains one pixel with 2N counts. Fig-

ure 15 a) shows an image for n = 8 comparable to the PET image of Fig. 8 b)
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but N reduced by a factor of 103, with a similar noise level, as expected '
from Fig. 7. Figures 15 b) and c) show similar images for n = 10, near the
sampling limit, for N = 10,000 and 10. The total number of counts in the
image for- n = 10 is approximately 10,000. Finally, Fig; 15 d) shows the

n = 12 image for N = 10 with considerable deterioration over the one of
Fig. 15 c).

Regarding the méthod.qf solution, jt can be indicated that the well
behaved matrices of the planar camera, excépt for the n = 12 case, corresbond
to probléms which can be solved with quite satisfactory results by several
methods:‘-péeudo—inverse (Eqs..S'and 9), separgted X and Y pseudo—ihVerse
(Egs. 11 and 12), direct solution of Eq. (3) by inversion of A’, and a linear

12 There

least squares solution with non-negative constrain on the result.
are some differences in the so1utiohs‘with noisy data, but they are minor.

The method of choice may dépend on the specific app]fcation.

Inclusion of TOF Information in PET

The first part of this.paper has demonstrated without'much doubt that the
_problem of image reconstruction from a section using transverse tomographyvby
an exact approach (as exact as. the model used to describe the imaging system
by the backprojection matrix) is not practical except for very small systems.
This result is not new, as.that approach‘has not had.huch appeal for workers
in the tomographic imaging field. The detailed examination carried out,
however, has given a good indication 6f the reason for the difficulty and

pointed out that, at least in some specific cases, there may be alternatives
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to a detector ring structure which have very desirable noise behavior and ease
of so1Ution, even with large arrays.

A comparison between the calculations for the PET and planar structures
shows that the very high CNs of the PET matrices are caused by the large
amount‘of ambiguity about the origin of a y-ray pair when the rays have to
cross many pixels before reaching the detectors.' In single plane imaging with
planar cameras the knowledge of the point of origin along the trajectory of
the y-ray pair is implicitly included in the A métrix so that the deblurring
process only has to contend with the effects of nearest neighbor pixels.

An immediate corollary that comes out from the above discussion is that\‘
the newly émerging time—of—f]ight (TOF) technology for imaging positron
emftters can contribute substantially to posing the PET imaging problem in
imﬁroved terms by rembving a very substantial part of the ambiguity in the
matrices, although the time resolution of the TOF systems is not ideal.

In order to demonstrate this point explicitly, the simple imaging system
of‘Fig. 1 has been reanalyzed by assuming that the detectors have TOF capa-
bility with a Gaussian space resolving function of standard deviation
(“fOF x d). Each column of the system matrix A corresponding to one pixel
is now expanded to contain one entry for each TOF analyzer bin for each
projection bin for each projection, i.e., the length of each column of A is
(NTOF X Nc X Ne)’ where NTOF is the number of TOF bins used.in the
analysis. The entries in A have been filled with the values of a Gaussian
funCtion of mean equal to the mean TOF difference from the portion of pixel
spénned by the corresponding detector pair and a given standard deviation
‘ The area of the Gaussian has been made equal to the portion of pixel

°TOF -
area spanned, i.e., the area of the Gaussian is equal to the single bin entry
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without TOF information. This is a formal approach to representing the
detection system, since each column entry is one possible outcome of the
measurement and the entry values are probabilities of such outcome being trde.
The A-matrix thus obtained can then be used to obtain the blurring and
~deblurring matrices for the system, as described above. Results for an 8 x 8 |
‘pixel array, Ne = 32 and °TOF ranging between 0;75d to‘4.5d‘hdve been obtained
and are shown in fable II. 'The fractional RMS noise corresponds to a flat
field with a number N of counts emitted by one pixel into one pair of opposing
detectors equal to 1000. The strong improvement in CN of the blurring matrices
with improving STOF is very evident. The RMS noise is found to follow ap-
proximately the re]étionship ,
37 (14)

. Mpws  o(CN)’

for STOF = 4.5d and below. The RMS noise follows a nearly linear relation-

OF
ship with oTOF'for values of the 1atter»between 3.0d and 0.75d.

The effect of including TOF information on the character of the blurking
matrices is quite evident from Fig. 16 a) through c) showing the blurring
functions for the first pixel of the 8 x 8 array fbr the case of no TOF, and
T0F = 4.5d and 1.5d. Figures 17 a) through c) show the corrésponding de-
blurring functions. The sharpening of the blurring functions with improved
TOF information leads to a "cleaning up" of the deblurring functions which are

seen to approach the customary filter functions of computed tomography in

appearance.
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The aone matrix analysis of the transverse tomography problem has shown
that considerable insight can be gained on the reasons for its i1l-posed
nature, which prevents an exact solution of practical medical cases. The
inclusion of TOF information makes a very substantial difference on the
conditions of the problem, even with time resolutions which corresponds to a
determination of the point of y-ray emission with uncertainities of several
times the bixe1 dimensions. The inclusion of the TOF information into the
system matrix has been seen to lead to the determination of filter functions
which are specific to a particular detector system. Carrying the idea to the
extreme of exact TOF knowledge by postulating that the poéitron emitting
activity is all in one s{ngle plane and designing a planar camera to take
advantage of that fact r@su]ts in a detector system with exce]]enf condition
in which the solution cah be pushed to cases with pixel size smaller than the
detector size. |

The detector systemstsimu1ated in the present work have been assumed to be
perfect. A physical system will have a number of imperfect features which
will result in blurring ﬁatrices of somewhat worse characteristics than the
ones shown here. Previous experience with a one-dimensional camera3 shows
that the CN of a physical detector system can be larger by a factor of roughly
two when compared to a calculated model. For the case of radioactive beam
injectionl, the design oﬁ:a high sensitivity and high spatial accuracy two-
dimensional instrument fof single plane imaging is proceeding following the
above concepts of a p]ana} camera. A computer camera simulation program,
including neighboring detector interactions, is going to be used in the design

process and to obtain the:filter functions for the actual instrument.
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It is expected that true three-dimensional imaging (activity in a volume,
rather than a plane) by the pseudo-inverse method demonstrated in this paper
will run immediately into similar ambiguity problems as the PET problem.

There is, however, a large number of ideas to be explored regarding detector
configuration, separability of the matrices and TOF before a reasdnab]y com-
plete understanding of the role of'eigehana1y$is techniques in three-dimensional
image'reconstruction'is attained. This work will proceed a part of our radio-

active beam project at LBL.
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Figure Captions

Simble PET camera model for matrix analysis.‘ An n x n array of square
pixels p of dimension d is 106ked at by two banks (a and b) of perfect
y-ray detectors, each with NC detectors, which rotate over an angle 6.
Coincidences are only allowed between exactly opposing pairs of detectors.
Their response to a bixe] of uniform activity is proportional to the pixel

area (shaded) spanned by the detector.

Blurring matrix for an 8 x 8 pixel array. Matrix dimension is 64 x 64.
Each column (or row) contains all the blurring information for one pixel.

A very high condition number (CN) is shown for this matrix.

Blurring function for a corner pixelvof the 8 x 8 array. It corresponds
to the first column of the matrix of Fig; 2, plotted on,an‘8 x 8 array.
The values of the function corresponds td the image that would be obtained.
from a single active pixel if only backpgojection of the coinéidence data

were carried out (no filtering).

Some eigenvectors of the blurring matrix of Fig. 2.

a), b) and c): Lowest spatial frequency eigenvectors, corresponding to
the largest eigenvalues.
d), e) and f): Eigenvectors with smallest.eigenvalues, which have deviated
| from a resemblance to two—dimensiona] sinusoidal function

products.
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Pseudo-inverse matrix for the 64 x 64 matrix of Fig. 2.

a) Unmodified, matrix is dominated by some large positive and negative

elements, which obscure structure in all columns.

‘_b) Modified by exclusion of terms corresponding to smallest eigenvalues.

The elements with very large magnitude have disappeared.

Response of the PET system to a flat fieid of activity. The number of
counts N emitted by each pixel into an opposing pair of detectors for
each angle measured is 100,000. |

a) 5 x 5 pixel array

b) 8x 8 pixé1 arfay

c) 8 x 8 pixel array, using modified pseudo-inverse of Fig. 5 b)

Fractional rms noise (rms noise activity/activity) as a function of count
density for flat field PET images with n=>5and 8. Also for planar
camera with n = 6, 8, 10 and 12. Solid lines are fitted to computer

. . » . o=1/2
simulation points showing NMs @ N .

Simple imaging simulation experiments for the 8 x 8 pixel PET system.
A 4 x 4 square of unit activity contained oné pixel of two units
activity.
a) No statistical fluétuatidns in the data. Notice small errors

. adjacent to the two unit pixel caused by»truncation errors in the

pseudo-inverse.

b) With statistical fluctuations corresponding to N = 100,000.

c) N = 100,000, filtering done with noise-reducing matrix of Fig. 5 b).
d) Similar experiment with 13 x 13 pixel PET system, no statistical

fluctuations, showing considerable errors caused by faulty inverse.
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Schematic drawing of planar camera for single plane image reconstruction

from an accelerated radioactive ion beam injection. Two banks of square

perfect detectors (A and B) of dimension d are equidistant from a plane

of n x n square pixels of dimension s, where s d. Each pixel is
assumed to contain a uniform activity. A1l possible coincidences are

allowed between the two banks of detectors.

Blurring matrices for planar camera with 8 x 8 detectors of dimension d.
a) For 8 x 8 pixel array (n = 8) of dimension s = 0.75d.
b) For 12 x 12 pixel array (n = 12) of dimension s = 0.5d (sampling

Timit). -

Blurring functions for a pixel near the center of the array (coﬁumns of
the matrices of Fig. 10).
a)'n=8

b) n=12

Pseudo-inverses for the matrices of Fig. 10.
a) n=28
b) n=12

Deblurring functions for a pixel near the center of the array (éo1umns of

the matrices of Fig. 12).
a) n=28 |

b) b =12

™
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Response of the planar detector system of Fig. 9 to a flat field of

activity. The number of counts N emitted by each pixel into any

opposing pair of detectors is 1000. Compared with Fig. 6 b) it is seen

that similar noise levels are obtained in the planar camera with 100

times fewer counts, with value of s up to very close to the sampling

limit.

a) Forn =
b) For n =
c) Forn =

8, s =0.75d

10, s = 0.6d
12, s = 0.5d (sampling 1imit)

Simple imaging experiments for the 8 x 8 planar detector system, similar

to those of Fig. 8.

a) n=8, N=100

b) n =10, N =10,000

c) n=10, N =10. Notice that image is still quite good, even at
s = 0.6d and wfth few counts.

d) n =12, N =10. Large errors occur at the sampling 1imit with poor
statistics.

Blurring functions for 8 x 8 system of Fig. 1 with inclusion of TOF

information.

that of Fig. 3.

System is almost identical (Ne = 32 instead of 40) to

a) No TOF information

b) with

c) with

TOF

°TOF

4.5d

1.5d
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17. Deblurring functions corresponding to the same system and pixel of
Fig. 16.
a) no TOF information

b) with 4.5d

°ToF

c) with = 1.5d

°ToF =
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TABLE 1

Condition Numbers of Blurring Matrices

System Pixel Array | A Matrix .No. of Angles | No. of Coinc./Angle CN iMethod
n Dim No : Nc '
PET Fig. 1 5 | 25 x 25 8 9 14690 | Jacobi 55-bit
| 5 25 x 25 16 9 2463 | QL 27 and
5 25 x 25 32 9 2064 | 48-bit
8 64 x 64 24 12 277440
QL 27-bit
8 64 x 64 40 12 272500
8 64 x 64 40 12 271593 | QL 48-bit
Pixel Size No. of Coinc.
S
Planar Fig. 9 6 36 x 36 1.0 d 64 x 64 = 4096 9.7
8 64 x 64 0.75 d 4096 - | 16.03 QL 27-bit
10 100 x 100 0.6 d 4096 29.7 |
12 144 x 144 0.5 d 4096 5508

-62_
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TABLE II

Effect of Including TOF Information On

System Matrices

PET System of Fig. 1, n = 8, ng = 32, QL 27-bit Eigenvalues

oTOF CN Fractional RMS noise“
N = 1000

No TOF 305255 = .3

4.5 d 2498 .027

3.0 d 1023 .022

1.54d 189.5 .0117

0.75 d 44 _ 0062
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