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ABSTRACT OF THE DISSERTATION

Biologically Inspired Efficiencies in Computer Vision and Audition

by

Mohammad K. Ebrahimpour

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2020

Professor David C. Noelle, Chair

Computer perception is one of the fundamental problems in artificial intelligence. Given

an image or an recorded audio, a human can quickly recognize and detect objects based

on image or sound or both. In computer vision, Object Detection is concerned with rec-

ognizing objects in images and drawing a bounding box around them. Researchers have

been working on developing algorithms to recognize, detect , and segment objects/scenes

in images for decades. Numerous challenges make these problems significantly challeng-

ing in real world scenarios, since objects usually appear in different conditions, such as

viewpoints, scales, and with background noise, and they even may deform into different

shapes, parts, or poses. Real time object detection has many important applications, such

as autonomous driving cars and video surveillance. In this dissertation, we approach vi-

sual understanding in the following ways: First, we utilize implicit information in trained

neural networks to localize all objects of interest in an image using a sensitivity analysis

approach. Second, we introduce a novel framework for object detection called “Ventral-

Dorsal” Neural Networks, inspired by the structure of human brain. Third, we expand the

Ventral-Dorsal framework, focusing on attaining real time performance needed for online

applications. Forth, we compare human attention with deep neural network attention algo-

rithms in order to understand whether neural network attention matches human attention.

Also, auditory perception is crucial in artificial intelligence systems. Until recently, audi-

tory object recognition pipelines were in need of substantial hand engineering for feature

extraction. Engineered features need to be tuned for every individual problem. Also, some

popular feature extraction methods are time consuming, limiting real time applications.

xv



Here we attempt to avoid these problems using end-to-end training. Due to the recent

improvements in deep neural networks, we are able to eliminate feature learning by op-

timizing feature extraction and classification jointly in one network. In this dissertation,

we approach the auditory object recognition problem in the following ways: we proposed

a novel “end-to-end” deep neural network architecture that takes raw audio as input and

maps it to class labels. We also applied our proposed architecture to a new dataset of infant

vocalization sounds for further investigation.
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Chapter 1

Introduction

1.1 Overview

Computer perception is one of the fundamental problems in artificial intelligence. Given

an image or an audio stream, a human can quickly recognize and detect objects based on

image or sound or both. The research in this dissertation involves computer perception

using visual and audio inputs. We have developed some object detection and visual un-

derstanding techniques, as well as end-to-end auditory object recognition algorithms. The

topics that we worked on are as follows:

1) Does a deep neural network which can recognize different classes of objects contain any

information about the location of objects [24]?

2) Why are humans good at object detection? What does this suggest to computer vi-

sion [23]?

3) Can we create a computer vision framework that runs in realtime while employing a

sophisticated attentional mechanism [22]?

4) Do deep convolutional neural networks (CNNs) and people use visual attention in the

same way [21]?

5) Since deep neural networks are capable of eliminating the feature extraction step in im-

age recognition can we have an end-to-end auditory object recognition network that gets

raw audio inputs and maps them to labels without extracting hand engineered features [20]?

6) Given a dataset of infant voices containing infant vocalizations, non-vocalizations, infant

directed speech, adult directed speech and cry/laugh voices, can deep neural network learn

1
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representations in order to classify these categories of sounds effectively [19]?

This dissertation can be divided into two main parts. The first part discusses computer per-

ception of images and the second part investigates computer perception of auditory streams.

Computer Perception, Involving Visual Understanding
Visual understanding is one of the important parts of artificial intelligence. Given an image,

a person can quickly identify the objects in the image and can detect all objects of interest.

In real world problems, detecting all objects of interest is a hard task for computers due

to the variation of objects with respect to size, shape, and aspect ratios. This problem can

get even harder when we are dealing with objects in perspective.

Another challenging factor of this problem is associated with the applications. In most

object detection applications the results should be fast to avoid catastrophic consequences.

For instance, if we have an autonomous driving car, since the environment is dynamic, the

decision making process from the visual understanding side of the pipeline must be in real

time since the final decision is a life and death decision.

Computer Perception Involving Audio Analysis
Another important perceptual ability involves audio. Audio analysis is important in a vari-

ety of ways. For example, sometimes in video surveillance the lighting situation is not very

good, so the image or video is not meaningful. In this scenario, having audio perception

would come in handy. For instance, if a surveillance camera records events at night with

bad lighting, analyzing the sounds makes more sense when trying to determine the events.

There are times when the only relevant stimulus is sound. For instance, during the

Covid-19 pandemic, a useful tool might be, one that detects infection by analyzing the

sound of one’s coughing sound.

1.2 Solutions

Visual Analysis
We have introduced the problem of visual analysis and its challenges. Recently, a number

of deep learning frameworks [32, 58, 35] have shown significant improvement on object

recognition tasks. However, these methods generally propose the use of one neural network

for solving an object detection task. Since the performance of these models is still far

from human performance levels, we hypothesized that biological vision could inform the
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improvement of the models. In this dissertation, we are planning to introduce two concepts

to object detection frameworks. One of the reasons that human beings are performing

well on the object detection task is because they have Selective Attention. This means

our brain evolved to pay attention to the gist of the visual field and ignore the irrelevant

information. Second, in our studies, we noticed that even our brain does not solve the

detection problem with one network. In our brain we have two pathways for “What” and

“Where” determinations. Given a brief introduction, we would like to answer the following

two questions:

• How can we incorporate selective attention into CNNs?

• How can we implement attention using two pathways for object detection?

In response to the first question, we proposed a number of gradient based attentional models

to resemble selective attention. In response to the second question, we proposed a novel

framework called ventral-dorsal neural networks for object detection, which resembles the

ventral and dorsal pathways in the human brain.

Audio Analysis
The majority of auditory object recognition pipelines extract hand engineered features, like

Mel-Frequency Cepstrul Coefficients (MFCC) [52], and they treat the extracted features as

an image, allowing for the application of a CNN on it for the recognition task. But one

of the advantages of using CNNs is that they are able to extract informative features by

themselves. Given this fact, we investigated some potential architectures for end-to-end

auditory object recognition. The main questions that we want to answer are as follows:

• Can we input time domain audio signal to a neural network and map it to class labels?

• What kind of representations will the neural network learn with such an end-to-end

approach?

To answer the above questions, we proposed a novel architecture that takes a raw time

domain signal and maps it to labels. We also investigated the learned representations to

shed light on the working of our proposed model.
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1.3 Organization

In Chapter 2, we offer a novel approach to the localization of recognized objects in

images. Our method is predicated on the idea that a deep CNN capable of recognizing an

object must implicitly contain knowledge about object location in its connection weights.

We provide a simple method to interpret classifier weights in the context of individual

classified images. This method involves the calculation of the derivative of network gen-

erated activation patterns, such as the activation of output class label units, with regard to

each input pixel, performing a sensitivity analysis that identifies the pixels that, in a local

sense, have the greatest influence on internal representations and object recognition. These

derivatives can be efficiently computed using a single backward pass through the deep

CNN classifier, producing a sensitivity map of the image. We demonstrate that a simple

linear mapping can be learned from sensitivity maps to bounding box coordinates, localiz-

ing the recognized object. Our experimental results, using real-world data sets for which

ground truth localization information is known, reveal competitive accuracy from our fast

technique.

In Chapter 3, we propose a new framework, called Ventral-Dorsal Networks (VDNets),

which is inspired by the structure of the human visual system. Roughly, the visual input

signal is analyzed along two separate neural streams, one in the temporal lobe and the other

in the parietal lobe. The coarse functional distinction between these streams is between

object recognition — the “what” of the signal – and extracting location related information

— the “where” of the signal. The ventral pathway from primary visual cortex, entering

the temporal lobe, is dominated by “what” information, while the dorsal pathway, into the

parietal lobe, is dominated by “where” information. Inspired by this structure, we propose

the integration of a “Ventral Network” and a “Dorsal Network”, which are complementary.

Information about object identity can guide localization, and location information can guide

attention to relevant image regions, improving object recognition. This new dual network

framework sharpens the focus of object detection. Our experimental results reveal that the

proposed method works favorably in comparison to the state of the art approaches.

In Chapter 4, we propose a new deep convolutional neural network framework that

uses object location knowledge implicit in network connection weights to guide selective

attention in object detection tasks. The VDNets of Chapter 3 are augmented to produce a
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framework called Dense VDNets. The aim of the Ventral Network is to provide selective

attention to the relevant parts of the input image. The Dorsal Network uses this information

to locate and classify objects of interest. We compare this approach to state-of-the-art

algorithms on the PASCAL VOC 2007 and 2012 and COCO object detection challenge

datasets.

In Chapter 5, we investigate the reasons why Deep Convolutional Neural Networks

(CNNs) exhibit relatively poor performance on object detection tasks. We hypothesize that

this gap in performance may be largely due to the fact that humans exhibit selective atten-

tion, while most object detection CNNs have no corresponding mechanism. In examining

this question, we investigate some well-known attention mechanisms in the deep learning

literature, identifying their weaknesses and leading us to propose a novel CNN approach

to object detection: the Densely Connected Attention Model. We then report the results

of a study of human spatial attention, using eye tracking data, during the performance of

an analogous object detection task. By comparing the learned representations produced

by various CNN architectures with the fixations exhibited by human viewers, we identify

some relative strengths and weaknesses of the examined computational attention mecha-

nisms. Some CNNs produced attentional patterns somewhat similar to those of humans.

Others focused processing on objects in the foreground. Still other CNN attentional mech-

anisms produced usefully interpretable internal representations. The resulting comparisons

provide insights into the relationship between CNN object detection systems and the hu-

man visual system, as well as the appropriateness of different attentional mechanisms for

different visual tasks.

In Chapter 6, we propose a novel end-to-end auditory object recognition network. Es-

sentially, machine learning approaches to auditory object recognition have traditionally

been based on engineered features such as those derived from the spectrum or cepstrum.

More recently, end-to-end classification systems in image and auditory recognition systems

have been developed to learn features jointly with classification, and this approach has re-

sulted in improved classification accuracy. In this chapter, we propose a novel end-to-end

deep neural network to map the raw waveform inputs to sound class labels. Our network

includes an “inception nucleus” that optimizes the size of convolutional filters on the fly,

and this reduces engineering efforts dramatically. Classification results compared favor-

ably against current state-of-the-art approaches, besting them by 10.4 percentage points on
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the Urbansound8k dataset. Analyses of learned representations revealed that filters in the

earlier hidden layers came to perform wavelet-like transforms in order to extract features

that were informative for classification.

In Chapter 7, we talk about end-to-end approaches to analyzing infant vocalizations.

Acoustic analyses of infant vocalizations are valuable for research on speech development,

as well as applications in sound classification. Previous studies have focused on measures

of acoustic features based on theories of speech processing, such as spectral and cepstrum-

based analyses. More recently, end-to-end models of deep learning have been developed to

take raw speech signals (acoustic waveforms) as inputs and convolutional neural network

layers to learn representations of speech sounds based on classification tasks. We applied a

recent end-to-end model of sound classification to analyze a large-scale database of labeled

infant and adult vocalizations recorded in natural settings outside of the lab, with no control

over recording conditions. The model learned basic classifications like infant versus adult

vocalizations, infant speech-related versus non-speech vocalizations, and canonical versus

non-canonical babbling. The model was trained on recordings of infants ranging from 3

to 18 months of age, and classification accuracy changed with age as speech became more

distinct and babbling became more speech-like. Further work is needed to validate and

explore the model and dataset, but our results show how deep learning can be used to

measure and investigate speech acquisition and development, with potential applications in

speech pathology and infant monitoring.

Finally, we conclude this dissertation in Chapter 8.



Chapter 2

Object Detection with Sensitivity
Analysis

2.1 Introduction

Deep Convolutional Neural Networks (CNNs) have been shown to be effective at im-

age classification, accurately performing object recognition even with thousands of object

classes when trained on a sufficiently rich data set of labeled images [43]. One advantage

of CNNs is their ability to learn complete functional mappings from image pixels to object

categories, without any need for the extraction of hand-engineered image features [70]. To

facilitate learning through stochastic gradient descent, CNNs are (at least approximately)

differentiable with regard to connection weight parameters.

Image classification, however, is only one of the problems of computer vision. In the

task of image classification, each image has a single label, associated with the class identity

of the main object in the image, and the goal is to assign correct labels in a manner that

generalizes to novel images. This can be accomplished by training a machine learning clas-

sifier, such as a CNN, on a large data set of labeled images [16]. In the object localization

task, in comparison, the output for a given image is not a class label but the locations of a

specified number of objects in the image, usually encoded as bounding boxes. Evaluation

of an object localization system generally requires ground truth bounding boxes to compare

to the system’s output.In comparison, the object detection task is even more difficult than

the localization task, as the number of objects are not predetermined [70].

7
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Figure 2.1: Examples of sensitivity maps, displaying the sensitivity of network internal

representations to individual pixels, providing information about the locations of the main

objects in the source images. Input in rows 1 and 3 are exhibiting the original images. The

sensitivity analysis of the corresponding images are given in rows 2 and 4.
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In this chapter, we focus on object localization, identifying the position in the image

of a recognized object. As is common in the localization literature, position information is

output in the form of a bounding box. Previously developed techniques for accomplishing

this task generally involve searching the image for the object, considering many candidate

bounding boxes with different sizes and locations, sometimes guided by an auxilliary al-

gorithm for heuristically identifying regions of interest [70, 31, 35]. For each candidate

location, the sub-image captured by the bounding box is classified for object category, with

the final output bounding box either being the specific candidate region classified as the

target object with the highest level of certainty or some heuristic combination of neighbor-

ing or overlapping candidate regions with high classification certainty. These approaches

tend to be time consuming, often requiring deep CNN classification calculations of many

candidate regions at multiple scales. Efforts to speed these methods mostly focus on re-

ducing the number of regions considered, typically by using some adjunct heuristic region

proposal algorithm [31, 61, 35].

A noteworthy alternative approach is to directly train a deep CNN to produce outputs

that match ground truth localization bounding boxes, using a large image data set that pro-

vides both category and localization information for each image. It appears as if some form

of this method was used with AlexNet [43], though details concerning localization, rather

than image classification, are difficult to discern from the published literature. A natural

approach would be to cast the learning of bounding boxes as a simple regression problem,

with targets being the four coordinates that specify a bounding box (e.g., coordinates of

upper-left and lower-right corners, or region center coordinates along with region width

and height). It is reasonable to consider sharing early layers of a deep CNN, such as those

performing convolution and max pooling, between both an image classification network

and an object localization network. Indeed, taking such a multitask learning approach [9]

can allow for both object category and object location training data to shape connection

weights throughout the network. Thus, the deep CNN would have “two heads”, one for

image classification, using a classification cross-entropy loss function, and one for object

localization, reducing the `2 norm between ground truth and predicted bounding box co-

ordinates [43]. While this approach can produce a network that quickly outputs location

information, extensive training on large data sets containing ground truth bounding box

information is necessary to produce good generalization.
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In this chapter, we introduce an approach to object localization that is both very fast

and robust in the face of limited ground truth bounding box training data. This approach

is rooted in the assertion that any deep CNN for image classification must contain, implicit

in its connection weights, knowledge about the location of recognized objects [69]. The

goal, then, is to interpret the flow of activation in an object recognition network when it is

performing image classification so as to extract information about object location. Further-

more, the goal is to do this quickly. Thus, this approach aims to leverage location knowl-

edge that is already latent in extensively trained and tuned image classification networks,

without requiring an additional complex learning process for localization.

Our method makes use of the notion of a sensitivity analysis [75]. We propose estimat-

ing the sensitivity of the category outputs, or activation patterns at internal network layers,

of an image classification CNN to variance in each input pixel, given a specific input im-

age. The result is a numeric value for each pixel in the input image that captures the degree

to which small changes in that pixel (locally, around its current value) give rise to large

changes in the output category. Together, these numeric values form a sensitivity map of

the image, encoding image regions that are important for the current classification. Our

proposed measure of sensitivity is the partial derivative of activity with regard to each pixel

value, evaluated for the current image. For a deep CNN that formally embodies a differen-

tiable mapping (at least approximately) from image pixels to output categories, this partial

derivative can be quickly calculated. While many tools currently exist for efficiently calcu-

lating such derivatives, we provide a simple algorithm that computes these values through

a single backward pass through the image classification network, similar to that used to

calculate unit error (delta) values in the backpropagation of error learning algorithm [64].

Thus, we can generate a sensitivity map for an image in about the same amount of time as

it takes the employed image classification network to produce an output. Some example

sensitivity maps are shown in Figure 2.1.

The idea of using sensitivity information, like that in our sensitivity maps, for a vari-

ety of tasks, including localization, has previously appeared in the literature [72, 92, 69].

Indeed, some of these past efforts have used more sophisticated measures of sensitivity.

In this chapter, we show that even our very simple sensitivity measure can produce strong

localization performance, and it can do so quickly, without any modifications to the clas-

sification network, and even for object categories on which the classification network was



11

not trained. The relationship of the results reported here to previously reported work is

discussed further in Section 2.4.

As previously mentioned, object localization methods typically encode object location

as a bounding box. Since our sensitivity maps encode location differently, in terms of

pixels, we propose learning a simple linear mapping from sensitivity maps to bounding

box coordinates, allowing our method to output a bounding box for each classified image.

We suggest that this linear mapping can be robustly learned from a relatively small training

set of images with ground truth bounding boxes, since the sensitivity maps form a much

more simple input than the original images.

The primary contributions of this research may be summarized as follows:

• We propose a new general approach to performing object localization, interpreting a

previously trained image classification network by performing a sensitivity analysis,

identifying pixels to which the category output, or a more general internal represen-

tation, is particularly sensitive.

• We demonstrate how a linear function from the resulting sensitivity maps to object

location bounding box coordinates may be learned from a relatively small set of

training images containing ground truth location information.

• We provide a preliminary assessment of our approach, measuring object localization

performance on the ImageNet and PASCAL VOC data sets using the VGG16 image

classification CNN, showing strong accuracy while maintaining short computation

times.

2.2 Object Detection via Sensitivity Analysis

2.2.1 Calculating Pixel Sensitivities in a Trained CNN

Calculating derivatives of a function of network output with regard to network param-

eters, such as connection weights, is a standard part of CNN training. It is common for

learning in a deep CNN to involve stochastic gradient decent, which involves such deriva-

tives. In that case, the derivatives are of an objective function with regard to connection

weight values. In image classification networks, the objective function is designed to have
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optima where training images are correctly classified. In the case of object localization,

a similar objective function could be designed to minimize differences between output

bounding box coordinates and provided ground truth bounding box coordinates, for all im-

ages in an appropriately labeled training set. For example, given N training images, stored

in the matrix X, with the ground truth 4-dimensional bounding box vector for image xi

being yi, and G(xi;w) being the CNN output vector for image xi given connection weights

w, an appropriate loss function would be:

`(X,w) =
1

N

NX

i=1

kyi �G(xi;w)k22 (2.1)

The CNN will produce good estimates of the training image bounding boxes when this

loss function is minimized with regard to w. Network weight parameters that minimize

this loss, w⇤, may be sought through stochastic gradient decent, incrementally updating

w according to the gradient of `(X,w) with regard to w. A primary drawback of this

approach is that it requires a large and representative sample of images with ground truth

bounding box information.

Consider that, once weights are found, the gradient of `(X,w⇤) with regard to X would

provide information about the sensitivity of the bounding box loss function with regard to

the pixels in the images. This gradient can be calculated as efficiently as the gradient of

the loss with regard to the weights, with both depending on the gradient of G(xi;w) with

regard to a subset of its arguments. This means that the gradient of G(xi;w⇤) with regard to

xi can be efficiently computed, and that gradient would capture the sensitivity of bounding

box coordinates with regard to the specific pixels in image xi. Note that this gradient can

be calculated for images beyond those in the training set. Knowing which pixels in a novel

image play an important role in determining the bounding box provides useful information

for object localization. Using this calculation to address the object localization task makes

little sense, however, as G(xi;w⇤) provides an estimate of object location without a need

to consider pixel sensitivity.

Rather than training a deep CNN to output bounding boxes, requiring extensive labeled

data, we propose calculating the same gradient for a different network – one successfully

trained to perform image classification. If we now see G(xi;w⇤) as the output of such

an image classification network, its gradient with regard to xi would provide information

about the sensitivity of the assigned category to individual pixels. Pixels with the largest
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absolute values of this derivative will, around the input xi, produce the largest changes in

the classification decision of the CNN. This can be seen as one measure of how important

pixels are for classifying the object in the image. Consider that the object class output is

not immediately affected by changes to pixels with a derivative of zero.

The calculation of this gradient can be performed efficiently as a single “backward

pass” through the classification network. This is well illustrated by considering the case of

a simple layered backpropagation network [64] in which the “net input” of unit i, ⌘i, is a

weighted sum of the activations of units in the previous layer, and the activation of unit i

is g(⌘i), where g(·) is the unit activation function. In this case, we can define a sensitivity

value for each unit, si, as the derivative of the network output with regard to ⌘i. Using the

chain rule of calculus, it is easy to show that the sensitivity of an output unit is g0(⌘i), and,

for units in earlier layers the gradients are computed as follows:

si = g
0(⌘i)

X

k

wki sk (2.2)

where k iterates over all units in the immediately downstream layer from unit i and wki is

the connection weight from unit i to unit k. This calculation may be performed, layer by

layer, from outputs to inputs, until si values for each pixel input unit are available.

This demonstrates how efficiently pixel sensitivity values can be calculated for a given

classified image. Of course, there are currently a variety of software packages that include

tools for calculating gradients. In the evaluation of our approach in Section 3.4, we report

results using the tools provided by TensorFlow [1].

2.2.2 Sensitivity of the Attention Map.

We have proposed using a previously trained image classification network as a source

of information about object location, focusing on the gradient of the network output with

regard to image pixels. It is interesting to note that it might not be necessary to perform

the sensitivity calculation using the full classification network. There is a growing body

of research that suggests that, in a well trained image classification CNN, the features

that are extracted at the “attention map” layer (i.e., the output of the last convolutional

layer) tend to be generally useful for learning a variety of image analysis tasks [57, 18].

Inspired by these results, we have investigated the possibility of substituting the gradient



14

of the classifier output with regard to pixels with the gradient of the attention map with

regard to pixels. This avoids calculations involving final fully connected layers and any

classification softmax layer. Generating image sensitivity maps from the attention map

layer is slightly faster than our original proposal, but, more importantly, it is possible that

general knowledge about object location might be found in the attention map, and using

the attention map as the basis of the sensitivity map might actually generalize beyond the

categories on which the image classiciation CNN was trained. We have not yet done a

formal comparison of these two approaches to constructing the sensitivity map, but example

results using both approaches are reported in Section 3.4. When computing these gradients,

we refer to the aggregated values of the last convolutional layer as the Gestalt Total (GT),

which is computed as follows:

GT =
1

H ⇥W ⇥ C

X

i,j,k

An(i, j, k) (2.3)

where An is the activation map of the last convolution layer, H,W and C are the height,

width, and channels of the last convolution layer.

2.2.3 Aggregating Across Color Channels

The sensitivity map calculations that have been described, so far, provide a scalar sen-

sitivity value for each input to the image classification deep CNN. Color images, however,

are regularly provided to such networks using multiple inputs per image pixel, often en-

coding each pixel over three color channels. Thus, the gradient calculation will actually

produce three sensitivity values for each pixel. Since we hope to produce a sensitivity map

that focuses in a general way on location information, it seems reasonable to aggregate the

three sensitivity values into one. Since the direction of the sensitivity relationship with the

class output is irrelevant, a good first step is to take the absolute value of each derivative.

Given that dependence on even a single color channel suggests that a pixel is important

for identifying the object, an argument can be made that a pixel should be labeled with the

maximum of the three absolute derivatives. Alternatively, it could be argued that all color

channels should be taken into account when producing the sensitivity map, in which case

it might be better to average the three absolute derivatives. We have explored both of these

aggregation methods, with results appearing in Section 3.4.
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2.2.4 Learning to Produce Bounding Boxes

Object localization algorithms typically output the four coordinates of a bounding box

to communicate the location of the target object. Such a bounding box is not intrinsic to a

sensitivity map, however. Heuristic techniques could be used to identify a rectangular re-

gion that captures the majority of the high sensitivity pixels, while avoiding low sensitivity

pixels, but we have taken a different approach. We have opted to learn a linear mapping

from sensitivity maps to bounding box coordinates, using training images with ground truth

location information.

It is important to note that learning this mapping is not the same as learning to map from

the original images to bounding box coordinates, as has been done in some other object

localization systems. Sensitivity maps contain much less information than the original

images, so using the sensitivity maps as inputs both reduces the dimensionality of the input

to this mapping and makes for a more simple functional relationship between pixels and

bounding box coordinates. We expect that this simplification will allow the mapping to

bounding box coordinates to be successfully learned using a far smaller set of training

images labeled with ground truth object locations. Indeed, we expect that a simple linear

mapping could perform well.

Formally, we define the parameters of the linear mapping to the four bounding box

coordinates as a 4 ⇥ M matrix, Ŵ , (where M is the number of pixels in an image) and

a 4-dimensional vector of “bias weights”, ŵ. Given a sensitivity map, s, the output is

(Ŵs + ŵ). Given a training set of N images, the mapping is found by minimizing the

following objective function with regard to Ŵ and ŵ:

1

N

NX

i=1

1

4

4X

j=1

kBi,j � (Ŵsi + ŵ)k22 (2.4)

where si is the sensitivity map for the i
th image, and Bi,j is the j

th coordinate of the

bounding box for the i
th image. This learning process amounts to four independent linear

regression problems, which can be solved efficiently.

Once learned, mapping from sensitivity maps to bounding box coordinates can be done

very quickly. With sensitivity map formation requiring only a single backward pass through
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the image classification network, the whole process – from image, to classification, to

sensitivity map, to bounding box – can be performed in little more than twice the time it

takes for the network to do object recognition.

2.3 Results

Data Sets & Performance Measures. We evaluated our proposed method for object

localization on two challenging data sets: the PASCAL VOC 2007 [26] data set and the

ImageNet 2012 [16] data set. The PASCAL VOC 2007 data set was selected due to its use

in the existing object localization literature. The ImageNet data set is one of the largest

publicly available data sets. It also contains many images annotated with ground truth

bounding boxes.

We followed the literature with regard to the evaluation criterion applied to our method,

using CorLoc, which has been used for weakly supervised localization. The CorLoc metric

is defined as the percentage of images in a data set that are correctly localized based on

the PASCAL criterion, in which a given localization is considered correct if and only if

the intersection over union (IOU) area of the predicted and ground truth bounding boxes is

greater than one half:

IOU =
area(�p \ �gt)

area(�p [ �gt)
> 0.5 (2.5)

. . . where �p is the predicted bounding box and �gt is the ground truth bounding box [78].

Pre-Trained Image Classification Deep CNN. To demonstrate that our approach works

with an image classification deep CNN that was in no way specialized for our localiza-

tion method, we opted to use a publicly available VGG16 network. This network provides

ImageNet object classes as output, allowing us to calculate sensitivity maps based on the

network classification when examining ImageNet data. For the PASCAL VOC 2007 data

set, we used the previously described method of calculating derivatives based on the atten-

tion map of VGG16, since there is not consistent class correspondnce between the PASCAL

VOC 2007 classes and the classes on which VGG16 was trained. To produce sensitivity

maps for the PASCAL VOC 2007 data set, we aggregated across color channels by using

the maximum absolute derivative across the three inputs for each pixel. For the ImageNet

data set, we averaged the absolute derivatives across the three inputs in order to produce
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pixel sensitivity values.

2.3.1 Experimental Setup

For generating sensitivity maps, we have used a pretrained VGG16 network, and we

have used the whole network architecture while we were experimenting on the ImageNet

dataset, otherwise we have removed the last 3 fully connected layers and computed the

Gestalt Total at the last convolution layer. The derivatives in either case were computed

using just one backward pass to the original pixels. For learning bounding boxes we have

used the aggregated sensitivity maps as an input. To learn the mapping from sensitivity

maps to bounding box coordinates, we performed linear regression using stochastic gradi-

ent decent. Updates were performed in batches of 2,048. The learning rate was initialized

to 0.1 and decayed by a factor of 10 every 10,000 iterations. The experiment was run on 1

GPU for 4 days.

2.3.2 Performance on PASCAL VOC 2007

The full PASCAL VOC 2007 data set includes 12,608 training set images and an equal

number of testing set images [26]. Each image contains an object of 1 of 20 different cate-

gories. We applied our object localization method to this full data set. Table 4.1 compares

the localization performance of our method with that of other approaches. Note that our

method, while being very fast, outperforms the comparison algorithms.

Examples of the bounding boxes selected by our method, compared to ground truth, for

all 20 classes in the PASCAL VOC 2007 data set are shown in Figure 2.2. Qualitatively, it

appears as if our approach is most accurate when there is a single target object with little

crowding. However, if the target object is small and in a crowded region of the image,

performance is less reliable.

Several of the comparison methods display better localization performance than our

approach, but it is important to keep in mind that the comparison cases had some important

advantages, including taking the time to use a sliding window and access to the class labels

on which the network was trained. Recall that our sensitivity maps were produced, in this
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Figure 2.2: Results of the proposed method on the PASCAL VOC 2007. Each column

shows three examples in one class. The green boxes are the ground truth, and the red ones

are the predicted bounding boxes.
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case, by calculating the sensitivity of the network attention map activity to pixel values.

Thus, this comparison illustrates trade-offs between speed, performance, and generaliza-

tion. To illustrate that sensitivity maps can be used without learning a linear mapping from

the maps to bounding box coordiantes, we also examined a heuristic method for produc-

ing bounding boxes from maps. We used a Gaussian smoothing filter to smooth out the

sensitivity maps, and then we picked up the top 20% of the pixels, heuristically drawing

the bounding box so as of surround those pixels, as other researchers have done before

[92, 69]. We noticed that this heuristic approach could damage the mean CorLoc by 3% in

our best observations. However, this process highly depends on the smoothing parameter

� . The obtained results from different � values are reported in Table 2.2.

2.3.3 Performance on ImageNet

ImageNet is a large image data set that has been systematically organized by object

category [16]. We executed a large scale evaluation of our approach by using all images in

ImageNet that are annotated with ground truth localization information. This subset con-

tains 300,916 images involving 478 object classes. We divided this data set into a training

set, a test set, and a validation set by sampling without replacement (i.e., the intersection

between each pair of the three sets was empty). There were 225,687 images (75%) in the

training set, and there were 45,137 images in each of the other two sets.

We compared the performance of our approach with two methods discussed in Tang et

al. [78] for which ImageNet results are explicitly reported: Top Objectiveness Box & Co-

Localization. Also, we noted that many images in this data set presented the target object

in the middle of the image, providing a bias that could be leveraged by learned localization

systems. Thus, as a baseline of performance, we calculated the CorLoc performance for

Table 2.1: PASCAL VOC 2007 Test Detection Results. The proposed method performed

favorably against the state of the art methods.

Method MeanCL areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
[74] 30.2 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4
[71] 36.2 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9
[34] 38.8 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4

OM [44] 31.8 50.4 30 34.6 18.2 6.2 39.3 42.2 57.3 10.8 29.8 20.5 41.8 43.2 51.8 24.7 20.8 29.2 26.6 45.6 12.5
PBRM [11] 36.6 50.3 42.8 30.0 18.5 4.0 62.3 64.5 42.5 8.6 49.0 12.2 44.0 64.1 57.2 15.3 9.4 30.9 34.0 61.6 31.5

Sensitivity Maps 40.1 63.8 55.1 41.2 23.3 34.2 58.6 72.7 36.9 23.3 49.7 11.5 29.6 50.1 65.9 11.8 42.2 39.7 18.1 51.0 41.2
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Table 2.2: Average CorLoc Performance on Pascal VOC 2007 using the heuristic bounding

box (� is the smoothing parameter.)

� CorLoc
10 27.2%
20 38.4%
30 32.5%

a system that blindly offered the same bounding box in the middle of the image, with

average size, for every input. The results are shown in Table 2.3. Once again, note the

relatively high accuracy performance of our efficient method. Also note that the baseline

was comfortingly low. As might be expected, performance varies with class. Our algorithm

appears to do well on some objects, such as balls and dogs. One might suspect that failures

arise in the linear mapping from sensitivity maps to bounding box coordinates, but a perusal

of the sensitivity maps, themselves, suggests that the pixel sensitivity values vary in utility

across different object categories. Still, our method performs fairly well across the classes.

Note that the IOU does not fall below 0.62 for any class. This suggests that, while some

individual images may be problematic, the overall performance for each class is quite good.

This universally strong class-specific performance is also displayed in Table 2.3.

2.3.4 Methods Analysis

The sensitivity analysis approach gives us the sensitivity of single pixels in all channels

in the RGB images. Since we are in need of locations, we need to aggregate among chan-

nels. We proposed two methods, an average function and a maximum function. The first

approach calculates the sensitivity as the average among channels, and the second method

uses the maximum absolute derivatives among channels. We didn’t notice a significant dif-

Table 2.3: CorLoc Performance on ImageNet (478 Classes)

Method Average CorLoc
Constant Center Box Baseline 12.34%
Top Objectiveness Box 37.42%
Co-Localization 53.20%
Sensitivity Maps 68.76%
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ference between these two methods in localization performance. The only insight is that

generating sensitivity maps based on the average function is a bit smoother in a visual sense

than the maximum function. The CorLoc between average and maximum aggregation func-

tions on the ImageNet dataset are 68.7 and 67.9 respectively, and the results for these two

aggregation operators on the PASCAL VOC dataset is 39.2 and 40.1, respectively.

2.4 Summary

We have presented an approach to object localization based on performing a sensitivity

analysis of a previously trained image classification deep CNN. Our method is fast enough

to be used in online applications, and it demonstrates accuracy that is superior to some

methods that are much slower. It is likely that even better accuracy could be had by incor-

porating sensitivity analysis information into a more sophisticated bounding box estimator.

As previously noted, the idea of using sensitivity information has appeared in previ-

ously published work. There are ways in which the results reported in this work are dis-

tinct, however. We have moved beyond visualization of network function using sensitivity

(or saliency) [72] to performing direct comparisons between different methods on the lo-

calization task. We have shown that using a fast and simple measure of sensitivity can

produce comparable performance to that of much slower methods. Our approach produces

good generalization without modifying the classification network, as is done in Class Ac-

tivation Mapping (CAM) [92]. With our PASCAL VOC 2007 results, we have shown that

our approach can successfully be applied to attention maps, even when the image contains

objects belonging to a class on which the classification network was not trained, distin-

guishing it from Grad-CAM [69]. In short, we have demonstrated the power of a simple

sensitivity measure for performing localization.

Note that our approach may be used with image classifiers other than CNNs. The

proposed sensitivity analysis can be conducted on any differentiable classifier, though per-

formance will likely depend on classifer specifics. Indeed, at a substantial time cost, even

a black box classifier could be approximately analyzed by making small changes to pixels

and observing the effects on activation patterns.

The proposed approach is quite general. For example, we could apply sensitivity anal-

ysis to deep networks trained on other tasks, with the goal of interpreting network perfor-
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mance on the current input in a useful way. Thus, we see a potentially large range of uses

for sensitivity analysis in neural network applications.



Chapter 3

Object Detection with Selective
Attention

3.1 Introduction

Focus matters. In order to accurately detect objects in an image, we need to know

which parts of the image are important and then focus on those parts to find objects of

interest. Many approaches to selective attention in artificial neural networks are computa-

tionally expensive, however, limiting their utility for online applications. The computer

vision task of object detection involves locating and classifying all of the relevant ob-

jects in an image. This is a challenging problem that has been explored by number of

researchers [61, 31, 32, 58]. Since there is rarely a priori information about where objects

are located in an image, most approaches to object detection conduct search over image

regions, seeking objects of interest with different sizes and at different scales. For exam-

ple, “region proposal” frameworks, like Faster-RCNN [61], need to pass a large number

of candidate image regions through a deep network in order to determine which parts of

the image contain the most information concerning objects of interest. An alternative ap-

proach involves one shot detectors, like Single Shot Detectors (SSD) [47] and You Only

Look Once (YOLO) [58]. These use networks to examine all parts of the image via a tiling

mechanism. For example, YOLO conducts a search over potential combinations of tiles.

In a sense, most off-the-shelf object detection algorithms distribute attention to all parts of

the image equally, since there is no prior information concerning where objects of interest

23
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Figure 3.1: Primary visual cortex and two processing streams. The “ventral stream”

projects into the temporal lobe, and the “dorsal stream” extends into the parietal lobe.

These interacting pathways inspire the use of a “Ventral Net” and a “Dorsal Net”.

might be found.

In contrast, there is much evidence that the human visual system is equipped with a use-

ful spatial selective attention capability that guides processing to relevant parts of the scene

while effectively ignoring irrelevant parts [17]. Some theories of spatial attention focus on

divergent but interacting neural pathways in the brain’s visual system. Projecting from pri-

mary visual cortex in the occipital lobe, two neural streams emerge, as shown in Figure 3.1.

One stream, extending ventrally into the temporal lobe, appears to largely encode what is

in the scene, recognizing objects. The other stream, passing dorsally into the parietal lobe,

approximately captures information about where objects are located. Some computational

neuroscience accounts characterize spatial attention as naturally arising from interactions

between these two neural pathways [50]. Inspired by this theory of attention, we propose a

novel object detection framework that integrates two networks that reflect the two pathways

of the human visual system. The Ventral Net uses object classification information to guide

attention to relevant image regions, and the Dorsal Net uses this attentional information to

accurately localize and identify objects in the scene. Together, these two components form

a Ventral-Dorsal Neural Network (VDNet).

Our object detection framework can be seen as arising from the marriage of attention
based object detection [86, 85] and supervised object detection [58, 61]. The general
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approach is to use ideas from attention based object detection to quickly identify parts of

the image that are irrelevant, with regard to objects of interest, using this information to

guide selective attention. Focusing further supervised processing on important image re-

gions is expected to both allow for the allocation of computational resources in a more

informed manner and produce more accurate object detection by removing potentially dis-

tracting background pixels. Our selective attention process is based on Sailency Detection

in activation maps, such as the methods described in Chapter 2. Guided by the resulting

attentional information, we use supervised object detection to achieve high object detection

performance. Thus, this framework can be seen as a combination of a top-down attention

based model and the bottom-up detection based approach. As far as we know, the proposed

approach is novel. Moreover, our method performs favorably against state-of-the-art object

detection approaches by a large margin. In overview, the work described in this chapter

makes these contributions:

• Our approach uses a top-down saliency analysis to identify irrelevant image regions,

introducing a selective attention mechanism that masks out noise and unimportant

background information in the image.

• Our measure of top-down saliency involves a sensitivity analysis of a trained object

classification network with regard to the Gestalt Total (GT) activation produced by

the network.

• Our method performs very favorably in comparison to state-of-the-art approaches,

demonstrating an improvement of up to 8% (mAP) in comparsion to the best of those

approaches.

3.2 Related Work

State-of-the-art object detection approaches are based on deep CNNs [61, 58, 59, 35].

Leading object detection algorithms can be roughly divided into two categories: attention

based object detection & supervised object detection.
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Figure 3.2: The Ventral-Dorsal Network (VDNet) for Object Detection. The Ventral Net

filters out irrelevant parts of the image based on a sensitivity analysis of the Gestalt Total

(GT) activation. The Dorsal Net then searches for objects of interest in the remaining

regions.

3.2.1 Attention Based Object Detection

Attention based object detection methods depend on a set of training images with as-

sociated class labels but without any annotations, such as bounding boxes, indicating the

locations of objects. The lack of ground truth bounding boxes is a substantial benefit of

this approach, since manually obtaining such information is costly.

One object detection approach of this kind is the Class Activation Map (CAM) method

[92]. This approach is grounded in the observation that the fully connected layers that ap-

pear near the output of typical CNNs largely discard spatial information. To compensate

for this, the last convolutional layer is scaled up to the size of the original image, and Global

Average Pooling (GAP) is applied to the result. A linear transformation from the resulting

reduced representation to class labels is learned. The learned weights to a given class out-

put are taken as indicating the relative importance of different filters for identifying objects

of that class. For a given image, the individual filter activation patterns in the upscaled con-

volutional layer are entered into a weighted sum, using the linear transformation weights

for a class of interest. The result of this sum is a Class Activation Map that reveals image

regions associated with the target class.

The object detection success of the CAM method has been demonstrated, but it has

also inspired alternative approaches. The work of Selvaraju et al. [69] suggested that Class

Activation Maps could be extracted from standard image classification networks without

any modifications to the network architecture and additional training to learn filter weights.
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The proposed Grad-CAM method computes the gradients of output labels with respect to

the last convolutional layer, and these gradients are aggregated to produce the filter weights

needed for CAM generation. This is an excellent example of saliency based approaches

that interpret trained deep CNNs, with others also reported in the literature [93, 90, 91].

As previously noted, attention based object detection methods benefit from their lack

of dependence on bounding box annotations on training images. They also tend to be faster

than supervised object detection approaches, producing results by interpreting the internal

weights and activation maps of an image classification CNN. However, these methods have

been found to be less accurate than supervised object detection techniques.

3.2.2 Supervised Object Detection

Supervised object detection approaches require training data that include both class

labels and tight bounding box annotations for each object of interest. Explicitly training on

ground truth bounding boxes tends to make these approaches more accurate than weakly

supervised methods. These approaches tend to be computationally expensive, however,

due to the need to search through the space of image regions, processing each region with

a deep CNN. Tractability is sought by reducing the number of image regions considered,

selecting from the space of all possibe regions in an informed manner. Methods vary in

how the search over regions is constrained.

Some algorithms use a region proposal based framework. A deep CNN is trained

to produce both a classification output and location bounding box coordinates, given an

input image. Object detection is performed by considering a variety of rectangular regions

in the image, making use of the CNN output when only the content in a given region is

presented as input to the network. Importantly, rather than consider all possible regions,

the technique depends on a region proposal algorithm to identify the image regions to be

processed by the CNN. The region proposal method could be either an external algorithm

like Selective Search [81] or it could be an internal component of the network, as done

in Faster-RCNN [61]. The most efficient object detection methods of this kind are R-

CNN [32], Fast-RCNN [31], Faster-RCNN [61], and Mask-RCNN [35]. Approaches in

this framework tend to be quite accurate, but they face a number of challenges beyond

issues of speed. For example, in an effort to propose regions containing objects of one
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of the known classes, it is common to base region proposals on information appearing

late in the network, such as the last convolutional layer. The lack of high resolution spatial

information late in the network makes it difficult to detect small objects using this approach.

There are a number of research projects that aim to address this issue by combining low

level features and high level ones in various ways [93, 45].

Rather than incorporating a region proposal mechanism, some supervised methods per-

form object detection in one feed-forward pass. A prominent method of this kind is

YOLO, as well as its extensions [58, 59]. In this approach, the image is divided into tiles,

and each tile is annotated with anchor boxes of various sizes, proposing relevant regions.

The resulting information, along with the image tiles, are processed by a deep network in

a single pass in order to find all objects of interest. While this technique is less accurate

than region proposal approaches like Faster-RCNN, it is much faster, increasing its utility

for online applications.

A comparison of these two general approaches to object detection displays a clear trade-

off between accuracy and computational cost (speed). This gives rise to the question of

whether this trade-off can be avoided, in some way. In this chapter, we propose combining

attention based object detection and supervised object detection in a manner that leverages

the best features of both. Inspired by the human visual system and its interacting ventral

and dorsal streams, we propose using a fast attention based approach to mask out irrelevant

parts of the original image. The resulting selective attention greatly reduces the space of

image regions to be considered by a subsequent supervised network.

3.3 Object Detection with Selective Attention

3.3.1 Overview

Human vision regularly employs selective attention. Without introspective awareness

of the process, our brains appear to quickly focus visual processing on important parts of

a scene, apparently masking out unimportant parts. Our proposed object detection frame-

work is inspired by this phenomenon. It uses a kind of selective attention to quickly elimi-

nate distractions, backgrounds, and irrelevant areas from the image before object detection

is performed, providing a sharper focus to the process. VDNet incorporates two distinct
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networks: one for quickly guiding selective attention and a second for classifying and lo-

calizing objects of interest.

The Ventral Net is used to determine how to apply selective attention to the image.

Ventral Net is a deep CNN that first extracts convolutional features from the input image

and then aggregates the results into a Gestalt Total (GT) output. A sensitivity analysis

is then performed, identifying those pixels in the original image that have the greatest

immediate influence on the GT value. A simple smoothing operation translates the clouds

of salient pixels into relevant regions in the image. The result is a guide for selective

attention in the original image space. It provides an indication of which parts of the image

are important and which are irrelevant.

The Dorsal Net performs supervised object detection, but it does so on a modified ver-

sion of the image in which irrelevant regions, as determined by the Ventral Net, have been

simply masked out. Selective attention speeds the region proposal process by restricting

consideration to unmasked portions of the image. The result is class labels and bounding

boxes for the objects of interest in the image.

In the remainder of this section, our new framework is described in detail. VDNet is

illustrated in Figure 3.2. The following notation is used: X 2 Rm⇥n⇥c is the image input of

the system, where m, n, and c are the width, height, and number of channels, respectively;

an associated ground truth class label is z, and b 2 R4 is the associated ground truth

bounding box coordinates of the object in the input image.

3.3.2 Ventral Net

Ventral Net is responsible for guiding selective attention. It is built upon the convo-

lutional layers of a deep CNN that has been trained to perform image classification. The

last convolutional layer is used to calculate the Gestalt Total (GT) activation for the current

input.

For a given image, let fk(x, y) denote the activation of filter k in the last convolutional

layer at spatial location (x, y). For filter k, the Global Average Pooling (GAP) value is

defined as:

F
k =

X

x,y

fk(x, y) (3.1)
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The GT simply aggregates these values across all of the filters:

GT =
X

k

F
k (3.2)

While this simple scalar value might seem to carry little useful information, it provides

us with a simple way to identify the source pixels that have the greatest influence on the

final convolutional layer activity, in a local sense. These pixels are identified through a

sensitivity analysis, measuring the degree to which changes in an input pixel affect the GT.

This is easily computed as follows:

S =
@ GT

@ X

����
X=Ii

(3.3)

where X is the network input and Ii 2 Rm⇥n⇥c is the ith image in the dataset. The result of

this sensitivity analysis is S 2 Rm⇥n⇥c. Since we are interested in all the important pixels

in the image, we work with the absolute values of S. Just as methods for stochastic gradient

descent can involve the calculation of gradients of the output error, for a given input, with

regard to network weights using a single forward pass and a single backward pass through

the network, the value of S can be quickly calculated for each image in the dataset.This

process was described in some detail in Chapter 2.

Derivatives are calculated for all of the inputs to the network, which typically include

three channels per pixel (i.e., RGB). Since the purpose of Ventral Net is to guide spatial

attention, a single measure of relevance for each pixel location, not each channel, is needed.

Thus, some way to aggregate across channels is needed. We have considered two different

methods of aggregation. The first involves averaging derivative values across channels:

Ŝx,y =
1

k

X

k

Sx,y,k (3.4)

where k is the number of channels in the input image (i.e., 3 for RGB) and Ŝ is the Rm⇥n

result of aggregating derivatives. An alternative aggregation method is to use the maximum

derivative across channels:

Ŝx,y = max
k

(Sx,y,k) (3.5)

The resulting Ŝ provides a measure of relevance at the individual pixel level. (The evalu-

ation experiments reported in this chapter all used the averaging approach to aggregation.)



31

In order to translate this information into larger regions of relevance, we smooth Ŝ by

convolving it with a Gaussian filter, resulting in S̃. To extract distinct regions from the

resulting smoothed attention map, pixels need to be classified as relevant or irrelevant. For

simplicity, this is done by setting to zero any value in S̃ below the mean over all pixels

and setting the other values in S̃ to one. The resulting binary mask is duplicated across the

number of channels in the original image, aligning the dimensionality of the mask and the

image.

The mask is applied to the original image through simple element-wise multiplication.

Formally:

Î = I � S̃ (3.6)

where I is the original image and Î is the masked image. This modified image then becomes

the input to Dorsal Net.

3.3.3 Dorsal Net

Reducing the original image, I , to one in which irrelevant regions are masked out, Î ,

substantially reduces the space of candidate regions to consider during object detection. In

Dorsal Net, the masked image is provided as input to a deep CNN trained to propose regions

of interest with anchor boxes, process the contents of those regions, and output both class

labels and bounding box coordinates. This is done using the methods of Faster-RCNN [61].

Dorsal Net is trained using a dataset of images that are annotated with both ground truth

class labels and ground truth bounding boxes. Network parameters are selected so as to

minimize a combination of the classification loss and the regression loss arising from the

output of bounding box coordinates. The complete objective function is:

L(pi, ti) =
1

Ncls

X

i

Lcls(pi, p
⇤
i
)

+�
1

Nreg

X

i

p
⇤
i
Lreg(ti, t

⇤
i
).

(3.7)

where i is the index of an anchor box appearing in the current training mini-batch and pi

is the predicted probability of anchor i containing an object of interest. The ground truth

label p⇤
i

is 1 if anchor i is positive for object presence and it is 0 otherwise. The predicted

bounding box is captured by the 4 element vector ti, and t
⇤
i

contains the coordinates of the
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ground truth bounding box associated with a positive anchor. The two components of the

loss function are normalized by Ncls and Nreg, and they are weighted by a balancing pa-

rameter, �. In our current implementation, the classification loss term is normalized by the

mini-batch size (i.e., Ncls = 32) and the bounding box regression loss term is normalized

by the number of anchor locations (i.e., Nreg ⇡ 2, 400). We set � = 10, making the two

loss terms roughly equally weighted.

It is worth noting that our general approach could easily support the implementation

of Dorsal Net using a wide variety of alternative algorithms. The only requirement is that

the object detection algorithm must be able to accept masked input images. For the results

presented in this chapter, we have used a leading region proposal based approach due to

the high accuracy values reported for these methods in the literature. Having Ventral Net

reduce the number of proposed regions is expected to speed the object detection process,

and it may also improve accuracy by removing from consideration irrelevant portions of

the image.

The general architecture of VDNet appears in Figure 3.2. Pseudocode for the proposed

VDNet method is provided in Algorithm 1. An experimental evaluation of VDNet appears

next.

3.4 Experimental Evaluation

3.4.1 Experiment Design and Implementation

We evaluated VDNet on PASCAL VOC 2007 [26], PASCAL VOC 2012 [27], and on a

dataset of Yearbook images.

The PASCAL VOC 2007 dataset has 20 classes and 9, 963 images which have been

equally split into a training/validation set and a test set. The PASCAL VOC 2012 dataset

contains 54, 900 images from 20 different categories, and it has been split approximately

equally into a training/validation set and a test set. An additional examined dataset is a

private Yearbook dataset owned by Ancestry.com Operations Inc., used with permission.

This dataset has more than 75 million yearbook page images. We trained a separate model

to detect portraits and group photos in these images.

For PASCAL VOC 2007, we conducted training on the union of the VOC 2007 trainval
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Figure 3.3: VDNet Performance on Some PASCAL VOC 2007 Validation Images
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Algorithm 1: Ventral-Dorsal Net Pseudocode

1 Input: I, z, b, a labeled RGB image;

2 Output: I, an RGB image with labeled bounding boxes around objects of interest;

3 VentralNet;
4 Forward pass I though the convolutional layers to get F .;

5 Compute GT based on Equations 3.1 and 3.2.;

6 Calculate the sensitivity of GT with respect to the input via Equation 3.3.;

7 Aggregate the sensitivity maps for spatial locations using Equation 3.4 or

Equation 3.5.;

8 Smooth the result by convolving the aggregated map with a Gaussian filter. ;

9 Threshold the smoothed map to produce a binary mask.;

10 Mask the input image using Equation 3.6, producing Î . ;

11 DorsalNet;
12 Forward pass Î though a pretrained network to obtain the convolution features.;

13 Run the region proposal network using the resulting feature map.;

14 Pool regions of interest (ROIs).;

15 Pass pooled ROI to the fully connected layers;

16 Minimizing the loss function given in Eq. 4.10 ;

set and the VOC 2012 trainval set, and we evaluated the result using the VOC 2007 test

set. (This regimen is standard practice for these datasets.) For PASCAL VOC 2012, we

performed training on its trainval set, and we evaluated the result on its test set. For the

Yearbook dataset, we trained on 1 million images, and we evaluated the results on 10,000

test set images.

To evaluate performance, we used the standard mean average precision (mAP) measure.

For all datasets we report mAP scores using IoU thresholds at 0.5.

For networks with 224⇥ 224 image inputs, using PASCAL VOC, we trained the model

with a mini-batch size of 16 due to GPU memory constraints. We started the learning rate

at 3⇥10�4 for the first 900, 000 epochs. We decreased it to 3⇥10�5 until epoch 1, 200, 000.

Then, we decreased it to 3⇥10�6 until epoch 2, 000, 000. In all cases, we used a momentum

optimizer value of 0.9.
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Figure 3.4: Some examples of selective attention image masking based on Ventral Net sen-

sitivity analyses. The first column shows original images, and the second column displays

the results of Ventral Net based masking.
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Method Network mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster [61] VGG 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6

ION [5] VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
Faster [36] Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72

MR-CNN [29] VGG 78.2 80.3 84.1 78.5 70.8 68.5 88 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85 76.4 48.5 76.3 75.5 85 81
R-FCN [14] Residual-101 80.5 79.9 87.2 81.5 72 69.8 86.8 88.5 89.8 67 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
SSD300 [47] VGG 77.5 79.5 83.9 76 69.6 50.5 87 85.7 88.1 60.3 81.5 77 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
SSD512 [47] VGG 79.5 84.8 85.1 81.5 73 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79 86.6 80

DSSD321 [28] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78 80.9 87.2 79.4
DSSD513 [28] Residual-101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7
STDN300 [93] DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
STDN321 [93] DenseNet-169 79.3 81.2 88.3 78.1 72.2 54.3 87.6 86.5 88.8 63.5 83.2 79.4 86.1 89.3 88.0 77.3 52.5 80.3 80.8 86.3 82.1
STDN513 [93] DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5

VDNet Resnet-101 86.2 95.8 98.1 98.4 65.1 94.6 90.1 96.2 71.7 72.3 54.6 97.9 95.6 89.2 90.1 93.2 69.1 89.2 82.1 93.4.6 74.0

Table 3.1: PASCAL VOC 2007 Test Detection Results. Note that the minimum dimension

of the input image for Faster and R-FCN is 600, and the speed is less than 10 frames per

second. SSD300 indicates the input image dimension of SSD is 300 ⇥ 300. Large input

sizes can lead to better results, but this increases running times. All models were trained on

the union of the trainval set from VOC 2007 and VOC 2012 and tested on the VOC 2007

test set.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
HyperNet-VGG [42] 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.97 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

HyperNet-SP [42] 71.3 84.1 78.3 73.3 55.5 53.6 78.6 79.6 87.5 49.5 74.9 52.1 85.6 81.6 83.2 81.6 48.4 73.2 59.3 79.7 65.6
Fast R-CNN + YOLO [58] 70.7 83.4 78.5 73.5 55.8 43.4 79.1 73.1 89.4 49.4 75.5 57.0 87.5 80.9 81.0 74.7 41.8 71.5 68.5 82.1 67.2

MR-CNN-S-CNN [29] 70.7 85.0 79.6 71.5 55.3 57.7 76.0 73.9 84.6 50.5 74.3 61.7 85.5 79.9 81.7 76.4 41.0 69.0 61.2 77.7 72.1
Faster R-CNN [61] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

NoC [62] 68.8 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1
VDNet 73.2 85.1 82.4 73.6 57.7 61.2 79.2 77.1 85.5 54.9 79.8 61.4 87.1 83.6 81.7 77.9 45.6 74.1 64.9 80.3 73.1

Table 3.2: PASCAL VOC 2012 Test Detection Results. Note that the performance of

VDNet is about 3% better than baseline Faster-RCNN.

3.4.2 PASCAL VOC 2007

Comparative Performance Results

The results of the PASCAL VOC 2007 dataset evaluation appear in Table 3.1. For

the Ventral Net, we utilized VGG19 pretrained on the ImageNet dataset. We removed

the fully connected layers and softmax calculation from VGG19, and we calculated GT

based on the last convolutional layer. The Ventral Net sensitivity analysis was performed

on the resulting network. No fine tuning of parameters was done. For the Dorsal Net we

used Resnet 101 pretrained on the ImageNet dataset as the backbone network for object

detection. The model was trained on 8 GPUs hosted by Amazon Web Services (AWS) for

about one week.

We compared our performance results with those reported for a variety of state-of-
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the-art approaches to object detection. Our primary baseline was Faster-RCNN using a

Resnet 101 network trained on PASCAL VOC 2007. As shown in Table 4.1, the selective

attention process of our approach (VDNet) resulted in substantially better performance in

comparison to Faster-RCNN and other methods. VDNet appears to be more accurate at

detecting larger objects than smaller ones, perhaps because the region proposal network

based its output on the last (lowest resolution) convolutional layer. For most of the object

classes, VDNet performed better than other methods by a large margin. For some classes,

however, the selective attention mechanism sometimes failed to identify the relevant parts

of the image, resulting in poorer performance. Some illustrative test data examples are

provided in Figures 3.3 and 3.4.

Discussion

In order to further understand the contributions of the various components of VDNet,

we observed the results of focal modifications to the system.

We noticed that poor performance could frequently be traced to poor selective atten-

tion masks. By varying parameters, we found that the variance of the Gaussian filter used

to smooth the sensitivity analysis map played an important role. A poor choice for the

variance could result in highly inappropriate attentional masks. We found that good perfor-

mance could be had on the PASCAL datasets by using a variance value between 25 and 35.

It is likely, however, that this value would need to be tuned to the size and kinds of objects

to be detected.

We considered performing the Ventral Net sensitivity analysis using the output class

labels of the pretrained image classification network, rather than basing that analysis on the

Gestalt Total (GT) activation of the last convolutional layer. It seems natural to ask for the

set of pixels that contribute most to the recognition of an object of a particular class. There

are a couple of reasons why we found sensitivity of GT to pixels to be a better measure.

First, focusing on the last convolutional layer allowed us to produce reasonable sensitivity

maps even for object classes novel to the pretrained classification network. Second, since

object detection often involves scenes containing multiple objects, producing sensitivity

maps based on class outputs would require the aggregation of sensitivity information for

each class that might appear in the image. In the most general case, this means calculating
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a separate sensitivity map for each class, increasing the execution time of the Ventral Net

process by a factor equal to the number of classes.

We performed a cursory examination of the role of network depth in the Dorsal Net on

object detection performance on the PASCAL VOC 2007 dataset. In general, it seems as if

increasing network depth increases object detection accuracy. This observation was based

on comparing three different implementations of the Dorsal Net: Inception, Resnet 50, and

Resnet 101. Accuracy was much better for the deeper networks, as shown in Table 3.3.

VDNet Component Deep Network mAP
Dorsal Net Inception 63.1
Dorsal Net ResNet50 71.6
Dorsal Net ResNet101 86.2

Table 3.3: PASCAL VOC 2007 Test Results for Different Network Architectures

3.4.3 PASCAL VOC 2012

We also measured VDNet performance on the PASCAL VOC 2012 dataset. The Ventral

Net consisted of VGG19, with features for calculating GT extracted from the last convo-

lutional layer. The Dorsal Net was initialized with parameters previously learned for the

PASCAL VOC 2007 evaluation, but further training was done. For the additional training,

the learning rate was initialized to 3 ⇥ 10�4 for 900, 000 epochs, and then it was reduced

to 3 ⇥ 10�5 until reaching epoch 1, 200, 000. The learning rate was further reduced to

3⇥ 10�6 until reaching 3, 000, 000 epochs. The whole training process took about 14 days

on 8 GPUs hosted by AWS. This resulted in a VDNet that produced comparable or better

performance that state-of-the-art methods. Performance results for PASCAL VOC 2012

are shown in Table 3.2.

3.4.4 Yearbook Dataset

We performed additional evaluation experiments using a dataset of grayscale Yearbook

page images, testing VDNet in a somewhat different application domain. This dataset is

not publicly available, but was provided by Ancestry.com Operations Inc, which possesses
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more than 75 million yearbook page images. Pictures on these pages appear at a variety

of different angles, with different shapes, scales, and sizes. The task was to automatically

detect and crop the portraits and the group photos from the pages.

Because of the differences in image properties, it did not make sense to use a network

pretrained on the ImageNet dataset as the Ventral Net. Instead, we produced a classification

network appropriate for this task. Our architecture included two convolutional layers, with

32 and 64 filters, respectively. The last convolutional layer was followed by max pooling

and GAP, feeding a fully connected layer with Relu units followed by a softmax opera-

tion. Classification was done to recognize group photos and portraits in 224 ⇥ 224 image

patches. A batch size of 32 was used, and training was conducted for 1, 000 epochs. No

regularization (e.g., weight decay, drop out) was used. The learning rate was initialized to

10�1, and it decayed exponentially every 1, 000 epochs. The Dorsal Net was Resnet 101.

We compared our VDNet to Faster-RCNN and discovered that VDNet exhibited a 7%

improvement in accuracy.

3.5 Summary

In this chapter, we highlighted the utility of incorporating fast selective attention mech-

anisms into object detection algorithms. We suggested that such mechanisms could poten-

tially speed processing by guiding the search over image regions, focusing this search in

an informed manner. In addition, we demonstrated that the resulting removal of distracting

irrelevant material can improve object detection accuracy substantially.

Our approach was inspired by the visual system of the human brain. Theories of spatial

attention that see it as arising from dual interacting “what” and “where” visual streams led

us to propose a dual network architecture for object detection. Our Ventral Net consists of a

pretrained image classification network, and a sensitivity analysis of this network, focusing

on the Gestalt Total (GT) activation of the final convolutional layer, is performed to provide

a fast identification of relevant image regions. The Ventral Net guides selective attention in

the Dorsal Net, restricting the spatial regions considered by the Dorsal Net as it performs

high accuracy object detection. Our approach, VDNet, integrates attention based object

detection methods with supervised approaches.

The benefits of selective attention, as implemented in VDNet, are evident in perfor-
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mance results on the PASCAL VOC 2007 and PASCAL VOC 2012 datasets. Evaluation

experiments revealed that VDNet displays greater object detection accuracy than state-of-

the-art approaches, often by a large margin.

There are many opportunities for improving upon VDNet. One noteworthy weakness

was observed in the detection of smaller objects, arising from the use of later, lower res-

olution, convolutional layers for the generation of region proposals. Ongoing research,

including some reported in subsequent chapters, focuses on equipping VDNet with net-

work architectures that support learning at multiple spatial scales. The idea is to perform

senstivity analyses in Ventral Net based on convolutional layers throughout the classifica-

tion network, combining these in a manner that integrates information from smaller spatial

scales without being distracted by more fundamental image features. It is important that the

result of the sensitivity analysis continues to focus on the visual properties that are closely

related to the presence of objects of interest.

Finally, it is worth noting that VDNet has a very general and flexible structure. The

Ventral Net and the Dorsal Net can easily be updated to incorporate the latest advance-

ments in image classification and object detection algorithms. In this way, we see VDNet

as opening many avenues for future exploration.



Chapter 4

Dense Saliency Maps

4.1 Introduction

In the previous chapters, we have proposed an object detection framework inspired

by a computational neuroscience theory of human spatial attention, called Ventral-Dorsal

Nets or, simply, VDNets. This framework aims to guide object detection by eliminating

irrelevant portions of the input before presenting it to a more focused object detector. The

process of identifying irrelevant regions is driven by an efficient salience analysis of a deep

CNN presented with the image. We have found that the selective attention mechanism of

VDNets can substantially improve object detection performance. We have noted, however,

that mistakes made by the selective attention system can be catastrophic, masking out image

regions that contain objects of interest, making their detection impossible.

In this chapter, we propose a new method for extracting dense information about object

location from pretrained networks, with the goal of improving selective attention in VD-

Nets. Specifically, these new VDNets make use of channel-wise attention levels, as well

as spatially specific attentional information from all receptive fields. By stacking these

different kinds of attention maps, we can potentially preserve the semantic (object class)

information that comes from late layers in the network while incorporating spatial loca-

tion information that is richly represented in early layers. By using these stacked attention

maps, we aim to improve the VDNet selective attention process and, therefore, produce

better object detection performance.

The human visual attention system supports our naturally strong visual perception ca-

41
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pabilities, so we see it as a useful guide for assessing selective attention behavior. Thus, in

addition to measuring the object detection performance of our proposed system, we inves-

tigated possible relationships between information in VDNets and the patterns of attention

exhibited by humans observing the same images. We used the distribution of fixation points

produced by human subjects, measured using eye-tracking technology, as a measure of how

the visual system distributes attention over images.

In overview, this chapter makes these contributions:

• Our approach uses a top-down salience analysis to identify irrelevant image regions,

introducing a selective attention mechanism that masks out noise and unimportant

background information in the image.

• Our measure of top-down salience involves a sensitivity analysis based on all filters

and all spatial locations in order to generate a weighted attention map for every single

layer in the selective attention network.

• We demonstrate the utility of dense salience maps, aggregated across layers, for pre-

serving appropriate attentional information.

• We report the results of a human eye-tracking experiment, using the data to generate a

kind of selective attention “ground-truth”. (The human data are publicly available1.)

We compare computer vision selective attention mechanisms to human behavior.

• We show that our method performs favorably in comparison to state-of-the-art object

detection approaches, demonstrating an improvement of up to 5% (mAP) in compar-

sion to the best of those approaches.

4.2 Algorithm

4.2.1 Dense Attention Ventral Networks

Our investigations into VDNets use a pretrained image classification network to guide

selective attention. In our initial studies, described in the previous chapters, for a given
1
https://github.com/mkebrahimpour/Human_Attention_GT
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Figure 4.1: Dense VDNet: An object detection framework based on selective attention

driven by densely stacked attention maps.

input image, the sensitivity of activity late in the network to each pixel was efficiently cal-

culated, and regions containing low sensitivity pixels were masked out. We made two major

modifications to this approach to produce the results reported in this chapter. First, we cal-

culated the saliency of image regions based on activity at layers throughout the network,

rather than only at the last convolutional layer. We aggregated spatial and channel-wise

sensitivity information at each layer to produce layer-specific attention maps. Second, we

densely stacked the whole collection of attention maps, from all of the layers, in order to

drive selective attention to image regions. The goal was to improve the attention mecha-

nism of VDNets to produce better object detection performance.

Spatial & Channel-wise Attention (SCA) Module

Spatial Attention. Generally speaking, objects occupy only parts of images, leaving

background regions that can distract and misinform object detection systems. Instead of

considering all parts of an image equally, spatial attention can focus processing on fore-

ground regions, supporting the extraction of features most relevant for object class and

object extent.

We represent a convolutional feature of layer n by fn 2 RW⇥H⇥C , where W and H
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are the spatial dimensions of the rectangular layer and C is the number of feature chan-

nels in the layer. Spatial positions are specified by coordinate pairs: L = {(x, y)|x =

1, 2, . . . ,W ; y = 1, 2, . . . , H}.

For a layer in a pretrained image classification network, the layer-specific spatial atten-

tion map is generated by the following equation:

A
s

n
= W

s

n
� fn, (4.1)

where Wn are weights that indicate the importance of each spatial location, across all of

the convolutional filters. We initially calculate these weights based on the sensitivity of the

Gestalt Total (GT) activation of the network to the feature. The Gestalt Total is calculated

from the activation of the last convolutional layer, Alast, as follows:

GT =
1

H ⇥W ⇥ C

X

i,j,k

Alast(i, j, k) (4.2)

The sensitivity of GT to a feature at layer n is the following:

Gn =
@GT

@fn

W
u

n
(x, y) =

CX

c

Gn(x, y, c),
(4.3)

where W
u

n
is not normalized (i.e., the weights are not in the [0, 1] range). To normalize the

weights for each location, `, we apply a softmax operation to the weights spatially:

W
s

n
(l) =

exp(W u

n
(l))P

i2L exp(W
u
n
(i))

, (4.4)

where W
s

n
(l) denotes the weight for location l in layer n.

Channel-Wise Attention. The spatial attention calculation assigns weights to spatial

locations, which addresses the problem of distractions from background regions. There is

another way in which distractions can arise, however. Specific channels at a given layer

can be distracting. When dealing with convolutional features, most existing methods treat

all channels without distinction. However, different channels are often different in their rel-

evance for objects of specific classes. Here, we introduce a channel-wise attention mech-

anism that assigns larger weights to channels to which the GT is sensitive, given the cur-

rently presented image. Incorporating these channel-wise attentional weights are intended

to reduce this kind of distracting interference.
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For channel-wise attention, we unfold fn asf = [f 1
n
, f

2
n
, . . . , f

C

n
], where f

i

n
2 RW⇥H

is the ith slice of fn, and C is the total number of channels. The goal is to calculate a

weight, W c

n
, to scale the convolutional features according to a channel-specific assessment

of relevance:

A
c

n
= W

c

n
· fn, (4.5)

Computing W
c

n
is facilitated by the fact that we already have the sensitivities, Gn. Thus, an

initial value for the weights can be had by setting Ŵ
c

n
(c) =

P
x2W,y2H Gn(x, y, c). These

weights can be normalized to the [0, 1] range using the softmax function:

W
c

n
(c) =

exp(Ŵ c

n
(c))

P
i2C exp(Ŵ u

n
(i))

, (4.6)

These are the final channel-wise weights for layer n.

Dense Attention Maps

Given the spatial attention weights and the channel-wise attention weights, an attention

weighted feature for layer n is calculated as:

f
SCA

n
= A

c

n
· fn + A

s

n
� fn, (4.7)

with f
SCA

n
2 RW⇥H⇥C . These weighted features are concatenated across layers, incremen-

tally from the last layer to the first, but this is done after up-scaling lower spatial resolution

layers. For the last layer, m, the map is simply the weighted features: Am = f
SCA

m
. For

earlier layers:

Ai = [UP (fSCA

m
), UP (fSCA

m�1 ), . . . , f
SCA

i
]

i = {1, . . . ,m� 1}
(4.8)

The result is a dense combination maps that is intended to incorporate both semantic infor-

mation from the late layers and spatial information from the early layers. These attention

maps then are combined to make a single map for the whole image. Since each layer can

have a different number of channels, we simplify this aggregation by averaging each layer’s

attention map across channels, tranforming each Ai into a W ⇥H matrix. The aggregated

attention maps at each layer are computed as:

Atti = A
SCA

m
� A

SCA

m�1 � . . .� A
SCA

i
. (4.9)
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The final aggregated attention map, at the first layer, is Att1. We smooth this W ⇥H map

by convolving it with a Gaussian filter, and then we threshold the result. This produces a

binary mask specifying regions of relevance. The original image is multiplied by this mask

to produce the input to the Dorsal Network.

It is important to note that the attention weights (W s

n
and W

c

n
) are not learned as part of

a training process. We begin with a pretained image classification network for the Ventral

Network, and the attention weights are efficiently calculated for each layer when a given

image is presented to that network.

Object Detection Network

Blanking irrelevant regions in the image substantially reduces the space of candidate

regions to consider during object detection. In the Dorsal Network, the masked image

is provided as input to a deep CNN trained to propose regions of interest with anchor

boxes, process the contents of those regions, and output both class labels and bounding

box coordinates. This is the approach used by Faster-RCNN [61]. The Dorsal Network

is trained using a dataset of images that are annotated with both ground-truth class labels

and ground-truth bounding boxes. As before, network parameters are selected so as to

minimize a combination of the classification loss and the regression loss arising from the

output of bounding box coordinates:

L(pi, ti) =
1

Ncls

X

i

Lcls(pi, p
⇤
i
)

+�
1

Nreg

X

i

p
⇤
i
Lreg(ti, t

⇤
i
).

(4.10)

where i is the index of an anchor box appearing in the current training mini-batch and pi

is the predicted probability of anchor i containing an object of interest. The ground-truth

label p⇤
i

is 1 if anchor i is positive for object presence, and it is 0 otherwise. The predicted

bounding box is captured by the 4 element vector ti, and t
⇤
i

contains the coordinates of the

ground-truth bounding box associated with a positive anchor. The two components of the

loss function are normalized by Ncls and Nreg, and they are weighted by a balancing pa-

rameter, �. In our current implementation, the classification loss term is normalized by the

mini-batch size (i.e., Ncls = 32) and the bounding box regression loss term is normalized
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Table 4.1: PASCAL VOC 2007 Test Detection Results. Note that the minimum dimension

of the input image for Faster and R-FCN is 600, and the speed is less than 10 frames per

second. SSD300 indicates the input image dimension of SSD is 300 ⇥ 300. Large input

sizes can lead to better results, but this increases running times. All models on the union of

the trainval set from VOC 2007 and VOC 2012 and tested on the VOC 2007 test set, except

for the model labeled Dense VDNet⇤ which has been trained on the trainval set from VOC

2007 and tested on 2007 test set.

Method Network mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster [61] VGG 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6

ION [5] VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4
Faster [36] Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72

MR-CNN [29] VGG 78.2 80.3 84.1 78.5 70.8 68.5 88 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85 76.4 48.5 76.3 75.5 85 81
R-FCN [14] Residual-101 80.5 79.9 87.2 81.5 72 69.8 86.8 88.5 89.8 67 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
SSD300 [47] VGG 77.5 79.5 83.9 76 69.6 50.5 87 85.7 88.1 60.3 81.5 77 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
SSD512 [47] VGG 79.5 84.8 85.1 81.5 73 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79 86.6 80

DSSD321 [28] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78 80.9 87.2 79.4
DSSD513 [28] Residual-101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7
STDN300 [93] DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
STDN321 [93] DenseNet-169 79.3 81.2 88.3 78.1 72.2 54.3 87.6 86.5 88.8 63.5 83.2 79.4 86.1 89.3 88.0 77.3 52.5 80.3 80.8 86.3 82.1
STDN513 [93] DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5
Dense VDNet⇤ YOLONet 61.4 66.5 69.5 61.9 39.2 42.8 69.2.5 65.3 79.3 44.2 57.3 54.8 72.9 77.1 69.1 72.4 34.2 49.5 63.1 76.1 65.2
Dense VDNet YOLONet 63.7 80.1 73.2 54.1 47.2 43.1 74.5 73.2 78.6 42.1 62.8 57.3 74.9 77.7 73.6 73.2 30.2 53.1 64.1 75.9 65.9
Dense VDNet Resnet-101 86.7 95.8 98.4 98.2 66.4 94.6 90.2 96.1 71.2 72.8 54.9 97.9 95.6 89.6 90.3 93.2 69.6 89.2 82.1 93.2 74.1

Table 4.2: PASCAL VOC 2012 Test Detection Results. Note that the performance of Dense

VDNet is about 4% better than baseline Faster-RCNN.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
HyperNet-VGG [42] 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.97 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

HyperNet-SP [42] 71.3 84.1 78.3 73.3 55.5 53.6 78.6 79.6 87.5 49.5 74.9 52.1 85.6 81.6 83.2 81.6 48.4 73.2 59.3 79.7 65.6
Fast R-CNN + YOLO [58] 70.7 83.4 78.5 73.5 55.8 43.4 79.1 73.1 89.4 49.4 75.5 57.0 87.5 80.9 81.0 74.7 41.8 71.5 68.5 82.1 67.2

MR-CNN-S-CNN [29] 70.7 85.0 79.6 71.5 55.3 57.7 76.0 73.9 84.6 50.5 74.3 61.7 85.5 79.9 81.7 76.4 41.0 69.0 61.2 77.7 72.1
Faster R-CNN [61] 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

NoC [62] 68.8 82.8 79.0 71.6 52.3 53.7 74.1 69.0 84.9 46.9 74.3 53.1 85.0 81.3 79.5 72.2 38.9 72.4 59.5 76.7 68.1
Dense VDNet 74.1 85.7 82.2 74.1 55.9 60.9 79.8 76.4 83.5 56.9 78.4 63.4 88.4 83.9 81.3 77.1 46.5 74.6 65.3 80.1 72.9

by the number of anchor locations (i.e., Nreg ⇡ 2, 400). As before, we set � = 10, making

the two loss terms roughly equally weighted (due to differences in scale).

It is worth noting that our general approach could easily incorporate other object detec-

tion algorithms for the Dorsal Network. The only requirement is that the object detection

algorithm must be able to accept masked input images. For the results presented in this

chapter, we have used a leading region proposal based approach, due to the high accuracy

values reported for these methods in the literature. Having the Ventral Network reduce

the number of proposed regions was expected to speed the object detection process and

also potentially improve accuracy by removing from consideration irrelevant portions of

the image.
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Table 4.3: Comparison on COCO test-dev reveals that Dense VDNet performs favorably

against state-of-the-art methods.

Method Backbone Input Resolution AP AP50 AP75

Faster R-CNN w/ FPN [45] ResNet-101 1000⇥ 600 49.5 59.1 39.0
Deformable-CNN [13] Inception-ResNet 1000⇥ 600 - 58.0 -
Deep Regionlets [83] ResNet-101 1000⇥ 600 - 59.8 -

YOLOv2 [59] DarkNet-19 544⇥ 544 31.6 44.0 19.2
YOLOv3 [60] DarkNet-53 608⇥ 608 46.1 57.9 34.4

SSD [47] ResNet-101 513⇥ 513 41.8 50.4 33.3
DSSD [28] ResNet-101 513⇥ 513 44.2 53.3 35.2

RetinaNet [46] ResNet-101 1333⇥ 800 50.7 59.1 42.3
Dense VDNet (ours) Resnet 101 511⇥ 511 51.6 57.8 45.3

4.3 Experimental Results

4.3.1 Experiment Design and Implementation

We evaluated the Dense VDNet object detection model on PASCAL VOC 2007 [26]

and PASCAL VOC 2012 [27]. We also compared the attention model to human perfor-

mance.

The PASCAL VOC 2007 dataset has 20 classes and 9, 963 images which have been

equally split into a training/validation set and a test set. The PASCAL VOC 2012 dataset

contains 54, 900 images from 20 different categories, and it has been split approximately

equally into a training/validation set and a test set. For PASCAL VOC 2007, we conducted

training on the union of the VOC 2007 trainval set and the VOC 2012 trainval set, and we

evaluated the results using the VOC 2007 test set. (This regimen is standard practice for

these datasets.) For PASCAL VOC 2012, we performed training on its trainval set, and we

evaluated the result on its test set. To evaluate performance, we used the standard mean

average precision (mAP) measure. We report mAP scores using IoU thresholds at 0.5.

For networks with 224⇥ 224 image inputs, using PASCAL VOC, we trained the model

with a mini-batch size of 1 due to GPU memory constraints. We started the learning rate

at 3 ⇥ 10�4 for the first 900, 000 epochs. We then decreased it to 3 ⇥ 10�5 until epoch

1, 200, 000. Then, we decreased it to 3⇥ 10�6 until epoch 2, 000, 000. In all cases, we used



49

a momentum optimizer value of 0.9.

4.3.2 PASCAL VOC 2007 Results

The results of the PASCAL VOC 2007 dataset evaluation appear in Table 4.1. For the

Ventral Network, we utilized VGG16 pretrained on the ImageNet dataset. We removed the

fully connected layers and softmax calculation from VGG16, and we calculated GT based

on the last convolutional layer. No fine tuning of parameters was done. For the Dorsal

Network we used Resnet 101 pretrained on the ImageNet dataset as the backbone network.

We also tried using YOLO V2 for object detection. The model was trained on 4 GPUs.

We compare our performance results with those reported for a variety of state-of-the-

art approaches to object detection. Our primary baseline was Faster-RCNN using a Resnet

101 network trained on PASCAL VOC 2007. As shown in Table 4.1, the selective attention

process of our approach (Dense VDNet) resulted in substantially better performance in

comparison to Faster-RCNN and other methods. Dense VDNet appears to be more accurate

at detecting larger objects than smaller ones, perhaps because the region proposal network

based its output on the last (lowest resolution) convolutional layer. For most of the object

classes, Dense VDNet performed better than other methods by a large margin. One shot

detectors did not perform as well as the region proposal based approaches. We observed

this by training YOLO V2 on PASCAL VOC 2007 and the union of PASCAL VOC 2007

and 2012 dataset and using the trained YOLO V2 network for the Dorsal Network. The

difference likely reflects a trade off between speed and accuracy.

4.3.3 PASCAL VOC 2012 Results

We also measured Dense VDNet performance on the PASCAL VOC 2012 dataset. The

Ventral Network was VGG16, with features for calculating GT extracted from the last con-

volutional layer. The Dorsal Network was initialized with parameters previously learned

for the PASCAL VOC 2007 evaluation. For the additional training, the learning rate was

initialized to 3 ⇥ 10�4 for 900, 000 epochs, and then it was reduced to 3 ⇥ 10�5 until

reaching epoch 1, 200, 000. The learning rate was further reduced to 3⇥ 10�6 until reach-

ing 3, 000, 000 epochs. The whole training process took about 20 days on 4 GPUs. This
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Figure 4.2: Example human eye fixation distributions on PASCAL VOC images.
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Figure 4.3: MAE measure between human fixation distributions and attention maps at

different layers of Dense VDNet. The X-axis contains the layers of our Ventral Net. The

names containing multiple numbers indicate the combination of these multiple layers with

spatial and channel wise attention procedure. Our results indicate that the second layer in

our neural network is the closest to human attention.

resulted in a Dense VDNet that produced comparable or better performance than state-of-

the-art methods. Performance results for PASCAL VOC 2012 are shown in Table 4.2.

4.3.4 COCO Results

We also measured Dense VDNets performance on the COCO dataset. The Ventral Net

was VGG16, with features for calculating GT extracted from the last convolutional layer.

The Dorsal Net was Resnet 101. Initialized with parameters previously learned for the

PASCAL VOC 2012 evaluation, the network was further trained using the COCO training-

dev set. The training was done on 4 GPUs. This resulted in Dense VDNets that produced

comparable or better performance than state-of-the-art methods, often by a large margin.

Performance results for COCO are shown in Table 4.3.
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4.3.5 Eye Tracking Study

Participants. 15 healthy undergraduate students (12 female,3 male; age: mean±s.d.=

20.06 ± 1.62) were recruited from a University of California campus. Participants pro-

vided informed consent in accordance with IRB protocols and received one hour of course

credit for their participation. Participation was restricted to those who reported normal,

uncorrected vision in a pre-screen survey.

Materials. The images seen were a subset of 200 images from PASCAL VOC 2007.

For display, images were scaled up to double their original size. The display width of

images ranged from 636 � 1000 pixels (mean= 953.68; median= 1000; standard devia-

tion=102.54). The display height of images ranged from 350�1000 pixels (mean= 759.71;

median= 750; standard deviation= 120.73). The ordering of images was randomized

within participants.

Procedure. Participants completed the task individually in a research laboratory. Par-

ticipants were seated at a desk in front of a computer and were fitted with a head-mounted

Eyelink II eye tracker system. A microphone was placed nearby to record participants’

speech. Prior to the beginning of the experiment, the eye-tracker was calibrated using a

standard nine-point grid, and the subject was shown how to perform a drift correction,

which took place at the beginning of each trial. Eye movement data was collected via

the Eyelink control software and custom MATLAB scripts. Data from the right eye were

collected using both pupil shape and corneal reflection.

Each trial began with the participant fixating the center of the screen and pressing the

space bar to initiate the trial. Then, an image was displayed in the center of the screen for

5 seconds. Participants were instructed to name out loud as many different objects as they

could identify in the image, within the 5-second time limit.

Fixation Heat-Map. The raw eye-tracking data were converted into MatLab data struc-

tures using the Edf2Mat package. Heat maps were generated from the eye-fixation data.

Fixations were included in the analysis only if they began at or after the start of the trial.

Fixations were pooled from all participants. For each image, a zero matrix with the same

N ⇥ M dimensions as the original image pixel height and width were created. Fixation

coordinates were scaled so that they corresponded to locations within the original image

sizes and then rounded to the nearest integer. Thus, the coordinate values for each fixation
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corresponded to a location within the matrix. For each fixation, the value of the correspond-

ing matrix position was increased by the duration of the fixation in milliseconds. Then, all

values of the matrix were divided by the maximum value of the matrix in order to normal-

ize all matrix values to the [0, 1] range. Finally, a convolution was performed on the matrix

using a Gaussian kernel (� = 20, size = 80⇥ 80). These steps yielded a heat map showing

the likely places towards which participants attend within the images. Calculations were

performed in MATLAB using custom scripts.

4.3.6 Eye-Tracking Study Results

Example fixation distribution heatmaps are provided in Figure 4.3. We used these dis-

tributions as a form of ground-truth for analyzing the attention maps produced by Dense

VDNet. We compared the attention map distributions, G(x, y), with the human fixation

distributions, S(x, y), using a simple “MAE” measure of average absolute difference:

MAE =
1

W ⇥H

WX

x=1

HX

y=1

|S(x, y)�G(x, y)| (4.11)

where W and H are the width and height of the image. We performed this assessment for

various attention maps in the network. Some of these comparison measures are shown in

Figure 5.9.

None of the network layers produced attention maps that were very good fits to hu-

man fixation behavior. Eye movements and fixations likely change the vision problem in

fundamental ways. Still we found that the second convolutional layer displayed the great-

est similarity to human performance. This contrasts with the attention mechanisms in other

object detection frameworks, which frequently base attention only on the last convolutional

layer. It appears as if the high resolution and fundamental features learned by the network

provide good guides for attention during object detection.

4.4 Summary

In this chapter, we highlighted the utility of incorporating selective attention mecha-

nisms into object detection algorithms. We suggested that such mechanisms could guide

the search over image regions, focusing this search in an informed manner. In addition,
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we demonstrated that the resulting removal of distracting irrelevant material can improve

object detection accuracy substantially. Importantly, we aggregated sensitivity information

across scales.

Our approach was inspired by the visual system of the human brain. Theories of spa-

tial attention that see it as arising from dual interacting “what” and “where” visual streams

led us to propose a dual network architecture for object detection. The resulting architec-

ture, Dense VDNet, integrates attention based object detection methods with supervised

approaches.

The benefits of selective attention, as implemented in Dense VDNet, are evident in the

performance results reported on the PASCAL VOC 2007 and PASCAL VOC 2012 datasets.

Evaluation experiments revealed that Dense VDNet displays greater object detection accu-

racy than state-of-the-art approaches, often by a large margin.

Finally, it is worth noting, once again, that Dense VDNet has a very general and flexible

structure. The Ventral Network and the Dorsal Network can easily be updated to incorpo-

rate the latest advancements in image classification and object detection algorithms. In this

way, we see Dense VDNet as an approach with many potential instantiation.



Chapter 5

Deep Neural Network Attention vs.
Human Attention

5.1 Introduction

The impressive capabilities of CNNs, which have met or even surpassed human per-

formance in some vision tasks [49], are somewhat surprising given how little is actually

understood about their internal operations. Due to the large number of nonlinear inter-

actions inside these networks, ANNs have long been treated as “black boxes”, with their

inner workings opaque to even their creators. However, just as the “black box” perspective

on the human mind gave way to the development of new methods and theoretical tools,

researchers in computer science have recently begun finding new ways of understanding

the intermediate representations produced by ANNs [87]. For example, methods of “deep

visualization” examine the representations learned by individual artificial neurons by itera-

tively generating a synthetic input image that maximally activates each neuron. The images

produced in this process are often surprisingly interpretable by the human eye [49], sug-

gesting that these networks may learn feature representations that are perhaps similar to

those of the human visual system.

Of course, ANNs have have been at the heart of powerful models of human cognitive

processes for over three decades [65]. In the field of computational cognitive neuroscience,

ANNs have served a crucial role in discriminating between various proposed models of

the structure and dynamics of cognitive and brain systems [50]. By comparing the perfor-

55
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mance of human participants to ANNs of various designs, researchers can investigate the

feasibility of specific network models for explaining aspects of brain and behavior. For

example, while most CNNs designed for object recognition are purely feedforward, Rajaei

and colleagues recently argued, based on neuroimaging data and computational models,

that recurrent connections are crucial for performance under cases of degraded input, such

as partial object occlusion [55]. This serves to illustrate that, by examining where humans

succeed and ANNs fail, we can improve both our understanding of the brain and create

more effective computational models.

In this spirit, computer scientists have been taking inspiration from the human visual

system to improve the speed and accuracy of CNNs for object detection. In particular,

visual selective attention has been proposed as one mechanism that is crucial for human

object detection performance, but such a mechanism is absent from most algorithms de-

signed for the same purpose. Several CNN techniques have now been proposed that im-

plement some form of selective attention [92, 69, 23]. Indeed, it has been the focus of the

previous chapters. For most of these techniques it is unknown how these attention algo-

rithms compare to human selective attention. Examining the differences and similarities

between human overt visual attention and the attentional representations produced in these

CNNs will help to hone our understanding of specifically which features of the human vi-

sual system may most fruitfully be modeled by CNNs (and for which tasks), or, indeed,

whether deep networks ofter a promising approach to understanding human vision, at all.

Given the relative power of human vision in comparison to state-of-the-art object detection

CNNs, comparisons of this kind might also suggest new and better biologically-inspired

approaches to selective attention in computer vision.

For the sake of comparison, we took human behavior to be approximately normative

with regard to the allocation of attention. As reported in previous chapter, we recorded

the eye motions of humans as they detected objects in still images, and we took these data

as indicating the image regions most worthy of overt selective attention. We then exam-

ined a variety of CNN approaches to attention, including the Densely Connected Attention

Model (Dense VD Nets) presented in the previous chapter. We assessed the approaches

with regard to their correspondance to human performance. The resulting analyses have

produced insights into both human selective attention and the design of computer vision

object detection systems. By identifying the layers within the Densely Connected Atten-
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tion Model that best capture human selective attention, we were able to identify the sort

of visual features that best predict the distribution of human eye fixations. By comparing

various CNN methods, we were able to characterize their relative strengths and weaknesses

for attention-guided object detection.

5.2 Eye Tracking Study

In this chapter, we make use of the same eye tracking data that were introduced in the

last chapter. For ease of reference, the method used to collect those data are reported, here.

Participants. Our participants were 15 healthy undergraduate students (12 female, 3 male;

age: mean±s.d.= 20.06 ±1.62) at one of the University of California campuses. Partic-

ipants received one hour of course credit for their participation. Participants provided

informed consent in accordance with IRB protocols. Participation was restricted to in-

dividuals with normal vision, as reported on a pre-screen survey.

Materials. The stimuli were a subset of 200 images drawn from the PASCAL Visual

Object Classes 2007 database [26]. Each image was scaled up to twice its original size

for display on a 1920x1080 screen. The display width of images was between 636-1000

pixels, subtending 23.83-34.76 degrees of visual angle. The display height of images was

between 350-1000 pixels, subtending 13.68-34.76 degrees of visual angle. Images were

centered on a black background.

Procedure. Participants completed an object detection task individually in the lab. Par-

ticipants were seated at a desk in front of a computer screen and wore a head-mounted

Eyelink II eye tracker. The eye tracker was set to pupil/corneal reflection recording mode

and sampled at a rate of 250 Hz. A microphone was placed near participants to record their

speech. Before beginning the task, the eye tracker was calibrated with a nine-point grid.

Participants were also shown how to perform a drift correction, which occurred prior to

each trial. Eye movement data was collected with the Eyelink software and custom Matlab

scripts, implemented with the Psychophysics toolbox Matlab package [7].

Each trial started with a drift correction in which participants had to fixate a center dot

and press the space bar to initiate the trial. Participants were allowed to pause on the drift

correction screen for as long as they wished before initiating a trial. Then, a randomly

selected image was displayed on the screen for 5000 ms. Participants were instructed to
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Figure 5.1: Results of the human eye tracking study on some of our test images. The

heatmaps reveal the distribution of attention.



59

name out loud as many unique objects as they could detect within the time limit. This was

repeated until participants had viewed all 200 images, once each. The experiment took

about 30 minutes to complete, with ⇠10 minutes dedicated to setup and calibration and

⇠20 spent on the task itself.

Data Processing. The raw eye tracking data was first converted into a matlab-compatible

data structure using the Edf2Mat package. Then, custom scripts were used to generate

fixation heatmaps for each image. Recorded fixations contributed to the heatmaps only if

they fell entirely within the period of display. Fixations were first pooled from all partic-

ipants. Then, for each image a zero matrix was generated with the same dimensions as

the pixel dimensions of the original (before scaling for display) image. Fixation coordi-

nates from the display images were then scaled down to map onto the coordinates of the

original sizes. Each possible fixation position then corresponded to a position within the

zero matrix for that image. For each recorded fixation at a given location, the value of

the corresponding cell in the zero matrix was increased by the duration of the fixation in

milliseconds. Then, all values were divided by the maximum value in the matrix such that

possible values ranged between zero and one. Finally, we performed a convolution over

the matrix with a Gaussian kernel (� = 20, size = 80 ⇥ 80). This process generated a fix-

ation heatmap showing the relative likelihood of fixations occurring at each region of each

image. Examples of the human eye tracking overt visual attention maps are illustrated in

Figure 5.1.

5.3 Attention Models

In recent years, deep CNNs have demonstrated human level performance on image

classification tasks when given large amounts of supervised training data. This impressive

performance has led to a growing interest in understanding the internal representations

learned by the networks [25, 89, 87, 72]. Of particular interest, here, are the mechanisms

of “selective attention” in these networks that allow them to focus on relevant portions of

input images. In this section, we review several previously published approaches and then

review our novel CNN architecture: the Densely Connected Attention Model.
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Figure 5.2: Results of the CAM attention algorithm. The heatmaps reveal the attention of

the CNN.
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5.3.1 Class Activation Maps

Zhou et al. proposed a technique called Class Activation Maps (CAM) [92]. These

were predicated on the observation that deep CNN architectures for computer vision lose

spatial information close to the network output due to the use of fully connected layers after

the convolutional layers. The authors proposed “chopping off” the fully connected layers

and calculating the Global Average Pooling (GAP) of activation at the last convolutional

layer, aggregating the spatial information in each channel. For a given image, let fk(x, y)

represent the activation of filter k in the last convolutional layer at spatial location (x, y).

Then, for filter k, the result of performing GAP is F k =
P

x,y
fk(x, y). A linear regression

can be conducted between the F k values and each output score, Sc, for each object class, c,

producing regression weights, wc

k
. Given these weights, the CAM for a given image, with

regard to object class, c, is:

Mc(x, y) =
X

k

w
c

k
fk(x, y) (5.1)

The authors argued that using this approach would preserve more spatial location informa-

tion for the main objects in the image. Examples of CAMs are depicted in Figure 5.2. This

method has a number of drawbacks. Specifically, determining the regression weights takes

time, and using the attention information in the suggested manner can noticeably decrease

classification performance.

5.3.2 Gradient Based Class Activation Maps

With the goal of improving on the CAM method, Selvaraju and colleagues proposed

a different approach [69]. They argued that the weights for each channel that are used in

CAMs are implicit in the CNN, itself, so there is no need to perform additional regres-

sions [69]. They suggested taking the derivative of the winning (i.e., greatest) object class

output with regard to the activation in the last convolutional layer of the network:

A =
@yc

@f
(5.2)

where yc is the output activation for object class, c, and f 2 RW⇥H⇥K is the last convo-

lutional layer. The derivative values are aggregated channel-wise into a matrix, A, and the
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weights for each channel are computed as:

a
c

k
=

1

W ⇥H

X

x2W

X

y2H

A(x, y) (5.3)

This weight, ac
k
, is intended to capture the “importance” of channel k for a target class

c. The corresponding attention maps are calculated similarly to CAMs, though values are

rectified (ReLU) to be positive:

L
c

Grad�CAM
= ReLU(

X

k

a
c

k
fk) (5.4)

Notice that this results in a coarse heatmap of the same size as the convolutional feature

maps (14⇥ 14 in the case of the last convolutional layers of the VGG network). Since this

method made use of gradient information, it is called Grad-CAM. Example Grad-CAM

attention maps are illustrated in Figure 5.3.

5.3.3 Guided-Backpropagation

The Guided-Backpropagation technique was proposed as a way to train CNNs so as

to make activation in convolutional feature maps easier to interpret [76]. The goal was

to encourage units to only become active if they are contributing to the activation of the

appropriate object class output. This would make the spatial location of active units indica-

tive of where objects were. The method involved modifying the standard backpropagation

of error algorithm [65] by surpressing negative gradients. Unit error (delta) values were

rectified, hindering the formation of strong negative connection weights. The bias toward

positive weights made the “meaning” of learned features easier to interpret. A very simple

example of this learning process is illustrated in Figure 5.4. Figure 5.5 shows the resulting

attention maps (where activation is high) for some example images.

5.3.4 Guided-Gradient Based Class Activation Maps

In order to obtain information about both relevant image regions and relevant pixels

within regions, Selvaraju and colleagues fused Guided-Backpropagation with Gradient

Based Class Activation Maps, producing the Guided Grad-CAM method [69]. The merg-

ing of the previous algorithms was done in a simple manner. The attention maps resulting
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Figure 5.3: Results of the Grad-CAM attention algorithm. The heatmaps show attended

regions.
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Figure 5.4: An illustration of the training process used in guided-backpropagation.

from the two algorithms were combined using point-wise multiplication. Some example

results are displayed in Figure 5.6.

5.3.5 The Densely Connected Attention Model

All of these CNN attentional mechanisms rely on activation in the last convolutional

layer. Information in earlier layers of the networks is ignored. It is possible, however,

that useful guidance for attention might be found in the earlier convolutional layers, where

spatial resolution tends to be higher and detected visual features tend to be more simple and

smaller. Our proposed Densely Connected Attention Model (Dense VDNets) assembles

information from each channel and each spatial location across all of the layers in the CNN

image classifier. Our method is fast and efficient, and it does not require any additional

training of the CNN.

Spatial Attention. Generally speaking, objects occupy only portions of images, leaving

background regions that can distract and misinform object detection systems. Instead of

considering all parts of an image equally, spatial attention can focus processing on fore-

ground regions, supporting the extraction of features most relevant for determining object

class and object extent. Here, we review our proposed approach, which was introduced in
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Figure 5.5: Results of the Guided-Backpropagation attention algorithm. The color-coded

maps show attended pixels.
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Figure 5.6: Results of the Guided-Grad-CAM attention algorithm. The color-coded maps

show attended pixels.
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the previous chapter. A schematic of our approach is shown in Figure 5.7.

Formally, the annotation that we use to represent the activation of convolutional feature

layer n is fn 2 RW⇥H⇥C , where W and H are the spatial dimensions of the rectangular

layer and C is the number of feature channels in the layer. Spatial positions are specified

by coordinate pairs: L = {(x, y)|x = 1, 2, . . . ,W ; y = 1, 2, . . . , H}.

For layer n in a pretrained image classification network, the layer-specific spatial atten-

tion map is . . .

A
s

n
= W

s

n
� fn (5.5)

. . . where W
s

n
are weights that indicate the importance of each spatial location, across all

of the convolutional channels. We initially calculate these weights based on the sensitivity

of the Gestalt Total (GT) activation of the network to the feature [23]. The Gestalt Total is

calculated from the activation of the last convolutional layer, Alast, as follows:

GT =
1

H ⇥W ⇥ C

X

i,j,k

A
s

last(i, j, k) (5.6)

The sensitivity of GT to a feature at layer n is . . .

Gn = @GT

@fn
(5.7)

Ŵ
s

n
(x, y) =

P
C

c
Gn(x, y, c), (5.8)

. . . where Ŵ
s

n
is not normalized (i.e., the weights are not in the [0, 1] range). To normalize

the weights for each location, we apply a softmax operation to the weights spatially . . .

W
s

n
(x, y) =

exp(Ŵ s

n
(x, y))

P
i2W,j2H) exp(Ŵ

s
n
(i, j))

, (5.9)

. . . where W
s

n
(x, y) denotes the weight for location (x, y) in layer n.

Channel-Wise Attention. The spatial attention calculation assigns weights to spatial lo-

cations, which addresses the problem of distractions from background regions. There is

another way in which distractions can arise, however. Specific channels at a given layer

can be distracting. When dealing with convolutional features, most of the existing meth-

ods treat all channels without distinction. However, different channels often have different

degrees of relevance for objects of specific classes. Here, we introduce a channel-wise at-

tention mechanism that assigns larger weights to channels for which the GT is sensitive,
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Figure 5.7: The network architecture of the Densely Connected Attention Model.

given the currently presented image. Incorporating these channel-wise attentional weights

are intended to reduce this kind of distracting interference.

For channel-wise attention, we unfold fn asf = [f 1
n
, f

2
n
, . . . , f

C

n
], where f

i

n
2 RW⇥H is

the ith channel slice of fn, and C is the total number of channels. The goal is to calculate

a weight, W c

n
, to scale features according to a channel-specific assessment of relevance,

allowing for the construction of a layer-specific channel-wise attention map:

A
c

n
= W

c

n
· fn (5.10)

Computing W
c

n
is facilitated by the fact that we already have the sensitivities, Gn. Thus,

an initial value for the weights can be found by setting Ŵ
c

n
(c) =

P
x2W,y2H Gn(x, y, c).

These weights can be normalized to the [0, 1] range using the softmax function:

W
c

n
(c) =

exp(Ŵ c

n
(c))

P
i2C exp(Ŵ c

n
(i))

, (5.11)

These are the final channel-wise weights for layer n.

Dense Attention Maps. Given the spatial attention weights and the channel-wise attention

weights, an attention weighted feature for layer n is calculated as . . .

f
SCA

n
= A

c

n
· fn + A

s

n
� fn, (5.12)
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. . . with f
SCA

n
2 RW⇥H⇥C . (In Figure 5.7, this computation is done in the Spatial and

Channel wise Attention Module – SCA-Module.) For the last convolutional layer, m, the

attention map is simply the weighted features: Am = f
SCA

m
. For earlier layers, the weighted

features are concatenated across layers, incrementally from the last layer to the first, but this

is done after up-scaling lower spatial resolution (later) convolutional layers:

A
SCA

i
= [UP (fSCA

m
), UP (fSCA

m�1 ), . . . , f
SCA

i
]

i = {1, . . . ,m� 1}
(5.13)

This process generates dense combination maps that are intended to incorporate both se-

mantic information from the late layers and higher resolution spatial information from the

early layers. The maps are aggregated to produce a single attention map for the whole

image. Since each layer can have a different number of channels, we simplify this aggre-

gation by averaging each layer’s attention map across channels, transforming each A
SCA

i

into a W ⇥H matrix. The aggregated attention maps at each layer are then computed as:

Ai = A
SCA

m
+ A

SCA

m�1 + . . .+ A
SCA

i
. (5.14)

It is important to note that the attention weights (W s

n
and W

c

n
) are not learned as part of a

training process. We begin with a pretained image classification network (VGG16 [73]),

and the attention weights are efficiently calculated for each layer when a given image is

presented to that network. Some resulting attention maps from our model are shown in

Figure 5.8.

5.4 Comparing CNN and Human Attention Maps

We have reviewed several existing CNN attention algorithms as well as our novel

Densely Connected Attention Model which incorporates spatial attention as well as channel-

wise attention in each layer. We compared the attention maps of the various CNNs with

overt visual attention maps produced from our eye tracking data, using exactly the same

images in all cases. Our summary comparison statistic was the mean absolute error (MAE)

between attention maps . . .

MAE =
1

W ⇥H

WX

x=1

HX

y=1

|S(x, y)�G(x, y)| (5.15)
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HA

conv1 conv2 conv3

conv4 conv5 conv 54

conv 543 conv 5432 conv 54321

Figure 5.8: Results of the Densely Connected Attention Model for each convolutional layer,

as well as for combinations of layers. The numbers following the “conv” label indicate

layer number. For instance, “conv 54” refers to the combination of layers 5 and 4. Human

eye tracking results for this example image are also shown (HA).
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. . . where W and H are the width and height of the image, S(.) is the attention map from a

network, and G(.) is the “ground truth” (human performance) attention map. We compared

different CNN attention methods, but we also examined the fit of various attention maps at

individual internal layers of the Densely Connected Attention Model. The resulting error

values are summarized in Figure 5.9.

These results reveal that the CAM algorithm provides the closest match to overt vi-

sual human attention on our test images, while the second layer in our proposed attention

mechanism comes in second place. The fact that layer 2 of our network is much closer to

the attentional patterns of human participants than later layers is quite surprising, given the

total reliance on the final convolutional layer seen in other mechanisms. However, while

the combination of layers in our attention mechanism makes the attentional pattern quite

dissimilar to that of humans, it also produces improved performance in object detection

tasks, as described in the previous chapter, allegedly due to the combination of semantic

object class information in later layers with early, more spatially precise, lower-level visual

feature information.

5.5 Summary

We investigated various deep CNN visual attention mechanisms and compared their

attentional patterns to that of human participants. We also revisited our novel attention

algorithm which integrates more kinds of information, at multiple scales, than the other

approaches. We found that the CAM algorithm provides the best match to human per-

formance, with the second convolutional layer of our Densely Connected Attention Model

ranking second. In general, none of the CNN algorithms provided a paricularly good match

to overt visual human attention, however. Thus, while deep CNNs may learn a hierarchy

of visual features similar to the response properties of neurons in the human visual sys-

tem [84], current attentional mechanisms in CNNs do not seem to align with human overt

attention.

This suggests that human attention may not be a good guide for improving the object

detection performance of deep CNNs. We have found that the attention maps produced by

CAM, Grad-CAM, Guided-Backpropagation, and Guided Grad-CAM tend to focus on a

single salient object in the image. In contrast, the Densely Connected Attention Model ap-
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Figure 5.9: Error between human attention maps and those produced at various layers of

the Densely Connected Attention Model. Also shown are errors for other algorithms.

pears to attend to all objects in the image, ignoring background distractions. Despite these

benefits, the CNN attention maps in our model were quite different than those of humans,

with the greatest similarity appearing in layers that encode fairly low-level features. We

are left with interesting questions concerning the nature of the differences between CNN

object detection and human vision that give rise to this mismatch of attentional patterns.



Chapter 6

End-to-End Auditory Object
Recognition via Inception Nucleus

6.1 Introduction

One of the advantages of deep CNNs in object recognition is their ability to learn useful

features in an end-to-end manner by mapping raw data, such as RGB pixels, to class labels.

In contrast, auditory object recognition is typically implemented based on engineered fea-

tures [10, 77]. One of the most powerful types of engineered representation for speech

recognition tasks is based on the mel-frequency cepstrum [52], which is basically the dis-

crete cosine transform of the windowed spectra. Researchers have used such engineered

features as inputs to CNNs for audio classification tasks, such as Automatic Speech Recog-

nition (ASR) [66] and music analysis [82]. In these cases, CNNs are typically applied to

two-dimensional feature maps created by arranging the log-mel cepstral features of each

frame along the time axis. This feature map creates locality in both time and frequency

domains [2], which means that the machine learning problem can be framed as an image

classification problem.

However, cepstral features were designed specifically for speech recognition and may not

be optimal for other types of audio classification tasks. More generally, pre-engineered

features will be tailored to whatever the problem is to be solved, which means they may

not be readily transferred to other problem domains. Another potential problem with engi-

neered features is that they must be computed as inputs to the classification system, such

73
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as a deep learning convolutional network. On-line computation of spectral or cepstral

features can be costly in terms of time and power, especially for edge computing appli-

cations that do not have access to cloud computing servers. More recently, researchers

have developed deep learning networks that take raw waveforms as input, rather than using

pre-engineered features. This approach is known as end-to-end audio classification. For

instance, Dai et al. proposed five CNNs with different architectures and a varying number

of parameters [15]. They achieved impressive accuracy on the Urbansound8k dataset [15].

Tokozume and Harada proposed EnvNet which is an 8-layer neural network that takes the

raw waveform as input, but requires careful selection of hyperparameters to choose appro-

priately sized kernels [79]. AclNet [40] is another end-to-end CNN architecture, inspired

by MobileNet [37] because of its computational efficiency. AclNet achieved human-level

accuracy for the ESC50 dataset with only 155k parameters and 49.3 million multiply-adds

per second [40]. Finally, Ravanelli and Benjio proposed speaker recognition network based

on raw wavforms [56].

We present a deep CNN that learns to classify broad categories of sounds directly

from raw audio waveforms. In comparison to previous end-to-end audio classification

efforts [15, 79, 40], we make use of a novel combination of 1D and 2D convolutional

layers, and, most importantly, “inception nucleus” layers. The inception nucleus approach,

described in Section 6.2, reduces sensitivity to prespecified filter sizes by depending on

adaptation during learning. In comparison to prior work, the proposed method also greatly

reduces the number of parameters while outperforming current state-of-the-art networks

on the UrbanSound8k dataset by 10.4 percentage points. Thus, our CNN is a strong can-

didate for low-power always-on sound classification applications. In addition, we analyze

the learned representations, using visualizations to reveal wavelet-like transforms in early

layers, supporting deeper representations that are discriminative and meaningful, even with

reduced dimensionality.

6.2 Proposed Method

Our proposed end-to-end neural network takes time-domain waveform data — not en-

gineered representations — and processes it through several 1D convolutions, the inception

nucleus, and 2D convolutions to map the input to the desired outputs. The details of the
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Table 6.1: Our proposed deep neural networks architectures. Each column belongs to a

network. The third row indicated number of parameters. Through out our experiments we

designed different network architectures for the ablation study. The model to analyze the

kernel sizes in the inception nucleus layer is called Filter Analysis (FA) model. Also there

is a model to analyze Full Inception (FI) architecture. Also, to analyze the impact of Batch

Normalization (BN), we have an architecture that implements BN in their layer. The con-

volutional layer parameters are denoted as “conv (1D or 2D),(number of channels),(kernel

size),(stride).” Layers with batch normalization are denoted with BN.

Inception Nucleus Nets Configurations
Inception Inception-FA Inception-FI Inception-BN

289 K 789 K 479 K 292 K
Input (32000⇥ 1)

Conv1D,32,80,4 Inception Nucleus: Conv1D,32,80,4 with BN
Conv1D,32,60,4

Conv1D,[32,80,4]⇥2
Conv1D,[32,100,4]⇥2

Inception Nucleus: Inception Nucleus: Inception Nucleus: Inception Nucleus:
Conv1D,64,4,4 Conv1D,64,20,4 Conv1D,64,4,4 Conv1D,64,4,4 - BN

Conv1D,[64,8,4]⇥2 Conv1D,[64,40,4]⇥2 Conv1D,[64,8,4]⇥2 Conv1D,[64,8,4]⇥2-BN
Conv1D,[64,16,4]⇥2 Conv1D,[64,60,4]⇥2 Conv1D,[64,16,4]⇥2 Conv1D,[64,16,4]⇥2-BN

Max Pooling 1D, 64,10,1
Reshape (put the channels first)

Conv2D,32,3⇥ 3,1 Conv2D,32,3⇥ 3,-BN
Max Pooling 2D,32,2⇥ 2,2

Conv2D,64,3⇥ 3,1 Conv2D,64,3⇥ 3,1-BN
Conv2D,64,3⇥ 3,1 Conv2D,64,3⇥ 3,1-BN

Max Pooling 2D,64,2⇥ 2,2
Conv2D,128,3⇥ 3,1 Conv2D,128,3⇥ 3,1-BN

Max Pooling 2D,128,2⇥ 2,2
Conv2D,10,1⇥ 1,1 Conv2D,10,1⇥ 1,1-BN

Global Average Pooling
Softmax



76

Figure 6.1: Inception nucleus. The input comes from the previous layer and is passed to

the 1D convolutional layers with kernel sizes of 4, 8, and 16 to capture a variety of features.

The convolutional layer parameters are denoted as “conv1D,(number of channels),(kernel

size),(stride).” All of the receptive fields are concatenated channel-wise in the concatena-

tion layer.

proposed architectures are described in Table 6.1. The overall design can be summarized

as follows:

Fully Convolution Network. We propose an inception nucleus convolution layer that

contains a series of 1D convolutional layers followed by nonlinearities (i.e., ReLU layer) to

reduce the sensitivity of the architecture to kernel size. Convolutional networks are well-

suited for audio signals for the following reasons. First, similar to images, we desire our

network to be translation invariant with regard to time. Second, convolutional networks

allow us to stack layers, which gives us the opportunity to detect higher-level features

through a series of lower-level detectors. We used Global Average Pooling (GAP) in our

architectures to aggregate the spatial information in the last convolutional layer and map

this information onto class labels. GAP greatly reduces the number of parameters to make

the network relatively light to implement.

Variable Length Input/Output. Since sound can vary in temporal length, we want our

network to handle variable-length inputs. To do this, we use a fully convolutional network.

The input layer to our network is a 1D array, representing the audio waveform, which is

denoted as X 2 R32000⇥1, since the audio files are about 4 seconds, and the sampling rate

was set to be 8 kHz. The network is designed to learn a set of parameters, !, to map the
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input to the prediction, Ŷ , based on nested mapping functions, given by Eq 6.1.

Ŷ = F (X|!) = fk(...f2(f1(X|!1)|!2)|...!k) (6.1)

where k is the number of hidden layers and fi is a typical convolution layer followed by a

pooling operation.

Inception Nucleus Layer. We propose the use of an inception nucleus to produce a more

robust architecture for sound classification. This approach also makes the architecture less

sensitive to idiosyncratic variance in audio files. A schematic representation of the incep-

tion nucleus appears in Fig 6.1. The inputs to the inception nucleus are the feature maps of

the previous layer. Then, three 1D convolutions with different kernels are applied to the in-

puts to capture a variety of features. We test the following kernel sizes in our experiments:

4, 8, 16, 20, 40, 60, 80, 100. (See Section 6.3.) After obtaining the feature maps from our

convolutional layers, we concatenate the receptive fields in a channel-wise manner.

Reshape. After applying 1D convolutions on the waveforms and obtaining low-level fea-

tures, the feature map, L, will be 2 R1⇥m⇥n. We can treat L as a grayscale image

with width=m, height=n, and channel=1. For simplicity, we transpose the tensor L to

L
0 2 Rm⇥n⇥1. From here, we apply normal 2D convolutions with the VGG standard kernel

size of 3 ⇥ 3 and stride = 1 [73]. Also, the pooling layers have kernel sizes = 2 ⇥ 2 and

stride = 2. We also implemented the inception nucleus with batch normalization to analyze

the effect of batch normalization on our approach, as explained in Section 7.4.

Global Average Pooling (GAP). In the last convolutional layer we compute GAP to ag-

gregate the most abstract features over the spatial dimensions and reduce the number of

outputs to class labels. We use GAP instead of max pooling to reduce the number of

parameters and avoid adding fully connected layers at the end of the network. It has been

noted in the computer vision literature that aggregating features across spatial locations and

channels keeps important information while reducing the number of parameters [23, 92].

We intentionally did not use fully connected layers with a softmax activation function to

avoid overfitting, since fully connected layers greatly increase the number of parameters.

GAP was implemented as follows:

GAPc =
1

w ⇥ h

X

i,j

A(i, j, c) (6.2)

where w, h, c are width, height, and channel of the last feature map (A).
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6.3 Experimental Results

We tested our network on the UrbanSound8k dataset which contains 10 kinds of envi-

ronmental sounds in urban areas, such as drilling, car horn, and children playing [67]. The

dataset consists of 8, 732 audio clips of 4 seconds or less, totalling 9.7 hours. We padded

zeros to the samples that were less than 4 seconds. To speed computation, the audio wave-

forms were down-sampled to 8 kHz and standardized to zero mean and unit variance. We

shuffled the training data to enhance variability in the training set.

We trained the CNN models using the Adam [41] optimizer, a variant of stochastic gradi-

ent descent that adaptively tunes the step size for each dimension. We used glorot weight

initialization [33] and trained each model with batch size 32 for up to 300 epochs until

convergence.

To avoid overfitting, all weight parameters were penalized by their `2 norm, using a � coef-

ficient of 0.0001. Our models were implemented in Keras [12] and trained using a GeForce

GTX 1080 Ti GPU.

For ablation study, we evaluated our proposed architecture in a variety of scenarios, Inception-

BN indicates the model with Batch normalization to understand the impact of batch nor-

malization on our architecture. Inception-FA shows the model with filter analysis, and

Inception-FI indicate the fully inception model. Table 6.2 provides classification perfor-

mance on the testing set along with numbers of parameters used for the Urbansound8k

dataset. The table shows that our CNN outperformed other methods in terms of test classi-

fication accuracy, with the fewest number of parameters. Preliminary simulations revealed

that fully connected layers at the end of the network caused overfitting due to an explo-

sion in the number of weight parameters. These preliminary results led us to use a fully

convolutional network with a reduced number of parameters.

We note that the deeper networks (M5, M11, and M18) can improve performance if their

architectures are well-designed. However, our inception nucleus model is 88.4% accurate,

which outperforms the reported test accuracy of CNNs on spectrogram input using the

same dataset by a large margin [52]. Also, inception nucleus-FI achieves very good results

in terms of both accuracy and number of parameters. This result suggests that if we let the

network learn useful features for the desired task in the convolutional layers, recognition

performance and generalization is improved over pre-engineered features.
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Table 6.2: Accuracy of different approaches on the UrbanSound8k dataset. The first col-

umn indicates the name of the method, the second column is the accuracy of the model on

the test set, the third column reveals the number of parameters. It is clear that our proposed

method has the fewest number of parameters and achieves the highest test accuracy. Please

note that Inception-BN indicates the model with Batch normalization, Inception-FA notes

the model with filter analysis, and Inception-FI indicate the fully inception model.

Model Test # Parameters

M3-fc [15] 46.82% 129M
M5-fc [15] 62.76% 18M

M11-fc [15] 68.29% 1.8M
M18-fc [15] 64.93% 8.7M
M3-Big [15] 57.55% 0.5M
RCNN [68] 71.68% 3.7M

ACLNet [40] 65.32% 2M
EnvNet-v2 [79] 78% 101M
PiczakCNN [52] 73% 26M

VGG [53] 70% 77M
Inception Nucleus-BN (Ours) 83.2% 292K
Inception Nucleus-FA (Ours) 70.9% 789K
Inception Nucleus-FI (Ours) 75.3% 479K

Inception Nucleus (Ours) 88.4% 289K

Kernel Analysis. We also analyzed the learned kernels of our Inception Nucleus model

in the very first layer of our neural network. Interestingly, the network learns wavelet

transforms at the first convolutional layer, as has been found by other researchers [4, 80].

Some of those filters are illustrated in Fig 6.2.

Representation Analysis. To better understand the learned representations in the Incep-

tion Nucleus model, we extracted features from the last convolutional layer (before apply-

ing GAP) and applied T- distributed Stochastic Neighbor Embedding (t-SNE). t-SNE is

a nonlinear dimensionality reduction technique for embedding high-dimensional data for

visualization in a low-dimensional space of two or three dimensions [48]. Therefore, we

applied t-SNE to reduce the dimensionality to two. The results, shown in Fig. 6.3, suggest

that the network learned meaningful and discriminative features, as the different classes are

fairly well distinguished from each other.
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Figure 6.2: Illustrating 3 filters in the first convolutional layer. The visualization indicates

that learned representations in the early layers implemented wavelet-like audio filters.

Figure 6.3: Illustration of the top two components of the t-SNE of the last convolutional

layer.

Depth Analysis. We found that deeper networks with larger numbers of parameters were

less generalizable as indicated by poorer performance on the test set. For example, M18

has 8.7M parameters (see Table 6.2) but only achieves 64.93% accuracy, compared with

our inception nucleus network which achieves 88.4% by only having 289K parameters.

This finding runs counter to results from the image recognition literature, in which deeper

networks tend to perform better than shallower ones [36, 39, 38]. The observed detriment

of additional hidden layers may be attributable to the limited number of training examples,

which can be tested in future studies with larger datasets.

Kernel Size Analysis. Dai et al. [15] found that smaller kernel sizes are insufficient to

capture the necessary bandpass filter characteristics in the earlier convolutional layers. Our

results indicate that, with the Inception Nucleus-FA, large kernel sizes (e.g. 60, 80, 100)

are more effective in the first convolutional layer. By contrast, large kernel sizes in the
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second layer reduce performance substantially (e.g., using the Inception Nuclus-FA with

large kernels in the second layer decreased performance by 13 points). We conclude that

a larger inception nucleus is more suitable for the first layer, with smaller kernels in later

convolutional layers.

Batch Normalization. We tested whether batch normalization (BN) improves performance

in our CNN, as it can for very deep neural networks. Without BN, our inception nucleus

achieves 88.4% accuracy while with BN it achieves 83.2%. The slight decrease in accuracy

using BN may have been observed because our CNNs did not have enough layers to show

the advantage of BN.

6.4 Summary

In this study, we developed, optimized, and tested CNNs up to 13 layers deep that used

an inception nucleus to overcome problems with choosing kernel sizes. The CNNs were

trained to perform end-to-end sound classification, and they were benchmarked against the

Urbansound8K dataset. Results from our networks, compared with competitors, showed

better performance with fewer parameters — up to 88.4% accuracy using only 289K pa-

rameters. The ability to perform end-to-end computations effectively using so few param-

eters may be useful for edge computing applications, especially with optimized hardware,

such as neuromorphic implementations of deep networks [6]. Our results indicate that

end-to-end computation does not detract from performance by forgoing cepstral or spec-

tral features. To the contrary, our networks outperformed competitors that used log-mel

spectrogram inputs [52]. Visualizations of kernels learned in the earliest layer revealed

wavelet-like transforms that build up to more abstract and discriminating learned features

in deeper layers. In summary, we have demonstrated effective end-to-end sound classifica-

tion with an efficient deep learning network.



Chapter 7

End-to-end Auditory Object Recognition
of Infant Sounds

7.1 Introduction

Infants produce cries and other non-speech vocalizations from birth, and they start to

produce more complex, speech-like vocalizations as early as 3 months of age [8, 51]. They

enter a period of exploring speech-like vocalizations, known as babbling, and they may

start speaking their first words around one year of age. But even before then, vocalizations

carry information about physical and emotional states that matter to caregivers, as well as to

infant health and well-being [8, 51]. Changes in vocalizations over time carry information

about speech development that may be valuable for informing theories and diagnosing

when development is atypical.

Studies of infant vocalizations often borrow analysis techniques formulated for speech

analysis, such as mel-frequency cepstral coefficents [10, 77, 52]. These techniques rely on

an engineered feature space based in part on theories of adult human speech perception

and production. One of the most powerful types of engineered representation for speech

recognition tasks is based on the mel-frequency cepstrum [52], which is basically the dis-

crete cosine transform of the windowed spectra. Researchers have used such engineered

features as inputs to machine learning models for automatic speech recognition (ASR) [66]

and music classification [82]. In these cases, inputs are typically two-dimensional feature

maps created by arranging the log-mel cepstral features of each frame along the time axis.

82
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This feature map creates locality in both time and frequency domains [2], which means that

the machine learning problem can be framed as an image classification problem.

With respect to classifying infant vocalizations, Rosita and Junaedi developed a system

using MFCC features based on voice type [63]. They classified vocalizations into cate-

gories of hungry, discomfort, and tiredness [63], and found MFCC features are well suited

for discriminating these categories. In another study, Alaie and colleagues used Gausian

Mixture Models to classify healthy and sick infants based on infant cries using MFCC fea-

tures with promising results [3]. Similarly, Zabidi et al. proposed a multi-layer perceptron

to classify infant cries with Asphyxia [88].

While models have progressed to date based on traditional speech analysis techniques,

it is worth noting that pre-linguistic vocalizations are often atypical relative to adult speech.

More generally, acoustic-based features that are tailored to infant vocalizations and distinc-

tions may be better suited for classification tasks and research on speech development. In

recent years, advances in deep neural networks have given rise to so-called ”end-to-end”

models that take mostly unprocessed audio and video signals as inputs, and learn layers of

features that represent the signals along dimensions that are helpful for any given classifi-

cation task.

In particular, convolutional neural networks (CNNs) have proven effective in learn-

ing to classify large sets of categories when given very large numbers of training exam-

ples [73, 36]. One of the advantages of deep CNNs in sound classification is their ability to

learn useful features in an end-to-end manner by mapping raw data, such as raw waveform

audio, onto class labels. For instance, Dai et al. proposed 5 CNNs with different architec-

tures and a varying number of parameters [15]. AclNet [40] is another end-to-end CNN

architecture, inspired by MobileNet [37] because of its computational efficiency. AclNet

achieved human-level accuracy for the ESC50 dataset with only 155k parameters and 49.3

million multiply-adds per second [40].

In the present study, we take a data-driven approach to classifying infant vocalizations

by applying an end-to-end deep learning model of sound classification to a database of in-

fant and adult vocalizations [20]. Vocalizations recorded in natural settings served as inputs

in the form of raw waveforms to convolutional network layers that learned representations

useful for classifying vocalizations. We also tested whether an ”Inception Nucleus” layer

might improve performance by providing more varied convolutional filters. This and other
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features of our model architecture were designed to minimize the number of parameters

and thereby avoid over-fitting to training data.

7.2 Infant Vocalization Dataset

In the present study, we trained the sound classification model introduced in the last

chapter [20] on a database of sound recordings collected by Warlaumont and colleagues [54].

They recruited families with infants to participate in a study of infant speech development.

Each family agreed to put a vest on their infant that had a pocket containing an audio

recording device (LENA; [30]). The infant wore the vest for 12-hour periods at 3, 6, 9,

and 18 months of age. Parents were advised to record during the weekend when they were

most likely to be together with the infant, and the parents were compensated for their par-

ticipation ($20 at 3-months, $30 at 6-months, $40 at 9-months, $60 at 18-months, and an

additional $40 and a summary of the output from their recordings at the end of the study).

On recording days, families otherwise went about their business as usual, and recordings

captured all sounds near the infant, including their vocalizations, nearby adult vocaliza-

tions, and various other ambient sounds.

Three 5-minute periods of relatively active vocalizations by the infant were identified

for each day-long recording with assistance of the LENA system. Research assistants tran-

scribed each 5-minute period to identify time segments that contained infant and adult

vocalizations. Infant vocalizations were categorized as laugh/cry (sometimes both in the

same vocalization period), canonical babbling (well-structured syllables with consonants

and vowels), and non-canonical babbling (lone vowels or consonants, less speech-like

sounds). Adult vocalizations were categorized as either directed at the infant (IDS), such

as vocal play meant to elicit responses, or directed at other adults or other children nearby

(ADS). Any sensitive information (e.g. credit card numbers) that happened to be recorded

was removed.

The dataset consisted of recordings from 15 different families. We did not have tran-

scriptions for all four time periods for each family, so we had less data in the older age

ranges. The distribution of data across different vocalizations categories and different ages

is shown in Fig 7.1.
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Figure 7.1: Left: The distribution data in different classes in InfantSound dataset. Right:

the distribution of samples per age of infants.

7.3 Sound Classification Networks

We investigated two end-to-end neural networks that take time-domain waveform data

as inputs and process them through several 1D and 2D convolutions to map onto the de-

sired output classes. The main difference between the two networks was the inclusion or

exclusion of an inception nucleus. The model architectures are diagrammed in in Table 7.1,

and the main parts of both models are summarzied below, including the inception nucleus.

Convolution Layers. Convolutional networks are designed to learn filters that are

passed over spatial or temporal dimensions, such as images or acoustic waveforms. Con-

volutional filters help models learn translation-invariant features, and they are efficient in

terms of the number of parameters that need to be trained. Convolutional layers can also be

stacked to learn representations that build on each other, from small, low-level features to

larger, high-level objects. Finally, convolutional layers can handle inputs of varying lengths

and features of varying scales.

The input layer to our network is a 1D array, representing the audio waveform, which

is denoted as X 2 R8000⇥1, since the audio files are 1 second, and the sampling rate was

set to be 8 kHz. The network is designed to learn a set of parameters, !, to map the input

to the prediction, Ŷ , based on nested mapping functions, given by Eq 7.1.

Ŷ = F (X|!) = fk(...f2(f1(X|!1)|!2)|...!k) (7.1)

where k is the number of hidden layers and fi is a typical convolution layer followed by a

pooling operation.

Inception Nucleus Layer. We use an inception nucleus [20] for more robust classi-
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Table 7.1: Specific architectures of two different CNNs examined in the present study, with

or without an Inception Nucleus layer. The convolutional layer parameters are denoted as

“conv (1D or 2D),(number of channels),(kernel size),(stride)”.

Neural Networks Configurations
CNN with Inception CNN without Inception

302 K 540 K
Input (8000⇥ 1)

Conv1D,32,80,4 -
- Conv1D,32,9,4
- Conv1D,32,8,4
- Conv1D,32,9,4

Inception Nucleus:
Conv1D,64,4,4

Conv1D,[64,8,4]⇥2 -
Conv1D,[64,16,4]⇥2
Max Pooling 1D,10,1 Max Pooling 1D,2,1

Reshape (put the channels first)
Conv2D,32,3⇥ 3,1 Conv2D,64,3⇥ 3,1

Max Pooling 2D,2⇥ 2,2
Conv2D,64,3⇥ 3,1 Conv2D,128,3⇥ 3,1
Conv2D,64,3⇥ 3,1 Conv2D,128,3⇥ 3,1

Max Pooling 2D,2⇥ 2,2
Conv2D,128,3⇥ 3,1 Conv2D,256,3⇥ 3,1

Max Pooling 2D, 2⇥ 2,2
Conv2D,10,3⇥ 3,1 Conv2D,10,1⇥ 1,1

- Conv2D,10,1⇥ 1,1
Flattening
Softmax

fication and reduced sensitivity to idiosyncratic variance in audio files. The inputs to the

inception nucleus are the feature maps of the previous layer, and the nucleus itself consisted

of three 1D convolutions with different kernels that are simultaneously applied to inputs in

order to capture a range of features and scales. Kernel sizes have significant impacts on

the performance of end-to-end architectures for sound classification tasks. The receptive

fields of the resulting feature maps are concatenated in a channel-wise manner. By using

the Inception Nucleus, the network is given multiple convolutional layers with a variety of

kernel sizes to capture richer features without additional tuning of hyperparameters.

Reshape. After applying 1D convolutions on the waveforms to obtain low-level fea-

tures, the feature map, L, will be 2 R1⇥m⇥n. We can treat L as a grayscale image

with width=m, height=n, and channel=1. For simplicity, we transpose the tensor L to

L
0 2 Rm⇥n⇥1. From here, we apply normal 2D convolutions with the VGG [73] standard
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Table 7.2: Performance of CNNs on different subsets of the infant vocalization dataset.

The first column denotes the experiment, the second column reports the results of the CNN

with Inception, the third column reports the CNN without Inception Nucleus layer and the

last column shows the performance at chance.

Model Comparison CNN with Inception CNN without Inception Chance

Infant vs. Adult 94.12% 97.01% 50.00%
Vocalization vs. Non-Vocalization 90.49% 82.13% 50.00%

Canonical vs. Non-Canonical 76.17% 77.03% 50.00%
IDS vs. ADS 52.72% 60.28% 50.00%

Laugh/Cry vs. Can./Non-Can. vs. IDS/ADS 98.09% 97.86% 33.33%
Laugh/Cry vs. Can. vs. Non-Can. vs. IDS/ADS 74.69% 64.27% 25.00%

Laugh/Cry vs. Can. vs. Non-Can. vs. IDS vs. ADS 64.32% 41.34% 20.00%

Table 7.3: Classification accuracy is shown for the CNN with Inception Nucleus on three

different comparisons as a function of age. # indicates the number of testing samples.

# 3-month # 6-month # 9-month # 18-month Model Comparison

228 71.05 219 84.93 15 100.00 72 95.83 Non-Vocalization vs. Vocalization
72 100.00 93 96.77 477 91.19 69 68.12 Canonical vs. Non-Canonical

123 53.16 210 62.86 15 60.00 63 63.37 Infant Directed vs. Adult Directed

kernel size of 3⇥3 and stride = 1 [73]. Also, the pooling layers have kernel sizes = 2⇥2 and

stride = 2. By converting the acoustic waveform into a learned image representation, we

are able to borrow deep learning techniques from the image processing literature, described

next.

Conv2D. After the reshape layer, the receptive field can be treated as a grayscale image.

We applied several 2D convolution layers similar to those used in the VGG network that

is frequently used in the computer vision literature [73]. The kernel size and stride of the

2D convolutions was fixed to 3 ⇥ 3 and 1, respectively. Each 2D convolutional layer was

followed by a max pooling layer with a kernel size of 2⇥ 2 and stride of 2.

Flatten and Fully Connected layers. The last convolution layer is followed with a

co-called “flatten” layer which collapses the spatial dimensions to a single column vector

that is passed to a fully connected layer. The number of units in the fully connected layer

was set to the number of classes (which varied across models, see below) and the activation

function of the final output layer was the softmax function.
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7.4 Model Results

Models were trained on a total of 2456 audio clips, each being one second long. Record-

ings were down-sampled to 8 kHz and standardized to zero mean and unit variance. We

shuffled the training data to enhance variability in the training set, and trained models us-

ing the Adam [41] optimizer. The optimizer is a variant of stochastic gradient descent that

adaptively tunes the step size for each dimension. We used Glorot weight initialization [33]

and trained each model with batch size 128 for up to 300 epochs until convergence. To avoid

overfitting, all weight parameters were penalized by their `2 norm, using a � coefficient of

0.0001. Our models were implemented in Keras [12] and trained using a GeForce RTX

2080 GPU.

Investigation of model parameters showed that bigger kernel sizes in the first layer

lead to features that are more useful for classification, so larger sizes are reported in the

following sections. Also, we found that deeper networks with larger numbers of parameters

were less able to generalize learning to novel testing sets. Interestingly, this latter finding

runs counter to results from the image recognition literature, in which deeper networks tend

to generalize better than shallower ones [36, 39, 38]. The detriment of additional hidden

layers may be attributable to the limited number of training examples, which can be tested

in future studies with larger datasets. For the present study, we focused on smaller, more

shallow networks with relatively fewer parameters.

7.4.1 Vocalizations vs. Infant Sounds

We combined the classes of canonical, non-canonical, and laugh/cry together to repre-

sent the “Infant” class, and combined IDS and other adult speech to represent the “Adult”

class. We then trained our neural networks to distinguish between these two classes. The

results are illustrated in the first row of Table 7.2. The model learned to discriminate these

two perceptually distinct categories without difficulty, the use of an inception nucleus did

not substantially influence performance.
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7.4.2 Infant Vocalizations vs. Non-Vocalizations

Next we tested an ostensibly more challenging distinction between two broad classes

of infant sounds. The “Vocalization” class contained canonical and non-canonical babbling

whereas the “Non-Vocalization” class contained crying and laughing sounds. We trained

both neural networks on the corresponding subset of training examples, and results are

shown in the second row of Table 7.2. Performance dropped by 4-5% compared with

the adult vs. infant model, which is consistent with the intuition that it more challenging to

separate sounds made by infants. Also, the inception nucleus added eight percentage points

to performance, indicating its potential utility in perceptually more challenging tasks.

7.4.3 Canonical vs. Non-Canonical Babbling

Next we tested an even finer-grained distinction between two basic kinds of infant vo-

calizations. Both classes contain vowels and consonants, with the main difference being

their quality relative to adult speech and their sequential structure, or lack thereof. As

shown in the third row of Table 7.2, model performance was still well above chance, but it

dropped considerably compared with the prior two models, as expected. Interestingly, no

benefit was conferred by the inception nucleus for distinguishing between different kinds

of babbling. The two classes in this model were more homogeneous compared with classes

in the previous two models, suggesting that the greater range of convolutional filters in the

inception nucleus is more useful for representing relatively broad and diverse classes.

7.4.4 Infant Directed Speech vs. Adult Directed Speech

The models tested so far included classes that can be distinguished perceptually, based

on gross differences in the properties of their sounds. Next we tested a distinction in

vocalizations that is much more subtle in terms of differences in acoustic properties. In

particular, we tested adult vocalizations that were categorized as either directed or not di-

rected at the infant. So-called “motherese”, a.k.a. infant-directed speech (IDS), tends to be

more variable in intonation and intensity, and exaggerated in articulation, compared with

adult-directed speech (ADS). However, these acoustic cues are highly variable within and

between speakers, and it can be difficulty even for human listeners to perceive the differ-
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ence. Model results are shown in the forth row of Table 7.2, and the expected difficulty

of this distinction was born out in near-chance performance with the inception nucleus.

Surprisingly, the model performed better without the inception nucleus, but recall that the

inception nucleus was also not beneficial for distinguishing the two types of babbling. Two

types of babbling and two types of adult speech are all relatively homogeneous categories,

again suggesting that the greater range of convolutional filters in the inception nucleus is

more useful for representing relatively broad and diverse classes.

7.4.5 Multiple Category Classification

The previous models that tested binary distinctions were useful for investigating the

model in terms of its capability to learn different perceptual categories, and the effect of

including the inception nucleus. However, for both theory and application, it is important to

demonstrate an ability to distinguish multiple classes simultaneously. We ran three models

that were trained to learn from three to five different classes simultaneously, as shown in

the last three rows of Table 7.2. Results showed that performance was well above chance

for all three models, and the inception nucleus was more beneficial as the number of classes

increased, which corresponded with an increase in the diversity of sounds that needed to be

classified.

7.4.6 Generalization on Samples Outside of our Training Set

Results presented thus far demonstrate the ability of CNN neural networks to learn a

variety of classes of infant and adult vocalizations. In the models reported, training and

testing sets were drawn from the same 15 families, which raises the question of whether

learning would generalize to infants and adults not in the training set. We ran another set

of models in which we tested performance by excluding recordings from one family in

the training set, and testing performance on the untrained family. Performance dropped

only slightly when generalizing to sounds from untrained infants and adults, by 3% at

most. Therefore the model architecture and size and diversity of the data set enabled robust

generalization.
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7.4.7 Classification Performance as a Function of Age

Distinguishing different types of infant and adult vocalizations may be useful for infant

monitoring applications, and analyses of learned representations may provide a data-driven

method for studying how such complex sounds are processed and produced by human per-

ceptual and motor systems. These analyses are left to future research, but our data set

affords a relatively simple, initial test of the model as a tool for studying speech develop-

ment. In particular, we can test performance as a function of infant age, and patterns of

performance over time may provide information about changes in the sound structures of

different vocalizations.

We examined classification performance for the CNN with Inception as a function of

age for the three binary distinctions reported above. As shown in Table 7.3, results varied as

a function of age, and the effect of age was different depending on the classes being distin-

guished. The strongest effect of age was for infant vocalizations versus non-vocalizations

that became more distinct from each other as infants grew older. This result is consistent

with the hypothesis that vocalizations become more clearly speech-like over the course

of development. Interestingly, the opposite pattern was found for canonical versus non-

canonical babbling. As speech develops, babbling becomes more and more canonical be-

cause it becomes more and more speech-like. Thus model results may have tracked the

gradual extinction of non-canonical babble over the course of speech development. Fi-

nally, adult vocalizations were most difficult to discriminate when the infant was youngest

at 3 months of age, suggesting that adults are less engaged in infant-directed speech when

infants are less responsive at such an early age.

7.5 Summary

In this study, we developed, optimized, and tested CNNs with and without Inception

Nucleus components, up to 17 layers deep, on end-to-end classification of infant sounds and

vocalizations that were recorded in natural settings along with vocalizations and vocal inter-

actions of caregivers and adults. Our results contribute to the machine learning community

as well as the developmental speech science community by showing how deep learning

techniques developed for speech and image recognition can be leveraged for speech devel-
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opment. Further research is needed to control for the number of training and testing exam-

ples per class, and confirm that results as a function of age were not unduly influenced by

differences in the numbers of training and testing examples. Further work is also needed

to test whether the model may shed light on differences between normal and disordered

speech development, and whether important aspects of these differences might be revealed

through comparisons of learned representations in models trained on speech from different

populations. We believe that models like those presented in this chapter are opening new

avenues toward diagnostic tools for measuring normal vs. abnormal speech development,

as well as research tools for examining the developmental time course of speech.



Chapter 8

Conclusion and Future Work

8.1 Summary

This dissertation investigates computer perception in both vision and audition, specif-

ically, in object detection and auditory object recognition. To address these challenging

problems, we received inspiration from the visual pathways of the human brain to propose

a novel object detection framework, as well as an end-to-end auditory object recognition

system. Chapter 2 introduced an object detection method by interpreting the connection

weights of the network. This approach uses the gradients of the labels with respect to

the input pixels to find the location of the main object in the image. Toward this end, we

formulated the problem as a sensitivity analysis, and evaluated it on state-of-the-art object

detection benchmarks. Our results demonstrated the powerful performance of our proposed

algorithm in comparison of the state-of-the-art methods.

In Chapter 3, we took a further step by proposing a fundamentally novel framework

for object detection. We noticed that there are two main issues in current object detection

frameworks. The first involves the lack of having a selective attention mechanism. The

second is not assigning dual neural networks for solving the detection tasks. The proposed

algorithm benefits from selective attention as well as dual neural networks in object detec-

tion. By utilizing ventral and dorsal neural networks, we obtained more accurate and tight

bounding boxes around all objects of interest.

In Chapter 4, we further explored the importance of dual neural networks in object

detection by proposing a more sophisticated selective attention approach. The proposed

93
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method benefits from all intermediate layers of a “Ventral” (“What”) neural network by ex-

tracting weighted attention map information from all the hidden layers and densely stacking

them together. This approach results in more accurate attentional maps due to the use of

location information from earlier layers as well as obtaining semantically meaningful infor-

mation from deep layers. The evaluation of this model exhibits strong performance when

compared to state-of-the-art methods.

In Chapter 5, we explored human attention vs. CNN attention. We recruited human sub-

jects from the population of UC Merced undergraduate students and we used an eye-tracker

while they looked at pre-selected images and named all objects aload. After comparing hu-

man attention to deep neural network attention, we noticed that human attention is sharp

and far from deep neural attention.

We also found our approach sometimes failed to direct adequate attention to small ob-

jects.

Starting with Chapter 6, we proposed a novel architecture for auditory object recog-

nition without the need for feature extraction. The proposed architecture takes raw audio

streams and maps them to labels without the use of hand engineered features. We proposed

a novel inception nucleus which contains a number of 1D convolutions for processing these

raw signals. We evaluated this method in comparison to the state-of-the-art approaches on

available benchmarks. Our proposed method showed a significant improvement over the

other approaches. We also analyzed the low level and high level filters to obtain a better un-

derstanding of our proposed architecture. We observed that our model learns wavelet-like

filters in earlier layers and that high level representations are perceptually meaningful.

In Chapter 7, we further analyzed our end-to-end auditory object recognition network

on a new dataset of infant voices, including vocalization and non-vocalization babblings,

adult directed and infant directed speeches, and cry/laughing sounds. We learned that our

network performs significantly well even on hard tasks like canonical sounds vs. non-

canonical babbling. We believe that models like those presented in this chapter are opening

new avenues toward diagnostic tools for measuring normal vs. abnormal speech develop-

ment, as well as research tools for examining the developmental time course of speech.
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8.2 Future Work

In this part, we present two interesting topics for future development.

8.2.1 Selective Attention in Auditory Domain

As stated in the previous chapters, selective attention can boost the performance of ob-

ject detection frameworks by reducing the search space for objects of interest. One poten-

tial extension of selective attention work can be done in auditory domain by implementing

selective attention mechanisms to reduce the distractions in audio space with the aim of

boosting the performance in audio recognition systems.

8.2.2 Cross-Modal Object Recognition

To further improve the efficiency and accuracy of object recognition networks, one

potential solution involves analyzing both the visual field and the auditory filed. For in-

stance, if one wants to recognize objects in a dark video/image, in which the objects are not

clearly visible, listening to the sound of events might boost the performance of the detec-

tion/recognition algorithm. Also, cross-modal learning might help to learn richer features

due to the collaboration of two networks together, and this might lead to a more accurate

recognition system.

8.2.3 Retrieving an Object Given the Sound of the Object

By advancement of deep neural networks, it is predictable that we should be able to

retrieve objects given the sound of them. For instance, given a sound of dog barking, are

we able to retrieve an image of a dog’s body? One can consider this technique as computer

imagination. Listening to an audio can result in imagining the visual concept of the audio.

8.3 Conclusion

The work presented in this dissertation offers new approaches to computer perception

in both visual and auditory modalities. Contributions have focused on implementations

of selective attention and on the ability of end-to-end learning. While our explorations
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have found that computer perception and human perception differ in important ways, there

are still opportunities to improve our best algorithms by taking inspiration from biological

systems that support awareness of the world.
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