
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Generalized pattern search algorithms with adaptive precision function
evaluations

Permalink
https://escholarship.org/uc/item/1jj645rd

Authors
Polak, Elijah
Wetter, Michael

Publication Date
2003-05-14

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jj645rd
https://escholarship.org
http://www.cdlib.org/

Generalized Pattern Search Algorithms with Adaptive
Precision Function Evaluations 1

Elijah Polak2 and Michael Wetter3

May 14, 2003

Abstract

In the literature on generalized pattern search algorithms, convergence to a sta-
tionary point of a once continuously differentiable cost function is established under
the assumption that the cost function can be evaluated exactly. However, there is a
large class of engineering problems where the numerical evaluation of the cost function
involves the solution of systems of differential algebraic equations. Since the termina-
tion criteria of the numerical solvers often depend on the design parameters, computer
code for solving these systems usually defines a numerical approximation to the cost
function that is discontinuous with respect to the design parameters. Standard gen-
eralized pattern search algorithms have been applied heuristically to such problems,
but no convergence properties have been stated.

In this paper we extend a class of generalized pattern search algorithms to a form
that uses adaptive precision approximations to the cost function. These numerical
approximations need not define a continuous function. Our algorithms can be used
for solving linearly constrained problems with cost functions that are at least locally
Lipschitz continuous.

Assuming that the cost function is smooth, we prove that our algorithms converge
to a stationary point. Under the weaker assumption that the cost function is only
locally Lipschitz continuous, we show that our algorithms converge to points at which
the Clarke generalized directional derivatives are nonnegative in predefined directions.

An important feature of our adaptive precision scheme is the use of coarse approx-
imations in the early iterations, with the approximation precision controlled by a test.
Such an approach leads to substantial time savings in minimizing computationally
expensive functions.

Key words: Algorithm implementation, approximations, generalized pattern search,
Hooke-Jeeves, Clarke’s generalized directional derivative, nonsmooth optimization.

1This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy
Office of Building Technology, State and Community Programs, Office of Building Research and Standards,
of the U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098 and the National Science Foundation
under Grant No. ECS-9900985.

2Department of Electrical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
(polak@eecs.berkeley.edu).

3Simulation Research Group, Building Technologies Department, Environmental Energy Technologies
Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (MWetter@lbl.gov).

1

2

1 Introduction

Generalized pattern search (GPS) algorithms are derivative free methods for the minimiza-
tion of smooth functions, possibly with linear inequality constraints. Examples of pattern
search algorithms are the coordinate search algorithm [12], the pattern search algorithm of
Hooke and Jeeves [8], and the multidirectional search algorithm of Dennis and Torczon [6].
What they all have in common is that they define the construction of a mesh, which is
then explored according to some rule, and if no decrease in cost is obtained on mesh points
around the current iterate, then the mesh is refined and the process is repeated.

In 1997, Torczon [15] was the first to show that all the existing pattern search algo-
rithms are specific implementations of an abstract pattern search scheme and to establish
that for unconstrained problems with smooth cost functions, the gradient of the cost func-
tion vanishes at accumulation points of sequences constructed by this scheme. Lewis and
Torczon extended her theory to address bound constrained problems [9] and problems
with linear inequality constraints [10]. In both cases, convergence to a feasible point x∗

satisfying 〈∇f(x∗), x − x∗〉 ≥ 0 for all feasible x is proven under the condition that f(·)
is once continuously differentiable. Audet and Dennis [1] present a simpler abstraction of
GPS algorithms, and, in addition to reestablishing the Torczon and the Lewis and Torczon
results, they relax the assumption that the cost function is smooth to that it is locally
Lipschitz continuous. However, their characterization of accumulation points of sequences
constructed by a GPS algorithm, on a locally Lipschitz continuous cost function, while
not without merit, falls short of showing that the accumulation points are stationary in
the Clarke sense [3] (i.e., 0 ∈ ∂0f(x∗)). It does not seem possible to improve their result.

In principle, a natural area for the application of GPS algorithms is engineering op-
timization, where the cost functions are defined on the solution of complex systems of
equations including implicit equations, ordinary differential equations, and partial differ-
ential equations. However, in such cases, obtaining an accurate approximation to the cost
function often takes many hours, and there is no straightforward way of approximating
gradients. Furthermore, it is not uncommon that the termination criteria of the numer-
ical solvers introduce discontinuities in the approximations to the cost function. Hence,
standard GPS algorithms can only be used heuristically in this context.

Even if it were possible to characterize numerical approximation errors as random
noise, it follows from [17] that obtaining a reasonably accurate solution would involve,
eventually, a prohibitively large number of function evaluations per iteration. Therefore,
attempting to characterize numerical errors as random noise does not appear to be a
promising approach in the context of solving major classes of engineering optimization
problems by GPS algorithms.

In this paper we present a modified class of GPS algorithms which adjust the pre-
cision of the function evaluations adaptively: low precision in the early iterations, with
precision progressively increasing as a solution is approached. The modified GPS algo-
rithms converge to stationary points of the cost function even though the cost function is
approximated by a family of discontinuous functions.

The GPS algorithms that we present are somewhat simpler in structure than those

3

presented in [15, 9, 10, 1]. We assume that the cost function f(·) is at least locally Lipschitz
continuous and that it can be approximated by a family of functions, say {fN (·)}N∈

�
q with

fixed q ∈ N, where each fN (·) may be discontinuous but converges to f(·) uniformly on
bounded sets. A test in the algorithm determines when precision must be increased. This
test makes use only of the current mesh size and includes parameters that can be used to
control the speed with which precision is increased. This flexibility can be exploited to
obtain an order of magnitude reduction in computing times, as compared to using high
precision throughout the computation. Since our GPS algorithms include global search
and local search stages, as is typical in GPS algorithms, our GPS algorithms can also be
used with surrogate cost functions for the global search, as in [7, 16, 14, 2].

Under the assumption that the cost function is continuously differentiable, all the
accumulation points constructed by our GPS algorithms are stationary, while under the
assumption that f(·) is only locally Lipschitz continuous, our algorithms converge to points
at which the Clarke generalized directional derivatives are nonnegative in predefined di-
rections. Thus, we regain the results of [1].

2 Notation

1. We denote by Z the set of integers, by Q the set of rational numbers, and by N ,

{0, 1, . . .} the set of natural numbers. The set N+ is defined as N+ , {1, 2, . . .}.
Similarly, vectors in Rn with strictly positive elements are denoted by Rn

+ , {x ∈
Rn | xi > 0, ∀ i = 1, . . . , n} and the set Q+ is defined as Q+ , {q ∈ Q | q > 0}.

2. The inner product in Rn is denoted by 〈·, ·〉 and for x, y ∈ Rn defined by 〈x, y〉 ,∑n
i=1 xi yi.

3. For N ∈ Nq, by N →∞, we mean that each component of N tends to infinity.

4. If a subsequence {xi}i∈K ⊂ {xi}∞i=0 converges to some point x, we write xi →K x.

5. Let W be a set containing a sequence {wi}ki=0. Then, we denote by wk the sequence
{wi}ki=0 and by Wk the set of all k + 1 element sequences in W.

6. We denote by {ei}ni=1 the unit vectors in Rn.

7. If X is a set, we denote by ∂X its boundary and by X its closure.

8. If S is a set, we denote by 2S the set of all nonempty subsets of S.

9. If D̂ ∈ Qn×q is a matrix, we will use the notation d̂ ∈ D̂ to denote the fact that
d̂ ∈ Qn is a column vector of the matrix D̂. Similarly, by D ⊂ D̂ we mean that
D ∈ Qn×p (1 ≤ p ≤ q) is a matrix containing only columns of D̂. Further, card(D)
denotes the number of columns of D.

10. The least common multiple of a set of natural numbers is the smallest nonzero natural
number that is a multiple of all the elements in the set.

4

3 Minimization Problem

We want to solve the linearly constrained problem

min
x∈X

f(x) (1a)

X ,
{
x ∈ Rn | l ≤ Qx ≤ u; l, u ∈ Rnc ∪ {±∞}; l < u; Q ∈ Qnc×n

}
(1b)

where the cost function f : Rn → R is (at least) Lipschitz continuous and the number of
constraints nc is finite.

We assume that the function f(·) cannot be evaluated exactly, but that it can be
approximated by functions fN : Rn → R, where N ∈ Nq is an integer vector of fixed
dimension q ∈ N that contains the number of iterations of the PDE, ODE, and algebraic
equation solvers. We will assume that f(·) and its approximating functions {fN (·)}N∈

�
q

have the following properties.

Assumption 3.1

1. There exists an error bound function ϕ : Nq → R+ such that for any bounded set
S ⊂ X, there exists an NS ∈ Nq and a scalar KS ∈ (0, ∞) such that for all x ∈ S
and for all N ∈ Nq, with N ≥ NS

4,

| fN (x)− f(x)| ≤ KS ϕ(N). (2)

Furthermore,
lim

N→∞
ϕ(N) = 0. (3)

2. The function f : Rn → R is at least locally Lipschitz continuous.

Remark 3.2 The functions fN : Rn → R may be discontinuous.

In the Appendix, we give a few examples of how the error bound function arises in
specific optimization problems.

Next, we state an assumption on the level sets of the family of approximate functions.
To do so, we first define the notion of a level set.

Definition 3.3 (Level Set) Given a function f : Rn → R and an α ∈ R, such that
α ≥ infx∈� n f(x), we will say that the set Lα(f) ⊂ Rn, defined as

Lα(f) , {x ∈ Rn | f(x) ≤ α}, (4)

is a level set of f(·), parametrized by α.

4For N ∈ � q , by N ≥ NS, we mean that N i
≥ N i

S, for all i = 1, ... , q.

5

Assumption 3.4 (Compactness of Level Sets) Let {fN (·)}N∈
�

q be as in Assumption 3.1
and let X ⊂ Rn be the constraint set. Let x0 ∈ X be the initial iterate and N0 ∈ Nq be
the initial number of solver iterations. Then, we assume that there exists a compact set
C ⊂ Rn such that

LfN0
(x0)(fN) ∩X ⊂ C, ∀N ≥ N0. (5)

4 Generalized Pattern Search Algorithms

4.1 Geometric Aspects of the Algorithms

A major aspect of any GPS algorithm is the rule for generating the meshes on which the
searches are conducted. The main difference between our rule for mesh generation and
those of others, such as the one of Audet’s and Dennis [1], is that we use a different rule
for mesh refinement, which results in our meshes being nested, and hence simplifies the
explanation of the geometry of mesh generation. As far as we can tell, our simplification
has no impact on computational efficiency.

The k-th iteration of our GPS algorithms has the following structure. We begin with
the current iterate xk, with the number of iterations for the PDE, ODE, and algebraic
equation solvers N , and with the mesh Mk. A set-valued map is used to select a finite
subset of mesh points in Mk, for the so-called “global search”. If this set contains a point
x′ such that fN (x′) < fN (xk), then we set xk+1 = x′, Mk+1 = Mk, and update the index
k to k + 1. If the global search set does not yield a point of lower cost, we proceed to a
“local search”, which consists of evaluating fN(·) on a set of neighbors of xk in the mesh
Mk. If a point x′ of lower cost is found, then we set xk+1 = x′, Mk+1 = Mk, and update
the index k to k + 1. If the local search also fails to produce an improvement, then the
mesh Mk is subdivided to yield a finer mesh Mk+1, and the number of iterations of the
PDE, ODE, and algebraic equation solvers, N , are increased according to a prescribed
rule. After updating k to k + 1, the entire process is repeated.

We will now flesh out the geometric details of our GPS algorithms. We begin with the
construction of the meshes.

4.1.1 Generation of the Meshes

Before we can explain how the mesh is to be generated, we must introduce the notions of
a positive combination and of a positive span, as defined by Davis [5], and that of a base
direction matrix.

Definition 4.1 (Positive Combination, Positive Span)

1. A positive combination of vectors {vi}pi=1 is a linear combination
∑p

i=1 λi vi with
λi ≥ 0 for all i ∈ {1, . . . , p}.

6

2. A positive span for a subspace S ⊂ Rn is a set of vectors {vi}pi=1 such that every
x ∈ S can be expressed as a positive combination of the vectors {vi}pi=1. The matrix
defined by V , [v1, . . . , vp] is said to be a positive spanning matrix.

3. Let the subspace S ⊂ Rn be of dimension m and V ∈ Rn×p be a positive spanning
matrix for S. If p = m+1, then V is said to be a minimal positive spanning matrix.

In [5, 4], a positive basis for a subspace S ⊂ Rn is defined as a set of positively in-
dependent vectors whose positive span is S. Note that a positive basis is different from
a minimal positive spanning set. For example, if S = R2, the set {e1, e2, −e1, −e2} is a
positive basis but not a minimal positive spanning set. A minimal positive spanning set
is {e1, e2, −(e1 + e2)}.

We will denote by S the set of all matrices whose columns positively span Rn.

Next, we define a base direction matrix. We will use the columns of the base direction
matrix to specify the mesh and hence the search directions. The base direction matrix
will be fixed for all iterations.

Definition 4.2 (Base Direction Matrix) Let S be the set of all matrices whose columns
positively span Rn. Then, the base direction matrix D̂ is any matrix satisfying

D̂ ∈ Qn×p ∩ S (6)

where p > n is any arbitrary but finite natural number.

Remark 4.3 The fact that the matrix D̂ has only rational elements makes it very easy
to establish the minimal distance between distinct mesh points (Lemma 5.1). At the same
time, from a computational point of view, requiring D̂ ∈ Qn×p∩S rather than D̂ ∈ Rn×p∩S

does not result in any practical inconvenience.

Note that the base direction matrix D̂ may not be a minimal positive spanning ma-
trix, e.g., for the one-dimensional case, D̂ = [−1, 1, 1.1] would not be minimal. Hence,
D̂ can be used to generate a set D �

D
, which we define as the set of all submatrices of D̂

(constructed by deleting columns of D̂) whose column vectors positively span Rn.

The meshes, over which our algorithms search, are defined iteratively, as follows.

Definition 4.4 (k-th Mesh) Let x0 ∈ X, r, s0, k ∈ N, with r > 1, {ti}k−1
i=0 ⊂ N, and the

base direction matrix D̂ ∈ Qn×p ∩ S be given, and let

∆k ,
1

rsk
, (7)

7

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

!

"

#

$

%

&

'

(

)

x0 d̂1

d̂2

d̂3

x̃

Figure 1: Minimal positive spanning matrix D̂ = [d̂1, d̂2, d̂3] and generated mesh in R2

where for k > 0

sk = s0 +
k−1∑

i=0

ti. (8)

Then we define the mesh Mk by

Mk , {x0 + ∆k D̂ m | m ∈ Np}. (9)

It should be clear from the definition of the meshes that whenever tk > 0, the mesh
Mk+1 is obtained from the mesh Mk by dividing the intervals between neighboring points
of the mesh Mk into rtk subintervals by adding additional mesh points. Therefore, it is
clear that the meshes are nested, i.e., Mk ⊂Mk+1 with equality if ∆k+1 = ∆k.

We now present two examples: first a simple example of a mesh that is generated by
a minimal positive spanning matrix, and then an example of a mesh generation using a
more complicated base direction matrix D̂.

Example 4.5 In Fig. 1, the base direction matrix D̂ is a minimal positive spanning
matrix, defined by

D̂ =
(
d̂1 d̂2 d̂3

)
,

(
1 −1 −1
0 1 −1

)
. (10)

In Fig. 1, the bullets (•) are the mesh points of the mesh Mk = {0 +1 D̂ m | m ∈ N3}.
For example, in Fig. 1, x̃ = D̂ m, with m = (3, 2, 1)T .

Next we present a mesh constructed using a more complicated base direction matrix.

Example 4.6 Fig. 2 shows a mesh generated using x0 = 0, ∆k = 1 and the base direction
matrix

D̂ =
(
d̂1 d̂2 d̂3

)
=

(
1 −0.5 −0.75
0 1 −0.75

)
. (11)

8

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

d̂1

d̂2

d̂3

(a)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

�̃
x

(b)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

(c)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

(d)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(e)

Figure 2: Generation of a mesh in R2

9

Fig. 2(a) shows the vectors {d̂i}3i=1 (bold arrows) and all possible mesh points of the form

D̂ v with v = (n, 0, 0)T , v = (0, n, 0)T , and v = (0, 0, n)T where n ∈ N. Each
arrow points to a mesh point and indicates how the base vectors {d̂i}3i=1 are added to

obtain the mesh points. Fig. 2(b) shows the set of all mesh points of the form D̂ v with
v = (n, m, 0)T and v = (n, 0, m)T where n,m ∈ N. For example, the point labeled with
x̃ is given by x̃ = D̂ v where v = (2, 1, 0)T . In Fig. 2(c), more mesh points are drawn
by adding some positive multiple of d̂2 to some mesh points that have been generated in
Fig. 2(b). For clarity, not all possible mesh points are drawn. In Fig. 2(d), additional
mesh points are generated by adding some positive multiple of d̂3 to some mesh points of
Fig. 2(c). Fig. 2(e) finally contains all possible mesh points, now indicated by bullets (•).
For clarity, only the vectors {d̂i}3i=1 are drawn in Fig. 2(e).

4.1.2 Global and Local Search Set

We will now characterize the set-valued maps that determine the mesh points for the
“global” and “local” searches. Note that the images of these maps may depend on the
entire history of the computation.

Definition 4.7 (Search Direction Matrices) Let S be the set of all matrices whose
column vectors positively span Rn. Given a base direction matrix D̂, we define the set of
search direction matrices to be

D �
D

, {D | D ⊂ D̂ ∩ S} (12)

where the matrix D is constructed by deleting columns of D̂.

Definition 4.8 Let Xk ⊂ Rn and ∆k ⊂ Q+ be the sets of all sequences containing k + 1
elements, let Mk be the current mesh, let D �

D
be the set of search direction matrices, and

let N ∈ Nq be the number of solver iterations.

1. We define the global search set map to be any set-valued map

γk : Xk ×∆k ×Nq →
(
2

�

k ∩X
)
∪ ∅ (13a)

whose image γk(xk,∆k, N) contains only a finite number of mesh points.

2. We define the local search direction map to be any map

δ �
D,k

: Xk ×∆k → D �
D

. (13b)

3. We will call Gk , γk(xk,∆k, N) the global search set.

4. With Dk = δ �
D,k

(xk,∆k), we will call

Lk , {xk + ∆k Dk ej | j = 1, . . . , card(Dk)} ∩X (13c)

the local search set.

10

Remark 4.9
1. The map γk(·, ·, ·) can be dynamic in the sense that if {xki

}Ii=0 , γk(xk,∆k, N), then

the rule for selecting xk�
i
, 1 ≤ î ≤ I, can depend on {xki

}
�
i−1
i=0 and {fN (xki

)}
�
i−1
i=0. It is

only important that the global search terminates after a finite number of computa-
tions, and that Gk ⊂ (2

�

k ∩X) ∪ ∅.
2. As we shall see, the global search affects only the efficiency of the algorithm but not

its convergence properties. Any heuristic procedure that leads to a finite number of
function evaluations can be used for γk(·, ·, ·).

3. The empty set is included in the range of γk(·, ·, ·) to allow omitting the global search.

4. Since the range of δ �
D,k

(·, ·) is D �
D

, any image of δ �
D,k

(·, ·) is a positive spanning matrix.

4.2 A Model Adaptive Precision GPS Algorithm

We are now ready to present a model generalized pattern search algorithm with adaptive
precision function evaluations.
Algorithm 4.10 (Model GPS Algorithm)

Data: Initial iterate x0 ∈ X;
Mesh size divider r ∈ N, with r > 1;
Initial mesh size exponent s0 ∈ N;

Base direction matrix D̂ ∈ Qn×p ∩ S (see Definition 4.2).
Maps: Global search set map γk : Xk ×∆k × Nq →

(
2

�

k ∩X
)
∪ ∅;

Local search direction map δ �
D,k

: Xk ×∆k → D �
D

(see Definition 4.8).

Function ρ : R+ → Nq (to assign N), such that the composition
ϕ ◦ ρ : R+ → R+ is strictly monotone decreasing and satisfies
ϕ(ρ(∆))/∆→ 0, as ∆→ 0.

Step 0: Initialize k = 0, ∆0 = 1/rs0 , and N = ρ(1).
Step 1: Global Search

Construct the global search set Gk = γk(xk,∆k, N).
If fN (x′) < fN (xk) for any x′ ∈ Gk, go to Step 3; else, go to Step 2.

Step 2: Local Search
Construct the search direction matrix Dk = δ �

D,k
(xk,∆k).

Construct Lk , {xk + ∆k Dk ej | j = 1, . . . , card(Dk)} ∩X and
evaluate fN (·) for any x′ ∈ Lk until some x′ ∈ Lk

satisfying fN (x′) < fN (xk) is obtained, or until all points in Lk

are evaluated.
Step 3: Parameter Update

If there exists an x′ ∈ Gk ∪ Lk satisfying fN (x′) < fN(xk),
set xk+1 = x′, sk+1 = sk, ∆k+1 = ∆k, and do not change N ;
else, set xk+1 = xk, sk+1 = sk + tk, with tk ∈ N+ arbitrary,
∆k+1 = 1/rsk+1 , N = ρ(∆k+1/∆0).

Step 4: Replace k by k + 1, and go to Step 1.

11

Remark 4.11

1. If the optimization is started with N = ρ(1) too large, the computation time may
become unnecessary large. Therefore, in implementing the Model GPS Algorithm,
one may allow to redefine the function ρ(·) by ρ(·) ← c ρ(·), with c ∈ (0, 1), to
decrease the initial number of solver iterations. Redefining the function ρ(·) is allowed
over a preset number of GPS iterations.

2. To ensure that N does not depend on the scaling of ∆0, we normalized the argument
of ρ(·). In particular, we want to decouple the number of iterations of the solvers
from the user’s choice of the initial mesh divider.

3. Audet and Dennis [1] increase and decrease the mesh divider using the formula
∆k+1 = τm ∆k where τ ∈ Q, τ > 1, and m is any element of Z. Thus, our mesh
construction is a special case of Audet’s and Dennis’ construction since we set τ =
1/r, with r ∈ N+, r ≥ 2 (so that, τ < 1) and m ∈ N. We prefer our construction
because it leads to a simpler geometric explanation. In the Appendix, we present a
modified version of the algorithm of Audet and Dennis, and show that our analysis
remains valid.

4. In Step 2, once a decrease of the cost function is obtained, one can proceed to Step 3.
However, one is allowed to evaluate the approximating cost function at more points
in Lk in an attempt to obtain a bigger reduction in cost. However, one is allowed to
proceed to Step 3 only after either a cost decrease has been found, or after all points
in Lk are tested.

5. In Step 3, we are not restricted to accepting the x′ ∈ Gk ∪ Lk that gives lowest
cost value. But the mesh divider ∆k is reduced only if there exists no x′ ∈ Gk ∪ Lk

satisfying fN (x′) < fN (xk).

4.3 An Extension of the Hooke-Jeeves Algorithm

To illustrate the use of our Model GPS Algorithm 4.10, we will now use it to obtain an
extension of the Hooke-Jeeves algorithm [8]. To simplify exposition, we will assume that
X = Rn.

4.3.1 Algorithm Parameters D̂, r, s0 and tk

Hooke and Jeeves decrease the “current step size” (∆ ∈ R+ in [8]) by a factor ρ ∈ (0, 1),
when necessary. To fit their algorithm into our framework, we have to set ρ , 1/q for
some q ∈ N+ \ {1} 5 and restrict the initial value of their variable ∆ to take on rational
values only 6.

5The restriction ρ
�

1/q is not serious because one usually has no knowledge that justifies requiring
another value.

6In numerical computer programs, the restriction ∆ ∈ � + is automatically fulfilled since irrational
numbers cannot be represented.

12

In view of the above, for our extension of the Hooke-Jeeves algorithm, we define our
base direction matrix as D̂ , ∆[+e1, −e1, . . . , +en, −en] (where ∆ is the initial value of
the “step size” in [8]) and our other parameters to be r , q, s0 = 0, and tk ∈ {0, 1}, for
all k ∈ N.

4.3.2 Map for Exploratory Moves

To facilitate the algorithm explanation, we first introduce a set-valued map E : Rn×Q+×
Nq → 2

�

k , which defines the “exploratory moves” in [8]. The map E : Rn×Q+×Nq → 2
�

k

will then be used in Section 4.3.3 to define the global search set map and, under conditions
to be seen in Section 4.3.4, the local search direction map as well.

Algorithm 4.12 (Map E : Rn ×Q+ × Nq → 2
�

k for “Exploratory Moves”)

Parameter: Base direction matrix D̂ = ∆ [+e1, −e1, . . . ,+en, −en] ∈ Qn×2n

(∆ being the initial step size of [8]).
Input: Base point x ∈ Rn;

Mesh divider ∆k ∈ Q+;
Output: Set of trial points T .
Step 0: Initialize T = ∅.
Step 1: For i = 1, . . . , n

Set x̃ = x + ∆k D̂ e2 i−1 and T ← T ∪ {x̃}.
If fN(x̃) < fN (x)

Set x = x̃.
else

Set x̃ = x + ∆k D̂ e2 i and T ← T ∪ {x̃}.
If fN (x̃) < fN(x)

Set x = x̃.
end if.

end if.
end for.

Step 2: Return T .

Thus, E(x,∆k, N) = T .

4.3.3 Global Search Set Map γk : Xk ×∆k × Nq → 2
�

k

The global search set map γk(·, ·, ·) is defined as below. Because γ0(·, ·, ·) depends on x−1,
we need to introduce x−1, which we define as x−1 , x0.

13

Algorithm 4.13 (Global Search Set Map γk : Xk ×∆k × Nq → 2
�

k)

Map: Map for “exploratory moves” E : Rn ×Q+ × Nq → 2
�

k .
Input: Previous and current iterate, xk−1 ∈ Rn and xk ∈ Rn;

Mesh divider ∆k ∈ Q+;
Number of solver iterations N ∈ Nq.

Output: Global search set Gk.
Step 1: Set x = xk + (xk − xk−1).
Step 2: Compute Gk = E(x,∆k, N).
Step 3: If

(
minx∈Gk

fN(x)
)

> fN (xk)
Set Gk ← Gk ∪E(xk,∆k, N).

end if.
Step 4: Return Gk.

Thus, γk(xk,∆k, N) = Gk.

4.3.4 Local Search Direction Map δ �
D,k

: Xk ×∆k → D �
D

If the global search, as defined by Algorithm 4.13, has failed in reducing fN (·), then
Algorithm 4.13 has constructed a set Gk that contains the set {xk+∆k D̂ ei | i = 1, . . . , 2n}.
This is because in the evaluation of E(xk,∆k, N), all “if(·)” statements yield false, and,
hence, one has constructed {xk + ∆k D̂ ei | i = 1, . . . , 2n} = E(xk,∆k, N).

Because the columns of D̂ span Rn positively, it follows that the search on the set
{xk + ∆k D̂ ei | i = 1, . . . , 2n} is a local search. Hence, the constructed set

Lk , {xk + ∆k D̂ ei | i = 1, . . . , 2n} ⊂ Gk (14)

is a local search set. Consequently, fN(·) has already been evaluated at all points of Lk

(during the construction of Gk) and, hence, one does not need to evaluate fN(·) again
in a local search. In view of (13c) and (14), the local search direction map is given by
Dk = δ �

D,k
(xk,∆k) , D̂.

4.3.5 Parameter Update

The point x′ in Step 3 of the GPS Model Algorithm 4.10 corresponds to x′ , arg minx∈Gk
fN (x)

in the Hooke-Jeeves algorithm. (Note that Lk ⊂ Gk if a local search has been done as ex-
plained in the above paragraph.)

5 Convergence Results

5.1 Unconstrained Minimization

We will now establish the convergence properties of the Model GPS Algorithm 4.10 on
unconstrained minimization problems, i.e., for X = Rn.

14

First, we will show that for any mesh Mk, the minimal Euclidean distance between all
distinct mesh points is bounded from below by a constant times the mesh divider ∆k.

Lemma 5.1 (Minimal Distance between Distinct Mesh Points) Consider the se-
quences {∆k}∞k=0 ⊂ Q+ of mesh dividers, and {Mk}∞k=0 of meshes. Then there exists a
constant c > 0, independent of k, such that

min
u6=v

u,v∈
�

k

‖u− v‖ ≥ ∆k c. (15)

Proof. By Definition 4.4, for any given k, we have Mk , {x0 + ∆k D̂ m | m ∈ N p} where
D̂ ∈ Qn×p is fixed for all k. Let l be the least common multiple of all denominators of the
elements of D̂. Then, Ẑ , l D̂ is in Zn×p. Furthermore, any pair of mesh points u, v can
be represented as u , x0 + ∆k D̂ mu and v , x0 + ∆k D̂ mv, where mu, mv ∈ N p. Hence,

min
u6=v

u,v∈
�

k

‖u− v‖ = min
‖

�
D (mu−mv)‖6=0

mu,mv∈
�

p

∆k ‖D̂ (mu −mv)‖

= min
‖ �
D m‖6=0

m∈ � p

∆k ‖D̂ m‖ =
∆k

l
min

‖ �
Z m‖6=0

m∈ � p

‖Ẑ m‖ ≥ ∆k

l
. (16)

The inequality holds because Ẑ m is a nonzero integer vector.

The following corollary follows directly from Lemma 5.1 and will be used to show that
∆k → 0 as k →∞.

Corollary 5.2 Any bounded subset of a mesh Mk contains only a finite number of mesh
points.

Proposition 5.3 Consider the sequence of mesh dividers {∆k}∞k=0 ⊂ Q+ constructed by
Model GPS Algorithm 4.10. Then, the mesh dividers satisfy lim inf k→∞ ∆k = 0.

Proof. By (7), ∆k = 1/rsk , where r ∈ N with r > 1, and sk ⊂ N is a nondecreasing
sequence. For the sake of contradiction, suppose that there exists a ∆k∗ ∈ Q+, such that
∆k ≥ ∆k∗ for all k ∈ N. Then there exists a corresponding sk∗ = maxk∈

� sk, and the
finest possible mesh is Mk∗ , {x0 + (1/rsk∗) D̂ m |m ∈ N p}.
Next, since by Assumption 3.4, there exists a compact set C, such that LfN0

(x0)(fN)∩X ⊂
C for all N ≥ N0 = ρ(1), it follows from Corollary 5.2 that Mk∗ ∩ LfN0

(x0)(fN) contains
only a finite number of points for any N ≥ ρ(1). Thus, at least one point in Mk∗ must
belong to the sequence {xk}∞k=0 infinitely many times. Furthermore, because {sk}∞k=0 ⊂ N

is nondecreasing with sk∗ being its maximal element, it follows that N = N ∗ = ρ(∆k∗/∆0)
for all iterations k ≥ k∗. Hence the sequence {fN∗(xk)}∞k=0 cannot be strictly monotone

15

decreasing, which contradicts the constructions in Algorithm 4.10.

Having shown that lim infk→∞ ∆k = 0, we can introduce the notion of a refining
subsequence as used by Audet and Dennis [1].

Definition 5.4 (Refining Subsequence) Consider a sequence {xk}∞k=0 constructed by
Model GPS Algorithm 4.10. We will say that the subsequence {xk}k∈K is the refining
subsequence, if ∆k+1 < ∆k for all k ∈ K, and ∆k+1 = ∆k for all k /∈ K.

When the cost function f(·) is only locally Lipschitz continuous, we, as well as Audet
and Dennis [1], only get a weak characterization of limit points of refining sequences. As
we will now see.

We recall the definition of Clarke’s generalized directional derivative [3]:

Definition 5.5 (Clarke’s Generalized Directional Derivative) Let f : Rn → R be
locally Lipschitz continuous at the point x∗ ∈ Rn. Then, Clarke’s generalized directional
derivative of f(·) at x∗ in the direction h ∈ Rn is defined by

d0f(x∗; h) , lim sup
x→x∗

t↓0

f(x + t h)− f(x)

t
. (17)

Theorem 5.6 Suppose that Assumptions 3.1 and 3.4 are satisfied and let x∗ ∈ Rn be an
accumulation point of a refining subsequence {xk}k∈K, constructed by Model GPS Algo-
rithm 4.10. Let d be any column of the base direction matrix D̂ along which fN(·) was
evaluated for infinitely many iterates in the subsequence {xk}k∈K. Then,

d0f(x∗; d) ≥ 0. (18)

Proof. Let {xk}k∈K be the refining subsequence and, WLOG, suppose that xk →K x∗.
By Assumption 3.4, there exists a compact set C such that LfN0

(x0)(fN) ∩X ⊂ C for all
N ≥ N0 = ρ(1). Therefore, by Assumption 3.1, there exists an NL ∈ Nq and a scalar
KL ∈ (0, ∞) such that, for all x ∈ C and for all N ≥ NL, we have |fN (x) − f(x)| ≤
KL ϕ(N). Because f(·) is locally Lipschitz continuous, its directional derivative d0f(· ; ·)

16

Figure 3: Visualization of equation (20)

exists. Hence, noting that N = Nk = ρ(∆k/∆0),

d0f(x∗; d) , lim sup
x→x∗

t↓0

f(x + t d)− f(x)

t

≥ lim sup
k∈K

f(xk + ∆k d)− f(xk)

∆k

≥ lim sup
k∈K

fN (xk + ∆k d)− fN (xk)− 2KL ϕ(N)

∆k

≥ lim sup
k∈K

fN (xk + ∆k d)− fN (xk)

∆k

− lim sup
k∈K

2KL

ϕ(N)

∆k

≥ − lim sup
k∈K

2KL

ϕ(N)

∆k

. (19)

The last inequality holds because {xk}k∈K is a refining subsequence. Since by Proposi-
tion 5.3, ∆k → 0, it follows from the constructions in Model GPS Algorithm 4.10 that
ϕ(N)/∆k →K 0.

Remark 5.7 Note that (18) is not a standard optimality condition since it holds only for
certain directions d. Consider, for example, the Lipschitz continuous function

f(x) ,

{
‖x‖, if x1 > 0 and x2 > 0,

‖x‖ cos
(
4 arccos

(
x1/‖x‖

))
, otherwise,

(20)

which is shown in Fig. 3. This function is not differentiable at the origin, but it does
have directional derivatives everywhere. At the origin x∗ = 0, we have df(x∗; d) = 1 for

17

d ∈ {±e1, ±e2}, but the directional derivative along s = (−1, −1)T is df(x∗; s) = −
√

2.
Using the Hooke-Jeeves algorithm with initial value x0 = (−1, 0)T and ∆ = ∆0 = 1, we
would converge to the origin, a point that possess some negative directional derivatives.

We now state that pattern search algorithms with adaptive precision function evaluations
converge to stationary points.

Theorem 5.8 (Convergence to a Stationary Point) Suppose that Assumptions 3.1
and 3.4 are satisfied and, in addition, that f(·) is once continuously differentiable. Let
x∗ ∈ Rn be an accumulation point of a refining subsequence {xk}k∈K, constructed by
Model GPS Algorithm 4.10. Then,

∇f(x∗) = 0. (21)

Proof. Since f(·) is once continuously differentiable, we have d0f(x∗; h) = df(x∗;h) =
〈∇f(x∗), h〉. Now, let D �

D
be the set of search direction matrices, and let D∗ ∈ D �

D
be

any positive spanning matrix that is used infinitely many times in conjunction with the
refining subsequence {xk}k∈K. Since the number of distinct columns in D �

D
is finite, there

must be at least one such D∗. It follows from Theorem 5.6 that 0 ≤ 〈∇f(x∗), d∗〉 for all
d∗ ∈ D∗. Let l denote the number of columns of D∗. Then, because the columns of D∗

positively span Rn, we can express any h ∈ Rn, as follows,

h =

l∑

i=1

αi d
∗
i , d∗i ∈ D∗, αi ≥ 0, ∀ i ∈ {1, . . . , l}. (22a)

Hence, 0 ≤ 〈∇f(x∗), h〉. Similarly, we can express the vector −h, as follows,

−h =

l∑

i=1

βi d∗i , d∗i ∈ D∗, βi ≥ 0, ∀ i ∈ {1, . . . , l}. (22b)

Hence, 0 ≥ 〈∇f(x∗), h〉, which implies 0 = 〈∇f(x∗), h〉, and, since h is arbitrary, that
∇f(x∗) = 0.

5.2 Linearly Constrained Minimization

We now extend our convergence proofs to the linearly constrained problem (1), by follow-
ing the arguments in Audet and Dennis [1].

First, we introduce the notion of a tangent cone and a normal cone, which are defined
as follows:

18

Definition 5.9 (Tangent and Normal Cone)

1. Let X ⊂ Rn. Then, we define the tangent cone to X at a point x∗ ∈ X by

TX(x∗) , {µ (x− x∗) | µ ≥ 0, x ∈ X}. (23a)

2. Let TX(x∗) be as above. Then, we define the normal cone to X at x∗ ∈ X by

NX(x∗) , {v ∈ Rn | ∀ t ∈ TX(x∗), 〈v, t〉 ≤ 0}. (23b)

Next, we introduce the concept of conformity of a pattern to a constraint set (see [1]),
which will enable us to extend the convergence results for our Model GPS Algorithm 4.10
from unconstrained optimization problems to linearly constrained optimization problems.

Definition 5.10 The function δ �
D,k

: Xk×∆k → D �
D

is said to conform to the feasible set

X, if for some ρ > 0 and for each x∗ ∈ ∂X satisfying ‖x∗ − xk‖ < ρ, the tangent cone
TX(x∗) can be generated by nonnegative linear combinations of the columns of a subset
Dx∗(xk) ⊂ Dk = δ �

D,k
(xk,∆k).

Furthermore, we define Dx∗(·) to be such that all its columns belong to TX(x∗).

Remark 5.11 The definition that all columns of Dx∗(·) belong to TX(x∗) facilitates the
extension of Theorem 5.6 to the constraint case.

We can now state that the accumulation points generated by Model GPS Algorithm 4.10
are feasible stationary points of problem (1).

Theorem 5.12 (Convergence to a Feasible Stationary Point)
Suppose Assumptions 3.1 and 3.4 are satisfied and that f(·) is once continuously differen-
tiable. Let x∗ ∈ X be an accumulation point of a refining subsequence {xk}k∈K constructed
by Model GPS Algorithm 4.10 in solving problem (1).

If there exists a k∗ ∈ N such that for all k > k∗, the local search direction maps
δ �
D,k

: Xk ×∆k → D �
D

conform to the feasible set X, then

〈∇f(x∗), t〉 ≥ 0, ∀ t ∈ TX(x∗), (24a)

and
−∇f(x∗) ∈ NX(x∗). (24b)

Proof. If x∗ is in the interior of X, then the result reduces to Theorem 5.8.
Let x∗ ∈ ∂X and let Dx∗(xk) be as in Definition 5.10. Since the family of maps{

δ �
D,k

(·, ·)
}

k∈K, k>k∗
conforms to the feasible set X and since there are only finitely many

linear constraints, we have that Dx∗(xk) converges to Dx∗(x∗), as xk →K′

x∗, for some

19

infinite subset K′ ⊂ K. By Theorem 5.6, we have 〈∇f(x∗), d〉 ≥ 0 for all d ∈ Dx∗(x∗).
Furthermore, it follows from the conformity of the family of local search direction maps{
δ �
D,k

(·, ·)
}

k∈K, k>k∗
, that every t ∈ TX(x∗) is a nonnegative linear combination of columns

of Dx∗(x∗). Therefore, 〈∇f(x∗), t〉 ≥ 0. It follows directly that 〈−∇f(x∗), t〉 ≤ 0, which
shows that −∇f(x∗) ∈ NX(x∗).

When the function f(·) is only locally Lipschitz continuous, we obtain following corol-
lary which follows directly from Theorem 5.6 and equation (24a).

Corollary 5.13 Suppose that the assumptions of Theorem 5.12 are satisfied, but f(·) were
only locally Lipschitz continuous. Then,

d0f(x∗; d) ≥ 0, ∀ d ∈ Dx∗(x∗). (25)

6 Conclusion

We have extended the family of GPS algorithms to a form that converges to a stationary
point of a smooth cost function that cannot be evaluated exactly, but that can be approxi-
mated by a family of possibly discontinuous functions {fN (·)}N∈

�
q . An important feature

of our algorithms is that they use low-cost, coarse precision approximations to the cost
function when far from a solution, with the precision progressively increased as a solution
is approached. This feature is known to lead to considerable time savings over using very
high precision approximations to the cost function in all iterations.

In constructing our algorithms, we have adopted a geometric framework that should
be easier to grasp than that found in earlier versions of GPS algorithms.

20

Appendix

A Extension of Model GPS Algorithm 4.10

We present a modified version of Model GPS Algorithm 4.10 that updates the mesh di-
vider in the same manner as Audet and Dennis [1]. In particular, it allows increasing the
mesh divider if the approximate cost function was reduced in the current iteration.

Algorithm A.1 (Model GPS Algorithm that allows increasing the Mesh Size)

Data: Initial iterate x0 ∈ X;
Constants τ > 1, τ ∈ Q and tmax ≥ 1, tmax ∈ N;
Initial mesh divider ∆0 > 0, arbitrary.

Base direction matrix D̂ ∈ Qn×p ∩ S (see Definition 4.2).
Maps: As in Model GPS Algorithm 4.10.
Step 0: Initialize k = 0 and s0 = 0.
Step 1: As in Model GPS Algorithm 4.10.
Step 2: As in Model GPS Algorithm 4.10.
Step 3: Parameter Update

If there exists an x′ ∈ Gk ∪ Lk satisfying fN (x′) < fN(xk),
set xk+1 = x′, sk+1 = sk + tk, with tk ∈ {t ∈ N | 0 ≤ t ≤ tmax} arbitrary;
else, set xk+1 = xk, sk+1 = sk + tk,
with tk ∈ {t ∈ N | − tmax ≤ t ≤ −1} arbitrary.
Set ∆k+1 = τ sk+1 ∆0 and N = ρ

(
min(∆k+1/∆0, 1)

)
.

Step 4: As in Model GPS Algorithm 4.10.

Remark A.2 To ensure that N ≥ N0 = ρ(1) during the optimization, in Step 3 we take
the minimum of ∆k+1/∆0 and 1 as the argument of ρ(·). If ∆k+1 is set larger than ∆0,
then the number of solver iterations may become unreasonable small.

Audet and Dennis show that with the mesh construction in Algorithm A.1, the mesh
dividers satisfy lim infk→∞ ∆k = 0. Thus, Algorithm A.1 also constructs a refining subse-
quence, K. Furthermore, Step 3 of Algorithm A.1 ensures that

lim sup
k∈K

fN (xk + ∆k d)− fN (xk)

∆k

≥ 0, (26)

as we also had in Master GPS Algorithm 4.10.
Consequently, our Theorem 5.6 also holds for Algorithm A.1, and so do Theorem 5.8,

Theorem 5.12 and Corollary 5.13.

21

B Error Bound Functions

We will now show how the error bound function ϕ : Np → R+ arises in a few specific
optimization problems.

Example B.1 Consider the problem

min
x∈� n

f(x), subject to (27a)

f(x) , F (z(x, 1), x), (27b)

dz(x, t)

dt
= y, z(x, 0) = ζ(x), t ∈ [0, 1], (27c)

u(y, x, t) = 0, (27d)

where F : R× Rn → R and u : R× Rn × R→ R are continuously differentiable. Let y be
defined as the solution of (27d), and assume that, for all x ∈ Rn and for all t ∈ R, y is
unique and continuously differentiable, but can only be approximated by K iterations of
a solver, and denote the approximation by yK .

We assume that there exist a constant Cs ∈ (0,∞) and a known function ϕs : N→ R+,
satisfying ϕs(K)→ 0 as K →∞, such that for all x in any compact subset of Rn, and for
all t ∈ [0, 1],

|y − yK | ≤ Cs ϕs(K). (27e)

In example, when the bisection rule is used for finding yK , ϕs(K) can be taken to be 1/2K .
We will use the Euler integration method with N ∈ N integration steps. Let zN (x, 1)

denote the numerical solution obtained by solving (27d) with infinite precision. Then it
follows from the error analysis of the Euler method [13] that there exist an N ∗ ∈ N and a
Ce > 0 such that for all N ∈ N, with N > N ∗, and for all x belonging to a compact subset
of Rn,

|zN (x, 1) − z(x, 1)| ≤ Ce

N
. (27f)

Therefore, if fK,N(·) is the cost function associated with the approximate solutions of (27c)
and (27d), then there exists a constant C ∈ (0, ∞) such that for all N ∈ N, with N > N ∗,
and for all x belonging to a compact subset of Rn,

|f(x)− fK,N(x)| ≤ C

(
Cs

(
1

2

)K

+ Ce
1

N

)
. (27g)

Thus, ϕ(K,N) = α 2−K + N−1 for some α > 0 and sufficiently large N .

Next, we present an example where the cost function is defined on the solution of a
partial differential equation, and the boundary condition of the PDE can only be approx-
imated.

22

Example B.2 Consider the optimization problem of achieving a prescribed temperature
profile in a 3-dimensional body at time t = 1 by controlling the heat transfer at the body’s
surface. Components of the design parameter x could be, for example, the nominal heating
power and some control parameters.

Let Ω be an open, connected, bounded subset of R3, and let vd : Ω→ R be given and
continuously differentiable. Then the problem can be stated as

min
x∈ � n

f(x), subject to (28a)

f(x) ,

∫

Ω
|v(x, ζ, 1) − vd(ζ)|dΩ, (28b)

∇2
ζv(x, ζ, t) =

∂v(x, ζ, t)

∂t
, ζ ∈ Ω, t ∈ [0, 1], (28c)

v(x, ζ, 0) = v0(x, ζ), ζ ∈ Ω,

∇ζv(x, ζ, t)
∣∣∣
ζ∈∂Ω

= y n(ζ)
∣∣∣
ζ∈∂Ω

, t ∈ [0, 1],

g(y, x, t) = 0, (28d)

where n(ζ) ∈ R3 is the unit normal vector at the boundary points ζ ∈ ∂Ω, ∇ζ(·) is the
gradient with respect to ζ, and ∇2

ζ(·) is the Laplacian operator with respect to ζ. Assume

that v0 : Rn × R3 → R, and g : R×Rn × R→ R are continuously differentiable, and that,
for all x and t, (28d) has a unique continuously differentiable solution, but the solution of
(28d) can only be approximated.

Let yK denote the approximate solution of (28d). Assume that yK satisfies, for some
constant Cs ∈ (0,∞), and some known function ϕs : N → R+, satisfying ϕs(K) → 0 as
K →∞,

|y − yK | ≤ Cs ϕs(K), (28e)

for all x belonging to a compact subset of Rn, and for all t ∈ [0, 1]. (See Example B.1 for
a specific error bound function ϕs(·).)

Let vK(x, ·, ·) denote the infinite precision solution of the PDE (28c) but with finite
precision boundary condition

∇ζvK(x, ζ, t)
∣∣∣
ζ∈∂Ω

=yK n(ζ)
∣∣∣
ζ∈∂Ω

, t ∈ [0, 1], (28f)

i.e., yK is the approximate solution of 0 = g(y, x, t).
Then, by linearity of the PDE, the difference sK(x, ζ, t) , v(x, ζ, t)− vK(x, ζ, t) is the

solution of the equation

∇2
ζsK(x, ζ, t) =

∂sK(x, ζ, t)

∂t
, ζ ∈ Ω, t ∈ [0, 1], (28g)

sK(x, ζ, 0) = 0, ζ ∈ Ω,

∇ζsK(x, ζ, t)
∣∣∣
ζ∈∂Ω

= (y − yK)n(ζ)
∣∣∣
ζ∈∂Ω

, t ∈ [0, 1].

23

For any function g : Ω×R→ R, let ‖g(·, ·)‖∞ , supζ∈Ω, t∈[0, 1] |g(ζ, t)|. Then, (28e) together
with the linearity of the PDE implies that there exists a constant Cl ∈ (0,∞) such that

‖sK(x, ·, ·)‖∞ ≤ Cl ϕs(K). (28h)

Let M ∈ N be the number of mesh points for each coordinate direction, used for the
spatial discretization, and let N ∈ N be the number of mesh points for the temporal
discretization. For given M,N ∈ N, and x ∈ Rn, let {vM,N (x, ·, ·)} be the approximate
solutions of (28c) (subject to the infinite precision boundary condition), and, for given K ∈
N, let {vK,M,N(x, ·, ·)} be the approximate solutions of (28c) (subject to the approximate
boundary condition (28f)). Similarly, let {sK,M,N(x, ·, ·)} be the approximate solutions of
(28g). Suppose that the integration scheme is stable and such that there exist constants
CI ∈ (0,∞), p > 1 and q > 1, such that for all x belonging to a compact subset of Rn and
for all sufficiently large M,N ∈ N,

‖v(x, ·, ·) − vM,N (x, ·, ·)‖∞ ≤ CI (M−p + N−q), (28i)

‖sK(x, ·, ·) − sK,M,N(x, ·, ·)‖∞ ≤ CI (M−p + N−q). (28j)

Then,

‖v(x, ·, ·) − vK,M,N(x, ·, ·)‖∞ ≤ ‖v(x, ·, ·) − vM,N (x, ·, ·)‖∞
+‖vM,N (x, ·, ·) − vK,M,N(x, ·, ·)‖∞

≤ CI (M−p + N−q) + ‖sK,M,N(x, ·, ·)‖∞
≤ CI (M−p + N−q) + Cl ϕs(K) + CI (M−p + N−q)

≤ C
(
M−p + N−q + α ϕs(K)

)
(28k)

for some α,C ∈ (0,∞).
Thus, for some C ′ ∈ (0, ∞) and sufficiently large M,N ∈ N, |f(x) − fK,M,N(x)| ≤

C ′
(
M−p + N−q + α ϕs(K)

)
, and ϕ(M,N,K) = M−p + N−q + α ϕs(K).

Example B.3 In [11], Pironneau and Polak present a two-point boundary value optimal
control problem with scalar, linear double integrator dynamics which they approximate
using the finite difference method. The resulting finite difference equation is then solved
using the Gauss-Seidel method. If K ∈ N is the number of discretization steps, and N ∈ N

is the number of Gauss-Seidel iterations, then the error bound for the cost function is
shown to be

ϕ(K,N) =

(
1− c

(
1

K

)2
)N

(29a)

where c ∈ (0, 1) is an unknown constant. The constant c can be guessed, or one can
replace the function ϕ(·, ·) with the conservative estimate ϕ(K,N) = (1−K−(2+ε))N , with
0 < ε � 1, small, i.e., replace c with K−ε. To ensure that ϕ(K,N) → 0, as K,N → ∞,
we set N(K) to the smallest integer such that

N(K) ≥ C K2+2 ε, (29b)

24

with C > 0 arbitrary. Then,
N(K) ≈ C K2+2 ε. (29c)

Note that

(
1−K−(2+ε)

)C K2+2 ε

= exp
(
C K2+2 ε log

(
1−K−(2+ε)

))

≈ exp (−C Kε)→ 0, as K →∞. (29d)

References

[1] Charles Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches. SIAM
Journal on Optimization, 13(3):889–903, 2003.

[2] Andrew J. Booker, J. E. Dennis, Jr., Paul D. Frank, David B. Serafini, Virginia
Torczon, and Michael W. Trosset. A rigorous framework for optimization of expensive
functions by surrogates. Structural Optimization, 17(1):1–13, February 1999.

[3] F. H. Clarke. Optimization and nonsmooth analysis. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, 1990.

[4] I. D. Coope and C. J. Price. Positive bases in numerical optimization. Technical
Report UCDMS2000/12, Dept. of Mathematics and Statistics, Univ. of Canterbury,
Christchurch, New Zealand, 2000.

[5] Chandler Davis. Theory of positive linear dependence. American Journal of Mathe-
matics, 76(4):733–746, October 1954.

[6] J. E. Dennis, Jr. and Virginia Torczon. Direct search methods on parallel machines.
SIAM Journal on Optimization, 1(4):448–474, 1991.

[7] J. E. Dennis, Jr. and Virginia Torczon. Managing approximation models in opti-
mization. In Natalia M. Alexandrov and M. Y. Hussaini, editors, Multidisciplinary
Design Optimization: State of the Art, ICASE/NASA Langley Workshop on Multi-
disciplinary Optimization, pages 330–347. SIAM, 1997.

[8] R. Hooke and T. A. Jeeves. ’Direct search’ solution of numerical and statistical
problems. J. Assoc. Comp. Mach., 8(2):212–229, April 1961.

[9] Robert Michael Lewis and Virginia Torczon. Pattern search algorithms for bound
constrained minimization. SIAM Journal on Optimization, 9(4):1082–1099, 1999.

[10] Robert Michael Lewis and Virginia Torczon. Pattern search methods for linearly
constrained minimization. SIAM Journal on Optimization, 10(3):917–941, 2000.

25

[11] Olivier Pironneau and Elijah Polak. Consistent approximations and approximate
functions and gradients in optimal control. Technical Report UCB/ERL M00/14,
University of California at Berkeley, Electronics Research Laboratory, March 2000.
To appear in SIAM Journal on Control and Optimization.

[12] Elijah Polak. Computational Methods in Optimization; a Unified Approach, volume 77
of Mathematics in Science and Engineering. New York, Academic Press, 1971.

[13] Elijah Polak. Optimization, Algorithms and Consistent Approximations, volume 124
of Applied Mathematical Sciences. Springer Verlag, 1997.

[14] David B. Serafini. A Framework for Managing Models in Nonlinear Optimization of
Computationally Expensive Functions. PhD thesis, Rice University, 1998.

[15] Virginia Torczon. On the convergence of pattern search algorithms. SIAM Journal
on Optimization, 7(1):1–25, 1997.

[16] Virginia Torczon and Michael W. Trosset. Using approximations to accelerate en-
gineering design optimization. Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri,
AIAA Paper 98-4800, September 1998.

[17] Michael W. Trosset. On the use of direct search methods for stochastic optimiza-
tion. Technical Report TR00-20, Rice University, Department of Computational and
Applied Mathematics, 2000.

